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Abstract

This paper introduces an optimized Multivariate Singular Spectrum Analysis (MSSA)
algorithm for identifying leading indicators. Exploiting European tourist arrivals data, we
analyse cross country relations for European tourism demand. Cross country relations have
the potential to aid in planning and resource allocations for future tourism demand by taking
into consideration the variation in tourist arrivals across other countries in Europe. Our find-
ings indicate with statistically significant evidence that there exists cross country relations
between European tourist arrivals which can help in improving the predictive accuracy of
tourism demand. We also find that MSSA has the capability of not only identifying leading
indicators, but also forecasting tourism demand with far better accuracy in comparison to
its univariate counterpart, Singular Spectrum Analysis.

Keywords: Multivariate Singular Spectrum Analysis; leading indicators; tourist arrivals; de-
mand; Europe.

1 Introduction

Europe is considered as the world’s most visited tourism destination (UNWTO, 2016) with five
European Union (EU) member states and one of its candidate countries being listed among the
world’s top 10 destinations for holiday makers (European Commission, 2016). In 2015, whilst
generating an income of US$ 451 billion, the EU accounted for 51% of the global tourist arrivals
which in absolute terms was a 27 million increase in relation to 2014 (UNWTO, 2016). As the
EU has placed considerable emphasis on the tourism sector as a source of economic prosperity
for its members countries (Lee and Brahmasrene, 2013), and given that Europe has suffered
dramatically from the global financial crisis and the ongoing European debt crisis, the need
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for accurate forecasts of tourism demand is of paramount importance for tourism planning,
entrepreneurs, investors, policy makers, tour operators and others alike.

There exists numerous studies which consider both univariate and multivariate forecasting
applications of tourist arrivals. However, the aim of this paper goes beyond obtaining a forecast
alone. In particular, our interest lies in answering the question as to whether one country’s
tourist arrivals can act as an indicator for the behaviour of tourism demand in another. The
use of leading indicators for forecasting tourist arrivals is popular (Zhang and Kulendran, 2016),
and the use of indicators for improving tourism demand forecasts have been discussed over
many years. Yet, most of the focus has been on determining whether macroeconomic variables
function as drivers of tourism demand, see for example Seetaram et al. (2016), Eugenio-Martin
and Campos-Soria (2014), and Smeral (2012). Recently, there has been interest in exploring
factors beyond the macroeconomic sphere (Dragouni et al., 2016) and our work intends on
contributing further to this line of research.

In order to achieve the aim of this paper, we consider modelling and finding cross country
relations for selected European tourist arrivals in Austria, Cyprus, Germany, Greece, Nether-
lands, Portugal, Spain, Italy, Sweden and the United Kingdom. The choice of countries is mainly
based on data availability. However, a closer look at these countries indicate the continuing and
growing importance of tourism within each destination, and thereby justifies the selections. For
example, Spain, Italy, Germany and UK are ranked amongst the top 10 destinations for interna-
tional tourist arrivals (UNWTO, 2016). In addition, destinations such as Portugal, Greece and
Cyprus are recognized as established destinations based on increasing tourist arrivals in 2015,
whilst the Netherlands and Austria too have recorded solid increases, with Sweden boasting
double digit growth (UNWTO, 2016). Table 1 below highlights some key statistics relating
tourism to economic growth, employment and degree of seasonality in the selected countries.

Table 1: Total contribution of travel and tourism to GDP and Employment in 2014, and sea-
sonality in tourist arrivals.

GDP Employment R2

Germany 8.9% 11.7% 0.921
Greece 17.3% 19.4% 0.875
Spain 15.2% 15.3% 0.961
Italy 10.1% 11.4% 0.904
Cyprus 21.3% 7.7% 0.915
Netherlands 5.6% 9.8% 0.830
Austria 13.5% 14.5% 0.917
Portugal 6% 18.4% 0.928
Sweden 9.5% 11% 0.949
United Kingdom 10.5% 12.7% 0.810

Note: The data have been compiled via various Travel & Tourism Economic Impact 2015 reports published by the World

Travel & Tourism Council (https://www.wttc.org/). Percentages reported under GDP should be interpreted in relation to

total GDP in the respective country. Percentages reported under employment should be interpreted in relation to total

employment in the respective country. R2 denotes the seasonal R-square which measures the dominance of seasonality

within each series.

The main advantage in identifying a cross country indicator for tourist arrivals is that it
enables one to study the tourism policy decisions and investments in a neighbouring country,
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and alter its current policies and investments in the tourism sector accordingly. Moreover, the
identification of such indicators has the potential to help improve forecast accuracy. As such,
there is scope to benefit from efficient and improved decision making, planning and resource al-
locations particularly in relation to staffing and crucial investments in accommodation, aircrafts
and infrastructure.

Historically, econometric models have been the most widely used for forecasting tourist
arrivals (Rosselló, 2001). However, in this paper we consider a nonparametric, time series
analysis technique known as Multivariate Singular Spectrum Analysis (MSSA) for modelling and
finding leading cross country indicators for European tourism demand. We use the univariate
counterpart of MSSA, Singular Spectrum Analysis (SSA) as the benchmark model, instead of
relying on other popular univariate models such as ARIMA, ETS and Neural Networks because
in Hassani et al. (2015) it was shown via an application into U.S. tourism demand forecasting
that SSA has the capability of outperforming these methods. More recently, Hassani et al. (2017)
evaluated the use of several parametric and nonparametric univariate forecasting techniques for
predicting tourism demand in the same European countries and found SSA outperforming the
competing models. In addition, the use of basic univariate SSA as a benchmark provides a
further advantage as it enables to clearly show the accuracy gains attainable via the MSSA
approach proposed in this paper.

Figure 1 below plots the time series for European tourist arrivals. As Chen et al. (2008) note,
if stationary, a series will have a constant sample mean, variance and autocorrelation function
over time. However, the series in Figure 1 clearly shows both growth and declines which are
signs of structural breaks in some series, and such breaks are infamous for making a time series
non-stationary (Hassani et al., 2014). The nature of these time series indicate that forecasting
techniques which are model free, and thus not bound by the restrictive parametric assumptions
of normality and stationarity could provide comparatively better modelling for such data. In
addition, the importance of filtering capabilities within such time series methods are apparent
as there is a potential to benefit from extracting the seasonal fluctuations which are clearly
visible. The proposed MSSA model is not only nonparametric and therefore not bound by the
parametric assumptions, but is also a popular filtering and signal extraction technique.

As can be seen from Figure 1, the movements of all the tourist arrivals series are dominated
by seasonality. These strong seasonal patterns are underlined by the seasonal R2 presented in
the last column of Table 1. This is computed as the conventional coefficient of determination in a
regression model of the first difference series against twelve monthly dummy variables. Monthly
dummy variables account for over 90% of the variation in most of these series, with the smallest
seasonality reported for the UK as 81%. The similar characteristics of tourist arrivals in these
countries is mainly because all the countries selected are in Europe and geographically close
to each other, have similar climate conditions and macro-economic factors. In fact, tourists
may visit several European countries in one occasion and thus visiting one country may well
contribute to tourism revenues of other selected countries with freedom of movement facilitating
tourist travelling, except the UK which is an island and has tighter boarder controls. Therefore,
we would expect that the multivariate framework (MSSA) would produce better and more
accurate forecasts, taking advantage of the similar behaviour of these series.
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Figure 1: Tourist arrivals over time (Jan. 2000 - Dec. 2012).

It is noteworthy that the aim of this study and its findings can be of great importance to
the EU tourism sector as the recovery of many European economies in the year 2015 has fuelled
intra-regional tourism (UNWTO, 2016). As a research study focussed on identifying leading
cross country relations for European tourist arrivals, this paper has several key contributions.
Firstly, it marks the introduction of MSSA for tourism demand modelling and forecasting. The
use of an optimized MSSA algorithm as a method of seeking out indicators across countries
is novel. This algorithm is extremely useful as it is coded in R to enable users who are not
conversant with the theory underlying MSSA to use this method for selecting the optimized
MSSA parameters for obtaining the best possible MSSA forecast. The accuracy of forecasts,
efficiency, and ease of use are all important attributes when choosing a forecasting technique,
and time series methods often yield more accurate forecasting results than causal quantitative
approaches (Chen et al., 2008). Thirdly, as noted in Yap and Allen (2011), majority of the
tourism demand research focuses on income and price variables as demand determinants for
travel. In contrast to historical studies, this application considers uncovering cross country
relations in tourist arrivals, and introduces a methodology which can be applied universally for
seeking out leading indicators in any format for the entire tourism sector. Finally, the study
considers short, medium and long run forecasts when determining the leading cross country
relations in European tourist arrivals.

The remainder of the paper is organised as follows. Section 2 presents a concise literature
review. Section 3 briefly discusses the univariate SSA process and then introduces the optimized
MSSA algorithm for leading indicators. Section 4 analyses the data used and presents the
measures employed for evaluating forecast accuracy. Section 5 presents the empirical results
and the paper concludes in Section 7.

2 Literature Review

This section focuses on research exploiting indicators for the benefit of the tourism industry,
and for improving tourism demand forecasting.

Turner et al. (1997) uses cross-correlation techniques for finding indicators for tourist arrivals
to Australia from U.S., Japan, UK and New Zealand. They consider a variety of national
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indicators which include income, unemployment, forward exchange rate, money supply, price
ratio, industrial production, imports and exports. In addition to analysing based on the total
tourist arrivals, the forecasting exercise also considers further disaggregated data based on travel
type such that ‘holiday’, ‘visiting friends and relatives’ (VFR) and ‘business’ are considered.
The findings of this study remain inconclusive in terms of whether leading indicator models can
provide more accurate forecasts than univariate ARIMA models. McCool et al. (2001) considers
the tourism industry in the state of Montana, U.S. alongside a qualitative research approach
aimed at identifying the usefulness of 26 indicators of sustainability (as identified in Manning
(1992)) for the states’ tourism industry. The results from the study left more questions than
answers as there were differences between what should be sustained and appropriate indicators.

Cho (2001) uses exponential smoothing (ETS), ARIMA and an adjusted ARIMA model for
predicting tourist arrivals from different countries to Hong Kong. He finds the adjusted ARIMA
model (which considers economic variables as indicators), outperforms ARIMA and ETS fore-
casts for tourist arrivals from Japan whilst ARIMA is found to be the best predictor for tourist
arrivals from U.S. and UK. There is no difference between forecasts from ARIMA and adjusted
ARIMA in the case of Taiwan, Singapore and Korea with ETS found to be the least effective
method. Rosselló (2001) uses leading indicators to predict turning points in tourist arrivals into
Balearic Islands from UK and Germany. The author uses cross-correlation techniques for iden-
tifying indicators which relate to economic activity, prices and financial activity, and classifies
these as leading, coincident or lagged. Following a comparison of the performance of forecasts
from ARIMA, naive and leading indicator methodologies (using regression), the author finds
that turning points are best predicted by the leading indicator methodology.

Leading indicator Transfer Function (TF) models are developed to forecast tourism demand
from UK to six major destinations by Kulendran and Witt (2003). The performance of the
TF forecasts are compared with ARIMA and Error Correction Model (ECM) forecasts. The
authors find that the TF and ARIMA based models outperform ECM in the short run whilst
ECM provides better forecasts in the long run. However, their findings also suggest that leading
indicator models cannot outperform univariate ARIMA forecasts, and thereby concludes that
practitioners should not consider complex leading indicator models. Qualitative research has
also been adopted in the search for indicators in the tourism industry. For example, Fucsh
and Weiermair (2004) looks at the possibility of exploiting indicator systems for exploring guest
satisfaction whilst Phillips and Louvieris (2005) identifies indicators which are used to develop
a balanced scorecard for the hotel sector, and de Sausmarez (2007) studies the role of indicators
for sustainable tourism development and concludes that the travel trade may hold the key to
indicators of market trends.

Becken (2008) applies 10 indicators of oil intensity to compare the Top 10 tourist markets
to New Zealand. She finds considerable differences in oil use between the top 10 markets to
New Zealand arising through differences in the lengths of stay, travel itineraries and transport
modes. Kulendran and Wong (2009) exploits a single input leading indicator model for predict-
ing numerical demand growth rates, directional changes and turning points in the growth rate
for Hong Kong. An ARIMA model and a no-change model is used for comparative purposes
and the authors find that ARIMA forecasts outperform the other two models in terms of the
numerical forecasting exercise. However, the single input leading indicator model outperformed
ARIMA and the no-change models in the turning point and directional change forecasting com-
parisons. Meanwhile, Yap and Allen (2011) uses a panel three-stage least squares (3SLS) model
to investigate the role of leading indicators such as consumers perceptions of the future course
of the economy, household debt and the number of hours worked in paid jobs on Australian
domestic tourism demand.
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Lozano and Gutierrez (2011) and Marcussen (2011) applied Multidimensional Scaling (MDS)
to summarize indicators further within the tourism industry. A Threshold Autoregression (TAR)
model was exploited in Che (2013) to determine whether the destination’s consumer price index
(CPI) influenced outbound tourism in Taiwan and the author found evidence of a positive linear
relationship. Kosnan et al. (2013) exploits the Gravity model along with panel data to identify
the determinants of international tourism in Malaysia. Yap and Saha (2013) uses fixed-effects
panel data analysis for 139 countries and finds that political instability, heritage and terrorism
can be indicators which have a negative influence on tourism demand.

Guizzardi and Stacchini (2015) exploit business sentiment surveys as indicators in naive and
structural time series models for real-time forecasting of regional tourism and finds it aiding
in the improvement of goodness of fit and forecasting performance. Gunter and Onder (2015)
performs a comparative study at forecasting international city tourism demand for Paris using
a variety of techniques which includes the Error Correction - Autoregressive Distributed Lag
Model (EC-ARDL), classical and Bayesian VAR, Time-varying Parameter (TVP), ARMA, ETS
and the naive-1 model. Within this study, the authors seek to determine whether multivariate
models with city destination’s own price, prices of competing European destinations, and tourist
income have any predictive power. They find that not one single model can outperform all others
on all occasions. The possibility of exploiting Google and Baidu search engine data for improving
tourism demand forecasts in China was evaluated by Yang et al. (2015) with the use of ARMA
models. They found Baidu data to be a comparatively better indicator than Google data for
the Chinese market. Artola et al. (2015) seeks to determine whether internet searches can
help predict tourism inflows into Spain by considering an ARIMA model estimated by Time
Series Regression with ARIMA Noise, Missing Observations, and Outliers, and another model
augmented with the Google-index. Likewise, Bangwayo-Skeete and Skeete (2015) also evaluated
whether Google data can be an indicator for tourism demand forecasting. They considered
Autoregressive Mixed-Data Sampling models and compared the results with Seasonal ARIMA
(SARIMA) and Autoregressive (AR) models to find that Google trends does in fact help predict
tourism demand.

Tica and Kozic (2015) use the Granger causality test to identify leading indicators for fore-
casting Croatian inbound tourism demand. They find real GDP, imports in Poland, and gross
wages in the Czech Republic and Slovakia to be the most important leading indicators. Mehmood
et al. (2016) evaluates the relationship between tourist arrivals, immigrants and crimes in US via
Ordinary Least Squares (OLS) and ARDL methods. They find that crime rates have a negative
and significant effect on tourist arrivals. Principal Component Analysis was used by Claveria
(2016) to find interactions between tourism and economic variables in 20 emerging markets.
The Gravity model was used more recently by Wang and Xi (2016) who found cultural dummy
variables and climate variables driving tourism flows to China. Chatziantoniou et al. (2016)
considers a variety of SARIMA models to determine which macroeconomic variables can act as
indicators for improving tourism forecasts. Zhang and Kulendran (2016) seek to quantify the
link between climate variables and inbound tourism demand in Hong Kong using the Euclidean
distance statistics and finds climate variables having a significant impact on shaping seasonal
variation.

Support Vector Regressions were used in Jackman and Naitram (2016) to determine if Google
search data can act as an indicator for trends in tourist arrivals in Barbados. The authors find
that whilst Google Trends data can pick up significant information pertaining to tourist arrivals
from UK and Canada there is no evidence in terms of tourist arrivals from US. Habibi (2016) uses
generalized method of moment model to identify determinants of inbound tourism to Malaysia.
Pintassilgo et al. (2016) combined a world gravity model of tourism flows with an input-output
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model to identify if climate variables act as indicators for tourism flow in Portugal.
Based on the tourism demand literature, it is evident that a wide variety, and mostly para-

metric techniques have been adopted in the search for leading indicators for tourism demand,
and that most of the models used have been unable to outperform ARIMA. In addition, histori-
cally linear models have been used for identifying indicators for tourism demand. However, such
models fail to capture the nonlinear relationships in data. Accordingly, proposed in this paper is
the use of a Multivariate SSA based approach for finding leading indicators for tourism demand
and using these indicators for obtaining more accurate forecasts. Whilst this paper marks the
introductory application of MSSA in the tourism sector, its univariate counterpart, SSA has
been applied successfully on two previous occasions. Beneki et al. (2009) introduced SSA as
a feasible option for forecasting tourism income and showed that SSA outperforms Seasonal
ARIMA (SARIMA) and time-varying-parameter state space models. Thereafter, Hassani et al.
(2015) introduced SSA for tourism demand forecasting and showed that SSA can outperform
an optimized ARIMA model, Neural Networks and ETS via an application to aggregated and
disaggregated forecasts of U.S. tourist arrivals.

3 Methodology

3.1 Singular Spectrum Analysis

Univariate SSA

SSA initially decomposes the original data into trend, periodic and noise components. In the
second stage, the original time series is reconstructed following noise reduction and forecasts are
obtained via a linear recurrence formula. A detailed description of the two main stages of SSA
(i.e. Decomposition and Reconstruction) can be found in Sanei and Hassani (2015). Here, the
univariate SSA process is concisely summarized in Figure 2 and an explanation of the forecasting
algorithms follow.

Figure 2: A summary of the basic SSA process.
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SSA-R

When using SSA, one can generate forecasts via the recurrent (SSA-R) or vector (SSA-V) fore-
casting methods. The SSA-R process considers only the last component of the reconstructed
vectors for forecasting whilst the SSA-V process takes into consideration the information con-
tained within the entire vector. Previous research suggests the SSA-V forecasting approach is
less sensitive to structural breaks in series and can provide better forecasts than SSA-R under
such circumstances (Hassani et al., 2015). However, this study considers both vector and re-
current forecasting approaches and compare between the results. A detailed description of the
SSA-R forecasting approach can be found in Sanei and Hassani (2015). It is summarised below.

Let v2 = π2
1 + . . . + π2

r , where πi is the last component of the eigenvector Ui (i = 1, . . . , r).
Moreover, suppose for any vector U ∈ RL denoted by U▽ ∈ RL−1 the vector consisting of the
first L−1 components of the vector U . Let yN+1, . . . , yN+h show the h terms of the SSA recurrent
forecast. Then, the h-step ahead forecasting procedure can be obtained by the following formula

yi =

{
ỹi for i = 1, . . . , N∑L−1

j=1 αjyi−j for i = N + 1, . . . , N + h
(1)

where ỹi (i = 1, . . . , N) creates the reconstructed series (noise reduced series) and vector A =
(αL−1, . . . , α1) is computed by:

A =
1

1− v2

r∑

i=1

πiU
▽

i . (2)

SSA-V

Consider the following matrix

Π = V▽(V▽)T + (1− v2)AAT (3)

where V▽ = [U▽

1 , ..., U
▽
r ]. Now consider the linear operator

θ(v) : Lr 7→ RL (4)

where

θ(v)U =

(
ΠU▽

ATU▽

)
. (5)

Define vector Zi as follows:

Zi =

{
X̃i for i = 1, . . . ,K

θ(v)Zi−1 for i = K + 1, . . . ,K + h+ L− 1
(6)

where, X̃i’s are the reconstructed columns of the trajectory matrix after grouping and eliminating
noise components. Now, by constructing matrix Z = [Z1, ..., ZK+h+L−1] and performing diagonal
averaging we obtain a new series y1, ..., yN+h+L−1, where yN+1, ..., yN+h form the h terms of the
SSA vector forecast.
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3.2 Automated Horizontal Multivariate SSA (HMSSA) Algorithm for Lead-
ing Indicators of Tourism Demand

We use an automated and optimized MSSA algorithm in this paper to find leading cross country
indicators for tourism demand 1. In brief, the algorithm is designed to evaluate two given
time series and determine the selection of SSA choices which can provide the best forecast by
minimizing a loss function. Therefore, we evaluate every possible combination of cross country
relations for tourism demand in Europe and select as leading indicators the countries which
when combined together can provide the most accurate forecast by producing a comparatively
lower forecast error. A detailed explanation of the theory underlying MSSA is presented in Sanei
and Hassani (2015). Presented herewith are the Automated Horizontal MSSA algorithm used
in our work and we mainly follow the notations in Sanei and Hassani (2015).

HMSSA-R Optimal Forecasting Algorithm

1. Consider M (in this case two) time series with identical series lengths of Ni, such that

Y
(i)
Ni

= (y
(i)
1 , . . . , y

(i)
Ni
) (i = 1, . . . ,M). M is assumed to be noisy time series.

2. Divide both series into two parts leaving 2
3

rd
for model training and testing, and 1

3

rd
for

validation.

3. Begin with a fixed value for the Window Length L, such that L = 2 (2 ≤ L ≤ N
2 ) and in

the process, evaluate all possible values of L for YNi
, use the training data to construct

the trajectory matrix X(i) = [X
(i)
1 , . . . ,X

(i)
K ] = (xmn)

L,Ki

m,n=1 for each single series Y
(i)
Ni

(i = 1, . . . ,M) separately. These trajectory matrices are LxK Hankel matrices where
Ki = Ni − Li + 1.

4. Thereafter, we must obtain the block Hankel matrix in the horizontal form. For this, we
need to have L1 = L2 = ... = LM = L. Therefore, we have different values of Ki and series
length Ni, but similar Li. The block trajectory matrix XH appears as:

XH =
[
X(1) : X(2) : · · · : X(M)

]
.

5. Let UHj
= (u1j , . . . , uLj)

T , with length L, be the jth eigenvector of XHXT
H which repre-

sents the Singular Value Decomposition. The SVD is obtained by XHXT
H which results

in a matrix that does not have any cross-product between Hankel matrices X(i) and X(j).

Moreover, the sum of X(i)X(i)T produces the new block Hankel matrix.

6. Evaluate all possible combinations of the number of eigenvalues, r (1 ≤ r ≤ L− 1) step by
step for the selected L and construct X̂H =

∑r
i=1 UHi

UT
Hi
XH as the reconstructed matrix

obtained using r eigentriples:

XH =
[
X̂(1) : X̂(2) : · · · : X̂(M)

]
.

7. Consider matrix X̃(i) = HX̂(i) (i = 1, . . . ,M) as the result of the Hankelization procedure
of the matrix X̂(i) obtained from the previous step for each possible combination of SSA
choices.

1The R-codes for the automated MSSA algorithms are available upon request.
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8. Let U▽

Hj
denote the vector of the first L− 1 coordinates of the eigenvectors UHj

, and πHj

indicate the last coordinate of the eigenvectors UHj
(j = 1, . . . , r).

9. Define υ2 =
r∑

j=1
π2
Hj

.

10. Denote the linear coefficients vector R as follows:

R =
1

1− υ2

r∑

j=1

πHjU
▽

Hj . (7)

11. If υ2 < 1, then the h-step ahead HMSSA forecasts exist and is calculated via the formula:

[
ŷ
(1)
j1

, . . . , ŷ
(M)
jM

]T
=





[
ỹ
(1)
j1

, . . . , ỹ
(M)
jM

]
, ji = 1, . . . , Ni,

RTZh, ji = Ni + 1, . . . , Ni + h,

(8)

where, Zh =
[
Z

(1)
h , . . . , Z

(M)
h

]T
and Z

(i)
h =

[
ŷ
(i)
Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i = 1, . . . ,M).

12. Find the combination of L and r which minimises a loss function, L and thus repre-
sents the optimal HMSSA-R choices for decomposing and reconstructing in a multivariate
framework.

13. Finally use the selected optimal L to decompose the series comprising of the validation
set, and then select r singular values for reconstructing the less noisy time series, and use

this newly reconstructed series for forecasting the remaining 1
3

rd
observations.

HMSSA-V Optimal Forecasting Algorithm

1. Follow steps in 1-9 of the HMSSA-R optimal forecasting algorithm above.

2. Then, consider the following matrix

Π = U▽U▽T + (1− v2)RRT , (9)

where U▽ = [U▽

1 , ..., U
▽

r ]. Now use the linear operator

P(v) : Lr 7→ R
L, (10)

where

P(v)Y =

(
ΠY△

RTY△

)
, Y ∈ Lr, (11)

and Y△ is vector of last L− 1 elements of Y .

3. Define vector Z
(i)
j (i = 1, . . . ,M) as follows:

Z
(i)
j =

{
X̃

(i)
j for j = 1, . . . , ki

P(v)Z
(i)
j−1 for j = ki + 1, . . . , ki + h+ L− 1

(12)

where, X̃
(i)
j ’s are the reconstructed columns of trajectory matrix of the ith series after

grouping and leaving noise components.
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4. Thereafter, by constructing matrix Z(i) = [Z
(i)
1 , ..., Z

(i)
ki+h+L−1] and performing diagonal

averaging we obtain a new series ŷ
(i)
1 , ..., ŷ

(i)
Ni+h+L−1, where ŷ

(i)
Ni+1, ..., ŷ

(i)
Ni+h provides the h

step ahead HMSSA-V forecast for the selected combination of L and r.

5. Finally, follow steps 12-13 in the HMSSA-R optimal forecasting algorithm to find the
optimal L and r for obtaining HMSSA-V forecasts.

Below, we briefly comment upon the benefits, differences and similarities between SSA/MSSA
and other time series analysis and forecasting techniques such as ARIMA, Exponential Smooth-
ing (ETS) and Neural Networks (NN). Firstly, ARIMA, ETS and NN are classical time series
methods which forecast both signal and noise. The moving average component of ARIMA is
known to provide better forecasts when presented with less volatile data whilst basic versions of
ETS such as single exponential smoothing cannot be used in the presence of seasonality (Chen
et al., 2008). In comparison, SSA/MSSA filters the noise in time series and generates forecasts
using a newly reconstructed less noisy time series. Secondly, SSA and MSSA techniques enable
users to extract signals in time series and forecast these signals separately, a distinguishing char-
acteristic in relation to the classical time series models. There are several recent and diverse
applications which have benefited from these qualities. See for example, inter-alia Huang et
al. (2017), Ghodsi (2015), Ghodsi et al. (2015), Ghodsi and Omer (2014) and Cassiano et
al. (2013). MSSA in particular offers the ability of modelling time series with different series
lengths, see for example Hassani and Silva (2016). Thirdly, SSA/MSSA are not bound by the
parametric restrictions of stationarity whereas ARIMA and ETS methods require that the time
series are stationary for forecasting to make sense (Chen et al., 2008). Fourthly, methods such
as ARIMA require longer historical data sets to produce a reliable forecast (Chen et al., 2008).
However, SSA/MSSA can produce a forecast with a minimum of 3 observations and readers are
referred to Silva and Hassani (2015) where they can see the results from an application with few
observations. Finally, SSA and ARIMA models share some similarities as reported in Hassani
and Thomakos (2010) and Silva and Hassani (2015) according to whom, if we denote β as a fixed
(L× 1) vector, then when β = [−1, 1] and L = 2 we have the first differences of the realization
as βX. Furthermore, setting L ≥ 2 and β = [1/L, 1/L, . . . , L] gives us a L-order moving average
for the realization as βX. Moreover, the linear recurrent formula which is used for forecasting
in SSA is

yi+d =
d∑

k=1

αkyi+d−k, (13)

where 1 ≤ i ≤ N − d, is closely identical in structure to autoregressive models even though the
calculation of the parameters differ.

4 The Data and Metrics

4.1 The Data

The data used in this study which relates to monthly international tourist arrivals into 10 Euro-
pean nations was extracted via the Eurostat database (http://ec.europa.eu/eurostat/data/database,
the data and forecasts are available upon request). The use of monthly data is important as
previous research exploiting monthly data in tourism is limited, with less than 10% of tourism
demand forecast articles using data with a monthly frequency (Gunter and Onder, 2015; Song
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et al. (2009). Table 2 reports some key descriptive statistics for tourist arrivals including results
from the tests for normality and seasonal unit roots. During the 13 year period, the highest
median tourist arrivals was reported in Italy whilst the lowest median tourist arrivals had been
in Cyprus. Based on the standard deviation, the most variation in tourist arrivals was recorded
in Italy whilst the least variation was in Cyprus. The normality test indicates that majority of
the tourist arrivals series are skewed whilst the OCSB (Osborn et al. 1988) test for seasonal
unit roots indicates that except for the series pertaining to tourist arrivals in the Netherlands,
all other series have seasonal unit roots.

Table 2: Descriptive statistics for tourist arrivals (Jan. 2000 - Dec. 2013).
Mean Med. SD SW (p) OCSB

Germany 1953000 1849000 641550 <0.01 1
Greece 762900 555100 686634 <0.01 1
Spain 3449000 3429000 1366387 <0.01 1
Italy 3415000 3442000 1653644 <0.01 1
Cyprus 158692 187800 83409 <0.01 1
Netherlands 874767 895900 241150 <0.01 0
Austria 1501201 1480754 475432 0.67* 1
Portugal 533720 531457 227719 <0.01 1
Sweden 383473 240430 303655 <0.01 1
United Kingdom 1628266 1495147 546790 <0.01 1

Note: * indicates data is normally distributed based on a Shapiro-Wilk (SW) test at p=0.05. 0 indicates there is no

seasonal unit root based on the OCSB test at p=0.05. 1 indicates there is a seasonal unit root based on the OCSB test at

p=0.05.

Next, we test the tourist arrivals series for break points using the Bai and Perron (2003) test
and the output is reported in Table 3. As 2011 April is the last structural break experienced
by at-least one of the countries, we use data from January 2000 - April 2011 for training and
testing the forecasting models, and set aside as validation sets the observations from May 2011
- December 2013 which is approximately 2.5 years. This separation allows us to determine the
impact of structural breaks on the training process of both SSA and MSSA.

Table 3: Structural breaks in the tourist arrivals series.
Series Structural Break

Germany 2005(4), 2011(4)
Greece 2009(4)
Spain 2006(3)
Italy 2010(4)
Cyprus None
Netherlands 2011(3)
Austria 2007(5)
Portugal 2006(3)
Sweden None
United Kingdom 2005(4)

Also, as SSA is a filtering technique, we find it pertinent to present some additional infor-
mation on the separation of signal and noise via SSA. We call upon the weighted correlation
(w-correlation) statistic for this purpose. The w-correlation shows the dependence between two
time series and it can be calculated as (Sanei and Hassani, 2015):
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ρ
(w)
12 =

(
Y

(1)
N , Y

(2)
N

)
w

‖ Y
(1)
N ‖w‖ Y

(2)
N ‖w,

where Y
(1)
N and Y

(2)
N are two time series, ‖ Y

(i)
N ‖w =

√(
Y

(i)
N , Y

(i)
N

)
w
,
(
Y

(i)
N , Y

(j)
N

)
w
=

∑N
k=1wky

(i)
k y

(j)
k (i, j = 1, 2), wk=min{k, L,N − k} (here, assume L ≤ N/2).

The SSA decomposition of the series provides more accurate results, if the resulting additive
components of the series are approximately separable from each other. If the value of the w-
correlations is small, then the corresponding series is almost w-orthogonal, but, if it is large,
then the two series are far from being w-orthogonal (Hassani et al. 2013c). Accordingly, if the
w-correlation value between two reconstructed components are close to 0, then it confirms that
the corresponding time series are w-orthogonal and are well separable (Hassani et al. 2009).
Table 4 shows the w-correlations for all SSA decompositions by comparing the two components
of signal and noise. Here, we use as signal the reconstructed series containing r components and
select the remaining r (which does not belong to the reconstruction) as noise. It is clear that
all w-correlations are close to 0 and this confirms that SSA has successfully achieved a sound
separation between noise and signal during the decomposition process.

Table 4: W -correlations between signal and residuals for tourist arrivals.
Series SSA-V SSA-R

Germany 0.005 0.005
Greece 0.006 0.006
Spain 0.005 0.005
Italy 0.004 0.004
Cyprus 0.010 0.010
Netherlands 0.009 0.009
Austria 0.005 0.006
Portugal 0.006 0.006
Sweden 0.020 0.020
United Kingdom 0.014 0.014

4.2 Metrics

Root Mean Squared Error (RMSE)

This study relies mainly on two main metrics for measuring and distinguishing between the
accuracy of forecasts2. The first is the Root Mean Squared Error (RMSE) criterion which is
widely adopted in forecasting literature, see for example, Hassani et al. (2009;2013b;2015). Here,
in order to save space, we only provide the RMSE ratios of SSA-R to that of SSA-V:

2In addition to the RMSE and RRMSE criteria we have also reported the results from Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE) via Table 8 in the Appendix for those who prefer these
criteria. According to Chen et al. (2008), MAPE values of less than 10% signify highly accurate forecasting,
10-20% is good forecasting, 20-50% is reasonable forecasting, and 50% or more is inaccurate forecasting.
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RRMSE =
SSA−R

SSA− V
=

(∑N
i=1(ŷT+h,i − yT+h,i)

2
)1/2

(∑N
i=1(ỹT+h,i − yT+h,i)2

)1/2
,

where, ŷT+h is the h-step ahead forecast obtained by SSA-R, ỹT+h is the h-step ahead forecast
from the SSA-V model, and N is the number of the forecasts. If SSA−R

SSA−V is less than 1, then

forecasts from SSA-R outperforms SSA-V forecasts by 1-SSA−R
SSA−V percent.

Direction of Change (DC)

The DC criterion measures of the percentage of forecasts that accurately predict the correct
direction of change (Hassani et al., 2013b). DC is an equally important measure, as the RMSE,
for evaluating the forecasting performance of tourism demand models. This is because it is
important that for example, when the actual series is illustrating an upwards trend, the forecast
is able to predict that upward trend and vice versa. In brief, for the univariate case, for forecasts
obtained using XT , let DXi be equal to 1 if the forecast is able to correctly predict the actual
direction of change and 0 otherwise. Then, D̃X =

∑n
i=1 DXi/n shows the proportion of forecasts

that correctly identify the direction of change in the actual series.

5 Empirical Results

This section reports the out-of-sample forecasting results from both SSA and MSSA. Our analysis
also considered the performance of optimized ARIMA and Exponential Smoothing models in
relation to the proposed MSSA algorithms and the results which are not reported here showed
the forecasts from MSSA outperforming these two models with statistically significant outcomes
on most instances. It is noteworthy that the optimal ARIMA models were all seasonal ARIMA
models and the related forecasts/results are available upon request. It is important to note that
the aim here is not only the direct comparison of univariate SSA forecasts with the optimized
MSSA algorithm, but also providing answers to a more interesting question. That is, can tourist
arrivals from other countries in Europe act as leading indicators for another European country’s
tourist arrivals? Also, what is the extent to which this new optimized MSSA algorithm can
improve upon the basic univariate forecasting results if applied for forecasting European tourist
arrivals? The resulting output for each country is presented in Table 5.

Let us begin by considering the univariate SSA forecasts for European tourist arrivals.
Firstly, we see that SSA-R is able to provide the best univariate forecast across all horizons
for Greece, Cyprus and United Kingdom in comparison to SSA-V. Likewise, SSA-V forecasts
are seen providing the best univariate forecast across all horizons for Netherlands. In terms
of overall performance across all European countries considered here, based on the number of
times one univariate forecast outperforms another we can conclude that SSA-R is the better
univariate SSA model for forecasting tourist arrivals in these countries. The conclusions remain
similar based on the model which reports the highest number of cases with the lowest average
RMSE across all horizons. If forecasting a particular horizon using a univariate SSA model is
of interest, then the informative results table enables practitioners to select the most appropri-
ate SSA model based on the horizon of interest. However, it is noteworthy that basic SSA is
unable to outperform the automated HMSSA algorithm on any of the cases in this study which
is reflected by the 0% score. This goes on to prove the superiority of the proposed automated
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MSSA algorithm over basic SSA and provides justification for presenting it as an improved,
viable alternative for modelling and forecasting tourist arrivals.

Next let us consider the MSSA forecasting results. These results have been generated by
evaluating every possible combination of tourist arrivals to determine which combination is
able to report the lowest RMSE in comparison to the univariate SSA forecasts. In fact, the
MSSA forecast for each country, using the data on arrivals from different selected countries,
produced better forecasts than the univariate SSA in most cases. However, to save space, for
each country only the case which gave the best out of sample forecasts (in terms of RMSE) are
reported in Table 5. The first observation is that the only instance whereby a MSSA model is
able to report the best forecast across all horizons is the HMSSA-V model for Portugal. The
percentage score criterion indicates that HMSSA-R captures the overall best forecast in 36% of
the cases in this study whilst HMSSA-V succeeds in providing the overall best forecast in 64%
of the cases. Therefore, should one be interested in a single model for forecasting European
tourist arrivals, we are able to present HMSSA-V as the feasible option which most certainly
outperforms SSA forecasts, and also HMSSA-R forecasts in majority of the cases. Once again,
as with the univariate forecasts, practitioners have the option of selecting the best MSSA model
for a given country depending on the forecasting horizon of interest should one wish to consider
a combined forecasting approach which in turn will enable minimising the forecast error.

The conclusions drawn above are based solely on the RMSE criterion without any tests
for statistical significance. In order to provide a more statistically reliable grounding to these
conclusions we consider the Hassani-Silva (HS) test for predictive accuracy in Hassani and Silva
(2015). The one-sided HS test is able to show whether the model reporting the lowest RMSE
also reports a lower stochastic error in comparison to another model. The resulting output is
indicated in Table 5 and we are 90% confident in the outcomes which are found to be statistically
significant in this case.

Table 5 also reports the RRMSE criterion which enables quantifying the comparative perfor-
mance between two forecasting models based on the RMSE. For example, consider the average
RRMSE values for Austrian tourist arrivals. The HMSSA−R

SSA−R value of 0.68 indicates that HMSSA-

R forecasts are on average 32% better than SSA-R forecasts. Likewise, the average HMSSA−V
SSA−V

value of 0.71 indicates that HMSSA-V forecasts are on average 29% better than SSA-V fore-
casts. The calculation of RRMSE’s are further exploited to promote good statistical practice.
More specifically, we test all the out-of-sample forecasts for statistical significance using not only
the modified Diebold-Mariano (DM) test (Harvey et al., 1997), but also the two-sided HS test
(Hassani and Silva, 2015). This enables to provide further justification for the leading indica-
tors which are reported in what follows. Based on the DM test, it appears that even though
there are considerable gains via MSSA over SSA in the case of Italy and Netherlands tourist
arrivals forecasts, these are more likely to be chance occurrences because of the low number of
statistically significant outcomes. However, in terms of the other eight countries there exists a
considerably high number of statistically significant outcomes which provides sufficient evidence
for the superiority of the MSSA forecasts over SSA. As a percentage, HMSSA-R forecasts are
significantly better than SSA-R forecasts in 52% of the cases whilst HMSSA-V forecasts are sig-
nificantly better than SSA-V forecasts in 74% of the cases. Accordingly, there is strong evidence
to justify that the automated HMSSA-V forecast is indeed more powerful in terms of providing
accurate forecasts in comparison to basic SSA-V forecasts.

In general, the RMSE, RRMSE and tests for statistical significance suggests that the MSSA
models are able to provide significantly better forecasts than SSA in most instances for the
European tourist arrivals series considered in this study. Next, we wish to ascertain whether
there is sufficient evidence to promote the MSSA models used in this study as best in general
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for forecasting European tourist arrivals at particular horizons. For this purpose we begin by
generating the empirical cumulative distribution functions (c.d.f.’s) for the absolute value of all
forecast errors from all models at each horizon. According to Hassani et al. (2009;2013b), if the
c.d.f. of absolute value of forecast errors lies above and hence to left of another c.d.f. of absolute
value of forecast errors, then the model which lies towards the left and above has a smaller
stochastic error. Figure 3 below presents the empirical c.d.f. for the absolute value of forecast
errors across all countries and all horizons. However, it is clear that drawing conclusions based
on Figure 3 alone can be problematic as the result is not very clear except for at h = 24 steps
ahead. Therefore, we call on the one-sided HS test (Hassani and Silva, 2015). Based on the
one-sided HS test (results available upon request) we can conclude with 95% confidence that in
general, for forecasting European tourist arrivals across all horizons in the countries considered
here, on average the MSSA models will report lower stochastic errors than the SSA models.

Thereafter, all forecasting results are tested for their ability at predicting the correct direction
of change. The results are reported in Table 6 and all observations are once again tested for
statistical significance via a Student’s t test as done in Hassani et al. (2009;2013b). In brief, the
DC criterion checks the forecasts against the actual values to determine whether the predictions
are accurately picking up the actual direction of change as per the actual data values. The
DC results indicate that on average, SSA-V provides the better DC prediction in relation to its
univariate counterpart whilst HMSSA-V outperforms HMSSA-R based on the number of times
one model provides a comparatively better average than the other model. Overall, there is clear
evidence which points towards the capability of the automated MSSA algorithms at providing
more accurate DC predictions than SSA with the only exception being tourist arrivals in Sweden
for which SSA-V outperforms the MSSA models in providing the best average DC prediction.
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Figure 3: The cumulative distribution functions for the squared out-of-sample forecast errors.
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Table 5: MSSA out-of-sample forecasting results for European tourist arrivals.
Country h SSA-R SSA-V HMSSA-R HMSSA-V HMSSA−R

SSA−R

HMSSA−V

SSA−V

Austria 1 111899 110669† 92800 89603 0.83 0.81*

(Greece) 3 104308 97258† 77932 74688 0.75* 0.77*

6 99183† 100631 87844 82518 0.89 0.82

12 96732 92983† 80730 73015 0.83 0.79*

24 167380 131438† 55801
X 58770 0.33* 0.45*

Avg. 115900 106596† 79021 75719 0.68 0.71

Greece 1 87807† 90421 65564 58577
X 0.75♭ 0.65♭*

(Germany) 3 151700† 161642 97105 92405
X 0.64* 0.57♭*

6 157592† 174413 81939 76288
X 0.52 0.44♭*

12 173704† 198750 68750
X 75966 0.40 0.38♭*

24 177537† 156307 33166
X 48783 0.19♭* 0.31♭*

Avg. 149668† 156307 69305 70404 0.46 0.45

Germany 1 66278† 66754 52557 52508 0.79* 0.79*

(Sweden) 3 69996† 74657 55486 50532 0.79 0.68*

6 74054† 84512 54285 49420
X 0.73♭ 0.58♭*

12 53384† 71809 40557 44671 0.76* 0.62♭*

24 82974 79860† 46497 47384 0.56* 0.59*

Avg. 69337† 75518 49876 48903 0.72 0.65

Sweden 1 27880† 30150 23212 23436 0.83 0.78*

(Cyprus) 3 24230 23912† 20526 19680 0.85* 0.82*

6 25766 24282† 18883 18419 0.73* 0.76

12 26986 26318† 18562 18563 0.69* 0.71*

24 34386† 49615 19257 19098 0.56* 0.38*

Avg. 27850† 30855 20088 19839 0.72 0.64

Cyprus 1 14132† 12452 8658 7980 0.61* 0.64*

(Germany) 3 17722† 19309 9955
X 10902 0.56♭* 0.56♭*

6 17923† 25103 12520 11962
X 0.70♭ 0.48♭*

12 21241† 27319 10556 9335X 0.50♭ 0.34♭

24 33875† 36938 7326
X 7523 0.22♭* 0.20♭*

Avg. 20979† 24224 9803 9540 0.47 0.39

Spain 1 197206 187053† 142461
X 148727 0.72♭* 0.80♭*

(Sweden) 3 343912 258974† 175976 173150 0.51♭* 0.67*

6 396543 319133† 114319
X 128333 0.29♭* 0.40♭*

12 227745† 273338 108464
X 112688 0.48♭* 0.41♭*

24 409057† 474835 114004
X 122073 0.28♭ 0.26♭

Avg. 314893 302667† 131045 136994 0.42 0.45

Italy 1 273286 269987† 248531 229179 0.91 0.85

(Austria) 3 243894† 247843 207941 199873 0.85 0.81

6 248764 247302† 202005 170874 0.81 0.69

12 256370 230185† 175028
X 187706 0.68 0.82

24 298978 289067† 179682 216674 0.60* 0.75*

Avg. 264258 256877† 202637 200861 0.77 0.78

Netherlands 1 80036 79624† 65068 63933 0.81 0.80

(Greece) 3 75227 72825† 56878 56920 0.76 0.78

6 78755 76307† 64679 60555 0.82 0.79

12 86821 82871† 65424 59411 0.75* 0.72*

24 126767 114085† 65408 68542 0.52* 0.60*

Avg. 89521 85142† 63491 61872 0.71 0.73

Portugal 1 45565 43899† 28473 28085 0.62* 0.64*

(Germany) 3 52128† 53920 30806 28624
X 0.59♭* 0.53♭*

6 58928† 65085 31997 28671
X 0.54♭ 0.44♭*

12 68175† 75607 32644 32281
X 0.48♭ 0.43♭

24 97214† 102602 21620 21395
X 0.22♭* 0.21♭*

Avg. 64402† 68223 29108 27811 0.45 0.41

United Kingdom 1 214170† 219075 177166 173528 0.83 0.79*

(Germany) 3 225354† 238796 205742 203511 0.91 0.85

6 232604† 244749 177167 173529 0.76 0.71

12 222035† 226785 192323 204406 0.87* 0.90*

24 280366† 322121 89014 58316
X 0.32♭* 0.18♭*

Avg. 234906† 250305 168282 162658 0.72 0.65

% Score 0% 0% 36% 64%

Note: The leading indicator which is shown in brackets is only relevant for MSSA. Only the country which gave the best results is reported

in bracket for MSSA. † indicates the best performing univariate model. Bold font indicates overall best performing model. % Score reflects

the number of cases whereby a model reports the best overall forecast. X indicates the best performing model has a stochastically smaller

error in comparison to its univariate counterpart based on the one-sided HS test at p = 0.10. ♭ indicates a statistically significant difference

between the distribution of forecasts based on the two-sided HS test at p = 0.10. * indicates a statistically significant difference between the

MSSA forecast and the best univariate forecast based on the modified Diebold-Mariano test at p = 0.10.
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Table 6: Direction of change results for European tourist arrivals.
h Germany Greece Spain Italy Cyprus Netherlands Austria Portugal Sweden UK

SSA-R

1 0.97* 0.88* 0.88* 0.97* 0.84* 0.81* 0.91* 0.94* 0.94* 0.84*
3 0.60 0.50 0.57 0.47 0.33 0.57 0.60 0.60 0.47 0.63
6 0.67 0.52 0.48 0.44 0.30 0.48 0.48 0.74* 0.41 0.56
12 0.57 0.52 0.86* 0.57 0.33 0.43 0.48 0.81* 0.48 0.67
24 0.78 0.33 1.00* 0.89* 0.22 0.78 0.78 1.00* 0.44 0.89*

Avg. 0.72 0.55 0.76 0.67 0.41 0.61 0.65 0.82 0.55 0.72
SSA-V

1 0.97* 0.88* 0.97* 0.94* 0.88* 0.84* 0.91* 0.94* 0.94* 0.84*
3 0.93* 0.93* 1.00* 1.00* 1.00* 0.93* 0.93* 0.97* 0.97* 0.97*
6 1.00* 1.00* 1.00* 1.00* 1.00* 1.00* 0.89* 1.00* 0.85* 0.93*
12 0.90* 0.43 0.48 0.67 0.38 0.81* 0.81* 0.57 0.76* 0.76*
24 1.00* 0.67 0.11 0.78 0.67 0.78 0.78 0.78 0.78 0.56

Avg. 0.96 0.78 0.71 0.88 0.78 0.87 0.86 0.85 0.86 0.81
HMSSA-R

1 1.00* 0.88* 1.00* 0.91* 0.94* 0.88* 0.91* 1.00* 0.94* 0.88*
3 1.00* 1.00* 1.00* 0.97* 1.00* 0.93* 1.00* 1.00* 1.00* 0.93*
6 1.00* 1.00* 1.00* 0.93* 1.00* 1.00* 0.89* 0.93* 0.89* 0.89*
12 1.00* 0.71 0.81* 0.81* 0.67 0.71 0.86* 0.90* 0.43 0.86*
24 1.00* 1.00* 0.89* 1.00* 1.00* 0.78* 1.00* 1.00* 0.67 1.00*

Avg. 1.00 0.92 0.94 0.92 0.92 0.86 0.93 0.97 0.78 0.91

HMSSA-V

1 0.97* 0.91* 1.00* 0.94* 1.00* 0.81* 0.94* 1.00* 0.84* 0.84*
3 1.00* 0.97* 1.00* 1.00* 0.97* 0.90* 0.97* 1.00* 0.97* 0.93*
6 1.00* 1.00* 1.00* 0.96* 1.00* 1.00* 0.89* 0.96* 0.96* 0.93*
12 1.00* 0.81* 0.76* 0.90* 0.81* 0.71 0.71 0.95* 0.67 0.86*
24 1.00* 1.00* 0.89* 1.00* 1.00* 0.78* 1.00* 1.00* 0.67 1.00*

Avg. 0.99 0.94 0.93 0.96 0.96 0.84 0.90 0.98 0.82 0.91

Note: Shown in bold font is the model reporting the best average DC prediction across all horizons for a given
country. * indicates the DC predictions are statistically significant based on a t-test at p = 0.05.

6 Discussion

6.1 Merits and Demerits of SSA/MSSA

We begin by discussing the merits these two techniques further. Firstly, parametric assumptions
are unlikely to hold in the real world and therefore the use of parametric techniques usually
result in the need for data transformations which leads to a loss of information as noted in
Hassani et al. (2013a). However, because SSA and MSSA do not make any assumptions about
the signal or the noise component of the data, and do not depend on any parametric model
for the trend or oscillations, there is no requirement for data transformations nor any loss of
information when using these approaches (Hassani et al. (2013a). Secondly, the noise reduction
feature in SSA/MSSA is not present in classical time series analysis and forecasting methods.
Filtering enables SSA/MSSA to provide a better fit to the data and obtain more accurate
forecasts. Thirdly, SSA/MSSA techniques can extract signals in time series. This enables to
obtain a richer understanding of the dynamics underlying time series by analysing the trend and
seasonal fluctuations in isolation. Fourthly, SSA/MSSA can forecast a particular signal which
is of interest, such as extracting and forecasting the trend alone, or 12 or 3-month seasonal
fluctuations depending on the requirements. However, these techniques are not without its
limitations. Based on the authors’ experience, SSA/MSSA are most useful when faced with
seasonal data. Secondly, parametric models are preferred for certain scenarios as unlike with
SSA/MSSA, the ‘parameters’ (e.g. regression parameters) enable interpretations on the exact
effect of a given independent variable on a dependent variable. Moreover, there are a variety
of historical literature based on parametric models which allows users to easily compare and

19



contrast between the findings. In addition, SSA/MSSA are highly sensitive to the selection
of L and r which can be done by following a binary approach (Hassani et al., 2015) or the
recently introduced Colonial Theory (CT) based approach (Hassani et al., 2016). Whilst some
may argue that the decomposition process could lead to a loss of some deterministic structures,
the CT based approach in Hassani et al. (2016) helps overcome this issue to a certain extent.
Moreover, there is always the possibility of applying sequential SSA (see, Sanei and Hassani,
2015) to extract any deterministic structures mixed up in the residual.

6.2 Exogenous Events and its Impact on SSA/MSSA based Modelling

The tourism industry is deeply affected by exogenous and uncontrollable events such as terrorist
attacks, natural disasters, recessions and political instability (among others). Whilst an in-
depth discussion of the impact of such events on the primary modelling techniques are beyond
the mandate of this paper, we briefly comment on the potential impact of such events within
the proposed models. Those interested are referred to Chen (2005) where the author provides
a concise account of the impact of intervention events on tourist flows when forecasting with
both parametric and nonparametric forecasting techniques. In relation to parametric techniques,
the nonparametric nature of SSA/MSSA is likely to ensure these models are less sensitive to
external shocks. For example, according to Hassani et al. (2013c) which was a collaboration
with the Office for National Statistics in UK, following an application of SSA, ARIMA and
Holt-Winters (HW) to eight UK economic time series before, during and after the recession, the
authors found that SSA is least sensitive to the impact of the recession in relation to ARIMA
and HW as it produced comparatively superior forecasting results. More recently, Silva and
Hassani (2015) evaluated the impact of the 2008 recession on forecasting US trade with SSA
in relation to the optimal ARIMA and ETS models, and Neural Networks. Here, the authors
found compelling evidence to conclude that SSA is indeed comparatively less sensitive to the
the impacts of recessions on the modelling process. There is yet a published evaluation of the
impact of such exogenous events on the MSSA modelling procedure, but given that MSSA is
essentially the extension of SSA for multiple time series, it is reasonable to expect similar (or
even better) outcomes.

6.3 Explanations for the resulting Leading Indicators

The MSSA algorithm for leading indicators has been successful at identifying leading cross
country relations for tourism demand in Europe with statistically significant evidence. Here, we
seek to provide possible theoretical explanations for this behaviour. In the process, we look at
the concept of causality. This concept is useful, as in MSSA it is not correlation between series
that determines how well two series can work together, but instead as Sanei and Hassani (2015)
note, it is the similarity and orthogonality among series which play an important role. Unlike
correlation, causality seeks to determine whether one series causes another. As such, we perform
a test for Granger causality on all leading indicator pairs to determine whether there is sufficient
evidence to conclude that leading indicators identified via the MSSA modelling process actually
causes the main series. The test results are reported via Table 7. Looking at the results clearly
indicate that those series we have selected as leading indicators via MSSA do in fact cause the
main series. Accordingly, we can conclude that causality is one theoretical explanation for the
leading indicators identified within this study.
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Table 7: Additional information for leading indicators identified through this study.
Main Series (Leading Indicator) Causality Granger (p-value)

Austria (Greece) Greece ⇒ Austria 0.03*
Greece (Germany) Germany ⇒ Greece <0.01*
Germany (Sweden) Sweden ⇒ Germany <0.01*
Sweden (Cyprus) Cyprus ⇒ Sweden <0.01*
Cyprus (Germany) Germany ⇒ Cyprus <0.01*
Spain (Sweden) Sweden ⇒ Spain <0.01*
Italy (Austria) Austria ⇒ Italy <0.01*
Netherlands (Greece) Greece ⇒ Netherlands <0.01*
Portugal (Germany) Germany ⇒ Portugal <0.01*
UK (Germany) Germany ⇒ UK <0.01*

Note: ⇒ indicates that the series on the left of the arrows causes the series on the right. * indicates that the Granger test
for causality is statistically significant at a p-value of 0.05.

7 Conclusion

This study not only marks the introductory application of Multivariate SSA for tourism demand
forecasting, but also the first instance whereby the automated MSSA algorithm is used in cross
country data for European tourist arrivals. We used the data on tourist arrivals from ten
European nations and obtained the forecast over the short, medium and long term horizons
using vector and recurrent forecasting algorithms of SSA and MSSA. The data was initially
tested for normality, seasonal unit root and structural breaks prior to the forecasting exercise.
The out-of-sample forecasting results were evaluated and distinguished using two important
metrics, i.e. the RMSE for measuring the accuracy of the forecasts and the direction of change
criterion to determine the ability of each model to predict the percentage of correct direction of
change.

Our results indicate that for univariate forecasting, should a single model be of interest, then
SSA-R is on average better than SSA-V across all countries and all horizons considered in this
study. Likewise, for multivariate forecasting, we found that, on average, HMSSA-V is better
than HMSSA-R. It is noteworthy that the multivariate forecasting exercise has considered all
possible combinations of cross country relations to tourist arrivals, and to save space we only
report the combinations which minimize the out-of-sample forecasting error. The forecasting
results were tested for statistical significance, not only via the modified DM test in Harvey et
al. (1997), but also via the recently introduced Hassani-Silva (HS) test in Hassani and Silva
(2015). We obtained a high number of statistically significant outcomes in this study, providing
convincing evidence for the results. Overall, it is concluded that the automated MSSA algorithms
outperformed univariate SSA based on both the RMSE and DC criteria.

The presentation of the results itself are extremely useful to practitioners as it enables them
to obtain the best SSA/MSSA models for forecasting the European tourist arrivals based on
the horizon of interest and forecasting objectives. The study can benefit both forecasters and
policy makers in a variety of ways. For forecasters, it is a guide to obtain the best out-of-sample
forecasts in a multivariate framework. For policy makers, these results help them to make the
right policies, in planning, resource allocations and investment decisions.

As the aim of this study was mainly to use the common pattern in European tourist arrivals
to see if better forecasts can obtained, it has not considered other range of tourist and travel
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indicators in the present analysis. Accordingly, the algorithm we propose is optimized to obtain
the best possible forecast with MSSA as opposed to an optimal signal extraction. Future studies
should consider applying the proposed automated MSSA algorithm using various socioeconomic
indicators for forecasting European tourist arrivals as well as investigating the impact of exoge-
nous shock on MSSA modelling. It is also acknowledged that this study has only investigated
the tourist arrivals for selected European countries which are established or growing destina-
tions and it does not intend to represent Europe as a continent. Also, the present study only
considered the bi-variate Singular Spectrum Analysis. There is scope to develop the method
as a general multivariate SSA in which one could jointly consider all ten series together and
simultaneously produce the forecasts for all countries.
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Appendix

Table 8: Out-of-sample forecasting MAE and MAPE (%) based results for European tourist
arrivals.

Country h SSA-R SSA-V HMSSA-R HMSSA-V SSA-R SSA-V HMSSA-R HMSSA-V
Austria 1 89239 90428 68812 72542 5.82% 5.46% 4.34% 4.46%
(Greece) 3 82547 81845 63225 62191 5.42% 4.89% 4.08% 3.86%

6 80413 82468 73971 67795 5.57% 5.18% 4.82% 4.22%

12 82072 75084 66686 60368 5.33% 4.53% 3.92% 3.74%

24 138749 120110 40719 54400 9.91% 7.42% 2.88% 3.68%

Greece 1 69363 74593 53077 46653 15.55% 16.10% 12.80% 15.79%
(Germany) 3 116370 133169 78995 74691 26.09% 35.95% 24.79% 25.56%

6 120022 138280 67206 62774 28.13% 46.51% 18.84% 25.06%
12 127749 157419 53509 63435 13.99% 17.40% 13.63% 16.98%
24 140540 136615 27765 44200 12.79% 14.47% 5.35% 9.66%

Germany 1 54875 55666 41726 44774 2.26% 2.3o% 1.71% 1.80%
(Sweden) 3 57565 59491 44352 41640 2.37% 2.47% 1.84% 1.76%

6 59001 68290 41562 36593 2.58% 2.92% 1.82% 1.53%

12 43248 63899 32812 33846 1.71% 2.49% 1.28% 1.32%
24 74311 55951 38643 38014 2.63% 1.99% 1.36% 1.33%

Sweden 1 18988 22363 27126 43252 6.62% 9.89% 4.42% 6.15%
(Cyprus) 3 17311 17878 27496 33782 7.85% 8.27% 4.39% 5.27%

6 18547 18295 29098 33427 9.28% 11.29% 4.78% 5.92%
12 19817 20602 24799 31809 7.16% 7.63% 4.66% 5.76%
24 26580 39909 58411 74179 11.94% 15.40% 6.11% 10.31%

Cyprus 1 10716 9699 6711 6857 12.55% 9.95% 8.14% 7.38%

(Germany) 3 14633 15573 7692 9335 18.71% 19.29% 8.85% 10.21%
6 15217 20818 10086 8401 21.32% 30.99% 11.56% 8.25%

12 17069 21552 8044 7538 23.43% 33.68% 7.19% 8.54%
24 26995 27847 5704 6621 52.36% 53.51% 32.79% 38.10%

Spain 1 164018 153992 105929 118294 4.72% 3.95% 2.80% 3.24%
(Sweden) 3 291764 190586 128557 139918 9.25% 3.94% 3.73% 3.75%

6 320137 256566 93275 108159 9.42% 3.88% 2.73% 3.14%
12 182026 241634 85511 93568 4.74% 3.42% 2.11% 2.41%
24 366340 432951 98029 93385 8.90% 3.91% 2.52% 2.11%

Italy 1 208810 209271 202284 183592 6.33% 6.35% 5.98% 5.12%

(Austria) 3 190883 188841 174311 170792 6.43% 6.39% 5.30% 5.75%
6 195057 189930 142970 131047 6.95% 6.46% 3.52% 4.33%
12 205026 177183 133333 146462 5.95% 5.18% 3.29% 3.85%
24 248823 226335 144262 158009 5.47% 4.71% 3.18% 4.25%

Netherlands 1 57657 58568 48965 49836 5.57% 5.65% 4.77% 4.92%
(Greece) 3 55126 53197 44485 40069 5.42% 5.18% 4.50% 4.06%

6 58294 55771 47703 48071 5.72% 5.45% 4.70% 4.74%
12 64869 64314 51260 46265 5.91% 5.99% 4.86% 4.54%

24 86219 84587 56842 54533 6.96% 7.08% 4.66% 4.46%

Portugal 1 36071 35196 23129 23246 6.34% 6.33% 4.10% 3.89%
(Germany) 3 40317 42970 25750 24910 7.14% 7.73% 4.42% 4.32%

6 46687 54123 27967 24407 8.21% 9.85% 5.37% 4.44%

12 55034 58835 25154 26197 8.36% 9.09% 3.76% 3.61%

24 88371 98378 18976 20150 11.64% 13.30% 2.29% 2.67%

United Kingdom 1 164771 171971 127609 118009 8.57% 8.83% 6.43% 5.97%
(Germany) 3 176758 186043 175888 172726 10.54% 10.47% 9.02% 9.58%

6 182763 192892 155462 167744 9.47% 9.96% 8.16% 9.22%
12 176798 178960 146940 150595 8.11% 8.12% 7.11% 6.99%

24 237081 274782 73457 47874 9.53% 10.99% 3.41% 2.35%

Note: The leading indicator which is shown in brackets is only relevant for MSSA. Bold font indicates overall best performing model under

each criteria.
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