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Abstract

Protein diffusion offers an essential and elegant mechanism for morphogen gradient for-
mation. Morphogens are signalling molecules that emanate from a particular region of the
cell and create a gradient which has an impact on most biological processes, cell signalling
and embryonic development. Using a method that is based on Singular Spectrum Analysis,
we estimate parameters introduced in the Synthesis Diffusion Degradation model which
is a commonly applied model for a transcription factor known as Bicoid. Our findings,
consistent with simulation results, indicate that the proposed method can be practically
applied as an enhanced parameter estimation technique with reduced sensitivity to various
levels of noise.
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1 Introduction

Many characteristics of cells and tissues are specified during development by concentration gra-
dients of morphogens. These gradients are essential for describing the formation of reproducible
patterns during ontogenetic development. One of the best-studied examples of a morphogen
gradient is formed by bicoid gene [1,2]. In Drosophila melanogaster, the anterior-posterior (A-
P) concentration gradient of Bicoid (Bcd) plays a fundamental role as a transcription factor in
determining key features of anterior segments of the body [1–3].

Since the discovery of Bcd, several pattern formation mechanisms have been introduced
to characterise its concentration gradient; from simple models with few parameters to more
complex models involving many regulated quantities [4]. In this regard, the Synthesis Diffu-
sion Degradation (SDD) model is a comparatively simple and most commonly used model for
explaining the Bcd concentration gradient. The SDD model was initially described by Driever
and Nusslein-Volhard [1], but its name was coined by [5].

According to [4,6], by considering c(x, t) as the Bcd concentration at embryonic A-P axis,
0 < x < L, the evolution of Bcd along the egg can be characterised by:

∂c(x, t)

∂t
= s(x, t) +D∇2c(x, t)− kdegc(x, t), (1)

∗As all authors contributed equally towards this research, author names appear in alphabetical order.
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where s is the source function, D is the Bcd diffusion coefficient, and kdeg is the Bcd degradation
rate. As discussed in [4], the equilibrium solution of Equation (1) is well known to be a decaying
exponential:

Ae−x/λ, (2)

where λ is a constant length such that λ =
√
D/k. Assuming the concentration of Bcd at

x = 0 is A, λ is the distance to the source at which the Bcd concentration has dropped to 1/e
of the maximal value, Figure 1 [4].

Figure 1: Calculating the length constant λ. Figure adopted from [12].

Although this model may be theoretically sound, there is considerable debate surrounding
the ability of estimated parameters at accounting for much of the experimental data. It is well
known that the estimation of A and λ are challenging tasks. However, it represents overly
important tasks, simply because all future results from the SDD model are clearly based on
these initial estimations, and therefore, if the initial estimations are inefficient, it implies that
the future results too will be negatively affected. Thus, there is a strong need for research
into measures which can lead to more efficient estimations of A and λ. Having identified this
requirement, this study seeks to re-evaluate the estimation process of A and λ, which are the two
most important parameters of the SDD model. Given the focus on parameter estimation, it is
pertinent to note the promising signal processing approach which was developed and employed
recently [8]. Here, the authors evaluated a variety of parametric and nonparametric signal
processing techniques to identify the most efficient model for Bcd signal extraction. They found
that an enhanced version of the nonparametric Singular Spectrum Analysis (SSA) approach
produced the most efficient extraction. More importantly, they noted that denoising Bcd is
a complex and arduous task. This is because, the data associates with both observational
and biological noise, and the extracted residual is not normally distributed as required by
parametric techniques [8]. Hence, from a practical point of view, it is relevant in such context
to simultaneously filter the data and estimate the parameters of interest.

Accordingly, we propose a new method based on SSA which can generate more efficient
estimations of Bcd parameters. The introduction of the SSA-based approach is motivated by
several factors. First and foremost, Figure 1 illustrated how the SDD model follows an expo-
nential pattern, and it is of great advantage to consider such a decaying exponential pattern.
This leads to the second factor, which is that SSA is a general signal processing approach and
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therefore a dedicated type of SSA that considers the exponential pattern alone would be ideal.
Moreover, SSA has inherent filtering capabilities and is therefore less sensitive to noise. The
theoretical aspects underlying the proposed SSA based approach are validated via a simulation
study and through the evaluation over real data which considers all the cleavage cycles in which
Bcd is present in the embryo.

Accordingly, we consider SDD as the benchmark given its well established nature within Bcd
studies and also consider the SSA technique as a less noise sensitive alternative which has been
proven to be useful with Bcd data. In particular, here we develop SSA for a typical exponential
model in our attempts to improve the estimation of initial parameters and this is covered in
detail in Section 2. Thereafter, in Section 3 we evaluate the accuracy and performance of the
proposed SSA model against the SDD model via a series of simulations where the pattern and
characterless of the data is considered. Then, real data is then used to demonstrate the viability
of the proposed approach and to directly compare its performance with the well established
SDD model. Finally, we present a concise summary in Section 4.

2 Estimating Values of A and λ

Let us now consider the new theoretical approach proposed to estimate A and λ. As mentioned
above, we propose a tailored SSA approach. The SSA technique consists of two complementary
stages called Decomposition and Reconstruction, each with two separate steps which are vital
for signal extraction and noise filtering [13]. In brief, during the Decomposition stage, Bcd
is decomposed into several interpretable components to distinguish between signal and noise.
Thereafter, the Reconstruction stage is used to group the signal components together and
construct a less noisy series. The basic SSA process is briefly explained below and in doing so
we mainly follow [13].

The first step within the Decomposition stage is called embedding. Here, the time series
YN = {y1, . . . , yN} is mapped into the vectors X1, . . . , XK where Xi = (yi, . . . , yi+L−1)

T , with L
observations and K = N −L+ 1. The single choice of this step is the Window Length L which
is an integer, such that 2 ≤ L ≤ N − 1. The output from the embedding step is the trajectory
matrix X = [X1 : · · · : XK ] whose columns are the vectors Xi.

The second step in the Decomposition stage is called Singular Value Decomposition (SVD),
and it is aimed at representing the trajectory matrix X as a sum of elementary matrices. The
eigenvalues of XXT are denoted by λ1, . . . , λL in decreasing order of magnitude (λ1 ≥ · · · ≥ λL ≥ 0)
and by U1, . . . , UL, the eigenvectors of the matrix XXT corresponding to these eigenvalues. It
is assumed that the eigenvectors have unit length, i.e., ‖Ui‖ = 1, where ‖·‖ is the Euclidean
norm. If d = max{i, such thatλi > 0} = rankX then the SVD of the trajectory matrix can be
written as X = X1 + · · ·+ Xd, where Xi =

√
λiUiVi

T and Vi = XTUi/
√
λi (i = 1, . . . , d).

This is followed by the first step within the Reconstruction stage, i.e., the grouping step.
This splits the elementary matrices Xi into several groups and sums the matrices within each
group. Finally, the second step, diagonal averaging is used to transform each matrix of the
grouped decomposition into a less noisy time series.

It is noteworthy that the eigenvectors of XXT play a very pivotal role in signal extraction.
Let I be the chosen set of eigentriples attained via grouping within SSA and Ui, i ∈ I, be
the corresponding eigenvectors. To extract the signal by set I, the matrix X̂ is diagonally
averaged where X̂ =

∑
j∈I UjU

T
j X. The matrix X̂ consists of column vectors X̂i where X̂i =∑

j∈I UjU
T
j Xi.

Given the crucial importance of eigenvectors Ui, i ∈ I, in signal extraction, extracting
accurate values of these eigenvectors are of great importance for improving the accuracy of the
signal extraction. It is noteworthy that in reality, the eigenvectors Ui, i ∈ I, are not entirely
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noise free. This is due to the fact that bicoid gene expression profile is contaminated with
highly volatile noise. If Bcd data at location t is denoted by yt, it can be assumed that yt is
the sum of a noise free series (signal) and noise, such that:

yt = st + nt, t = 1, . . . , N, (3)

where st and nt represent the signal and noise components, respectively. Then, Equation (3)
can also be expressed in the following matrix form:

X = S + N, (4)

where S and N represent L × K trajectory matrices of the signal and noise components, re-
spectively. According to (4), the trajectory matrix X is not a noiseless matrix. Hence, the
eigenvectors of XXT are contaminated with noise. Therefore, it appears that the accuracy
of the Reconstruction stage in SSA is affected by the presence of some noise in eigenvectors
Ui, i ∈ I, which result in reducing the accuracy of the signal extraction performance. There-
fore, developing a more accurate signal extraction method for filtering the noisy Bcd profile is
essential.

Following the removal of the noise levels as much as possible, one may assume that the
reconstructed/filtered series st without noise can be represented by:

yt = st. (5)

Then, using the assumption that st follows a noise-free SDD model of length N , we have:

st = Ae−t/λ, t = 1, 2, . . . , N. (6)

We begin by probing the structure of the matrix XXT for this SDD model (6). If the
ith row of the trajectory matrix X is denoted by Hi, i.e., Hi = (yi, . . . , yi+K−1), then it can
be concluded that the components of the ith row and jth column of matrix XXT is given as
follows:

HiH
T
j =

K−1∑
l=0

yi+lyj+l =
K−1∑
l=0

Ae−(i+l)/λAe−(j+l)/λ = A2

K−1∑
l=0

e−(i+j+2l)/λ

= A2

K−1∑
l=0

e−(i+j−2+2+2l)/λ = A2

K−1∑
l=0

e−(i+j−2)/λe−(2+2l)/λ

= A2e−(i+j−2)/λ
K−1∑
l=0

e−2(1+l)/λ = γA2e−(i+j−2)/λ.

where γ =
∑K−1

l=0 e−2(1+l)/λ. If the matrix EL is defined as:

EL = (e−(i+j−2)/λ)L,Li,j=1 =


1 e−1/λ . . . e−(L−1)/λ

e−1/λ e−2/λ . . . e−L/λ

...
...

. . .
...

e−(L−1)/λ e−L/λ . . . e−2(L−1)/λ


L×L

, (7)

it can be concluded that XXT = γA2EL. Since XXT is a multiple of matrix EL, the matrices
XXT and EL have similar eigenvectors (with different eigenvalues). Additionally, we have Xj =
e−1/λXj−1 = e−(j−1)/λX1 where Xj is the jth column of the trajectory matrix X. Accordingly,
rank(X) = rank(XXT ) = rank(EL) = 1. As the rank of trajectory matrix for the SDD model
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(6) is equal to one for different values of A and λ, we utilize the first eigentriple alone for signal
extraction and consider the remainder as noise (I = {1}).

Then, to obtain the eigenvector of XXT , it is sufficient to find the eigenvector of EL. Since
rank(EL) = 1, the matrix EL has only one eigenvector. It can be easily shown that EL = eLeTL,

where eL =
(
1, e−1/λ, . . . , e−(L−1)/λ

)T
. Thus, we obtain:

ELeL = eLeTLeL = ‖eL‖2 eL. (8)

Relation (8) indicates that ‖eL‖2 and eL are eigenvalue and eigenvector of matrix EL, respec-
tively. Consequently, the eigenvalue and eigenvector of matrix XXT are γA2 ‖eL‖2 and eL,
respectively.

Now, we can exploit the noise-free eigenvector of XXT , to extract the signal of the SDD
model (6) based on U1 = eL

‖eL‖
. Since EL = eLeTL, we obtain:

U1U
T
1 =

eL
‖eL‖

eTL
‖eL‖

=
eLeTL
‖eL‖2

=
1

‖eL‖2
EL. (9)

Therefore, diagonal averaging the matrix X̂ provides the signal where X̂ =
∑

j∈I UjU
T
j X =

1
‖eL‖2

ELX. The matrix X̂ consists of column vectors X̂i =
∑

j∈I UjU
T
j Xi = 1

‖eL‖2
ELXi.

It is noteworthy that the noise-free eigenvector eL depends on the window length (L) and
parameter λ of the SDD model (6) requires estimation. Note that, the length of Bcd in each
profile (N) and parameter A of the SDD model have no effect on eL.

As mentioned previously, in reality the eigenvector U1 is not noise free and therefore, we
assume that U1 = eL

‖eL‖
+ ε. More precisely, the following non-linear model can be considered:

ui =
e−(i−1)/λ√

1 + e−2/λ + · · ·+ e−2(L−1)/λ
+ εi, i = 1, 2, . . . , L, (10)

where ui is the ith component of eigenvector U1. For each fixed L ≥ 3, the non-linear regression
model (10) can be used to estimate the parameter λ by nonlinear least squares approach.
However, there are many other approaches than can be used here to estimate the parameter
lambda.

3 Empirical Findings

3.1 Simulation Study

In this subsection, the performance of the new signal extraction approach is compared with the
SDD method by simulating an exponential curve drawn from the SDD model as the benchmark.
As noted in [8–11], the Bcd profiles follow a highly volatile exponential trend. In order to obtain
a noisy Bcd profile similar to the real one, the following multiplicative model was used:

yt = Ae−t/λ.εt, t = 1, 2, . . . , N,

where A = 200, λ = 50, yt is Bcd data at location t and εt represents the random noise following
the Log-Normal distribution with zero mean and standard deviation 0.2 in log scale. In total
100 observations were generated and the simulation was repeated 1000 times. It is noteworthy
that changes to N do not result in any alterations to the main conclusions reported here.

The accuracy of signal extractions are evaluated using the frequently cited Root Mean
Squared Error (RMSE) criterion. See for example, [16,17] and references therein. The ratio of
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the RMSE (RRMSE) is calculated as follows:

RRMSE =

(∑N
t=1(yt − ˜̃yt)

2
)1/2

(∑N
t=1(yt − ỹt)2

)1/2 ,
where ˜̃yt and ỹt are extracted signals at location t obtained via the newly proposed and SDD
methods, respectively. If RRMSE < 1, it can be concluded that the new technique outperforms
the SDD method. Furthermore, to measure the approximate separability between signal and
noise, metric weighted correlation or w-correlation is calculated:

ρ(w) =

∑N
t=1wtstnt√∑N

t=1wts
2
t

∑N
t=1wtn

2
t

,

where st and nt represent the signal and noise components, respectively as defined in Equation
(3). Also, wt = min {t, L,N − t+ 1} are the weights. Well separated components produce
small correlations whereas poorly separated components have large correlations (in absolute
values). Therefore, an absolute value of w-correlation close to zero (

∣∣ρ(w)∣∣ ' 0) would indicate
high separability between signal and noise [13]. The concept of separability plays a key role in
SSA and the value of w-correlation indicates the quality of the decomposition by determining
how well different components of a time series are separated from each other. More details on
w-correlation can be found in [13].

To enable easier comparison, the ratio of the absolute values of w-correlations is computed
as follows:

Ratio =

∣∣∣∣∣ρ(w)new method

ρ
(w)
SDD−NLS

∣∣∣∣∣ ,
If Ratio < 1, it can be concluded that the new method outperforms the SDD-NLS method in
separating the signal from noise.

Here, we also study the optimum value of L which is very important for signal extraction or
separability between extracted signal and noise. In Figure 2, the RRMSE values are depicted
versus different values of window length (L). It is evident that all RRMSEs are less than
one. Consequently, it can be concluded that the new method provides a more reliable signal
extraction in comparison to that obtained via the SDD model across different values of L, with
particular reference to the smaller values. It should be noted that when L is too large, the
covariance matrix of the L variables is calculated with only a few observations. This, in turn,
extends the imprecision of the result. Moreover, a considerably large value of L results in some
parts of noise mixing with the signal. Overall, the simulation demonstrated that for all values
of L, the newly proposed approach outperforms the basic approach, but that the outcomes are
more visible and easily distinguished for smaller L.

Next, we consider the second criterion, separability between signal and noise. The results
in Table 1 reports the ratio of w-correlation for simulated series. As can be seen in this table,
all ratios are less than one which indicates that the new method proposed in this paper always
extracts the signal better than the SDD model.
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Figure 2: Comparison between SDD and new method for various value of L and based on
RRMSE.

L
5 10 15 20 25 30 35 40 45 50

Ratio 0.464 0.168 0.102 0.076 0.063 0.055 0.050 0.044 0.038 0.032

Table 1: Ratio of w-correlation for simulated series across different values of L.

Thus, the results of the simulation study confirms that the proposed approach works better
than the SDD model based on the two criteria evaluated above, especially for smaller values of
L which results in a more noisier signal. It is also noteworthy that the maximum separability
between signal and noise occurred at different values of L and not always at the greater/max
values of L (see Tables 2-4). This is a result of the structure of this particular data which has
been explained in detail above.

As third criterion, we consider the ratio of RMSE of parameter estimators defined as follows:

RRMSEA =

(∑1000
i=1 (Ai − ˆ̂

Ai)
2
)1/2

(∑1000
i=1 (Ai − Âi)2

)1/2 ,

RRMSEλ =

(∑1000
i=1 (λi − ˆ̂

λi)
2
)1/2

(∑1000
i=1 (λi − λ̂i)2

)1/2 ,
where Ai = 200 and λi = 50 for each of ith simulated series,

ˆ̂
Ai and Âi are estimated value

of parameter A obtained via SSA-NLS and SDD-NLS in the ith simulated series, respectively.

Similarly,
ˆ̂
λi and λ̂i are estimated value of parameter λ given from SSA-NLS and SDD-NLS in

the ith simulated series, respectively. If RRMSEA < 1 (RRMSEλ < 1), it would indicate that
SSA-NLS parameter estimation method is more precise than SDD-NLS to estimate parameter
A (λ). Figures 3 and 4 show the values of RRMSEA and RRMSEλ, respectively. Again,
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these results confirm that SSA-NLS approach estimates parameters A and λ more accurate
than SSA-NLS method.

(Please add your comments on Figures 5 and 6)
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Figure 3: Ratio of RMSEs for parameter A
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3.2 Real Data:Bcd Data

Next, we go a step further and replicate the analysis on real Bcd profiles. The evaluation
is performed on Bcd expression profiles introduced in the FlyEx database [7, 14]. FlyEx is a
powerful database widely used for studying the dynamics of segment determination in early
Drosophila development [15].

In FlyEx, the quantitative Bcd data was obtained using the confocal scanning microscopy
of fixed embryos immunostained for segmentation proteins [7]. In FlyEx, the quantitative Bcd
data was obtained using the confocal scanning microscopy of fixed embryos immunostained for
segmentation proteins [7]. For analysis purposes, a 1024 × 1024 pixel confocal image with 8 bits
of fluorescence data was created for each embryo and then transformed into an ASCII table.
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The ASCII table contains the fluorescence intensity levels attributed to each nucleus of A-P
axis. To present the data using a graph, the x-axis shows the A-P position along the length of
the embryo and the y-axis shows the intensity levels which correspond to the amount of Bcd
expressed at that location.

To evaluate the performance of the newly proposed method, this study examines 385 raw
Bcd expression profiles from cleavage cycle 10 to 14(8) which were unprocessed for any noise
reduction methods. Similar to the simulation results, the entire RRMSE values achieved for
all Bcd profiles are less than one. To save space, Figures 7, 8 and 9 below portray a selection
of RRMSE values versus different values of L (3 ≤ L ≤ N/2) achieved on the actual data for a
group of embryos in cleavage cycle 10-12 1.

It is evident that the new method provides more accurate signal extractions in comparison
to the SDD model’s signal extractions, with noteworthy superior performance at small Window
Lengths L. In addition, the ratio of w-correlations for these Bcd profiles are reported in Tables
2, 3 and 4. In accordance with results from the simulation study, the entire ratios are less
than one following the empirical application. Therefore, it can also be concluded that the new
method can separate the signal from noise better than the SDD-NLS method.
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Figure 7: RRMSE for Bcd profiles from cleavage cycle 10.

L
Embryo 5 10 15 20 25 30 35 40 45 50

BECac30 0.635 0.267 0.399 0.865 0.202 0.135 0.123 0.114 0.109 0.104
ab2 0.314 0.146 0.059 0.049 0.053 0.065 0.074 0.082 0.089 0.090

BECab7 0.417 0.119 0.139 0.156 0.301 0.291 0.272 0.269 0.261 0.264
BECab11 0.401 0.086 0.067 0.073 0.088 0.093 0.092 0.088 0.077 0.063

Table 2: Ratio of w-correlation for Bcd profiles from cleavage cycle 10.

1Results for other cleavage cycles are available upon request.
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Figure 8: RRMSE for Bcd profiles from cleavage cycle 11.

L
Embryo 5 15 25 35 45 55 65 75 85 95 105 115

ad23 0.498 0.183 0.215 0.125 0.080 0.074 0.076 0.078 0.080 0.081 0.079 0.075
ad14 0.160 0.104 0.096 0.413 0.259 0.144 0.125 0.124 0.124 0.122 0.115 0.105
cb16 0.203 0.083 0.081 0.128 0.224 0.265 0.407 0.252 0.210 0.190 0.174 0.158
ad22 0.223 0.031 0.035 0.053 0.075 0.101 0.125 0.149 0.171 0.190 0.203 0.208

BECab14 0.286 0.224 0.082 0.087 0.083 0.087 0.091 0.093 0.093 0.090 0.081 0.068
ab18 0.562 0.117 0.079 0.114 0.159 0.210 0.260 0.282 0.291 0.283 0.291 0.224
ac22 0.347 0.065 0.041 0.040 0.049 0.056 0.063 0.069 0.074 0.075 0.071 0.065

Table 3: Ratio of w-correlation for Bcd profiles from cleavage cycle 11.
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Figure 9: RRMSE for Bcd profiles from cleavage cycle 12.
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L
Embryo 5 20 35 50 65 80 95 110 125 140 155 170 185 200

be7 0.017 0.023 0.018 0.028 0.046 0.084 0.288 0.438 0.178 0.131 0.116 0.108 0.102 0.096
ad4 0.326 0.313 0.046 0.038 0.036 0.041 0.051 0.063 0.074 0.083 0.092 0.099 0.105 0.108
ad27 0.650 0.277 0.431 0.211 0.145 0.112 0.097 0.087 0.085 0.084 0.083 0.081 0.078 0.072
ad16 0.265 0.035 0.059 0.115 0.245 0.396 0.216 0.370 0.276 0.242 0.223 0.210 0.194 0.173
ab17 0.602 0.059 0.043 0.075 0.248 0.349 0.193 0.149 0.135 0.127 0.122 0.115 0.106 0.094
be4 0.322 0.114 0.141 0.085 0.105 0.130 0.156 0.190 0.225 0.254 0.278 0.296 0.303 0.298

BECac36 0.258 0.139 0.083 0.063 0.062 0.071 0.081 0.090 0.097 0.098 0.093 0.085 0.075 0.063

Table 4: Ratio of w-correlation for Bcd profiles from cleavage cycle 12.

It is pertinent to note that the length of data, Bcd expression level and level of noise
associated with Bcd profiles varies from one cleavage cycle to the other. The diffusion of Bcd
molecules begin to appear at cleavage cycle 10. Hence, the concentration of these morphogens
is lower at the initial cleavage cycles compared to final stages of cleavage cycle 14. Therefore,
the constant superior performance of the new method throughout all cleavage cycles should be
regarded as an important feature of this method.

Finally, SDD-NLS and SSA-NLS approaches perform differently at noise reduction and
signal extraction steps which results in providing different estimations of A and λ. Since a more
reliable noise reduction method gives a more accurate estimation of parameters of interest, for
those researchers who wish to rely on the SDD model, it is suggested that they first seek to
filter the noise using SSA-NLS before estimating the parameters using the SDD model.

4 Conclusion

The diffusion of Bcd along the embryo of Drosophila melanogaster provides a concentration
gradient of signalling molecules which induces downstream genes at different concentration
thresholds and provides embryonic tissues with essential positional information. Over the
last few decades, the exponential shape of Bcd gradient had been characterised using several
parametric models including SDD. However, whether this model can precisely estimate the
associated parameters remains unclear.

The central aim of this paper was to introduce a new method based on SSA for filtering Bcd
profiles and consequently enhance the estimation of parameters A and λ. To that end, we bring
together empirical evidence via a simulation study and application to real data to evaluate the
performance of the two methods of SDD-NLS and SSA-NLS.

The results we obtain demonstrate the feasibility and potential advantages of the SSA-NLS
approach for filtering Bcd profiles and improving the estimation of parameters present in the
exponential decay function. Moreover, as the length of the Bcd profile increases, the fluctuations
and the level of noise in data also increases. Therefore, when extracting the signal from such
data, it is reasonable to expect that the signal derived from a profile with large N , does not
truly capture the information of the profile. However, as confirmed by the w-correlation results,
signal components are precisely extracted for all cleavage cycles, indicating the robustness of
SSA to the amount and the level of noise in data.

Further work, however, is encouraged to ensure the method can scale up to expression
profiles of other genes in the segmentation network.
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