Can hair be protected from oxidative damage during and after bleaching?

Image: Image of the second second

Gabriela Daniels, Sin Ting Woo, Milica Stevic, Slobodanka Tamburic

Cosmetic Science Research Group, London College of Fashion, University of the Arts London, London, UK

Introduction

The purpose of bleaching human hair is to oxidise the naturally occurring pigment, melanin, in order to lighten the hair in preparation for further colour changes. Hydrogen peroxide (H_2O_2) is the principal oxidizing agent commonly used in conjunction with alkaliser(s) in order to boost the speed of the oxidative reaction.

In addition to the desirable oxidation of melanin, a host of undesirable reactions take place:

Tensile results (Fig 3):

- The cystine-silanol copolymer showed potential to increase single-fibre tensile strength, especially when applied as **AB**.
- It is hypothised that, as **AB**, the polymer adsorbs more effectively on the fibre and the heat of blow drying provides

S7-412

Cell Membrane Complex degradation, disulphide bond oxidation and peptide bond hydrolysis [1,2,3,4]. Developing bleaching systems that cause minimal undesirable alterations to the hair fibre remains an important challenge to the industry.

The aim of this study was to assess ex vivo three different materials for their capacity to mitigate some of the above undesirable effects. The investigated actives were: L-arginine, hydrolysed keratin and cystine-silanol copolymer. They were selected on the basis of their affinity to hair proteins and their stability at high pH (pH \leq 10)

Materials and Methods

The tested actives are described in Table I. All actives were added at 0.75% w/w. Virgin Caucasian, brown hair tresses were used for testing (length=30cm, weight=5g, excluding the waxed top; Banbury Postiche, UK). A commercial system for hair bleaching was used, based on 40vol H₂O₂ and combined with Potassium persulfate-containing alkaliser.

Two different treatments for each active were tested: active mixed with the bleach (WB) and as a soaking solution for the tresses after bleaching (AB)

Table I. The formulation of the model semisolid emulsion			
	L-Arginine	Aqua, Hydrolysed Keratin, Methylparaben, Propylparaben	Aqua, Cystine Bis-PG- Propyl Silanetriol
Derived from	Botanical sources	Animal sources	Synthetic
Active content	100%	25%	15%
Avg. MW (g/mol)	174.2	1,000	20,000
Amino acid present	Arginine	Cystine	Cystine
pH at 25℃	9.86 (0.75% sol)	5.40	9.76
pH compatibility	No information	Above pH 5.0	Stable in bleach
Physical properties	White crystalline powder	Brown transparent liquid	Yellow transparent liquid

the activating energy for crosslinking and film formation.

Figure 3: % change in the tensile stress between active treatments and double bleached hair, in wet and dry state

Combing ease results (Fig.4): • The **cystine-silanol** copolymer reduced combing force as **WB** treatment.

- The L-arginine and keratin AB treatments appeared to increase combing force, especially in dry state.
- It is suggested that inter fibre friction has increased when using L-arginine and keratin as AB

Figure 4: % change of combing work for various active treatments (wet and dry hair) in relation to double bleached hair

Colour measurements (dry): Spectrophotometer CM-2600D (Konika Minolta, Japan), illuminator D65, viewing angle 8°, five random measurements per tress. L-values (black to while scale) and *b*-values for (yellow to blue scale) were analysed.

Tensile measurements (wet and dry): TA XT Plus (Stable Micro Systems, UK), extension rate of 1% per second, T=22C°, RH=40. Each fibre was first viewed with Microscope CX40 and SC30 (Olympus, Japan), the width of the fibre was recorded in three places and averaged, and used to approximate the cross-sectional area of the fibre.

Combing ease (wet and dry): Texture Analyser – TA.XT with a hair combing rig A/HCR (Stable Micro Systems, UK), combed with medium plastic comb, width=8cm, 64 tines.

Sensory study protocols: The smoothness of dry hair tresses was evaluated by 12 blind-folded, trained volunteers

Sensory study protocols (Fig5):

- **WB** : the actives treatment eliciting smoothing effect with rating above double bleached hair were the **hydrolysed** keratin and the copolymer treatments.
- **AB:** all actives elicited • improved smoothness, but there was no statistical difference between the active treatments.

Figure 5: ratinging for smoothness of hair tresses by panellists (0=very rough, 5=very smooth)

Results and Discussion

Conclusion

- This study demonstrated that the actives with prevalent ionic affinity to hair, L Arginine and hydrolysed keratin, as tested at comparable concentrations, did not elicit consistent improvements across the instrumentally measured hair parameters.
- In contrast, the cystine-silanol copolymer, with its hydrophobic and chemical affinity, provided more consistent benefits across the different test conditions.
- Based on colour and sensory results, the actives improve the efficacy of bleaching and after-bleach products in two directions: lightening and smoothing the hair.

[1] Bushan, B. (2008) Nanoscale characterisation of human hair and hair conditioners, Progress in Material Science, 53, pp.585-710; [2]Evans, T. (2017) How damaged is hair? Part 2: Internal Damage, Cosmetics and Toiletries, 132, No 6, pp.36-45. [3] Kazagura A. (2006) Analysis of structural changes in bleached keratin fibers (black and white human hair) using Raman Spectroscopy, Biopolymers, 81, pp.506-514; Wortmann, F.J., Springob, C., Sendelbach, G. (2002) Investigation of cosmetically treated human hair by differential scanning calorimetry in water, [4] Journal of *Cosmetic Science*, 53, pp.219-228