
 

Contemporary Machine Learning for Audio and Music 
Generation on the Web: Current Challenges and Poten-

tial Solutions 

 

Mick Grierson Matthew Yee-King Louis McCallum  
UAL Creative Computing Institute 
m.grierson@gold.ac.uk 

Goldsmiths, University of London 
m.yee-king@gold.ac.uk 

Goldsmiths, University of London 
l.mccallum@gold.ac.uk 

Chris Kiefer Michael Zbyszynski 
Goldsmiths, University of London 
m.zbyszynski@gold.ac.uk 

 

University of Sussex 
c.kiefer@sussex.ac.uk 

 
ABSTRACT 

We evaluate specific Web-based technologies that can be 
used to implement complex contemporary Machine 
Learning systems for Computer Music research, in par-
ticular for the problem of audio signal generation. As a 
result of greater investment from large corporations in-
cluding Google and Facebook in areas such as the devel-
opment of Web-based, accelerated, cross-platform Ma-
chine Learning libraries, alongside greater interest and 
engagement from the academic community in exploring 
such approaches, Machine Learning is becoming much 
more prevalent on the Web. This could have great poten-
tial impact for Computer Music research, acting to de-
mocratise access to complex, accelerated Machine 
Learning technologies through increased usability and 
flexibility, in tandem with clear documentation and ex-
amples. However, some problems remain in relation to 
the creation of more complete Machine Learning pipe-
lines for Music and Sound generation. We discuss some 
key potential challenges in this area, and attempt to eval-
uate some relevant solutions for developing more acces-
sible Computer Music Machine Learning systems. 

1. INTRODUCTION 
The Web Audio API is potentially an excellent platform 
for Computer Music research. It can synthesize audio in 
real-time, is widely supported by all major browsers in-
cluding mobile browsers, supports a variety of known 
audio methods, and is generally very accessible. There 
exists a high number of JavaScript and JavaScript com-
patible libraries for creating interactive sound and music 
systems, most of which rely on the Web Audio API 
(Tone.js [5], Gibber.js [10], MaxiLib.js [12]). However, it 
can be more challenging to create machine learning sys-
tems that run well in the browser and that integrate well 
with Web Audio. This is particularly true for real-time 

and interactive machine learning systems where pro-
cessing should ideally run on the client machine, rather 
than some form of client / server architecture (although 
some good solutions exist, such as in the RAPID-MIX 
API [1]). 
In 2018, a number of platforms have emerged having 
been developed with the intention of making contempo-
rary machine learning more accessible for the web. These 
include Lobe.ai [4], ml5js [6], NeuroJS [3], & ml-js [6]. 
However, none of these projects are necessarily strong 
candidates for solving issues relating to Machine Learn-
ing for Computer Music research and practice. We have 
been attempting to understand, explore and evaluate the 
current state of the art in web-based Machine Learning 
for Computer Music in order to better describe the rele-
vant challenges, and develop potential solutions. Below 
we present what we consider to be core problems and 
relevant solutions for creating more accessible Web Au-
dio Machine Learning systems, including a method for 
training and generating 16 bit 44,100 Hz samples using 
Long Short Term Memory Networks (LSTMs) in 
web browsers. We also consider system design decisions 
relevant for disseminating such solutions to large num-
bers of online users. 

2. STATE OF THE ART 
As is well known, the Web Audio API1 creates the poten-
tial for developers to build sound and music systems with 
a reasonably high degree of fidelity, providing low laten-
cy, a range of audio output generators, and basic analysis. 
Web Audio also contains a Script Processor Node that 
provides access to an audio buffer directly, allowing de-
velopers to create bespoke signal processing systems in 
the browser.  

Furthermore, tools such as Emscripten2 and 
WASM (WebAssembly) make it possible to implement 
complex Digital Signal Processing functions in C++ (or 
other languages such as Rust) and then convert them into 
browser-compatible JavaScript through transpilation. 

                                                 
1 https://github.com/WebAudio/web-audio-api 
2 https://kripken.github.io/emscripten-site/ 
 

Copyright: © 2018 Mick Grierson et al. This is an open-access article 
distributed under the terms of the Creative Commons Attribu-
tion License 3.0 Unported, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original 
author and source are credited. 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


 
Developers can therefore use a wide range of available 
C++ libraries, for example, to build signal processing 
functions that can be run inside a Script Processor Node.  

With respect to existing Machine Learning for 
Music in the browser, as mentioned there already exists a 
range of libraries and services to allow for powerful intel-
ligent systems to be designed and deployed. Some of 
these, such as the RAPID-MIX API [12], provide robust 
and accessible tools for the creation of Musical Machine 
Learning systems that work across a range of platforms 
(Web, Embedded, Mobile, Desktop). Further, Google has 
offered small amounts of funding to some Universities to 
encourage them to create platforms based on Google’s 
own TensorFlow3 Machine Learning framework (for ex-
ample, https://ml5js.org). Using TensorFlow.js, a JavaS-
cript implementation of Google’s TensorFlow API, more 
complex forms of Machine Learning (e.g. ‘Deep Learn-
ing’) can be run in the browser. Such systems are able to 
use WebGL to accelerate the training and serving of Ma-
chine Learning models in browsers with performance not 
vastly dissimilar (1.5 - 2 times slower in some cases ac-
cording to the TensorFlow.js FAQ [11]) to equivalent 
models operating natively on the Desktop. 

There are a number of issues with the current 
state of the art. Web Audio’s synth graph model provides 
a very limited set of node types, with inconsistent imple-
mentations across browsers. In addition, it has a timing 
model that lacks sample-precision, and no native plug-in 
API. Therefore, most serious signal processing research 
would need to run in a Script Processor Node at some 
stage for the purposes of real-time interaction. This is far 
from ideal as the Script Processor Node runs in the main 
UI thread. This means that anyone wishing to implement 
or use custom audio processing must necessarily suffer 
poorer performance than that found in the natively im-
plemented Web Audio nodes. The precise reasoning be-
hind this design choice may not be well defined but it is 
nevertheless recognised as a severely limiting factor of 
the Web Audio API. Audio Worklets are a potential fix 
for this issue but as yet are not widely implemented in 
modern browsers. Further to this, due to security con-
cerns in relation to exploits such as SPECTRE, Audio 
Worklets cannot offer multithreading capabilities due to 
the SharedArrayBuffer object being currently disabled in 
most major browsers, despite WASM supporting multi-
threaded compilation.  

C++ and Python are significantly more mature 
as platforms for Signal Processing and Machine Learning 
than JavaScript. As mentioned, this issue can be partly 
mitigated through the use of transpilation tools, but per-
formance tests have raised serious questions regarding the 
capability of such systems following transpilation [13]. 
Thirdly, ‘Deep’ Machine Learning systems for more 
complex audio operations, such as sound analysis and 
resynthesis, are not currently very advanced with respect 
to quality or flexibility [8][2], and represent challenges 
for web deployment - for example, support for Linear 
Algebra (LA) in JavaScript is not mature and often needs 
to be hand-coded. Core libraries for LA are written in 

                                                 
3 https://www.TensorFlow.org 

Fortran (LAPACK, BLAS). Python’s Numpy library is 
only minimally supported via the Numscrypt library4. 
Some JavaScript ports of Numpy are underway, and as an 
alternative, Eigen5 is transpilable. However, such efforts 
can lead to potentially very large JavaScript libraries 
(over 30MB in size). 

These issues all impact on the main purposes of 
using the Web as a platform - to make such technologies 
more accessible. We describe efforts to understand, ex-
plore and test solutions for a small number of these prob-
lems. Specifically, we present further data on the perfor-
mance of transpiled audio analysis systems running in the 
Script Processor Node, and describe how we have used 
these to implement and train bespoke Machine Learning 
systems on raw audio signals in browsers. We also com-
pare these systems with systems running natively. 

3. METHOD 
In order to present and explore current challenges in the 
design of contemporary Audio and Music Machine 
Learning systems for the Web, we take an existing, in-
house Deep Learning system for CD quality audio gener-
ation written in Python with TensorFlow, and explore the 
potential of porting this system to the Web using a com-
bination of Digital Signal Processing tools designed to 
interoperate with Web Audio, and TensorFlow.js. We 
first attempt to understand potential performance issues 
that may impact on the audio analysis and resynthesis 
approach that we require in order for our model to func-
tion. We do this by testing a proposed emscripten imple-
mentation against prior benchmarks published here [13]. 
Following this process, we construct a prototype analysis, 
training, generation and resynthesis system in JavaScript, 
and compare its output with that of the original imple-
mentation in Python with TensorFlow. 

3.1 Emscripten Benchmarking 
Transpiling is a complex process, especially when one 
considers questions of memory management and array 
processing which are pertinent in digital signal processing 
applications. We are transpiling from C++ to JavaScript. 
This means the resulting code will be running in the Ja-
vaScript interpreter in the web browser, adding another 
layer of complexity. Transpiled libraries often given vari-
able results in performance tests when compared with 
their native counterparts. We used a performance metric 
also used here [13] to benchmark the maxiLib.js library6 
which is a version of the Maximilian C++ library7 
transpiled using emscripten. 

The method works by calling a function many 
times and timing how long it takes. For example, how 
long does it take to call the Math.sin() function 10,000 

                                                 
4 http://www.transcrypt.org/numscrypt/numscrypt.html 
5 http://eigen.tuxfamily.org/index.php?title=Main_Page 
6 https://gitlab.doc.gold.ac.uk/mick/maxi-js-emscripten 
7 https://github.com/micknoise/Maximilian 
 

https://github.com/micknoise/Maximilian


 
times? With that value, we extrapolate to how many 
times that function can run if we want to run in real-time, 
i.e. how many times could we run it in one sample frame. 
This of course assumes nothing else is happening, but it 
gives a simple performance base-line. Very poor perfor-
mance was previously reported for emscripten-transpiled 
signal processing functions in this specific benchmark 
when compared to roughly equivalent JavaScript per-
forming the same or similar function. 

We attempt to verify this result, as its implica-
tions for the use of emscripten for the purposes of 
transpiling signal processing code are significant. From 
looking at the gists provided in the original paper [13], it 
appears that the time period of the original test was rela-
tively short. We hypothesised that the test might be too 
short to account for the initial set-up cost of loading the 
emscripten-transpiled function into memory - a process 
that need only happen once at the start when running a 
programme. We therefore constructed a newer version of 
the test to see if performance improved when the test was 
conducted over a longer time period.   

3.2 Python Model Structure: MAGNet 
We have previously constructed an LSTM model in Py-
thon using TensorFlow for CD quality audio generation. 
The model, which is part of a project which we refer to as 
MAGNet, is designed to train only on chunks of Real-
FFT magnitudes. Therefore, the LSTM can be asked to 
generate blocks of Real-FFT magnitudes as a sequence. 
We can then reconstruct the phase using any number of 
potential phase reconstruction approaches such as Griffin 
Lim, Locally Weighted Sums [9], Phase Vocoding or 
similar, and then use an iFFT to resynthesise the audio 
output. In this case we choose to use LWS, as this has a 
functioning library that works in Python with C++ bind-
ings and appears to be reasonably robust to potential arte-
facts caused by the LSTM’s artificially generated magni-
tude spectra. A more precise description of this model 
and its properties is currently in preparation for submis-
sion separately. An example python implementation of 
MAGNet can be found here: 

https://gitlab.doc.gold.ac.uk/mick/rnn_audio. 

3.3 In the Browser 
Encouraged by the success of the existing Python imple-
mentation, we attempted to replicate the approach of 
modelling magnitudes with an LSTM as a method of cre-
ative audio generation in the browser. Given the similari-
ties of the APIs, the structure of the model was easy to 
replicate in TensorFlow.js. Although an implementation 
of the LWS approach to reconstructing phases from mag-
nitudes [9] is available as a Python package with C++ 
bindings, there is no equivalent library available in Ja-
vaScript. Therefore, LWS was ported to JavaScript using 
a combination of TensorFlow.js and math.js. The latter 
was necessary to handle matrix arithmetic with complex 
numbers as at the time of writing this had not yet been 
implemented in TensorFlow.js (0.13.1), although their 

use as a datatype had been introduced. The JavaScript 
port of the MAGNet Python example can be found here:  
https://gitlab.doc.gold.ac.uk/lmcca002/rnn-audio-js. Test-
ing was carried out on an Ubuntu 16.04 LTS system with 
an Intel i7 processor clocked at 3GHz, 32GB of RAM, 
and an 8GB NVIDIA GTX1080 GPU. 

4. RESULTS 

4.1 Emscripten Benchmarking 
Our results demonstrate that as per our hypothesis, the 
emscripten-transpiled function did appear to perform bad-
ly only in the first few moments of the test. We found 
that under a test of 250,000 iterations, the number of pos-
sible function calls increased from 11 per sample frame, 
to over 150 per sample frame when testing in the Chrome 
browser. We also found that on our Ubuntu 16.04 test 
system, Firefox was approximately twice as performant 
as Chrome, achieving up to 300 calls per sample frame. 
This is much closer to the performance of the original 
C++ library, and more accurately represents the real-
world experience of users who are operating emscripten-
transpiled C++ functions in JavaScript. This result may 
have further implications for those testing the perfor-
mance of emscripten and WASM transpiled routines. 
Further to this, it should be mentioned that our test did 
not factor out the initial period wherein the function was 
not performing optimally, and in the future we would 
recommend doing so. 

 
Figure 1: Example benchmark code for testing the per-
formance of transpiled libraries.8 

                                                 
8 Example code available at 
https://gitlab.doc.gold.ac.uk/mick/maxi-js-
emscripten/tree/master/testing 

https://gitlab.doc.gold.ac.uk/mick/rnn_audio


 

4.2 MAGNet JavaScript performance 
When using identical model structures, analysis parame-
ters, hyperparameters and audio training data, training 
took approximately twice as long in JavaScript in com-
parison to our existing Python implementation. On our 
test system, training our model on a 9 second piece of 
Audio for 1000 epochs took approximately 12 hours. 
Python code on the same machine was able to train an 
identical model for 1000 epochs in just over 5 ½ hours. 
Training time for both models can be reduced greatly by 
simplifying the model and the size of the audio segment.  

Audio generation from the same system was not 
dissimilar. Generation took approximately twice as long 
as the Python version of the algorithm. This meant that 
short samples of up to 2-3 seconds long could be generat-
ed in around 5 seconds. This is not good enough for real-
time audio generation from deep learning systems in web 
browsers. However, it is within reasonable and acceptable 
limits for an online audio generator. 

This supports claims discussed earlier in the Ten-
sorFlow.js documentation regarding performance. Recon-
struction using the new JavaScript LWS method works 
well enough for testing, although further work is being 
carried out in order to reduce small artefacts occurring in 
the reconstruction. 

5. DISCUSSION 

5.1 Performance of Transpiled Libraries 
Our tests demonstrate that some performance issues asso-
ciated with transpilation approaches have more to do with 
the specific ways in which transpiled code is being de-
ployed and tested, rather than the explicit limitations of 
the code itself. For example, in our testing, systems 
which have been reported as only being able to produce < 
10 function calls per sample frame have been demon-
strated to be capable of many hundreds of function calls 
per sample frame. This is because the methods described 
in some related research do not account for the cost of 
setting up the function, which will vary from case to case 
depending on how the native code has been transpiled 
into asm.js by emscripten. Furthermore, we suspect that 
performance factors for asm.js may depend greatly on 
whether browsers are using ahead-of-time or just-in-time 
compilers. When testing transpiled systems it may be 
common to fail to account for compile times, which rep-
resent another large, fixed cost when any asm.js function 
is first called. It may be possible that this cost is far less 
great with WASM code, and this could be interesting to 
explore. 

5.2 Issues Porting Python Machine Learning 
Systems to JavaScript 
The need to port LWS to JavaScript revealed limitations 
in the TensorFlow.js library in relation to handling arith-
metic with complex numbers. This highlights issues that 
can arise when developing for early stage, pre-release 
libraries (as mentioned, these data types are now fully 
supported). Further challenges came from porting often 

dense NumPy code into JavaScript. As mentioned above, 
there is yet to be a complete porting of the NumPy API 
and all its functionality. Considering the prevalence of its 
use in ML, an automated approach to this would greatly 
open up porting of SOTA ML solutions for use in the 
browser. 
 In general, it seems clear that it may be more 
sensible at present to train models in Python, and then to 
load them via TensorFlow.js so that they can be served 
over the web. In our testing there were inconsistencies 
with the effectiveness and performance of the JavaScript-
trained models when compared to Python models of al-
most identical structure. However, those same models 
trained in Python performed identically in both JavaScript 
and Python. We are still investigating potential causes of 
these observations.   

6. CONCLUSION 
We present a potential structure and approach for creating 
contemporary web-based Machine Learning systems for 
music based on existing C++ and specifically rewritten 
Python libraries. We demonstrate that investigating and 
evaluating transpilation approaches can sometimes lead 
to misleading results that potentially mis-characterise the 
performance of such systems. Further to this, we compare 
methods and approaches for the development of LSTM-
based audio generators that are capable of CD quality 
audio reconstruction using current web technologies. It is 
fair to say that building such systems is still challenging, 
and represents some considerable engineering effort. 
Nevertheless, they are definitely possible to construct, 
and offer considerable potential for Computer Music re-
search. Finally, we have released our online LSTM audio 
generator software under an open source license to coin-
cide with ICMC 2019. 

Acknowledgments 

This work is funded by the Arts and Humanities Research 
Council as part of the MIMIC project, UK grant reference 
AH/R002657/1.  

7. REFERENCES 
[1] Bernardo, F., Grierson, M., and Fiebrink, R. User-

Centred Design Actions for Lightweight Evaluation 
of an Interactive Machine Learning Toolkit. Journal 
of Science and Technology of the Arts, vol. 10, no. 2, 
pp.2-25., 2018 

[2] Donahue, C., McAuley, J.,Puckette, M., Synthesis-
ing Audio with Generative Adversarial Networks, 
arXiv:1802.04208, 2018 

[3] Huernermann, J., NeuroJS, [Online], Available 
www.github.com/janhuenermann/neurojs,  [Ac-
cessed 15.01.2019] 

[4] Lobe Artificial Intelligence, Inc., Lobe - Deep 
Learning Made Simple. [Online], Available 
www.lobe.ai, [Accessed 15.01.2019] 

[5] Mann, Y. Interactive music with Tone. js. In Proc. 
WAC’15, 2015. 

http://www.github.com/janhuenermann/neurojs
http://www.lobe.ai/


 
[6] ml-js, Machine learning and numerical analysis tools 

in JavaScript for Node.js and the Browser, [Online], 
Available www.github.com/mljs, [Accessed 
15.01.2019] 

[7] NYU ITP, ML5 - Friendly Machine Learning for the 
Web, [Online], Available www.ml5js.org, [Accessed 
15.01.2019] 

[8] Aaron van den Oord, Sander Dieleman, Heiga Zen, 
Karen Simonyan, Oriol Vinyals, Alex Graves, Nal 
Kalchbrenner, Andrew Senior, and Koray Kavuk-
cuoglu. WaveNet: A generative model for raw au-
dio. arXiv:1609.03499, 2016. 

[9] Le Roux, J., Kameoka, H., Ono, N., Sagayama, S., 
Fast Signal Reconstruction from Magnitude STFT 
Spectrogram Based on Spectrogram Consistency, in 
Proc. DAFX’10, pp. 397--403, Sep. 2010. 

[10] Roberts, C, and JoAnn K. Gibber: Live coding audio 
in the browser. In Proc, ICMC’12, pp. ,2012. 

[11] TensorFlow, TensorFlow.js FAQ, [Online], Availa-
ble www.js.TensorFlow.org/faq,  [Accessed 
15.01.2019] 

[12] Zbyszyński, M., Grierson, M., & Yee-King, M.. 
Rapid Prototyping of New Instruments with Co-
deCircle. In Proc NIME’17, pp. ,2017 

[13] Zbyszyński, M., Grierson, M.,  Fedden, L., and Yee-
King, M., Write once run anywhere revisited: ma-
chine learning and audio tools in the browser with 
C++ and emscripten, In Proc. WAC’17, pp. , 2017 

http://www.ml5js.org/
http://www.js.tensorflow.org/faq

