

Using Experimental Design Approach to Understand Interactions of Natural Oils and Waxes in a Lipstick Base

<u>Carmen Cheung</u>, Pascale Cottin, Michèle Lepais, Slobodanka Tamburic

Talk at a glance

- 1. Why natural lipstick base?
- 2. Why specific experimental design?
- 3. Aims and objectives of the study
- 4. Methodology
 - Materials
 - Evaluation: instrumental and sensory methods
 - Experimental design
- 5. Results
- 6. Comparative assessment
- 7. Conclusion

n colleae

of fashion

1. Why natural lipstick base?

93% £1.5 billion (2013)

15% lip category

university

london college of fashion

ua

Using Experimental Design Approach to Understand Interactions of Natural Oils and Waxes in a Lipstick Base

Recent Mintel report on Colour Cosmetics (2012):

- Increased consumers' awareness of their impact on the environment
- Increased focus on naturally derived and more sustainable ingredients
- Companies are producing eco-friendlier products

Jal university of the arts london london college of fashion

Technical requirements for natural lipsticks are the same as for traditional ones, e.g.:

- Should have sufficient stick strength
- Should have good pay off
- Should not cause pigment exudation
- Should not crystallise

2. Why specific experimental design?

- Vast number of variables and possible experiments
- The use of experimental design approach
 - increases the *effectiveness* of research
 - reduces *experimentation time*
 - improves the *quality* of the information obtained
- Mixture Design enables us to study <u>several variables</u> at the same time, with the <u>minimum number of observations</u>, in the shortest time and the lowest costs.
- Mixture Design was implemented using the programme NEMRODW[®] (LPRAI, France)

Aim:

To assess the applicability of the Mixture Design approach to the formulation of the natural lipstick base

Objectives:

- To gain an understanding of the interaction between different raw materials in the lipid base
- To create an optimised lipid base formula
- To assess its performance against a commercial natural lipstick

Natural materials

Three most commonly used <u>waxes</u> in natural lipsticks: carnauba wax, candelilla wax and beeswax

Three most commonly used oils in natural lipsticks: castor oil, jojoba oil and sunflower oil

The benchmark: product X from the French market

Waxes

Wax	Melting Point (°C)	Composition
Carnauba	87	Esters and polyesters of mono and di-hydroxy acids and fatty alcohols
Candelilla	67	esters and hydrocarbon waxes.
Beeswax	63	esters (70%) and free wax acids and hydrocarbons (30%)

Oils

Oil	Chain Length	Composition
Castor	Long	90% ricinoleic acid means more polar than others
Sunflower	Long	Monounsaturated mix of oleic and linoleic acid
Jojoba	Long	Over 97% liquid wax ester of omega-9 fatty acid and omega-9 fatty alcohol

Base formula

10

Phase	%w/w	Functions
Wax	20	 Stick structure Heat stability Hard texture on application Helps with the stick removal
Oil	50	- Immediate properties of lipsticks: ease of application, shine, glide
Butter	15	 Helps the structure Brings smoothness, melting and shine
Pigment (organic) in castor oil	15	ColourCoverage

Evaluation: instrumental and sensory methods

Every lipstick was evaluated 24 hours after it was produced.

Measurement of <u>hardness</u> (break point test)

-> An indication of stability – lipstick should not break when force is applied on application

-> Target: 300-450g

(corresponds to the weight required to break the stick of lipstick using water)

- <u>Measurement of softening</u> (softening point test)
 - -> Ring and ball method
 - -> An indication of stability at high temperatures
 - -> Target: 69-76°C

Evaluation: instrumental and sensory methods

Sensory test - measurement of glide (glide test)

Rating scale: 0-10

Test site: the back of hand

Panel: untreated volunteers

Protocol: rating the ease of application (glide) on the scale of 0 to 10 after applying 3 continuous strokes on the back of the hand

Stability test:

Unchanged physical characteristics for one month at:

Room temperature (20-22^oC), under northern light

Thermostatic oven (45°C)

Optimisation Model: Simplex-Based Mix Design

Method based on the Scheffé's simplex theory

16 lipstick formulations were tested (13 from the matrix + 3 at random)

Simplex lattice design for three components

Mathematical Model

Using Experimental Design Approach to Understand Interactions of Natural Oils and Waxes in a Lipstick Base

Experimental design

- Stage 1 Determination of the optimal wax ratio
- Stage 2 Determination of the optimal oil ratio
- Stage 3 Comparative assessment of the optimised lipstick formulation and the market product X

14

15

Stage 1- Determination of the wax ratio

- Total amount of waxes was maintained at 20%, while experimenting with different ratios of waxes
- Oils and pastes were maintained at 50% and 15%, respectively
- 16 samples were generated by the Simplex Lattice Design, using NEMRODW[®] software
- All experiments were run with three test oils sequentially
- Results were analysed using the NEMRODW[®] software and the optimum wax ratio was determined.

Stage 2 - Determination of the oil ratio

- The oil phase was maintained at 50%
- The optimum wax ratio determined in Stage 1 was incorporated in the formula
- 16 samples were generated by the Simplex Lattice Design
- Results were analysed using the NEMRODW[®] software and the optimum oil ratio was determined
- An optimised formulation was proposed based on the best wax and oil ratios

Stage 3 - Comparative assessment

• The optimised formulation was compared with the market product X in terms of hardness, softening and glide

Using Experimental Design Approach to Understand Interactions of Natural Oils and Waxes in a Lipstick Base

Stage 1 - Lipstick formula

Phase	INCI Name	Trade Name	Supplier	%w/w
Wax	Copernicia Cerifera Wax	Cerauba T1 Bio	Baerlocher France	*to find
	Cera Alba	Cerabio W	Baerlocher France	*to find
	Euphorbia Cerifera Wax	Cerilla Raffinée Paillettes	Baerlocher France	*to find
Oil	Ricinus communis Seed Oil/ Simmondsia Chinensis Seed Oil/ Helianthus Annuus Seed Oil	Castor Oil/Jojoba Oil/Sunflower Oil	Aldivia	50.0
Butter	C10-18 Triglycerides	Lipocire A	Gattefossé	12.0
	Butyrospermum parkii (Shea) butter	Shea Butter	Aroma Zone	3.0
Pigment	Red #7, Ricinus communis Seed Oil	COD8001	ITECH Lyon	15.0

Matrix of experiments: wax phase (20%w/w)

N°Exp	Carnauba wax	Candelilla wax	Beeswax
1	1.00000	0.00000	0.00000
2	0.00000	1.00000	0.00000
3	0.00000	0.00000	1.00000
4	0.66667	0.33333	0.00000
5	0.33333	0.66667	0.00000
6	0.66667	0.00000	0.33333
7	0.33333	0.33333	0.33333
8	0.00000	0.66667	0.33333
9	0.33333	0.00000	0.66667
10	0.00000	0.33333	0.66667
11	0.66667	0.16667	0.16667
12	0.16667	0.66667	0.16667
13	0.16667	0.16667	0.66667

Wax interaction with different oils

Break Point

Comparing the break point of waxes in different oils

Castor oil

20

university of the arts

of fashion

london college

london

ua

Jojoba oil

3D Graphs

university of the arts london london college of fashion

Using Experimental Design Approach to Understand Interactions of Natural Oils and Waxes in a Lipstick Base

22

university of the arts

of fashion

london college

london

ua

<u>3D Graphs</u>

4. Results of Stage 1 Sunflower oil

Lipstick formula

Phase	INCI Name		%w/w
Wax	Copernicia Cerifera Wax		10.7
	Cera Alba	Beeswax 41.5%	8.3
	Euphorbia Cerifera Wax	Candelilla 5%	1.0
Oil	Ricinus Communis Seed	*to find	
	Simmondsia Chinensis So	*to find	
	Helianthus Annuus Seed	*to find	
Butter	C10-18 Triglycerides	12.0	
	Butyrospermum Parkii (Shea) Butter		3.0
Pigment	Red #7, Ricinus Commur	15.0	

university of the arts

of fashion

london college

london

ua

Using Experimental Design Approach to Understand Interactions of Natural Oils and Waxes in a Lipstick Base

•	Results	OŤ	Stage	2

Matrix of experiments: wax phase (20%w/w)

N°Exp	Castor oil	Jojoba oil	Sunflower oil
1	1.00000	0.00000	0.00000
2	0.00000	1.00000	0.00000
3	0.00000	0.00000	1.00000
4	0.66667	0.33333	0.00000
5	0.33333	0.66667	0.00000
6	0.66667	0.00000	0.33333
7	0.33333	0.33333	0.33333
8	0.00000	0.66667	0.33333
9	0.33333	0.00000	0.66667
10	0.00000	0.33333	0.66667
11	0.66667	0.16667	0.16667
12	0.16667	0.66667	0.16667
13	0.16667	0.16667	0.66667

25

Optimised formulation

Summary of optimised wax ratios (within a total of 20%w/w) for castor, jojoba and sunflower oil

Wax Oil	Carnauba wax (%)	Beeswax (%)	Candelilla wax (%)	Break point (g)	Softening point (°C)	Glide
Castor	55.5	35.9	8.8	383.9	70	2
Jojoba	70.1	29.3	0.6	331.8	68.5	7
Sunflower	64	35.4	0.6	393.1	69.2	4.4

26

4. Results

Optimised formulation

university

of fashion

ondon college

4. Results

university of the arts london london college of fashion

What did we learn?

- Carnauba wax provided lipstick hardness, but impacted negatively on glide
- Beeswax at higher ratios improved lipstick application (glide) due to its weaker structure and lower melting point
- Candelilla wax showed no correlation with any of the three test parameters
- Castor oil showed negative correlation with glide, but considerably increased stability (hardness and softening)
- Jojoba oil showed positive correlation with glide
- Sunflower oil had little effect on glide, but small positive effect on hardness.

29

PARAMETER	FINAL FORMULA	BENCHMARK
Break point (g)	431.32 (±30)	159.83 (±30)
Softening point (°C)	69 (±2)	54 (±2)
Glide	7	6

7. Conclusion

• The use of Mixture Design approach was effective in establishing the optimal ratio of natural waxes and oils in a lipstick base

n colleae

of fashion

30

- The accompanying software NEMRODW[®] was able to predict the responses of experiments that were not carried out
- This approach offers an efficient way to detect interactions among ingredients and to formulate products to required specifications

I am grateful for the assistance of:

- Pascale COTTIN, Dominique CORGER (ITECH, Lyon, France)
- Prof. Slobodanka Tamburic (London College of Fashion, UAL, UK))
- Rossow Cosmetiques (France) supplier of test ingredients

I am also grateful for the financial support from:

- Erasmus UK
- Tony Naylor Bursary Fund from the Society of Cosmetic Scientists (UK)
- Achesons & Achesons Ltd. (UK)