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Abstract4

Signal extraction and analysis is of great importance, not only in5

fields such as economics and meteorology, but also in genetics and even6

biomedicine. There exists a range of parametric and nonparametric tech-7

niques which can perform signal extractions. However, the aim of this8

paper is to define a new approach for optimising signal extraction from9

bicoid gene expression profile. Having studied both parametric and non-10

parametric signal extraction techniques, we identified the lack of specific11

criteria enabling users to select the optimal signal extraction parame-12

ters. Exploiting the expression profile of bicoid gene, which is a ma-13

ternal segmentation coordinate gene found in Drosophila melanogaster,14

we introduce a new approach for optimising the signal extraction using15

a nonparametric technique. The underlying criteria are based on the16

distribution of the residual, more specifically its skewness.17

Keywords: Signal extraction; Optimisation; Residual distribution; Bi-18

coid.19

1 Introduction20

Signal extraction is an important and challenging task in the field of time series21

analysis and forecasting. Signals can take various forms with the most common22

being trends and seasonal fluctuations. Trend extraction in particular enables23

analysts to smooth out a time series and remove the seasonal and cyclical24

variations - thereby enabling the determination of the long-run behaviour of the25

underlying data. A trend is formally defined as a smooth additive component26

which contains information relating to the global change in a time series [1],27

and the term ‘smooth’ is a vital characteristic of any given signal. In the field of28

genetics and gene expression studies, signal extraction and noise reduction are29

crucial as genetic data is often characterised by the existence of considerable30

noise [2].31
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Our interest in this topic is motivated by the findings in [2] where the au-32

thors evaluated a variety of parametric and nonparametric signal processing33

techniques for extracting the signal in bicoid (bcd)1, which is a morphogen lo-34

calised at the anterior end of the egg. After fertilisation, the distribution of35

Bcd along the embryo (the signal under study in this paper) determines the36

cell’s destiny in a concentration-dependent mode. Here, the authors found that37

a nonparametric approach produced the most efficient extraction of the Bcd38

signal [2].As Ghodsi et al. [2] point out, the Bcd signal extraction process is39

complex because the data associates with both observational and biological40

noise, and the extracted residual is not normally distributed as required by41

parametric techniques. Figure 1 below shows an example of a typical noisy42

Bcd. As noted in [2], the distribution of Bcd follows an exponential trend, and43

the high volatility seen in the profile ensures that the extraction of this signal44

remains an arduous task.45

Figure 1: A typical example of noisy Bcd [3].

Accordingly, the aim of this paper is to introduce and define a new approach46

for optimising Bcd signal extraction. At present, there exists no definitive crite-47

rion to aid researchers and scientists interested in extracting the Bcd signal for48

analysis. Since the Bcd signal defines what positional information is available49

for morphogen readout, studying the characteristics of this signal can improve50

our knowledge on several critical developmental processes such as embryogen-51

esis, regional specification and canalisation. It is noteworthy that the criteria52

which follow are tailored for the sole purpose of extracting an accurate Bcd sig-53

nal based on the knowledge disseminated through the work in [2] with regard to54

the distribution of the residual following Bcd signal extraction. Therefore, the55

criteria presented herewith may not be directly suitable for other applications.56

In addition to covering the main aim of this paper, we also present readers57

with two other interesting concepts related to Bcd expression profile. These are58

1In what follows, the italic lower-case bcd presents either the gene or the mRNA and Bcd

refers to the protein.
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sequential and hybrid signal extraction processes which are explained in Sec-59

tion 2. Accordingly, this paper is able to present readers with three different60

approaches for Bcd signal extraction based on their requirements and interests.61

The first approach is suitable for those who wish to rely on a single model for62

Bcd signal extraction. We have tailored the criteria presented in this paper63

to enable a swift and accurate Bcd signal extraction using the nonparametric64

approach identified as best in [2]. Should the extracted signal appear to have65

captured some unnecessary fluctuations, then the sequential process described66

can be applied on the original signal to generate a refined and smoother signal.67

Even though the findings in [2] suggests that the Bcd residual is skewed, we68

appreciate that statisticians who subscribe to classical methods would find it69

difficult to agree with such outcomes. Therefore, as a second approach, we70

propose a hybrid parametric signal extraction process which can ensure that71

the residual is in fact white noise. Finally, for those who wish to exploit hybrid72

modelling from a purely nonparametric perspective with the possibility of cap-73

turing the maximum variation via a smooth signal line, we present the hybrid74

nonparametric approach and show that it can produce far better results when75

combined with the optimized signal extraction criteria presented herewith. The76

above three approaches also represent the core contributions of this research.77

The remainder of this paper is organised such that Section 2 focuses on78

optimising Bcd signal extraction with Section 3 presenting the empirical re-79

sults. This is followed by an interesting discussion in Section 4, and the paper80

concludes in Section 5.81

2 Optimising Bcd Signal Extraction82

2.1 Singular Spectrum Analysis83

The Singular Spectrum Analysis (SSA) technique is a nonparametric filter-84

ing technique that is dependent upon its choice of Window Length L and the85

number of eigenvalues r [4]. SSA was successfully introduced for Bcd signal86

extraction in [5] and exploited in more detail in [2]. In [2] it was found that87

the residual following signal extraction in Bcd is not normally distributed or88

stationary, and also showed that the residual itself has a complex pattern which89

adds further to the difficulty in smoothing and signal extraction. However, SSA90

is unique as it can extract several signals for any given time series depending on91

the chosen value of L. In fact, the choice could be any L such that 2 ≤ L ≤ N/2,92

where N is the length of the series. As such, the findings in [2] which show SSA93

as the best option for Bcd signal extraction (in relation to Synthesis Diffusion94

Degradation, Exponential Smoothing, Autoregressive Integrated Moving Av-95

erage (ARIMA), Fractionalized ARIMA, and Neural Networks) falls short of96

defining the optimal SSA choices for Bcd signal extraction.97

Through our work, we intend to fill this gap by introducing new criteria98

which enables optimisation of the Bcd signal extraction process with SSA. The99

importance of defining such criteria is further evidenced by the fact that SSA100

has been applied for extracting the Bcd and other segmentation gene’s signal101

since 2006, see for example [2, 5–10]. Therefore, it is clear that researchers102
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and scientists alike can benefit from some formal criteria for the selection of103

SSA choices for Bcd signal extraction. Whilst the remainder of this paper104

focuses entirely on SSA, we find it pertinent to acknowledge and comment on105

the comparative preferability of SSA over other filtering techniques such as106

Hilbert-Huang (HH) [11] and Hodrick-Prescott (HP) [12]. Firstly, the SSA107

technique (as detailed below) is a Singular Value Decomposition based method108

and as such is very effective for noise reduction [13]. Secondly, the HH approach109

is closely associated with Empirical Mode Decomposition which is related to110

the setting of intrinsic mode functions. Thirdly, the signal process in the HP111

filtering approach has two instead of one unit root and is therefore most suitable112

for time series with two unit roots [13]. Finally, a direct comparison of both113

SSA and HP under equal conditions showed that SSA performs on par with114

the HP filter [13].115

The basic SSA technique consists of two complementary stages referred to116

as decomposition and reconstruction, and each of these stages includes two117

separate steps [4]. In brief, at the first stage, Bcd is decomposed into the118

sum of a small number of independent and interpretable components such as119

a slowly varying trend and a structureless noise [2, 4], and at the second stage120

the noise free Bcd is reconstructed [2, 14]. It should be noted that the use of121

SSA here is for the sole purpose of obtaining the optimal decomposition of Bcd122

and then extracting the signal component. Figure 2 summarises the basic SSA123

process as a flowchart.124

Figure 2: A flowchart of the basic SSA process [4].

A more detailed explanation of the steps underlying SSA for bicoid signal125

extraction is provided below, and in doing so we mainly follow [2, 4].126

The first step maps a one dimensional time series YN = (y1, . . . , yN ) into127

a multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)
T ∈128

RL, whereK = N−L +1. Whilst the process itself is referred to as embedding,129
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the vectors Xi are called L-lagged vectors. The single choice of the embedding130

stage is the Window Length L, which is an integer such that 2 ≤ L ≤ N/2.131

This step results in the trajectory matrix X, which is also a Hankel matrix and132

takes the form: X = [X1, . . . , XK ] = (xij)
L,K

i,j=1
.133

Thereafter, we obtain the singular value decomposition (SVD) of the trajec-134

tory matrix and represent it as a sum of rank-one bi-orthogonal elementary135

matrices. The eigenvalues of XXT are denoted by λ1, . . . , λL in decreasing or-136

der of magnitude (λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the orthonormal system.137

Then, we set138

d = max(i, such thatλi > 0) = rankX.

If we denote Vi = XTUi/
√
λi, then the SVD of the trajectory matrix can be139

written as:140

X = X1 + · · ·+Xd, (1)

where Xi =
√
λiUiVi

T (i = 1, . . . , d). The matrices Xi are elementary matrices141

as they have rank 1, Ui and Vi denotes the left and right eigenvectors of the142

trajectory matrix. The collection (
√
λi, Ui, Vi) is called the i-th eigentriple of143

the matrix X,
√
λi (i = 1, . . . , d) are the singular values of the matrix X and144

the set {
√
λi} is called the spectrum of the matrix X. The expansion (1) is145

said to be uniquely defined if all the eigenvalues have a multiplicity of one.146

The process of splitting the elementary matrices Xi into several groups and147

summing the matrices within each group is called grouping, and transfusing148

each resultant matrix from the grouping step to a less noisy series is called149

diagonal averaging.150

As specifically noted in [2], when using SSA, in general the first eigenvalue151

corresponds to the trend of a given time series. In order to illustrate this152

more clearly to the reader, we show a couple of examples in Figures 3 and 4.153

Moreover, in [14, 15] the authors extract and illustrate the trend for tourist154

arrivals using SSA based decomposition and the first eigenvalue. Thus, we155

extract the first eigenvalue alone and consider the remainder as noise, and156

then perform diagonal averaging to transform the matrix containing the first157

eigenvalue into a series which will now provide the extracted signal from Bcd.158

2.1.1 New Approach for Optimising Bcd Signal with SSA159

In this section we present the new approach for optimising Bcd signal extrac-160

tion with SSA and provide justification for the process. The proposed criteria161

are developed as follows.162

163

1) The extracted Bcd trend must be smooth. This is in accordance with the164

widely accepted definition of a trend which states that it must be a ‘smooth’165

additive component [1].166

167

2) Setting L sufficiently large enables the first eigenvalue, i.e. r = 1 (in some168

cases, r = 1, 2) to extract a smooth signal for a given series. However, the169

value of L must not be too small or too large. By theory, L must lie between170
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2 ≤ L ≤ N/2 [4]. Yet, when it comes to Bcd signal extraction, setting L at171

N/2 can have negative implications, as with setting L too small.172

For example, let us first consider the scenario in Figure 3 whereby in a series173

with length 301, we consider SSA choices of L = 2 and r = 1 for Bcd signal174

extraction. Notice how the extracted signal fails to meet the ‘smooth’ criteria175

as per the definition of a signal in [1]. Accordingly, it is evident that setting L176

too small fails to achieve an optimal signal extraction with SSA for Bcd.177

Figure 3: signal extraction from noisy Bcd with SSA choices of L = 2 and
r = 1.

Secondly, let us consider what happens when we set L too large for the178

same data set. Here, the maximum possible value of L is 150. As such, we set179

L = 150 and seek to extract the signal in our data. Figure 4 shows the resulting180

outcome. In this case, notice how the signal line is smooth (confirming that181

setting L large can provide a smoother line) but the extracted signal fails to fit182

well to the actual data, especially towards the tail of the series.183

3) Based on points 1) and 2), we suggest the following threshold for the selec-184

tion of L for Bcd signal extraction purposes. The window length L should be185

some value between 10 ≤ L ≤ N/4. Whilst this assumption helps restrict the186

selection of L, on its own it fails to provide the researcher with an exact value187

for L. Therefore, we call upon the nonparametric nature of SSA to provide the188

final closing argument for the criteria.189

190

4) As a nonparametric technique, the SSA residual can be skewed. Based on the191

findings in [2] which was an extensive study into signal extraction in Bcd, the192

residual from the process was in fact found to be skewed. As such, we propose193

using the skewness statistic as an indicator, and finding L which corresponds194

to the minimum skewness for a given Bcd series within the threshold 10 ≤ L ≤195

N/4 and coupling this with r = 1 or r = 1, 2 as appropriate for optimal Bcd196

signal extraction with SSA.197
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Figure 4: signal extraction from noisy Bcd with SSA choices of L = 150 and
r = 1.

2.2 Sequential and Hybrid Signal Extraction198

Section 4 in this paper is dedicated to a discussion which focuses on the ex-199

ploitation of Sequential SSA and a hybrid signal extraction process for Bcd200

signal extraction. In what follows we present the ideas that are evaluated later201

on with empirical data.202

2.2.1 Nonparametric Approach203

Signal extraction in Bcd data can be an arduous task owing to the complex204

structure portrayed by the data [2]. Sequential SSA is a relatively new concept205

which is of great benefit when faced with weak separability between signal and206

noise as a result of such complexities. For example, when faced with problems207

in separating a signal of complex form and seasonality, Sequential SSA can208

be exploited to obtain a more accurate decomposition from the residual after209

signal extraction [16]. Whilst historically, Sequential SSA was performed on210

a residual, in this paper we suggest the use of Sequential SSA for refining the211

Bcd signal further.212

The basic idea underlying Sequential SSA is to perform a second round of213

SSA based decomposition and reconstruction on data that has already un-214

dergone an initial round of SSA, with the aim to refine the signal of interest215

further. Suppose that we exploit the optimised Bcd signal extraction algorithm216

explained above and extract some signal line. However, if the Bcd data in ques-217

tion has a highly complex structure, it is possible to end up with a signal line218

that is not as smooth as required. In such instances, we suggest exploiting219

Sequential SSA, not on the residual, but on the extracted signal to smooth it220

further and obtain a new and refined signal curve. This approach is greatly221
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beneficial to those who wish to rely on a single model for Bcd signal extraction222

and enjoy the benefits of using a nonparametric technique.223

2.2.2 Hybrid Signal Extraction with SSA224

It is possible that some statisticians may not be convinced or used to subspace-225

based methods such as SSA. Therefore, we find it pertinent to present the226

possibility of obtaining a hybrid signal extraction process which will combine227

the optimised SSA signal extraction algorithm for Bcd with other automated228

signal processing techniques from both parametric and nonparametric back-229

grounds.230

The basic idea underlying the hybrid signal extraction process is as follows:231

1. Extract the Bcd signal via the optimised SSA signal extraction algorithm.232

233

2. Fit a different time series model to the residuals following SSA signal234

extraction and obtain the fitted values.235

236

3. Add the fitted values to the original SSA signal to create the Hybrid SSA237

signal.238

239

2.2.2.1 Hybrid SSA Signal: Parametric Approach The idea underly-240

ing the hybrid SSA signal with a parametric approach is to combine the non-241

parametric SSA signal with the fitted values on residuals from a parametric242

signal processing model. As most classical statisticians welcome and subscribe243

to the ARIMA model, here we choose an automated ARIMA model as pro-244

vided via the forecast package in R [17]. It is important to note that in this245

paper, we do not rely on ARIMA for its forecasting capabilities. Instead, we246

consider ARIMA as a tool for extracting any hidden signals within the residual247

following the initial filtering with SSA. This in turn enables one to ensure that248

the residual is indeed white noise, as required by parametric models.249

The modelling equations for ARIMA relevant to this study can be described250

by following [18]. A non-seasonal ARIMA model may be written as:251

(1− φ1B − . . .− φpB
p)(1−B)dyt = c+ (1 + θ1B + . . .+ θqB

q)et, (2)

where B is the backshift operator, c is a constant, p is the order of the au-252

toregressive part, q is the degree of first differencing, d is the order of the253

moving average part of the model, and et is white noise [18]. In the R software,254

the inclusion of a constant in a non-stationary ARIMA model is equivalent to255

inducing a polynomial signal of order d in the forecast function.256

2.2.2.2 Hybrid SSA Signal: Nonparametric Approach Whilst the257

underlying idea remains the same, in this instance, as opposed to relying on a258

parametric time series analysis model, we can combine the nonparametric and259
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optimised SSA signal with fitted values on residuals from a nonparametric time260

series analysis model in order to obtain the hybrid SSA signal. The benefits of261

this approach would be that it enables to overcome the parametric restrictions262

of normality and stationarity of residuals of which the former condition was263

found to be irrelevant in the case of Bcd data where the residual following signal264

extraction is skewed [2]. In this case, we rely on the automated Exponential265

Smoothing (ETS) model found in the forecast package in R. Those interested266

in the several ETS formula’s that are evaluated through the forecast package267

when selecting the best model to fit the residuals are referred to Chapter 7,268

Table 7.8 in [18].269

3 Empirical Results270

3.1 Data271

The evaluation in this study is performed on 17 Drosophila melanogaster em-272

bryos introduced by Alexandrov et al. [10] which was originally obtained from273

FlyEx database [19,20]. This dataset has been widely used as a valuable source274

of information for studying the dynamics of segment determination of early275

Drosophila development [21].276

In FlyEx, the quantitative Bcd data was obtained using the confocal scanning277

microscopy of fixed embryos immunostained for segmentation proteins [20]. To278

that aim, A 1024x1024 pixel confocal image with 8 bits of fluorescence data279

was achieved for each embryo which then transformed into an ASCII table.280

The ASCII table contains the fluorescence intensity levels attributed to each281

nucleus of A-P axis. To present the data using a graph, the x-axis shows the282

anterior to a posterior position along the length of the egg expressed as the283

percentage, and the y-axis shows the intensity levels which correspond to the284

amount of expressed bcd gene.285

It is of note that in the study conducted by Alexandrov et al., the out of286

focus regions were removed by excluding the utmost anterior and posterior287

areas. After removing the upper and lower values, to get a complete profile288

along the A-P axis of the embryo, a curve was fitted to the interval of the289

A-P coordinate between 20 and 80% of egg length (a complete explanation of290

the method and biological characteristics of this data can be found in [10,22]).291

However, to introduce a signal processing method capable of both noise filtering292

and signal extraction, this paper considers the whole data which is unprocessed293

for any noise reduction methods.294

3.2 Signal Extraction295

Here, we consider real Bcd data and seek to extract the signal with SSA using296

the newly proposed criteria as outlined in Section 2.1. Figure 5 below portrays297

a selection of the actual data and extracted signal with the optimized SSA298

algorithm, and also outlines the SSA choices which have been used in each299

case. For the examples in Figure 5, note how the extracted signal is not only300

smooth, but also well centred around the data, thereby providing the reader301
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with a very accurate outlook for the long term prospects of the Bcd gradient.302

However, it is evident that on its own, SSA appears to have difficulties in303

accurately capturing the signal curve initially when it is faced with very high304

levels of fluctuations as clearly visible within the first few observations of the305

Bcd profile. We consider this aspect further in the discussion which follows in306

Section 4.307

Even though signal extraction is the primary focus of this study, it is no308

secret that the residual can often enlighten us to crucial information pertaining309

to any given data set. As such, we follow up the signal extractions with a sound310

residual analysis.311

3.3 Residual Analysis312

In order to save space, via Figure 6 we only show the residuals corresponding313

to the signal extractions shown in Figure 5. A first look at the structure314

and distribution of the residual over time helps us understand the difficulty in315

extracting the signal from Bcd profiles. This is largely to do with the highly316

volatile nature of the data which results in fluctuating amplitudes over time in a317

particular pattern. In fact, the general patterns appears such that all residuals318

portray amplitudes which are initially high and then gradually decrease. This319

in turn means that the techniques adopted for Bcd signal extraction should320

be able to cope well with such variation and fluctuations in data if it is to321

accurately perform its task. Moreover, it appears to the naked eye that there322

is indeed some signal contained within these residuals. Whilst it is expected323

that a residual following trend extraction would result in capturing the other324

signals, in some instances there also appears to be a small trend pattern hidden325

within this data.326

However, as visual inspections fall short of providing sound evidence, we327

also consider some statistics for analysing the residuals further. These are328

reported via Table 1 for all the Bcd data considered in this study. The residuals329

are initially tested for normality via the Kolmogorov-Smirnov (KS) test for330

normality. The choice of KS test as opposed to using the popular Shapiro-Wilk331

(SW) test for normality was because when faced with large samples the KS test332

is likely to be comparatively more accurate than the SW test [23]. As expected,333

all residuals failed to pass the normality test reporting probability values of334

less than 0.001, and thereby leading to a rejection of the null hypothesis of335

normality. This lets us conclude with 99% confidence that the Bcd residuals336

following signal extraction are in fact skewed and these results are consistent337

with the findings in [2].338

Finally, we go a step further and fit optimal ARIMA models [18] to the339

residuals. This was done in order to ascertain the randomness of the residu-340

als following Bcd signal extraction with optimised SSA. Statisticians who rely341

on classical signal extraction techniques would be overly concerned with the342

parametric assumptions of normality and stationarity of the residuals. Whilst343

we have assessed the normality of residuals via the KS test and justified based344

on [2] that the residuals from this signal extraction exercise should be skewed,345

fitting of optimal ARIMA models enables us to easily show whether the resid-346

uals meet the stationary criteria. We fit automated and optimised ARIMA347
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Figure 5: Optimised signal extraction with SSA for a selection of Bcd data.
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models (as provided via the forecast package in R) on the residuals and report348

the outcomes in Table 1. A non-seasonal ARIMA model is represented in the349

form ARIMA(p, d, q) where p indicates the order of the autoregressive parts, d350

the degree of first differencing and q the order of the moving average part of351

the model [18]. If the data is non-stationary, then within the ARIMA(p, d, q)352

process the value of d ≥ 1. If the data is stationary, then no differencing is353

required, and so d = 0. In this case, we notice that d = 0 in all instances, and354

thereby proves that the residuals are indeed stationary.355

However, the fitting of ARIMA models on the residuals also highlight another356

interesting point. Notice how for 27 Bcd residuals there have been a variety357

of 14 different ARIMA models which have been fitted. This in turn indicates358

the complexity and difficulty associated with the selection of a single technique359

for extracting Bcd signal, and most certainly highlights the difficulties which360

any technique would experience when seeking to extract a signal from data361

with such complex fluctuations. In addition, except for where the model reads362

ARIMA(0, 0, 0), in all other instances we notice that the residuals are not white363

noise. We discuss this, and provide a possible solution within the discussion.364

Table 1: Residual analysis for Bcd signal extractions.

Embryo n SW ARIMA
ab2 138 <0.001 ARIMA(0,0,1) with zero mean
hz15 85 <0.001 ARIMA(0,0,0) with zero mean
hz28 79 <0.001 ARIMA(2,0,2) with zero mean
ad14 301 <0.001 ARIMA(2,0,5) with zero mean
ad22 294 <0.001 ARIMA(4,0,3) with zero mean
ad23 308 <0.001 ARIMA(1,0,3) with non-zero mean
ab17 485 <0.001 ARIMA(1,0,3) with non-zero mean
ad4 556 <0.001 ARIMA(4,0,4) with zero mean
ad6 566 <0.001 ARIMA(2,0,2) with non-zero mean
ab12 2284 <0.001 ARIMA(4,0,2) with zero mean
ab10 2263 <0.001 ARIMA(1,0,2) with zero mean
ac5 2404 <0.001 ARIMA(4,0,4) with non-zero mean
ab1 2570 <0.001 ARIMA(4,0,4) with zero mean
ac7 2268 <0.001 ARIMA(1,0,2) with zero mean
ad13 2235 <0.001 ARIMA(4,0,2) with non-zero mean
ad29 2193 <0.001 ARIMA(1,0,2) with zero mean
ad32 2183 <0.001 ARIMA(2,0,1) with zero mean
ab7 2346 <0.001 ARIMA(1,0,2) with zero mean
ac3 2356 <0.001 ARIMA(0,0,1) with zero mean
ac9 2215 <0.001 ARIMA(4,0,1) with zero mean
ms14 2305 <0.001 ARIMA(4,0,2) with zero mean
ab11 2355 <0.001 ARIMA(4,0,2) with zero mean
ac4 2383 <0.001 ARIMA(3,0,1) with zero mean
ab14 2218 <0.001 ARIMA(1,0,2) with zero mean
ab9 2369 <0.001 ARIMA(2,0,1) with zero mean
dq2 2423 <0.001 ARIMA(2,0,4) with zero mean
ms36 2239 <0.001 ARIMA(5,0,1) with zero mean
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Figure 6: Residuals following optimised signal extraction with SSA for a selec-
tion of Bcd data.
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4 Discussion365

4.1 Sequential SSA on Bcd signal366

Note how the signal extraction in ac3, Figure 7, appears to have captured367

some other fluctuations apart from the signal alone. As such, this extraction,368

in particular, fails to meet our criteria for a smooth signal. When faced with369

such situations, we are able to find a solution via sequential SSA. Sequential370

SSA enables users to take the extracted signal (the signal in our example) and371

filter same with SSA once more to obtain a more refined output. In what372

follows we have applied Sequential SSA on the initially extracted Bcd signal.373

Figure 7: SSA based optimal trend extraction for ac3.

As visible via Figure 8, following sequential SSA we have been able to extract374

a smoother signal. In this instance, we used the signal extracted via the opti-375

mised SSA signal extraction algorithm for Bcd and refined this signal further376

via Sequential SSA. Here we have used L = N/2 and r = 1 for signal extrac-377

tion with Sequential SSA. In line with good practice, the residual was once378

again tested for normality via the KS test which indicated that the residual is379

skewed at a 1% significance level, and fitting of an ARIMA model showed that380

the residual is stationary as well.381

4.2 Hybrid SSA Signal Extraction for Bicoid382

4.2.1 Hybrid SSA Signal: Parametric Approach383

The residual analysis in Table 1 indicates that ARIMA models could be fitted384

to all but one of the residuals following signal extraction with the optimised385

SSA signal algorithm. This means that only one of the residuals are pure white386

noise as it stands. Whilst some might argue that this is acceptable given that387
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Figure 8: Refined signal extraction with sequential SSA on ac3 signal.

the objective is to extract the signal component alone, there may be others who388

subscribe to an alternate view along the lines of obtaining a random residual389

following signal extraction. The first hybrid SSA signal approach we present is390

one which enables users who wish to obtain white noise to achieve this following391

Bcd signal extraction with SSA. We begin by fitting the ARIMA models as392

identified via Table 1 to the data and extract the fitted values which are then393

combined with our original SSA Bcd signal to create a hybrid SSA-ARIMA394

signal for Bcd. We consider the examples discussed in text so far and generate395

the following results. Figure 9 shows the hybrid SSA-ARIMA signals for Bcd396

data. In comparison to the optimised SSA signals in Figure 5, the hybrid397

SSA signal with ARIMA fit fails to meet the smooth criteria. As such, it is398

evident that on its own, the hybrid SSA-ARIMA approach is only beneficial399

for those who wish to capture all the signal in the data whilst ensuring that400

the residual following Bcd signal extraction is white noise. It clearly comes at401

a high cost of lost smoothness in signal curves. However, it is of note that as402

previously mentioned, noise in gene expression data enters not only from the403

data acquisition and processing procedures [24] but also the fluctuations seen404

in an expression pattern can be a consequence of biological noise which may405

also introduce error into the data [25]. Therefore, the source of the natural406

biological variability is different from the experimental noise [25]. Biological407

noise arises from the active molecular transport, compartmentalization, and the408

mechanics of cell division [26]. Therefore, the hybrid SSA with the ARIMA409

model can be applied in studies such as segmentation network analysis where410

the combination of Bcd signal with its biological noise needs to be considered411

as an input to the system.412
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Figure 9: Hybrid SSA signal with ARIMA fit for Bcd data.
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4.2.2 Hybrid SSA signal: Nonparametric Approach413

Here, we apply the same process as above, but instead of ARIMA, we rely on414

the nonparametric time series analysis model of ETS. This enables the entire415

hybrid SSA signal approach to remain nonparametric in nature. The resulting416

hybrid SSA signals with ETS fit are shown via Figure 10.417

There is an interesting point to note here. In comparison to the parametric418

hybrid signal extraction approach, it is clear that the nonparametric hybrid419

approach has resulted in much smoother signal curves as one would expect and420

like to see following a signal extraction exercise. As such, out of the two hybrid421

approaches, for the purposes of Bcd signal extraction, it is likely that users will422

prefer the nonparametric approach over the parametric approach.423

5 Conclusion424

This paper begins with the core aim of introducing new criteria for optimising425

Bcd signal extraction. Motivated by the findings in [2], we opt to tailor the426

new Bcd signal extraction criteria for use with the Singular Spectrum Analysis427

technique which Ghodsi et al. [2] found to be the best option for Bcd signal428

extraction in relation to SDD, ARIMA, ETS, ARFIMA and NN models. In429

line with our aim, we initially produce an algorithm for optimising the Bcd430

signal extraction process with SSA. In brief, the algorithm is optimised based431

on minimising the skewness statistic for the SSA residual. We suggest that432

setting L equal to the minimum skewness within the threshold 10 ≥ L ≥ N/4433

and combining this SSA choice with r = 1 or r = 1, 2 as appropriate, will434

enable users to obtain the optimal Bcd signal extraction with SSA.435

Through this research, we have succeeded in presenting several contributions436

to the field of Bcd signal extraction. The first and most important of which437

deals with the application of the newly proposed algorithm to 27 real Bcd data438

to show that it can enable researchers to select the appropriate SSA choices to439

extract a smooth and accurate Bcd signal quickly and easily without the need440

to spend an increased amount of time for the selection of L for decomposing441

the data. However, we notice that given the highly complex nature of the Bcd442

data, on one occasion the SSA algorithm fails to extract an entirely smooth443

signal. As a solution, we introduce the concept of Sequential SSA on signals,444

as the second contribution from this research. Via this approach, we are able445

to refine and smoothen the initial signal which had previously captured some446

of the observational and biological noise in Bcd data.447

In line with good practice, in addition to evaluating the signal extractions448

alone, this study also pays attention to the residuals. The analysis of the resid-449

uals motivated us to introduce hybrid SSA based signal extraction processes450

for Bcd. In brief, when extracting the trend alone from any given data set, one451

would reasonably expect other signals to end up within the noise component.452

However, this would mean that the residual is no longer random and some453

statisticians could find it difficult to accept such techniques. Accordingly, the454

first hybrid SSA signal process (and the third contribution from this research)455

is focussed on providing a Bcd signal extraction procedure which will ensure456
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Figure 10: Hybrid SSA signal with ETS fit for bicoid data.
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the residual is white noise. This was achieved by combining the optimised SSA457

signal with optimised ARIMA models being fitted to the residuals. Whilst the458

results did provide the necessary outcomes in terms of residuals with white459

noise, it comes at a cost - i.e., a loss in the smoothness of the extracted signal.460

The SSA-ARIMA hybrid approach is a combination of parametric and non-461

parametric techniques. For those who wish to rely on nonparametric techniques462

alone so that one is not restricted by the parametric assumptions, we present the463

SSA-ETS hybrid Bcd signal extraction approach. This process also produces464

the fourth and second most important contribution of this research, as we find465

a solution to the problem of accurately modelling the initial curve in Bcd data466

which was not only experienced in this paper when we employed the optimised467

SSA signal extraction process, but also experienced in [2]. Accordingly, we are468

able to present the hybrid SSA-ETS process, which is a combination of the469

optimised SSA signal extraction algorithm with an optimised ETS algorithm,470

as the most efficient approach for Bcd signal extraction.471

We believe that the findings of this research and the information contained472

within this paper opens up several avenues for future research. For example,473

future research should evaluate the possibility of optimizing the SSA signal ex-474

traction process based on different criteria in order to determine whether a more475

improved signal extraction can be produced. For example, as we are seeking476

to introduce a novel approach for optimizing Bicoid signal extraction, in this477

paper we have relied on a binary decomposition. However, future studies could478

consider the Colonial Theory based approach to decomposition as presented479

in [27]. In addition, more extensive research into hybrid signal extraction pro-480

cesses are likely to result in positive, vital and interesting outcomes as clearly481

shown via this paper. Researchers should evaluate a variety of different signal482

extraction techniques within the hybrid framework proposed in this paper to483

ascertain whether outcomes could be further improved.484
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