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Abstract5

Singular Spectrum Analysis (SSA) is an increasingly popular and widely ad-6

opted filtering and forecasting technique which is currently exploited in a variety7

of fields. Given its increasing application and superior performance in compar-8

ison to other methods, it is pertinent to study and distinguish between the two9

forecasting variations of SSA. These are referred to as Vector SSA (SSA-V) and10

Recurrent SSA (SSA-R). The general notion is that SSA-V is more robust and11

provides better forecasts than SSA-R. This is especially true when faced with12

time series which are non-stationary and asymmetric, or affected by unit root13

problems, outliers or structural breaks. However, currently there exists no em-14

pirical evidence for proving the above notions or suggesting that SSA-V is better15

than SSA-R. In this paper, we evaluate out-of-sample forecasting capabilities of16

the optimised SSA-V and SSA-R forecasting algorithms via a simulation study17

and an application to 100 real data sets with varying structures, to provide18

a statistically reliable answer to the question of which SSA algorithm is best19

for forecasting at both short and long run horizons based on several important20

criteria.21

Keywords: Singular Spectrum Analysis; Vector SSA; Recurrent SSA; Forecasting.22

1 Introduction23

The Singular Spectrum Analysis (SSA) technique is a nonparametric time series24

analysis and forecasting technique which is transforming into an increasingly pop-25

ular method for noise reduction and forecasting. Whilst it is not the objective of26

this paper to review all applications of SSA, we cite few of the recent articles as27

evidence of the increasing popularity of SSA (see for example, [1–14]). In brief, the28

SSA technique seeks to decompose a time series to identify the trend, signal, har-29

monic components and noise, and thereafter reconstructs a new, filtered time series30

which can be used for forecasting future data points [15]. In comparison to classical31

time series models, the SSA technique has the advantage of not been bound by the32

parametric assumptions of stationarity or normality [15] which are highly unlikely33

to hold in the real world.34

The interest of this paper lies in the evaluation and comparison between the two35

SSA forecasting algorithms, with a view to identifying if one approach is strictly36

better than the other, or whether the best approach can be selected based on the37

structure of the time series in question. The two forecasting variations in SSA are38

referred to as Vector SSA (SSA-V) and Recurrent SSA (SSA-R). According to a39
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suggestion by Golyandina et al. [16], the SSA-V algorithm is more robust than the40

SSA-R algorithm when faced with time series which have unit root problems. This41

was later confirmed in [17] where the author agreed with the conclusion in [16]42

which was based on a single application. Given the lack of statistically reliable43

experiments behind the aforementioned conclusions, one is unable to conclude with44

absolute confidence as to which of the two approaches are best for forecasting, or45

whether the best approach for a certain situation can be selected based on the46

structure of a given time series. Moreover, the SSA algorithms used in both [16,17]47

were not optimal in terms of the selection of SSA choices, where the term choices48

refers to the parameters of a given SSA model [18].49

In order to provide a more reliable comparison between the SSA forecasting50

algorithms, this paper adopts the basic SSA-V and SSA-R models with optimal51

choices [10,20], along with an application into forecasting 100 real time series. These52

real time series include both stationary, and non-stationary data sets with varying53

fluctuations and seasonal components. Also considered is a simulation based on the54

Henon series. Given the significant increase in applications of SSA over the last55

decade, we believe this paper can provide enlightening insights to forecasters on the56

selection of the most suitable SSA forecasting approach based on the nature of the57

data being analysed.58

The remainder of this paper is organized as follows. Section 2 describes the meth-59

odology underlying the SSA-R and SSA-V optimal forecasting algorithms whilst60

Section 3 is dedicated towards introducing the real data sets used in this paper.61

Section 4 reports the empirical results which includes the outcome from the sim-62

ulation study and results following the application to real data, with the paper63

concluding in Section 5.64

2 Methodology65

In this section we present the SSA-R and SSA-V optimal forecasting algorithms. In66

doing so we mainly follow [10,20].67

1. Consider a real-valued nonzero time series YN = (y1, . . . , yN ) of length N .68

2. Divide the time series into two parts; 2
3

rd
of observations for model training69

and testing, and the last 1
3

rd
for validating the selected model.70

3. Use the training data to construct the trajectory matrix X = (xij)
L,K
i,j=1 =71

[X1, ...,XK ], where Xj = (yj, ..., yL+j−1)
T and K = N − L + 1. Initially, we72

begin with L = 2 (2 ≤ L ≤ N
2 ) and in the process, evaluate all possible values73

of L for YN .74

4. Obtain the SVD of X by calculating XXT for which λ1, . . . , λL denotes the75

eigenvalues in decreasing order (λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the cor-76

responding eigenvectors. The output of this stage is X = X1+ . . .+XL where77

Xi =
√
λiUiV

T
i and Vi = XTUi/

√
λi.78

5. Evaluate all possible combinations of r (1 ≤ r ≤ L− 1) singular values (step79

by step) for the selected L and split the elementary matrices Xi (i = 1, . . . , L)80

into several groups and sum the matrices within each group.81
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6. Perform diagonal averaging to transform the matrix with the selected r singu-82

lar values into a Hankel matrix which can then be converted into a time series83

(the steps up to this stage filters the noisy series). The output is a filtered84

series that can be used for forecasting.85

7. Depending on the forecasting approach one wishes to use, select the SSA-R86

approach or SSA-V approach which are explained below in Sections 2.1 and87

2.2 respectively.88

8. Define a loss function L.89

9. When forecasting a series YN h-step ahead, the forecast error is minimised by90

setting L(XK+h − X̂K+h) where the vector X̂K+h contains the h-step ahead91

forecasts obtained using the SSA-V or SSA-R forecasting algorithm.92

10. Find the combination of L and r which minimises L and thus represents the93

optimal SSA choices.94

11. Finally use the optimal L to decompose the series comprising of the validation95

set and select r singular values for reconstructing the less noisy time series.96

Thereafter, use this newly reconstructed series for forecasting the remaining97

1
3

rd
observations.98

2.1 SSA-R99

Let v2 = π2
1 + . . . + π2

r , where πi is the last component of the eigenvector Ui (i =100

1, . . . , r). Moreover, suppose for any vector U ∈ RL denoted by U▽ ∈ RL−1 the101

vector consisting of the first L− 1 components of the vector U . Let yN+1, . . . , yN+h102

show the h terms of the SSA recurrent forecast. Then, the h-step ahead forecasting103

procedure can be obtained by the following formula104

yi =

{
ỹi for i = 1, . . . , N∑L−1

j=1 αjyi−j for i = N + 1, . . . , N + h
(1)

where ỹi (i = 1, . . . , N) creates the reconstructed series (noise reduced series) and105

vector A = (αL−1, . . . , α1) is computed by:106

A =
1

1− v2

r∑

i=1

πiU
▽

i . (2)

2.2 SSA-V107

Consider the following matrix108

Π = V▽(V▽)T + (1− v2)AAT (3)

where V▽ = [U▽

1 , ..., U
▽

r ]. Now consider the linear operator109

θ(v) : Lr 7→ RL (4)

where110
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θ(v)U =

(
ΠU▽

ATU▽

)
. (5)

Define vector Zi as follows:111

Zi =

{
X̃i for i = 1, . . . ,K

θ(v)Zi−1 for i = K + 1, . . . ,K + h+ L− 1
(6)

where, X̃i’s are the reconstructed columns of the trajectory matrix after grouping112

and eliminating noise components. Now, by constructing matrix Z = [Z1, ..., ZK+h+L−1]113

and performing diagonal averaging we obtain a new series y1, ..., yN+h+L−1, where114

yN+1, ..., yN+h form the h terms of the SSA vector forecast.115

Given that this paper is focussed entirely around SSA-V and SSA-R, we find116

it important to briefly comment on the computational complexity associated with117

the two SSA forecasting approaches. Also, this discussion could be useful for the118

cases when both approaches are equivalent. At the outset, it is noteworthy that119

both approaches are very similar in terms of computation as they both rely on120

the SSA choices of L and r for decomposition and reconstruction, and the linear121

recurrent formula for generating forecasts. As such, in terms of the computational122

complexity, there is no major distinguishable factor and both approaches will take123

a similar computation time to generate forecasts. However, SSA-V is known to124

provide a more robust analysis which is less sensitive to outliers [19], and even in125

its multivariate form there is evidence that SSA-V can provide better results than126

SSA-R [18].127

3 Real Data128

The real data used in this study have been obtained via the Data Market1 and129

includes 100 data sets representing various fields and categories. A detailed account130

of the descriptives relating to the real data have been reported in Table 8 (see:131

Appendix). In order to provide a richer understanding on the nature of the real132

data, the mean, median, standard deviation (SD), coefficient of variation (CV),133

and skewness statistics, results from the normality (Shapiro-Wilk) and stationarity134

(Augmented Dickey-Fuller) tests have been reported via Table 8 in the Appendix.135

Below, we use Table 1 to present a concise summary on the nature of the 100 real136

data sets. Note that each time series used in this study has been given a code and137

the code is explained via Table 7 in the Appendix.138

Table 1: Summary of the 100 real data.

A M Q W D H +’ve Skew. -’ve Skew. Normal Stationary Non-stationary
Count 5 83 4 4 2 2 61 21 18 14 86

Note:A - Annual data, M - Monthly data, Q - Quarterly data, W - Weekly data, D - Daily data,
H - Hourly data.

The first observation from Table 1 is that the study considers a variety of data139

with varying frequencies and distributions. Accordingly, we have considered data140

which represents annual, monthly, weekly, daily, and hourly frequencies with 18141

1http://datamarket.com/
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data sets which are normally distributed, and 14 data sets which are stationary.142

Moreover, there are 61 positively skewed data sets and 21 negatively skewed data143

sets. A majority of the time series used here are non-stationary and represents real144

life scenarios where non-stationarity is common. The nature of the selected data145

sets will enable an interesting comparison with regard to the impact of skewness,146

normality and stationarity of time series on SSA-V and SSA-R forecasting results.147

It is also interesting to note that the 100 data sets evaluated in this study come148

from different fields. These include for example, crime, agriculture, economics, chem-149

istry, ecology, energy, finance, health, tourism, housing market, and production. As150

such, we can ascertain the usefulness of SSA-V and SSA-R forecasts on a wide range151

of industries, which in turn improves the value of the output from this research.152

Figure 1 illustrates a selection of the 100 real time series used in this study. Prior to153

reporting the empirical results, we find it useful to describe certain characteristics154

of the time series shown in Figure 1 to give the reader a better understanding of the155

data used for real world applications.156
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Figure 1: An example of 9 out of the 100 real time series.

A007 is an asymmetric non-stationary time series which represents the labour157

market in a U.S. county. It is clear that this monthly series is seasonal with a158

non-linear trend which appears to increase over time. On the other hand, A022159

represents an asymmetric, yet stationary meteorological variable and appears to160

be highly seasonal right throughout with a high amplitude and possible sine wave161
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pattern lying underneath. The time series in A038 is both asymmetric and non-162

stationary, and represents the production of silver. It has structural breaks of major163

magnitude visible through the entire series. The annual time series A055 is surpris-164

ingly stationary as per the ADF test and is also asymmetric. At first glance this165

time series appears to have no distinct underlying signal, however this series contains166

data on the production of coloured fox fur. A061 is an interesting quarterly series167

representing the energy sector and is non-stationary and asymmetric. This series168

has a non-linear trend along with an increasing seasonality over time. A075 is also169

asymmetric and non-stationary, and represents the airline industry. This time series170

is clearly seasonal along with a linear and increasing trend. A081 is representative171

of sales and whilst the trend suggests increasing seasonality over time, it is clear172

that there are major drops in the time series between each season. This series is also173

non-normal in distribution and non-stationary. A082 represents house sales and is174

a normally distributed, non-stationary time series. This particular series appears175

to have a slightly curved non-linear trend and a sine wave which is disrupted by176

noise. Finally, A094 once again represents the labour market, but in this case there177

are many structural breaks which makes the time series non-stationary, and this178

asymmetric series has seasonal periods visible with a non-linear trend.179

In what follows, the empirical results are presented with a discussion on findings180

from both a simulation study and application to real data.181

4 Empirical Results182

4.1 Metrics183

A key highlight of the simulation study is the consideration given to a variety of184

important factors in determining the true quality of a forecast from a given model.185

Firstly, the forecast error has been considered using both the Root Mean Squared186

Error (RMSE) and Mean Absolute Error (MAE) criteria. Secondly, the prediction of187

the correct direction of change has also been considered via a criterion referred to as188

Direction of Change (DC). Thirdly, consideration is also given to different forecasting189

horizons such that possible outcomes in both the short, medium and long term are190

taken into account. Below, we provide the formulae for calculating RMSE, MAE191

and DC prior to presenting the results from the Henon series simulation.192

RMSE =

(
1

n

M∑

i=1

(Yi − Ŷi)
2

) 1
2

(7)

193

MAE =
M∑

i=1

|Yi − Ŷi| (8)

The DC criterion is summarised below, and in doing so we mainly follow [5]. In194

the univariate case, for forecasts obtained using XT , let DXi be equal to 1 if the195

forecast is able to correctly predict the actual direction of change and 0 otherwise.196

Then, D̃X =
∑n

i=1DXi/n shows the proportion of forecasts that correctly identify197

the direction of change in the actual series.198
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4.2 Henon series simulation199

We begin by presenting the results from a simulation study which considered the200

chaotic Henon series. In brief, it is a simple model which has the same essential201

properties of Lorenz system of differential equations [21]. The importance of con-202

sidering this series for simulation purposes lies in the fact that the deterministic203

nature of these systems makes them unpredictable, and as such an experiment on204

predicting the chaotic time series from Henon map illustrates the performance of205

a given method, whilst the experimental result is also able to show the forecasting206

precision attainable via SSA-V or SSA-R when faced with such chaotic series. The207

results from this simulation are reported in Table 2.208

We begin by comparing the forecasting results from SSA-R and SSA-V. The first209

observation is that the results from this simulation study are easily differentiable in210

this case based on the RMSE, RRMSE and MAE criteria. Based on the RMSE,211

SSA-V outperforms SSA-R at forecasting the Henon series across all four horizons212

at h = 1, 3, 6 and 12 steps-ahead. Across all four horizons, the SSA-V approach213

records an average RMSE of less than 1.00 whilst the average RMSE for SSA-R214

exceeds 1. If we consider the MAE criterion, SSA-V only outperforms SSA-R at215

h = 3, 6 and 12 steps-ahead, whilst SSA-R outperforms SSA-V at h = 1 step-ahead.216

However, this is only by 1 point and so it is difficult to conclude whether this is217

significant or not.218

As such, in order to provide a better indication with regard to the performance219

of both approaches when forecasting the Henon series, we consider the RRMSE220

criterion. Based on the RRMSE, we are able to conclude that forecasts from SSA-221

V are 7%, 18%, 32% and 54% more accurate than the forecasts from SSA-R at222

h = 1, 3, 6 and 12 steps-ahead respectively. What is interesting is that as the horizon223

increases, SSA-V forecasts are seen performing comparatively better than SSA-R224

in providing the most accurate forecasts for the Henon series. In fact, the SSA-R225

forecasting performance is seen deteriorating heavily as the horizon increases beyond226

1 step-ahead, whilst SSA-V shows comparatively more stable results. Finally, the227

average RRMSE result indicates that on average, across all four horizons evaluated228

here, forecasts from SSA-V are 28% better than forecasts from SSA-R. Accordingly,229

based on the loss functions, we are able to conclude that regardless of the horizon,230

SSA-V will provide a better forecast than SSA-R for the Henon series as proven by231

this simulation study.232

Lastly we consider the DC criterion. The aim here is to ascertain whether the233

forecast is able to pick up the actual upwards or downwards trend in the real data.234

Across all four horizons SSA-V forecasts once again appears superior over SSA-R235

forecasts with a comparatively better accuracy in terms of the DC prediction. The236

average DC values makes it evident that, on average, when forecasting the Henon237

series, we can expect SSA-V to report a 74% accurate DC prediction in comparison238

to the SSA-V forecasts 69% average DC prediction. Accordingly, we are able to239

provide the following solid conclusion. When forecasting the Henon series, SSA-V is240

better than SSA-R in terms of the forecasting accuracy and the direction of change241

prediction in both the short and long run.242
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Table 2: Henon series forecasting results with SSA(3,1).

Horizon SSA-V SSA-R RRMSE SSA-V (MAE) SSA-R (MAE) SSA-V (DC) SSA-R (DC)
1 0.87 0.92 0.93 0.66 0.65 0.73 0.73
3 0.84 1.01 0.82 0.69 0.78 0.73 0.71
6 0.83 1.21 0.68 0.73 0.97 0.75 0.69
12 0.91 2.29 0.46 0.78 1.64 0.75 0.64

Average 0.86 1.36 0.72 0.72 1.01 0.74 0.69

Note: RRMSE refers to the Ratio of the RMSE and here RRMSE = V SSA
RSSA

. This means that
when the RRMSE is less than 1, SSA-V outperforms SSA-R by 1-RRMSE percent and vice versa.

4.3 Application to Real Data243

This section is dedicated towards reporting and analysing the out-of-sample fore-244

casting results relating to the 100 real data sets that were introduced to the reader245

in Section 3. In analysing the application to real data, we rely on the RMSE,246

RRMSE nd DC criterions. Whilst a detailed account of the out-of-sample RMSE247

and RRMSE results can be found in Table 9 in the Appendix, we make use of a248

concise summary presented in Table 3 to draw our conclusions.249

Analysis based on statistically significant outcomes.250

In line with good practice, we have applied the modified Diebold-Mariano (DM) test251

in [22] to ascertain the statistically significant differences between SSA-V and SSA-R252

forecasts. However, it is pertinent to point out that if we rely on statistical signific-253

ance as per the DM test, then we are unable to provide any form of differentiation254

between SSA-V and SSA-R as there are a very low number of statistically significant255

differences reported between these two approaches when applied to 100 data sets. In256

fact, if we were to present conclusions considering only these (very low) statistically257

significant outcomes we can infer that at h = 1, 3 and 12 steps-ahead, where SSA-V258

outperforms SSA-R based on the RMSE, the forecasts from SSA-V are likely to have259

a statistically significant difference in comparison to forecasts from SSA-R, whilst260

the outcomes are the exact opposite at h = 6 steps ahead. When drawing further261

conclusions, we do not rely on the statistically significant differences between the262

outcomes as the DM test hinders any further differentiation by suggesting that in263

majority of the cases there exists no statistically significant difference between the264

forecasts from SSA-V and SSA-R. We are of the view that it is factually incorrect265

to suggest there exists no statistically significant difference between the forecasts266

from these two approaches as such a conclusion does not appear to be justifiable267

given the empirical work previously carried out in [16, 17]. Moreover, there could268

be issues related to the Diebold-Mariano test statistic, and those interested are re-269

ferred to [23] as the discussion of same is beyond the mandate of this paper. Yet,270

we do consider an alternate approach to determining and pointing out statistically271

reliable differentiations between the results obtained from this study and this has272

been explained in what follows.273
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Table 3: Summary of out-of-sample forecasts for 100 real data sets.

SSA-V SSA-R

Score 1 3 6 12 1 3 6 12 1 3 6 12

General

Sig. 4 5 1 4 3 2 2 3 µSSA−V

SSA−R
0.98 0.99 1.00 0.99

Overall 62 46 41 57 23 38 30 22 SSA-V=SSA-R 15 16 29 21
Data Type

Normal 14 10 7 15 2 8 5 2 SSA-V=SSA-R 2 0 6 1
+’ve Skew. 37 28 22 32 19 24 23 15 SSA-V=SSA-R 5 9 16 14
-’ve Skew. 11 8 10 11 2 6 3 5 SSA-V=SSA-R 8 7 8 5
Station. 10 10 7 9 3 3 1 3 SSA-V=SSA-R 1 1 6 2
Non. Stat. 52 36 32 47 20 35 29 20 SSA-V=SSA-R 28 30 39 33
Frequency

Annual 4 5 3 4 0 0 2 1 SSA-V=SSA-R 1 0 0 0
Monthly 49 34 30 49 27 35 31 24 SSA-V=SSA-R 7 14 22 10
Quarterly 2 1 1 1 0 2 2 2 SSA-V=SSA-R 2 1 1 1
Weekly 4 2 1 2 0 2 1 0 SSA-V=SSA-R 0 0 2 2

Daily 2 2 2 1 0 0 0 1 SSA-V=SSA-R 0 0 0 0
Hourly 2 2 2 2 0 0 0 0 SSA-V=SSA-R 0 0 0 0
Series Length

1<N≤150 23 23 17 17 8 10 12 12 SSA-V=SSA-R 2 0 4 4
150<N≤300 29 20 16 28 9 14 13 10 SSA-V=SSA-R 5 9 14 5
N>300 10 6 6 13 12 13 10 7 SSA-V=SSA-R 2 5 8 4

Note: Except for µSSA−V
SSA−R

, all other numbers appearing in this table represents the score. The score is

defined as the umber of times SSA-V or SSA-R outperforms the alternate. Sig. represents the number of
statistically significant scores. Shown in bold are the scores for the best performing model at the

corresponding forecasting horizon.

The overall, general picture274

Highlighted in bold are the instances where either SSA-V or SSA-R outperforms the275

alternate approach. It is evident from Table 3 that majority of the bold marks fall276

under SSA-V. As such it is clear that in general we can outline SSA-V as the better277

forecasting approach in comparison to SSA-R, regardless of the nature of the data.278

This conclusion is further supported by the ’Overall’ results which shows that on279

majority of the instances, SSA-V outperforms SSA-R across all horizons evaluated280

in this study. Even though these results are supportive of the findings in [16, 17],281

they are not overly helpful to practitioners wishing to distinguish between SSA-R282

and SSA-V on a more micro level. As such, we analyse the results in more detail283

and present the following findings.284

Inferences based on the RRMSE285

The average RRMSE across 100 data sets show that in the short run (h = 1 step-286

ahead) SSA-V can provide forecasts which are on average 2% better than SSA-R,287

and that in the long run (h = 12 steps-ahead) SSA-V continues to provide forecasts288

which are on average 1% better than those provided by SSA-R. In the medium term289

(h = 3 and 6 steps-ahead), we find that on average SSA-V can provide a forecast290

which is 1% better than SSA-R at the horizon of three steps-ahead whilst there is291

on average no difference between the forecasts from SSA-V and SSA-R at h = 6292

steps-ahead. Therefore, based on the average RRMSE we are able to recommend293

SSA-V as the better approach for forecasting in the short or long run (i.e. h = 1 or294

12 steps-ahead), whilst for medium term forecasts we can recommend SSA-V to be295

the most appropriate for attaining h = 3 steps-ahead predictions whilst there is no296

difference between the two approaches at h = 6 steps-ahead.297

Given the low statistically significant outcomes in this case, we believe it is298

important to consider the distribution of the RRMSE to provide further support299
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to our claims. These distributions for each horizon are shown in Figure 2. It is300

clear from Figure 2 that in line with our conclusions there appears to be support for301

SSA-V being more likely to provide better forecasts than SSA-R at h = 1, 3 and 12302

steps-ahead whilst the h = 6 steps-ahead distribution appears to be more less close303

to a normal distribution, confirming that there is on average likely to be no difference304

between SSA-V and SSA-R at this forecasting horizon.305

However, it is not possible to be certain of the outcomes in this case by looking306

at the RRMSE value or the histograms relating to the distribution of RRMSE.307

Accordingly, we go a step further and study the cumulative distribution functions308

(c.d.f) of the RRMSE at each horizon. The resulting c.d.f’s are presented in Figure309

3. This approach enables us to quantify the findings further and give a more accurate310

picture in terms of a percentage. We analyse the c.d.f’s to find out what percentage311

of RRMSE’s lie below or above 1.00. If majority of the RRMSE’s lie below 1, we312

can then conclude that on average, at a given horizon, SSA-V is better at providing313

out-of-sample forecasts in comparison to SSA-R and vice versa. Firstly, at h = 1314

step-ahead, on average 60% of the RRMSE’s are below 1.00, with approximately315

20% equalling 1.00 and the remaining 20% exceeding 1.00. This makes it is clear316

that at h = 1 step-ahead, on average SSA-V will provide better forecasts than317

SSA-R. At h = 3 steps-ahead, on average, approximately 45% of the RRMSE’s lie318

below 1.00, 15% equivalent to 1.00 and around 40% exceeds 1.00, thus providing319

weak evidence suggesting that on average, SSA-V can provide better forecasts than320

SSA-R in this case. At h = 6 steps-ahead approximately 40% of the RRMSE’s are321

found to be below 1.00 whilst approximately 30% are seen being equivalent to and322

exceeding 1.00. Once again, there is weak evidence to conclude that SSA-V is on323

average better than SSA-R at this horizon. However, given the weak evidence in324

support of one particular forecasting approach at h = 3 and 6 steps-ahead, it is more325

appropriate to conclude that in the medium term, on average there is no significant326

difference between SSA-V and SSA-R forecasts. Finally, we consider the long run327

(i.e h = 12 steps-ahead). Once again, the results for the long run mirror the results328

at h = 1 step-ahead in terms of the approximate percentage values, suggesting that329

on average, in the long run SSA-V is likely to provide better forecasts than SSA-R.330
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RSSA

) for 100 data sets.
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Figure 3: Cumulative distribution functions for RRMSE (V SSA
RSSA

).

The distribution of data and its impact on SSA-V and SSA-R331

Discussed herewith is the impact of the distribution of data (i.e. normal or skewed)332

on the out-of-sample forecasts attainable via both SSA-V and SSA-R. When the333

data is normally distributed, it is clear that SSA-V is most likely to provide a334

better forecast than SSA-R. This is evident as out of the 72 possible outcomes,335

SSA-V forecasts turn out to be better than SSA-R forecasts 64% of the time. As336

such, where data is normally distributed, SSA-V can be recommended to be the337

most appropriate approach for obtaining out-of-sample forecasts. Where the data338

is positively skewed, at horizons of 1, 3, and 12 steps-ahead, SSA-V is more likely339

to provide better forecasts than SSA-R, whilst at h = 6 steps-ahead SSA-R is seen340

outperforming SSA-V by 1 instance alone. Accordingly, it is safe to suggest that341

at h = 6 steps-ahead, there is no real difference between using SSA-V or SSA-R342

forecasts. As such when the data is positively skewed there is sufficient evidence to343

suggest that using SSA-V is likely to be more appropriate. In terms of the situation344

where data are negatively skewed the results are very clear that SSA-V forecasts are345

most likely to outperform SSA-R forecasts.346

12



Stationarity and non-stationarity of data and its impact on SSA-V and347

SSA-R348

In this section we consider the impact of stationary and non-stationary time series349

on SSA-V and SSA-R forecasts. This is important as in the real world we are350

faced with many non-stationary, and in some cases stationary time series. The351

ability to provide some insight in relation to the best approach to adopt under such352

circumstances would be helpful for many practitioners around the globe. As per the353

results in Table 3, it is clear that when the data is stationary SSA-V is once again354

most likely to provide better out-of-sample forecasts in comparison to SSA-R. In355

fact, where the data is stationary SSA-V forecasts outperformed SSA-R forecasts356

64% of the time. When faced with non-stationary time series, in the short run and357

long run (i.e. h = 1 and 12 steps-ahead) there is a clear indication that SSA-V358

is most likely to provide better forecasts than SSA-R. However, when obtaining359

medium term forecasts with non-stationary data it appears that there is likely to be360

no difference between SSA-R and SSA-V.361

Frequency of data and its impact on SSA-V and SSA-R362

Based on the comments by an anonymous referee we included a summary of the363

results based on frequency of the time series. The results are summarised for the364

reader via Table 3. At the outset, it should be noted that given the disproportionate365

spread of frequencies in relation to those with monthly frequencies, we do not find366

it useful to comment on the other frequencies. However, with 83 time series repres-367

enting the monthly frequency, we are able to draw some useful conclusions for the368

reader. Firstly, we find that when forecasting monthly data in the very short run369

(h = 1 step-ahead) and very long run (h = 12 steps-ahead), VSSA is more likely370

to provide a lower forecasting error than RSSA 59% of the time. Secondly, when371

forecasting monthly data in the medium term (h = 3, 6 steps-ahead), we do not find372

sufficient evidence to note that one approach is strictly better than the other.373

Series length and its impact on SSA-V and SSA-R374

The same anonymous referee suggested that we evaluate the impact of series length375

on SSA-V and SSA-R forecasts. Table 3 presents a summary of this analysis. As376

visible, it is clear that when the series length lies between 1-300, SSA-V is more377

likely to provide better forecasts than SSA-R across all horizons. In fact, the results378

show that SSA-V outperformed SSA-R 68% of the time at h = 1 step-ahead, 57%379

of the time at h = 3 steps-ahead, 43% of the time at h = 6 steps-ahead, and 59%380

of the time at h = 12 steps-ahead. However, interestingly, when the series length is381

beyond 300, then we notice that SSA-R forecasts outperform SSA-V at all horizons382

except h = 12 steps-ahead. As such, if the series length was the only criteria in383

question, then we can suggest that users rely on SSA-V for forecasting across all384

horizons when the series length falls between 1-300, and for long term forecasting385

at h = 12 steps-ahead when the series length is greater than 300. Where the series386

length is greater than 300, the most appropriate SSA forecasting approach for short387

and medium term forecasts would be SSA-R.388
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Analysis based on the DC metric389

In this section we seek to identify as to which forecasting approach provides the best390

DC prediction under various scenarios. The detailed results are reported in Table 4391

along with a concise summary at the bottom of the same table. Such an analysis392

is important as the results could provide further support to the conclusions made393

earlier and also provide practitioners with an idea in relation to the possible DC394

predictions one could expect from both SSA-V and SSA-R under varying conditions.395

In general, based on Table 4 it is clear that both SSA-V and SSA-R are on av-396

erage able to provide satisfactory DC predictions which exceeds beyond 50% across397

all horizons. Whilst there appears to be no major differences between the two ap-398

proaches based on both the mean and median as measures of central tendency, the399

SSA-V approach has a slight advantage over SSA-R across all horizons. The min-400

imum and maximum values, standard deviation (SD) and coefficient of variation401

(CV) are also reported. Based on the CV we can conclude that across all horizons402

there is likely to be less variation in the SSA-V DC results in comparison to SSA-R.403

This suggests that overall SSA-V produces comparatively more stable DC predic-404

tions around the reported mean across all horizons. Accordingly, based on the DC405

criterion our results indicate that on average both methods are able to provide good406

predictions of the actual direction of change and should one be interested in the407

method that is most likely to be best, then SSA-V would be the approach to select.408

In summary, based on the analysis following applications to 100 real data sets,409

we can determine the superiority of SSA-V forecasts over SSA-R forecasts in major-410

ity of the instances (with the exception of where both approaches result in identical411

outcomes, and when forecasting series with lengths greater than 300 in the short412

and medium term). It is useful to briefly comment on the theoretical justifications413

for this superior performance of SSA-V over SSA-R forecasts. Even though both414

SSA forecasting approaches are based on the linear recurrent formula in Equations415

(1) and (6), when forecasting with SSA-V we rely on the entire vector for generating416

a forecast, whilst with SSA-R the forecast is based on a coefficient as opposed to417

a vector. The reliance of SSA-V on the vectorial form of the matrix, as indicated418

in Equation (5), means that this approach can capture more dynamical informa-419

tion about the whole structure of the underlying matrix in relation to SSA-R. As420

such, it is likely that the inclusion of more information aids SSA-V in developing421

comparatively more accurate forecasts than SSA-R.422

4.3.1 SSA Choices423

In order to enable replication of the results obtained in this study, and to provide424

an indication on the nature of SSA choices and how these differ between SSA-V and425

SSA-R, we report all SSA choices for all horizons in Table 5. Where r=1 has been426

selected as the optimal number of eigenvalues, this indicates that the SSA approach427

is relying on the trend alone to forecast the respective time series. In general, we428

can see that there is a significant difference between the SSA-V and SSA-R choices.429

However, interestingly, in certain cases we are able to notice that SSA-V and SSA-R430

relies on the same number of eigenvalues to forecast the same series across different431

horizons. The window length varies but r remains constant. See for example, A004432

SSA-R and A005 SSA-V.433
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Given that these SSA choices are the crucial determinants underlying the per-434

formance of the SSA forecasting algorithms, we find it pertinent to briefly comment435

on the differences between the historical approach and the relatively new, automated436

approach which has been considered in this paper. There are several historical ap-437

proaches for determining L and r for a given time series. In [24] the authors suggest438

that selecting L as equal to a quarter of the length of a given series is common439

practice. However, previously in [16] it was noted that L should not exceed half440

of a given time series. One of the most brief and easy to understand explanations441

of the historical approach can be found in [25]. It begins with an analysis of the442

periodogram to find out any strong signals (e.g. seasonal fluctuations) in the data443

set. Thereafter, one selects L proportionate to the seasonal fluctuations after which444

an analysis of the scree plot or paired eigenvectors enables to differentiate between445

signal and noise. At this stage, one would select the appropriate number of eigenval-446

ues r for reconstruction and consider the remainder as noise. Whilst this task would447

be simple in the case of a small time series, it becomes increasingly complicated and448

difficult when one has to analyse a huge number of paired eigenvectors for larger449

time series. Moreover, in the absence of seasonal fluctuations, the selection of L and450

r would be even more difficult, and in such cases the starting point is to select L451

such that it is less than half of the series length. The importance of the accurate se-452

lection of r is noted in [18] where it is stated that choosing r greater than the actual453

requirement will result in the incorporation of noise in the reconstructed signal. Two454

other approaches for the selection of SSA choices were presented in [26–28] where455

the authors consider the selection of L based on the concept of separability between456

signal and noise. In addition, when forecasting during a recession or immediately457

following the impact of a major structural break, in [29,32] it was shown that a small458

trajectory matrix approach whereby L is considered to be equal to 3 can provide459

sound forecasts. More recently, a Colonial Theory based approach for selecting SSA460

choices was introduced in [30].461

In contrast, the automated approach which is documented in [10] and used in this462

paper enables one to overcome problems associated with the selection of SSA choices.463

In brief, the automated approach considers the training set of a given time series and464

evaluates the forecasting performance in relation to a loss function by considering465

every possible L and r. It then picks the L and r which minimises a given loss466

function and considers these to be the optimal SSA choices for forecasting the out-467

of-sample data. Whilst this approach saves time and effort, it should be remembered468

that the selection of L and r is optimized to obtain the best possible out-of-sample469

forecast such that one is able to prove the validity of the selected SSA choices from a470

statistical perspective. It has the drawback that, for example, if we were interested471

in capturing and analysing only the seasonal components or the trend of the series472

we would not be able to get the best possible decomposition and reconstruction for473

such purposes using this automated approach. If our objective is such, then it is474

more reliable to return to the historical approach which will enable one to analyze475

each paired eigenvector and select those representing the seasonal components which476

are of interest to us. However, in this paper we have focused on the behaviour of477

SSA-V and SSA-R algorithms when forecasting with the automated approach for478

several reasons. Firstly, this paper is focused on determining whether SSA-V or479

SSA-R is better for forecasting with SSA as opposed to signal extraction. Secondly,480

automated forecasting algorithms are rapidly gaining importance, especially since481
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the introduction of the ‘forecast’ package in R [31]. Thirdly, automated SSA has482

been increasingly applied in the recent past for forecasting applications [10,20].483

The SSA choices reported in Table 5 are sensitive to the size of the training set.484

Selecting a larger or smaller training set will provide a different combination of L485

and r. Whilst in this paper we use the widely accepted two-thirds and one-third486

split between training and test sets, more research is needed in order to determine487

the optimal number of observations to include in a training set for a given time series488

in order to optimize the SSA choices selected via the automated approach. Another489

interesting point is that always when L = 2 and r = 1, provided that both SSA-V490

and SSA-R have chosen these as the optimal SSA choices for a particular horizon,491

the out-of-sample forecast from these two approaches should produce similar results.492

4.3.2 Strengths and Weaknesses of SSA493

Given that SSA is in the process of gaining popularity amongst time series analysts,494

we find it pertinent to discuss the strengths and weakness of SSA. In terms of the495

merits, firstly, being nonparametric means SSA can provide a more accurate rep-496

resentation of the real world scenario where parametric assumptions are unlikely to497

hold. As such, when using SSA there is no need for data transformations which leads498

to a loss of information [7]. Secondly, the noise reduction capabilities of SSA are not499

present in classical time series analysis and forecasting methods, and filtering enables500

SSA to provide a better fit to the data and obtain more accurate forecasts [20]. Also,501

the moving average component of ARIMA is known to be better at forecasting less502

volatile data whilst Single Exponential Smoothing cannot be used in the presence503

of seasonality [20], but SSA is not faced with any such restrictions. Thirdly, SSA504

enables one to obtain a richer understanding of the dynamics underlying time series505

by analysing the trend and seasonal fluctuations in isolation. Moreover, SSA can506

forecast a particular signal which is of interest, such as extracting and forecasting the507

trend alone, or 12 or 3-month seasonal fluctuations depending on the requirements.508

Fourthly, SSA can forecast with a minimum of 3 observations [32] whilst other time509

series analysis methods require larger historical data sets.510

However, SSA is not without its limitations. It is well known that parametric511

models are preferred for certain scenarios because unlike with SSA, the parameters512

(e.g. regression parameters) allow interpretations on the exact effect of a given513

independent variable on the dependent variable [20]. Also, there exists a range514

of historical literature based on parametric models which enables users to easily515

compare and contrast between the findings. In addition, SSA is highly sensitive to516

the selection of L and r which leads to the argument that the decomposition process517

could result in a loss of some deterministic structures. It is noteworthy that the518

Colonial Theory based approach for selecting SSA choices helps overcome this issue519

to a certain extent by not relying on the historical binary approach to decomposition520

and reconstruction [30].521

Here, it is worthwhile to draw the reader’s attention to recent studies which522

have compared the application of SSA with other parametric and nonparametric523

time series analysis and forecasting techniques. In [3, 5] there is evidence of SSA524

outperforming Holt-Winters and ARIMA at forecasting industrial production. An525

application of SSA, ARIMA and Holt-Winters (HW) to eight UK economic time526

series before, during and after the recession, showed that SSA is least sensitive to527
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the impact of the recession in relation to ARIMA and Holt-Winters as SSA pro-528

duced comparatively superior forecasting results [29]. In [32] the authors evaluated529

the impact of the 2008 recession on forecasting US trade with SSA in relation to530

the optimal ARIMA and Exponential Smoothing (ETS) models, and Neural Net-531

works, and found SSA to be superior. More recently, an application which compared532

ARIMA, ETS, Neural Networks (NN), TBATS, ARFIMA and SSA at forecasting533

European tourist arrivals resulted in SSA outperforming the other models on most534

instances [33].535
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Table 4: Out-of-sample DC prediction results for the 100 time series.

SSA-V SSA-R SSA-V SSA-R

Code 1 3 6 12 1 3 6 12 Code 1 3 6 12 1 3 6 12

A001 0.70 0.66 0.57 0.60 0.68 0.71 0.67 0.62 A002 0.75 0.68 0.61 0.67 0.76 0.70 0.60 0.71
A003 0.90 0.57 0.58 0.53 0.93 0.57 0.58 0.50 A004 0.69 0.75 0.60 0.64 0.77 0.78 0.63 0.63
A005 0.71 0.52 0.81 0.75 0.68 0.52 0.62 0.80 A006 0.67 0.51 0.50 0.47 0.45 0.51 0.50 0.47
A007 0.80 0.74 0.62 0.53 0.82 0.73 0.61 0.51 A008 0.58 0.39 0.44 0.40 0.57 0.39 0.44 0.40
A009 0.47 0.41 0.35 0.38 0.47 0.41 0.35 0.38 A010 0.55 0.59 0.60 0.52 0.62 0.59 0.58 0.55
A011 0.79 0.71 0.71 0.59 0.67 0.66 0.73 0.61 A012 0.62 0.52 0.51 0.55 0.61 0.52 0.51 0.51
A013 0.71 0.77 0.63 0.58 0.73 0.68 0.61 0.67 A014 0.78 0.71 0.58 0.58 0.80 0.71 0.59 0.51
A015 0.78 0.63 0.63 0.53 0.85 0.65 0.63 0.53 A016 0.49 0.49 0.48 0.48 0.49 0.49 0.49 0.48
A017 0.53 0.58 0.62 0.60 0.60 0.62 0.58 0.43 A018 0.51 0.48 0.58 0.49 0.55 0.58 0.58 0.56
A019 0.89 0.82 0.61 0.58 0.90 0.81 0.61 0.62 A020 0.87 0.81 0.59 0.55 0.88 0.81 0.59 0.55
A021 0.86 0.82 0.56 0.61 0.87 0.82 0.56 0.61 A022 0.90 0.83 0.61 0.57 0.88 0.83 0.60 0.58
A023 0.95 0.85 0.60 0.62 0.95 0.84 0.60 0.69 A024 0.55 0.58 0.58 0.59 0.55 0.57 0.58 0.58
A025 0.56 0.58 0.58 0.63 0.55 0.55 0.61 0.60 A026 0.66 0.57 0.68 0.60 0.67 0.56 0.61 0.70
A027 0.58 0.64 0.46 0.54 0.63 0.40 0.46 0.61 A028 0.87 0.86 0.52 0.52 0.87 0.86 0.52 0.52
A029 0.78 0.54 0.65 0.50 0.80 0.58 0.63 0.49 A030 0.57 0.57 0.56 0.66 0.50 0.57 0.59 0.66
A031 0.90 0.71 0.66 0.72 0.93 0.71 0.66 0.69 A032 0.86 0.63 0.67 0.63 0.84 0.61 0.70 0.48
A033 0.68 0.64 0.61 0.59 0.66 0.69 0.67 0.59 A034 0.63 0.72 0.58 0.70 0.63 0.67 0.55 0.67
A035 0.75 0.74 0.70 0.67 0.75 0.73 0.72 0.70 A036 0.87 0.70 0.66 0.55 0.89 0.75 0.66 0.43
A037 0.71 0.65 0.61 0.62 0.81 0.67 0.65 0.44 A038 0.70 0.68 0.66 0.69 0.64 0.41 0.67 0.63
A039 0.78 0.72 0.70 0.66 0.79 0.48 0.56 0.63 A040 0.72 0.44 0.42 0.44 0.75 0.32 0.48 0.48
A041 0.70 0.78 0.77 0.76 0.70 0.75 0.74 0.76 A042 0.69 0.59 0.59 0.50 0.64 0.62 0.53 0.46
A043 0.54 0.54 0.53 0.51 0.56 0.54 0.53 0.51 A044 0.79 0.59 0.59 0.50 0.76 0.66 0.57 0.50
A045 0.90 0.82 0.82 0.58 0.58 0.63 0.15 0.55 A046 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A047 0.66 0.68 0.68 0.68 0.64 0.65 0.66 0.65 A048 0.48 0.48 0.47 0.57 0.48 0.43 0.49 0.54
A049 0.88 0.67 0.71 0.53 0.89 0.65 0.65 0.51 A050 1.00 0.96 0.96 1.00 0.97 0.96 0.96 1.00
A051 0.55 0.68 0.68 0.59 0.55 0.61 0.64 0.55 A052 0.89 0.92 0.74 0.66 0.95 0.95 0.63 0.66
A053 0.77 0.57 0.76 0.68 0.77 0.50 0.76 0.53 A054 0.87 0.71 0.92 0.84 0.87 0.75 0.88 0.74
A055 0.70 0.64 0.72 0.74 0.67 0.61 0.76 0.74 A056 0.37 0.41 0.48 0.47 0.37 0.41 0.49 0.47
A057 0.97 0.61 0.47 0.54 0.91 0.61 0.37 0.54 A058 0.83 0.85 0.60 0.58 0.89 0.85 0.60 0.42
A059 0.76 0.74 0.78 0.76 0.78 0.79 0.80 0.79 A060 0.84 0.77 0.77 0.60 0.79 0.78 0.67 0.54
A061 0.50 0.50 0.50 0.51 0.50 0.50 0.53 0.51 A062 0.73 0.67 0.58 0.74 0.71 0.65 0.53 0.53
A063 0.91 0.53 0.67 0.64 0.91 0.56 0.67 0.53 A064 0.78 0.72 0.72 0.76 0.80 0.70 0.78 0.74
A065 0.98 0.74 0.65 0.47 0.95 0.76 0.65 0.47 A066 0.94 0.78 0.47 0.54 0.96 0.78 0.47 0.46
A067 0.71 0.72 0.69 0.65 0.65 0.69 0.71 0.60 A068 0.55 0.52 0.50 0.45 0.55 0.55 0.50 0.45
A069 0.70 0.73 0.56 0.53 0.70 0.74 0.56 0.51 A070 0.88 0.79 0.60 0.55 0.90 0.84 0.54 0.55
A071 0.91 0.67 0.51 0.58 0.91 0.69 0.51 0.56 A072 0.87 0.70 0.55 0.50 0.91 0.70 0.58 0.53
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A073 0.84 0.56 0.42 0.48 0.71 0.58 0.52 0.37 A074 0.91 0.47 0.52 0.52 0.78 0.57 0.52 0.67
A075 0.96 0.70 0.49 0.59 0.90 0.67 0.44 0.59 A076 0.82 0.69 0.57 0.71 0.79 0.62 0.57 0.71
A077 0.91 0.70 0.67 0.67 0.80 0.88 0.67 0.67 A078 0.74 0.70 0.77 0.67 0.69 0.79 0.77 0.67
A079 0.63 0.52 0.70 0.63 0.69 0.67 0.70 0.63 A080 0.84 0.69 0.62 0.42 0.80 0.67 0.67 0.45
A081 0.73 0.68 0.64 0.63 0.73 0.51 0.59 0.53 A082 0.76 0.66 0.60 0.58 0.75 0.69 0.62 0.58
A083 0.86 0.75 0.57 0.50 0.88 0.77 0.57 0.54 A084 0.91 0.66 0.51 0.57 0.84 0.69 0.51 0.58
A085 0.75 0.74 0.69 0.60 0.75 0.68 0.67 0.67 A086 0.90 0.67 0.54 0.79 0.92 0.63 0.57 0.79
A087 0.86 0.65 0.49 0.59 0.86 0.60 0.52 0.60 A088 0.79 0.65 0.82 0.49 0.83 0.63 0.84 0.52
A089 0.54 0.43 0.47 0.49 0.56 0.43 0.47 0.56 A090 0.74 0.65 0.70 0.63 0.82 0.61 0.70 0.56
A091 0.86 0.60 0.66 0.63 0.89 0.66 0.66 0.63 A092 0.81 0.76 0.66 0.56 0.78 0.74 0.61 0.53
A093 0.84 0.74 0.61 0.45 0.83 0.77 0.56 0.41 A094 0.80 0.63 0.51 0.49 0.77 0.62 0.55 0.53
A095 0.75 0.60 0.50 0.51 0.75 0.58 0.50 0.52 A096 0.74 0.69 0.69 0.40 0.79 0.69 0.71 0.42
A097 0.89 0.71 0.62 0.48 0.88 0.70 0.63 0.52 A098 0.82 0.78 0.54 0.58 0.82 0.77 0.53 0.57
A099 0.58 0.60 0.59 0.58 0.56 0.56 0.59 0.58 A100 0.80 0.65 0.66 0.54 0.80 0.65 0.68 0.44

SSA-V SSA-R
1 3 6 12 1 3 6 12

Average 0.76 0.66 0.62 0.59 0.75 0.65 0.60 0.58
Median 0.78 0.67 0.61 0.58 0.78 0.66 0.60 0.55
Min 0.37 0.39 0.35 0.38 0.37 0.32 0.15 0.37
Max 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SD 0.14 0.12 0.11 0.11 0.75 0.13 0.12 0.11
CV 18.36 17.97 18.32 18.41 18.76 19.85 19.36 19.77
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Table 5: SSA choices for the 100 time series.

SSA-V SSA-R SSA-V SSA-R

Code 1 3 6 12 1 3 6 12 Code 1 3 6 12 1 3 6 12

A001 ( 5,2 ) ( 44,43 ) ( 26,6 ) ( 50,42 ) ( 5,2 ) ( 45,2 ) ( 50,18 ) ( 50,15 ) A002 ( 36,5 ) ( 34,5 ) ( 35,27 ) ( 35,18 ) ( 22,4 ) ( 22,5 ) ( 36,10 ) ( 13,6 )
A003 ( 50,18 ) ( 47,13 ) ( 45,13 ) ( 50,10 ) ( 46,18 ) ( 35,13 ) ( 50,10 ) ( 16,14 ) A004 ( 25,29 ) ( 46,9 ) ( 45,9 ) ( 44,10 ) ( 14,6 ) ( 47,9 ) ( 47,9 ) ( 49,9 )
A005 (15,9) (18,9) (11,9) (9,1) (16,9) (16,9) (19,12) (6,1) A006 (19,5) (2,1) (2,1) (2,1) (15,8) (2,1) (2,1) (2,1)
A007 (15,10) (24,15) (31,24) (18,4) (23,14) (23,14) (25,9) (17,14) A008 (6,3) (2,1) (2,1) (2,1) (6,3) (2,1) (2,1) (2,1)
A009 (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1) A010 (15,6) (2,1) (9,1) (5,3) (15,6) (2,1) (9,1) (6,3)
A011 ( 27,24 ) ( 49,10 ) ( 39,34 ) ( 38,7 ) ( 14,10 ) ( 40,10 ) ( 42,15 ) ( 50,2 ) A012 (21,11) (2,1) (37,1) (33,1) (3,2) (2,1) (31,1) (28,1)
A013 (16,13) (16,13) (37,1) (34,1) (11,7) (12,5) (34,1) (32,1) A014 (14,7) (13,8) (20,5) (14,11) (14,7) (16,6) (18,5) (21,14)
A015 (26,16) (27,17) (2,1) (2,1) (46,22) (18,11) (2,1) (2,1) A016 (31,17) (32,16) (2,1) (7,4) (32,16) (32,16) (2,1) (2,1)
A017 (6,2) (2,1) (2,1) (60,1) (2,1) (10,4) (2,1) (57,1) A018 (17,6) (2,1) (2,1) (14,9) (5,2) (5,2) (2,1) (2,1)
A019 (49,5) (59,5) (56,5) (50,5) (49,5) (58,5) (58,5) (56,6) A020 (42,5) (60,5) (57,5) (54,5) (50,5) (60,6) (55,4) (60,7)
A021 (36,7) (60,5) (60,5) (60,5) (32,7) (60,5) (60,5) (60,5) A022 (29,7) (60,3) (57,3) (52,5) (50,5) (51,5) (51,5) (52,5)
A023 (45,11) (56,13) (56,13) (37,6) (46,9) (50,10) (54,11) (49,11) A024 (2,1) (4,1) (16,6) (41,39) (2,1) (3,1) (36,5) (49,3)
A025 (41,15) (3,1) (16,11) (9,3) (40,15) (10,3) (8,1) (4,1) A026 (15,5) (20,8) (2,1) (40,1) (2,1) (19,8) (19,8) (35,1)
A027 (13,11) (6,4) (2,1) (25,11) (3,2 ) ( 2,1 ) ( 2,1 ) ( 43,23 ) A028 (24,11) (22,11) (13,11) (24,11) (22,10) (14,11) (19,10) (24,11)
A029 (41,28) (37,21) (14,5) (37,12) (43,23) (31,18) (31,18) (7,4) A030 (4,1) (4,1) (28,1) (2,1) (3,1) (4,1) (7,1) (2,1)
A031 ( 29,14 ) ( 28,17 ) ( 26,23 ) ( 15,3 ) ( 30,13 ) ( 27,17 ) ( 26,9 ) ( 15,3 ) A032 (16,14) (18,14) (23,17) (20,11) (17,13) (19,13) (23,15) (23,17)
A033 (18,8) (11,3) (27,1) (23,1) (11,5) (25,4) (22,4) (23,1) A034 (10,6) (8,6) (7,1) (25,1) (10,6) (7,5) (5,1) (25,1)
A035 (5,2) (5,2) (26,6) (2,1) (5,2) (5,2) (33,9) (26,6) A036 (36,26) (45,19) (39,32) (39,32) (40,22 ) ( 42,22 ) ( 47,17 ) ( 47,21 )
A037 (24,3) (23,3) (22,3) (24,8) (41,13) (22,3) (21,3) (25,7) A038 (26,2) (24,2) (32,2) (4,1) (4,1) (23,2) (29,2) (3,1)
A039 (50,25) (39,10) (31,26) (8,5) (50,25) (39,10) (7,1) (37,3) A040 (18,12) (9,4) (25,1) (25,1) (23,15) (6,3) (25,1) (25,1)
A041 (7,3) (21,1) (19,1) (18,1) (25,11) ( 16,1 ) ( 15,1 ) ( 10,1 ) A042 (29,4) (26,4) (12,1) (6,1) (30,4) (29,4) (29,4) (23,3)
A043 (33,1) (2,1) (2,1) (12,6) (3,1) (2,1) (2,1) (12,5) A044 (21,15) (26,8) (21,14) (22,14) (24,7) (25,5) (21,9) (28,6)
A045 (26,22) (21,12) (30,26) (30,25) (4,3 ) ( 31,25 ) ( 45,1 ) ( 29,13 ) A046 ( 12,6 ) ( 41,33 ) ( 22,16 ) ( 43,23 ) ( 12,6 ) ( 24,43 ) ( 9,5 ) ( 43,23 )
A047 (23,1) (21,1) (19,1) (24,4) (20,1) (19,1) (17,1) (12,1) A048 (3,1) (8,3) (8,3) (10,1) (3,1) (8,3) (8,3) (7,1)
A049 (29,9) (30,9) (29,25) (19,9) (29,9) (27,8) (28,8) (25,8) A050 (17,3) (15,3) (13,3) (8,3) (6,2) (13,3) (13,3) (9,5)
A051 (2,1) (24,2) (25,2) (25,9) (2,1) (25,1) (25,1) (25,1) A052 (25,13) (23,13) (25,14) (25,12) (25,13) (25,13) (23,14) (19,11)
A053 (8,4) (7,4) (6,3) (7,3) (8,4) (8,4) (5,2) (17,11) A054 (20,3) (19,8) (16,8) (20,8) (18,6) (18,7) (18,7) (16,9)
A055 (20,1) (20,2) (18,7) (10,2) (20,2) (20,2) (15,1) (10,2) A056 ( 2,1 ) ( 2,1 ) ( 2,1 ) ( 2,1 ) ( 2,1 ) ( 2,1 ) ( 2,1 ) ( 2,1 )
A057 (12,7) (22,7) (24,12) (22,8) (23,6) ((21,6) ((21,6) (23,6) A058 (11,5) (23,7) (23,9) (13,9) (11,5) (11,5) (23,6) (16,7)
A059 (25,1) (25,2) (25,2) (23,1) (25,1) (24,1) (24,1) (20,1) A060 ( 38,12 ) ( 38,13 ) ( 37,13 ) ( 21,11 ) ( 22,8 ) ( 22,8 ) ( 37,13 ) ( 20,9 )
A061 ( 13,3 ) ( 4,2 ) ( 21,4 ) ( 41,4 ) ( 9,4 ) ( 13,4 ) ( 13,4 ) ( 17,3 ) A062 (12,3 ) ( 10,3 ) ( 21,4 ) ( 18,2 ) ( 11,3 ) ( 11,3 ) ( 11,4 ) ( 24,11 )
A063 (25,9) (23,9) (21,9) (15,11) (25,9) (25,8) (25,8) (15,8) A064 (14,4 ) ( 11,8 ) ( 8,2 ) ( 11,8 ) ( 12,3 ) ( 9,4 ) ( 8,2 ) ( 7,2 )
A065 (25,17) (25,16) (25,17) (10,8) (14,13) (21,14) (21,14) (25,12) A066 (24,18) (22,14) (22,14) (22,14) (14,13) (23,13) (21,14) (24,9)
A067 (13,5) (8,5) (12,1) (13,7) (16,9) (4,1) (7,1) (13,8) A068 (14,1) (12,1) (10,1) (2,1) (2,1) (12,1) (10,1) (2,1)
A069 (35,16) (35,16) (50,6) (45,8) (34,9) (34,9) (49,6) (49,6) A070 (25,21) (14,8) (12,10) (11,9) (16,9) (15,6) (11,7) (11,6)
A071 (39,13) (36,13) (31,13) (27,13) (30,13) (31,12) (28,1) (31,11) A072 (29,12) (29,12) (19,11) (18,11) (29,14) (29,12) (23,8) (13,4)
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A073 (21,15) (21,15) (14,2) (14,8) (25,18) (24,17) (9,6) (4,3) A074 (27,6) (23,5) (26,7) (28,5) (19,4) (23,4) (20,4) (27,4)
A075 (14,12) (14,12) (37,22) (12,6) (15,11) (23,12) (22,12) (12,11) A076 (18,12) (18,12) (19,12) (13,12) (19,12) (20,12) (17,12) (13,12)
A077 (22,5) (2,1) (2,1) (2,1) (4,2) (15,4) (2,1) (2,1) A078 (22,5) (23,5) (23,5) (2,1) (4,2) (23,5) (23,5) (2,1)
A079 (24,5) (24,5) (2,1) (2,1) (2,1) (23,3) (2,1) (2,1) A080 (14,7) (17,9) (16,8) (11,4) (14,7) (14,7) (18,6) (9,3)
A081 (24,15) (23,17) (23,16) (14,9) (24,14) (25,9) (25,12) (25,12) A082 (22,7) (13,8) (22,12) (13,7) (34,15) (22,7) (25,11) (2,1)
A083 (26,20) (30,14) (24,10) (18,14) (22,16) (23,13) (19,12) (18,13) A084 (35,12) (28,13) (33,11) (40,10) (40,11) (40,11) (40,11) (38,11)
A085 (18,5) (18,5) (32,20) (33,20) (28,14) (18,5) (28,14) (32,21) A086 (26,20) (30,14) (18,16) (18,16) (25,19) (30,14) (29,14) (18,16)
A087 (31,16 ) ( 36,15 ) ( 36,15 ) ( 18,11 ) ( 19,1 ) ( 22,13 ) ( 22,13 ) ( 35,15 ) A088 (25,15) (39,24) (28,20) (35,21) (40,19) (38,19) (28,18) (28,18)
A089 (18,8) (2,1) (2,1) (2,1) (5,3) (2,1) (2,1) (6,3) A090 (38,17) (27,8) (38,7) (14,6) (24,7) (30,8) (33,8) (35,9)
A091 (14,7) (8,6) (2,1) (3,1) (14,7) (12,7) (2,1) (3,1) A092 (15,9) (31,9) (20,12) (35,11) (16,8) (24,8) (24,9) (28,11)
A093 (25,19) (25,19) (27,25) (20,10) (26,16) (13,6) (22,9) (20,10) A094 (38,16) (35,14) (40,9) (40,9) (37,16) (34,14) (39,9) (38,9)
A095 (40,18) (14,9) (2,1) (30,24) (28,17) (32,14) (2,1) (33,20) A096 (37,14) (29,13) (31,13) (14,12) (22,13) (29,13) (33,17) (33,20)
A097 (13,11) (16,9) (20,8) (20,11) (13,10) (16,9) (21,11) (21,11) A098 (37,22) (40,23) (40,23) (40,20) (39,23) (34,17) (40,20) (40,21)
A099 (8,4) (5,1) (5,3) (4,1) (5,1) (4,1) (5,3) (3,1) A100 (39,17) (35,13) (35,13) (35,10) (39,17) (34,16) (33,16) (35,13)

Note: Shown as (L, r) is the respective window length and number of eigenvalues.537
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5 Conclusions538

This paper begins with the objective of providing a statistically reliable answer to539

the question, which SSA forecasting approach is best? Both a simulation study540

and an application to 100 real data sets have been used to determine the best541

approach between SSA-R and SSA-V forecasts. In addition, this paper considers an542

optimal SSA forecasting approach [10] to determine which SSA forecasting algorithm543

is best for a given situation. This study considers the effect of the distribution (i.e.544

normal or skewed) and stationarity of the data on SSA-V and SSA-R forecasts, in545

addition to relying on loss functions, the direction of change criterion, and cumulative546

distribution functions, to provide cogent conclusions.547

The simulation study has clearly shown that when faced with chaotic time series548

like the Henon series for example, SSA-V has a higher forecasting precision than549

SSA-R based on the loss functions of RMSE and MAE, and that SSA-V also reports550

a better DC prediction in comparison to SSA-R. From the application to real data,551

we find evidence to conclude that in general one is more likely to find that SSA-V is552

the more suitable alternative to SSA-R with the following exceptions. Firstly, based553

on the RRMSE (as verified via the c.d.f.’s) we can conclude that SSA-V is on average554

better than SSA-R at forecasting in the short run (h = 1) and long run (h = 12).555

However, in the medium term (h = 3 and 6 steps-ahead) we find that there is likely556

to be no difference between the SSA-V and SSA-R forecasts. Secondly, where the557

data is normally distributed SSA-V forecasts are most likely to outperform SSA-558

R forecasts. When faced with positively skewed data, it is likely that SSA-V will559

continue to outperform SSA-R at h = 1, 3 and 12 steps-ahead, whilst at h = 6 steps-560

ahead both methods are unlikely to report a major difference in forecasts. Yet, when561

faced with negatively skewed data we have a clear winner in SSA-V which is most562

likely to provide better forecasts than SSA-R across all horizons. Thirdly, when the563

data is stationary we find that SSA-V is most likely to outperform SSA-R, but where564

the data is non-stationary this result only holds at h = 1 and 12 steps-ahead, whilst565

in the medium term there appears to be no distinguishable difference between the566

forecasts attainable via these two approaches. Finally, in terms of the DC criterion567

it is evident that both SSA-V and SSA-R are capable of providing sound direction568

of change predictions. However, we find evidence to support the notion that SSA-V569

is on average slightly better than SSA-R in terms of the reported DC predictions,570

and that the average SSA-V results for DC are more stable than the average SSA-R571

results as seen via the coefficient of variation statistic.572

Table 6 summarises the findings of this study in tabular format to help the reader573

easily identify the conclusions. It is evident that our study has found overwhelm-574

ing evidence in support of SSA-V forecasts as the better alternative in relation to575

SSA-R when it comes to forecasting with SSA. Where the results are inconclusive,576

which refers to cases when both approaches are equivalent, given that there is no577

computational complexity gains to be made between SSA-V and SSA-R, based on578

our previous discussions we can suggest the use of SSA-V to be more appropriate in579

general. However, under such scenarios it is advisable that users also evaluate the580

performance of SSA-R on their data for a complete picture. In contrast, if the series581

length was the only criteria, then we notice that SSA-R is a better contender than582

SSA-V for forecasting in the short and medium term when the series length exceeds583

300.584
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Table 6: Suggested SSA forecasting models for different criteria and forecasting
horizons following a detailed analysis.

Criterion h = 1 h = 3 h = 6 h = 12

In general SSA-V SSA-V SSA-V SSA-V
RRMSE SSA-V Inconclusive Inconclusive SSA-V
Normally distributed data SSA-V SSA-V SSA-V SSA-V
Positively skewed data SSA-V SSA-V Inconclusive SSA-V
Negatively skewed data SSA-V SSA-V SSA-V SSA-V
Stationary data SSA-V SSA-V SSA-V SSA-V
Non-stationary data SSA-V Inconclusive Inconclusive SSA-V
Direction of change SSA-V SSA-V SSA-V SSA-V
Monthly frequencies SSA-V Inconclusive Inconclusive SSA-V
1<N≤300 SSA-V SSA-V SSA-V SSA-V
N>300 SSA-R SSA-R SSA-R SSA-V

Note: ‘In general’ shows the forecasting approach reporting the highest score solely based on
lowest RMSE, ignoring all other criteria. RRMSE looks at the average performance across all data

sets taking into account the c.d.f related analysis. N is the length of the series.

In conclusion, we have successfully provided a statistically reliable answer to the585

question of which SSA forecasting approach is best. In brief, our results indicate586

that on average SSA-V forecasts are better in comparison to SSA-R as reported587

in [16,17]. For a single specific time series, both approaches must be evaluated. The588

consideration of various forecasting horizons, the distribution of data, stationarity589

and DC criterions, along with a simulation study and application to 100 real data590

sets has enabled this study to provide more insights and enlightenment in compar-591

ison to the conclusions previously derived in [16, 17]. We are of the view that our592

results presented in this paper would help practitioners and users of SSA to eas-593

ily identify and distinguish between the two forecasting approaches when selecting594

this nonparametric technique for forecasting their given data sets depending on the595

horizon of interest.596
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Table 7: Nomenclature.

Code Name of Time Series
A001 US Economic Statistics: Capacity Utilization.
A002 Births by months 1853-2012.
A003 Electricity: electricity net generation: total (all sectors).
A004 Energy prices: average retail prices of electricity.
A005 Coloured fox fur returns, Hopedale, Labrador, 1834-1925.
A006 Alcohol demand (log spirits consumption per head), UK, 1870-1938.
A007 Monthly Sutter county workforce, Jan.1946-Dec.1966 priesema (1979).
A008 Exchange rates - monthly data: Japanese yen.
A009 Exchange rates - monthly data: Pound sterling.
A010 Exchange rates - monthly data: Romanian leu.
A011 HICP (2005 = 100) - monthly data (annual rate of change): European Union (27 countries).
A012 HICP (2005 = 100) - monthly data (annual rate of change): UK.
A013 HICP (2005 = 100) - monthly data (annual rate of change): US.
A014 New Homes Sold in the United States.
A015 Goods, Value of Exports for United States.
A016 Goods, Value of Imports for United States.
A017 Market capitalisation - monthly data: UK.
A018 Market capitalisation - monthly data: US.
A019 Average monthly temperatures across the world (1701-2011): Bournemouth.
A020 Average monthly temperatures across the world (1701-2011): Eskdalemuir.
A021 Average monthly temperatures across the world (1701-2011): Lerwick.
A022 Average monthly temperatures across the world (1701-2011): Valley.
A023 Average monthly temperatures across the world (1701-2011): Death Valley.
A024 US Economic Statistics: Personal Savings Rate.
A025 Economic Policy Uncertainty Index for United States (Monthly Data).
A026 Coal Production, Total for Germany.
A027 Coke, Beehive Production (by Statistical Area).
A028 Monthly champagne sales (in 1000’s) (p.273: Montgomery: Fore. and T.S.).
A029 Domestic Auto Production.
A030 Index of Cotton Textile Production for France.
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A031 Index of Production of Chemical Products (by Statistical Area).
A032 Index of Production of Leather Products (by Statistical Area).
A033 Index of Production of Metal Products (by Statistical Area).
A034 Index of Production of Mineral Fuels (by Statistical Area).
A035 Industrial Production Index.
A036 Knit Underwear Production (by Statistical Area).
A037 Lubricants Production for United States.
A038 Silver Production for United States.
A039 Slab Zinc Production (by Statistical Area).
A040 Annual domestic sales and advertising of Lydia E, Pinkham Medicine, 1907 to 1960.
A041 Chemical concentration readings.
A042 Monthly Boston armed robberies Jan.1966-Oct.1975 Deutsch and Alt (1977).
A043 Monthly Minneapolis public drunkenness intakes Jan.66-Jul78.
A044 Motor vehicles engines and parts/CPI, Canada, 1976-1991.
A045 Methane input into gas furnace: cu. ft/min. Sampling interval 9 seconds.
A046 Monthly civilian population of Australia: thousand persons. Feb 1978-Apr 1991.
A047 Daily total female births in California, 1959.
A048 Annual immigration into the United States: thousands. 1820-1962.
A049 Monthly New York City births: unknown scale. Jan 1946-Dec 1959.
A050 Estimated quarterly resident population of Australia: thousand persons.
A051 Annual Swedish population rates (1000’s) 1750-1849 Thomas (1940).
A052 Industry sales for printing and writing paper (in Thousands of French francs).
A053 Coloured fox fur production, Hebron, Labrador, 1834-1925.
A054 Coloured fox fur production, Nain, Labrador, 1834-1925.
A055 Coloured fox fur production, oak, Labrador, 1834-1925.
A056 Monthly average daily calls to directory assistance Jan.62-Dec76.
A057 Monthly Av. residential electricity usage Iowa city 1971-1979.
A058 Montly av. residential gas usage Iowa (cubic feet)*100 71-79.
A059 Monthly precipitation (in mm), Jan 1983-April 1994. London, United Kingdom .
A060 Monthly water usage (ml/day), London Ontario, 1966-1988.
A061 Quarterly production of Gas in Australia: million megajoules. Includes natural gas from July 1989. Mar 1956-Sep 1994.
A062 Residential water consumption, Jan 1983-April 1994. London, United Kingdom.
A063 The total generation of electricity by the U.S. electric industry (monthly data for the period Jan. 1985-Oct. 1996).
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A064 Total number of water consumers, Jan 1983-April 1994. London, United Kingdom.
A065 Monthly milk production: pounds per cow. Jan 62-Dec 75.
A066 Monthly milk production: pounds per cow. Jan 62-Dec 75, adjusted for month length.
A067 Monthly total number of pigs slaughtered in Victoria. Jan 1980-August 1995.
A068 Monthly demand repair parts large/heavy equip. Iowa 1972-1979.
A069 Number of deaths and serious injuries in UK road accidents each month. Jan 1969-Dec 1984.
A070 Passenger miles (Mil) flown domestic U.K. Jul. 62-May 72.
A071 Monthly hotel occupied room av. 63-76 B.L.Bowerman et al.
A072 Weekday bus ridership, Iowa city, Iowa (monthly averages).
A073 Portland Oregon average monthly bus ridership (/100).
A074 U.S. airlines: monthly aircraft miles flown (Millions) 1963-1970.
A075 International airline passengers: monthly totals in thousands. Jan 49-Dec 60.
A076 Sales: souvenir shop at a beach resort town in Queensland, Australia. Jan 1987-Dec 1993.
A077 Der Stern: Weekly sales of wholesalers A, 71-72.
A078 Der Stern: Weekly sales of wholesalers B, 71-72’
A079 Der Stern: Weekly sales of wholesalers 71-72.
A080 Monthly sales of U.S. houses (thousands) 1965-1975.
A081 CFE specialty writing papers monthly sales.
A082 Monthly sales of new one-family houses sold in USA since 1973.
A083 Wisconsin employment time series, food and kindred products, Jan. 1961-Oct. 1975.
A084 Monthly gasoline demand Ontario gallon millions 1960-1975.
A085 Wisconsin employment time series, fabricated metals, Jan. 1961-Oct. 1975.
A086 Monthly empolyees wholes./retail Wisconsin 61-75 R.B.Miller.
A087 US monthly sales of chemical related products. Jan 1971-Dec 1991.
A088 US monthly sales of coal related products. Jan 1971-Dec 1991.
A089 US monthly sales of petrol related products. Jan 1971-Dec 1991.
A090 US monthly sales of vehicle related products. Jan 1971-Dec 1991.
A091 Civilian labour force in Australia each month: thousands of persons. Feb 1978-Aug 1995.
A092 Numbers on Unemployment Benefits in Australia: monthly Jan 1956-Jul 1992.
A093 Monthly Canadian total unemployment figures (thousands) 1956-1975.
A094 Monthly number of unemployed persons in Australia: thousands. Feb 1978-Apr 1991.
A095 Monthly U.S. female (20 years and over) unemployment figures 1948-1981.
A096 Monthly U.S. female (16-19 years) unemployment figures (thousands) 1948-1981.
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A097 Monthly unemployment figures in West Germany 1948-1980.
A098 Monthly U.S. male (20 years and over) unemployment figures 1948-1981.
A099 Wisconsin employment time series, transportation equipment, Jan. 1961-Oct. 1975.
A100 Monthly U.S. male (16-19 years) unemployment figures (thousands) 1948-1981.

693

31



Table 8: Descriptives for the 100 time series.

Code F N Mean Med. SD CV Skew. SW(p) ADF Code F N Mean Med. SD CV Skew. SW(p) ADF

A001 M 539 80 80 5 6 -0.55 <0.01 -0.60† A002 M 1920 271 249 88 33 0.16 <0.01 -1.82†

A003 M 484 2.59x105 2.61x105 6.88x105 27 0.15 <0.01 -0.90† A004 M 310 7 7 2 28 -0.24 <0.01 0.56†

A005 D 92 47.63 31.00 47.33 99.36 2.27 <0.01 -3.16 A006 Q 207 1.95 1.98 0.25 12.78 -0.58 <0.01 0.46†

A007 M 252 2978 2741 1111 37.32 0.79 <0.01 -0.80† A008 M 160 128 128 19 15 0.34 <0.01 -0.59†

A009 M 160 0.72 0.69 0.10 13 0.66 <0.01 0.53† A010 M 160 3.41 3.61 0.83 24 -0.92 <0.01 1.58†

A011 M 201 4.7 2.6 5.0 106 2.24 <0.01 -2.66 A012 M 199 2.1 1.9 1.0 49 0.92 <0.01 -0.79†

A013 M 176 2.5 2.4 1.6 66 -0.52 <0.01 -2.27† A014 M 606 55 53 20 35 0.79 <0.01 -1.41†

A015 M 672 3.39 1.89 3.48 103 1.09 <0.01 2.46† A016 M 672 5.18 2.89 5.78 111 1.13 <0.01 1.91†

A017 M 249 130 130 24 19 0.35 <0.01 0.24† A018 M 249 112 114 25 22 -0.01 0.01* 0.06†

A019 M 605 10.1 9.6 4.5 44 0.05 <0.01 -4.77 A020 M 605 7.3 6.9 4.3 59 0.04 <0.01 -6.07
A021 M 605 7.2 6.8 3.3 46 0.13 <0.01 -4.93 A022 M 605 10.3 9.9 3.8 37 0.04 <0.01 -4.19
A023 M 605 24 24 10 40 -0.02 <0.01 -7.15 A024 M 636 6.9 7.4 2.6 38 -0.29 <0.01 -1.18†

A025 M 343 108 100 33 30 0.99 <0.01 -1.23† A026 M 277 11.7 11.9 2.3 20 -0.16 0.06* -0.40†

A027 M 171 0.21 0.13 0.19 88 1.26 <0.01 -1.81† A028 M 96 4801 4084 2640 54.99 1.55 <0.01 -1.66†

A029 M 248 391 385 116 30 -0.03 0.08* -1.22† A030 M 139 89 92 12 13 -0.82 <0.01 -0.28†

A031 M 121 134 138 27 20 0.05 <0.01 1.51† A032 M 153 113 114 10 9 -0.29 0.45* -0.52†

A033 M 115 117 118 17 15 -0.29 0.03* -0.46† A034 M 115 110 111 11 10 -0.53 0.02* 0.30†

A035 M 1137 40 34 31 78 0.56 <0.01 5.14† A036 M 165 1.08 1.10 0.20 18.37 -1.15 <0.01 -0.59†

A037 M 479 3.04 2.83 1.02 33.60 0.46 <0.01 0.61† A038 M 283 9.39 10.02 2.27 24.15 -0.80 <0.01 -1.01†

A039 M 452 54 52 19 36 -0.15 <0.01 0.08† A040 Q 108 1382 1206 684 49.55 0.83 <0.01 -0.80†

A041 H 197 17.06 17.00 0.39 2.34 0.15 0.21* 0.09† A042 M 118 196.3 166.0 128.0 65.2 0.45 <0.01 0.41†

A043 M 151 391.1 267.0 237.49 60.72 0.43 <0.01 -1.17† A044 M 188 1344 1425 479.1 35.6 -0.41 <0.01 -1.28†

A045 H 296 -0.05 0.00 1.07 -1887 -0.05 0.55* -7.66 A046 M 159 11890 11830 882.93 7.42 0.12 <0.01 5.71
A047 D 365 41.98 42.00 7.34 17.50 0.44 <0.01 -1.07† A048 A 143 2.5x105 2.2x105 2.1x105 83.19 1.06 <0.01 -2.63
A049 M 168 25.05 24.95 2.31 9.25 -0.02 0.02* 0.07† A050 Q 89 15274 15184 1358 8.89 0.19 <0.01 9.72†

A051 A 100 6.69 7.50 5.88 87.87 -2.45 <0.01 -3.06 A052 M 120 713 733 174 24.39 -1.09 <0.01 -0.78†

A053 A 91 81.58 46.00 102.07 125.11 2.80 <0.01 -3.44 A054 A 91 101.80 77.00 92.14 90.51 1.43 <0.01 -3.38
A055 A 91 59.45 39.00 60.42 101.63 1.56 <0.01 -3.99 A056 M 180 492.50 521.50 189.54 38.48 -0.17 <0.01 -0.65†

A057 M 106 489.73 465.00 93.34 19.06 0.92 <0.01 -1.21† A058 M 106 124.71 94.50 84.15 67.48 0.52 <0.01 -3.88
A059 M 136 85.66 80.25 37.54 43.83 0.91 <0.01 -1.88† A060 M 276 118.61 115.63 26.39 22.24 0.86 <0.01 -0.47†

A061 Q 155 61728 47976 53907 87.33 0.44 <0.01 0.06† A062 M 136 5.72x107 5.53x107 1.2x107 21.51 1.13 <0.01 -0.84†

A063 M 142 231.09 226.73 24.37 10.55 0.52 0.01 -0.39† A064 M 136 31388 31251 3232 10.30 0.25 0.22* -0.16†

A065 M 156 754.71 761.00 102.20 13.54 0.01 0.04* 0.04† A066 M 156 746.49 749.15 98.59 13.21 0.08 0.04* -0.38†

A067 M 188 90640 91661 13926 15.36 -0.38 0.01* -0.38† A068 M 94 1540 1532 474.35 30.79 0.38 0.05* 0.54†

A069 M 192 1670 1631 289.61 17.34 0.53 <0.01 -0.74† A070 M 119 91.09 86.20 32.80 36.01 0.34 <0.01 -1.93†

A071 M 168 722.30 709.50 142.66 19.75 0.72 <0.01 -0.52† A072 W 136 5913 5500 1784 30.17 0.67 <0.01 -0.68†

A073 M 114 1120 1158 270.89 24.17 -0.37 <0.01 0.76† A074 M 96 10385 10401 2202 21.21 0.33 0.18* -0.13†
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A075 M 144 280.30 265.50 119.97 42.80 0.57 <0.01 -0.35† A076 M 84 14315 8771 15748 110 3.37 <0.01 -0.29†

A077 W 104 11909 11640 1231 10.34 0.60 <0.01 -0.16† A078 W 104 74636 73600 4737 6.35 0.64 <0.01 -0.59†

A079 W 104 1020 1012 71.78 7.03 0.60 0.01* -0.41† A080 M 132 45.36 44.00 10.38 22.88 0.17 0.15* -0.81†

A081 M 147 1745 1730 479.52 27.47 -0.39 <0.01 -1.15† A082 M 275 52.29 53.00 11.94 22.83 0.18 0.13* -1.30†

A083 M 178 58.79 55.80 6.68 11.36 0.93 <0.01 -0.92† A084 M 192 1.62x105 1.57x105 41661 25.71 0.32 <0.01 0.25†

A085 M 178 40.97 41.50 5.11 12.47 -0.07 <0.01 1.45† A086 M 178 307.56 308.35 46.76 15.20 0.17 <0.01 1.51†

A087 M 252 13.70 14.08 6.13 44.73 0.16 <0.01 1.13† A088 M 252 65.67 68.20 14.25 21.70 -0.53 <0.01 -0.53†

A089 M 252 10.76 10.92 5.11 47.50 -0.19 <0.01 -0.05† A090 M 252 11.74 11.05 5.11 43.54 0.38 <0.01 -0.88†

A091 M 211 7661 7621 819 10.70 0.03 <0.01 3.27† A092 M 439 2.21x105 5.67x104 2.35x105 106.32 0.77 <0.01 1.61†

A093 M 240 413.28 396.50 152.84 36.98 0.36 <0.01 -1.60† A094 M 211 6787 6528 604.62 8.91 0.56 <0.01 2.69†

A095 M 408 1373 1132 686.05 49.96 0.91 <0.01 0.60† A096 M 408 422.38 342.00 252.86 59.87 0.65 <0.01 -1.95†

A097 M 396 7.14x105 5.57x105 5.64x105 78.97 0.79 <0.01 -2.51† A098 M 408 1937 1825 794 41.04 0.64 <0.01 -1.15†

A099 M 178 40.60 40.50 4.95 12.19 -0.65 <0.01 -0.10† A100 M 408 520.28 425.50 261.22 50.21 0.64 <0.01 -1.65†

Note:* indicates data is normally distributed based on a Shapiro-Wilk test at p=0.01.694

† indicates a nonstationary time series based on the Augmented Dickey-Fuller test at p=0.01.695

A indicates annual, M indicates monthly, Q indicates quarterly, W indicates weekly, D indicates daily and H indicates hourly.696

N indicates series length.69733



Table 9: RMSE for out-of-sample forecasts.

VSSA RSSA V SSA

RSSA

Code 1 3 6 12 1 3 6 12 1 3 6 12

A001 0.56 1.12 2.03 3.47 0.57 1.08 2.01 3.48 0.98 1.04 1.01 0.99
A002 25.1 26.98 28.46 29.72 25.5 26.66 28.25 29.93 0.98 1.01 1.01 0.99
A003 10782 12128 12843 13937 11072 12476 13296 14174 0.97 0.97 0.97 0.98
A004 0.22 0.25 0.28 0.40 0.21 0.25 0.28 0.38 1.05 1.00 1.00 1.05
A005 47.06 47.06 43.71 53.57 49.22 49.22 45.96 52.82 0.96 0.96 0.95 1.01
A006 0.05 0.08 0.12 0.18 0.05 0.08 0.12 0.18 1.00 1.00 1.00 1.00
A007 316.13 367.98 391.86 404.19 313.11 357.37 386.55 393.41 1.01 1.03 1.01 1.03
A008 5.31 11.91 16.76 21.00 5.21 11.91 16.76 21.00 1.02* 1.00 1.00 1.00
A009 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 1.00 1.00 1.00 1.00
A010 0.08 0.17 0.23 0.28 0.08 0.17 0.23 0.27 1.00 1.00 1.00 1.04
A011 0.27 0.47 0.65 0.85 0.30 0.48 0.65 0.87 0.90* 0.98 1.00 0.97
A012 0.45 0.91 1.16 1.17 0.46 0.91 1.22 1.21 0.98 1.00 0.95 0.97
A013 0.68 1.88 2.61 2.58 0.77 2.09 2.51 2.42 0.88* 0.90 1.04 1.07
A014 5.37 7.35 8.50 10.71 5.19 7.35 8.42 10.85 1.03* 1.00 1.01 0.99
A015 3.29x109 5.83x109 7.78x109 1.03x1010 3.33x109 5.96x109 7.78x109 1.03x1010 0.99 0.98 1.00 1.00
A016 6.18x109 1.05x1010 1.68x1010 2.01x1010 6.27x109 1.07x1010 1.68x1010 2.02x1010 0.99 0.98 1.00 1.00
A017 7.34 11.50 17.59 22.06 7.35 11.34 17.59 22.20 0.95 1.01 1.00 0.99
A018 5.70 9.62 14.89 21.00 5.76 9.51 14.89 21.27 0.99 1.01 1.00 0.99
A019 1.34 1.31 1.30 1.30 1.32 1.30 1.30 1.30 1.02 1.01 1.00 1.00
A020 1.29 1.28 1.28 1.29 1.28 1.28 1.28 1.29 1.01 1.00 1.00 1.00
A021 1.01 1.06 1.05 1.06 1.04 1.05 1.05 1.05 0.97 1.01 1.00 1.01
A022 1.13 1.15 1.15 1.15 1.14 1.14 1.14 1.15 0.99 1.01 1.01 1.00
A023 1.79 1.91 1.95 1.94 1.82 1.89 1.95 2.09 0.98 1.01 1.00 0.92
A024 0.71 0.89 1.09 1.25 0.71 0.89 1.07 1.28 1.00 1.00 1.02 0.98
A025 21.50 27.06 29.38 33.57 21.2 25.54 30.12 33.78 1.01 1.06 0.98 0.99
A026 1.14 1.57 2.38 2.80 1.17 1.58 2.35 2.83 0.97 0.99 1.01 0.99
A027 0.05 0.11 0.16 0.17 0.05 0.12 0.16 0.16 1.00 0.92 1.00 1.06
A028 1355 1342 1325 1319 1307 1347 1317 1338 1.02 0.99 1.01 0.99
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A029 37.86 50.24 64.62 73.16 38.04 48.83 67.59 76.70 0.99 1.03 0.96 0.95
A030 11.07 12.44 14.14 14.44 11.21 12.48 14.44 14.44 0.99 0.99 0.98 1.00
A031 1.90 3.02 5.65 8.67 1.95 3.06 5.73 8.86 0.97 0.99 0.99 0.98
A032 4.95 7.14 8.92 8.37 5.13 7.41 9.13 8.66 0.96 0.96 0.97 0.97
A033 8.27 11.22 14.36 14.60 8.36 10.66 11.88 14.97 0.99 1.05 1.21 0.98
A034 2.52 4.15 6.06 7.27 2.51 4.56 6.08 7.12 1.00 0.91* 1.00 1.02
A035 0.51 0.99 1.98 3.72 0.51 0.95 1.82 3.50 1.00 1.04* 1.09 1.06*
A036 0.09 0.15 0.14 0.17 0.10 0.15 0.15 0.19 0.90 1.00 0.93 0.89
A037 0.28 0.33 0.39 0.47 0.27 0.33 0.38 0.46 1.04 1.00 1.02 1.02
A038 1.33 1.42 1.54 1.76 1.36 1.45 1.54 1.76 0.98 0.97 1.00 1.00
A039 3.54 5.38 6.61 6.92 3.62 5.22 6.82 7.18 0.98 1.03 0.97 0.96
A040 261 656 934 1120 267 642 917 1039 0.98 1.02 1.02 1.08*
A041 1.90 3.02 5.65 8.67 1.95 3.06 5.73 8.86 0.97 0.99 0.99 1.00
A042 54.31 66.38 73.19 73.63 54.70 63.34 68.19 67.80 0.99 1.05 1.07 1.09
A043 33.17 37.63 48.23 73.29 33.73 37.63 48.23 73.90 0.98 1.00 1.00 0.99
A044 288.66 330.01 344.89 296.53 288.03 341.19 359.28 369.66 1.00 0.97 0.96* 0.80*
A045 0.18 0.64 0.93 0.98 0.19 0.66 0.99 1.00 0.95* 0.97* 0.94 0.98
A046 1.04 1.04 8.22 8.22 1.06 1.06 8.24 8.24 0.98 0.98 0.99 0.99
A047 7.35 7.47 7.60 7.64 7.51 7.57 7.63 7.66 0.98 0.99 0.99 0.99
A048 126025 164402 210423 274295 127864 166804 198390 251622 0.99 0.99 1.06* 1.09
A049 0.87 1.04 1.03 1.10 0.92 1.03 1.03 1.11 0.95 1.01 1.00 0.99
A050 27.64 34.73 62.19 94.28 27.61 36.34 63.08 94.12 1.00 0.96 0.99 1.00
A051 3.49 4.41 4.46 4.60 3.49 4.51 4.55 4.63 1.00 0.98 0.98 0.99
A052 53.66 55.16 55.92 63.02 53.64 54.58 56.23 62.37 1.00 1.01 0.99 1.01
A053 61.22 60.44 59.49 72.41 62.70 63.34 62.36 73.45 0.98 0.97 0.95 0.99
A054 84.24 82.08 80.20 88.85 86.57 83.73 82.02 92.90 0.97 0.98 0.98 0.96*
A055 41.95 42.11 42.86 41.78 42.06 42.32 42.66 41.96 0.99 0.97 1.00 0.99
A056 71.51 71.51 178.72 290.87 71.51 71.51 178.72 290.87 1.00 1.00 1.00 1.00
A057 44.07 44.91 45.85 46.74 42.97 44.90 45.31 43.67 1.03 1.00 1.01 1.07
A058 14.74 20.68 20.79 19.97 14.47 21.32 21.49 20.21 1.02 0.97 0.97 0.99
A059 37.96 38.13 38.55 38.41 38.20 38.64 39.03 38.88 0.99 0.99 0.99 0.99
A060 8.14 8.84 8.28 8.72 8.22 9.15 8.69 8.69 0.99 0.96 0.95 1.00
A061 7474.14 9996.28 17162.38 17162.38 7582.66 9869.33 16140.62 16140.62 0.99 1.01 1.06 1.06
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A062 6.60x106 7.32x106 7.12x106 7.85x106 6.67x106 7.08x106 7.12x106 7.48x106 0.99 1.03 1.00 1.05
A063 6.92 6.95 7.11 6.84 6.99 7.04 7.07 6.98 0.99 0.99 1.01 0.98
A064 2914 2798 3031 3248 3009 2872 3025 3412 0.97 0.97* 1.00 0.95
A065 8.76 15.60 22.51 26.04 9.57 15.19 20.00 26.82 0.92 1.03 1.13 0.97*
A066 9.67 15.54 18.66 24.45 9.21 15.00 18.62 24.67 1.05 1.04 1.01 0.99
A067 9117 10323 11359 10944 9334 10390 11550 10970 0.98 0.99 0.98 0.99
A068 350.57 372.89 377.05 311.86 362.95 381.59 379.63 311.86 0.96 0.98* 0.99 1.00
A069 140.60 162.83 173.12 169.46 141.37 156.66 165.84 165.44 0.99 1.04 1.04* 1.02*
A070 6.05 6.60 6.69 6.44 6.23 6.75 6.81 6.83 0.97 0.98 0.98 0.94
A071 21.65 21.80 22.11 21.86 21.29 22.18 22.27 22.24 1.02 0.98 0.99 0.98
A072 544.61 626.01 681.04 707.54 550.32 640.10 695.69 723.97 0.99 0.98 0.98 0.98
A073 47.80 83.63 131.87 172.71 52.20 94.67 131.88 175.56 0.92 0.88 0.99 0.98
A074 1148 1165 1225 1146 1184 1200 1229 1148 0.97 0.97* 0.99 0.99
A075 15.64 21.63 25.16 25.06 15.91 20.76 24.28 26.27 0.98 1.04 1.04 0.95
A076 7376 7467 7356 7395 7313 7404 7369 7386 1.01 1.01 0.99 1.00
A077 284.40 584.83 940.23 1671.60 295.47 566.41 940.23 1671.60 0.96 1.03 1.00 1.00
A078 786.58 1470 2937 7008 836.09 1295 2258 7008 1.14 1.14 1.06* 1.00
A079 35.23 41.08 57.20 90.34 36.97 43.81 57.20 90.35 0.95 0.94 1.00 0.99
A080 4.40 7.79 10.38 11.54 4.27 7.48 10.22 11.71 1.03* 1.04 1.02 0.99
A081 359.25 428.19 402.64 435.72 359.01 460.02 446.26 434.48 1.00 0.93 0.90 1.00
A082 5.16 6.58 6.85 7.81 5.15 6.42 6.85 8.00 1.00 1.02 1.00 0.98
A083 1.26 1.67 1.68 1.86 1.22 1.62 1.66 1.87 1.03 1.03 0.89 0.99
A084 9187 8977 9362 9260 9244 9159 9218 9355 0.99 0.98 1.02 0.99
A085 0.57 1.18 1.88 2.96 0.60 1.16 2.00 3.14 0.95 1.02 0.94 0.94*
A086 1.73 3.69 4.56 5.70 1.78 3.43 4.24 5.73 0.97 1.08 1.08 0.99
A087 0.61 0.85 1.12 1.63 0.62 0.83 1.10 1.56 0.98 1.02 1.01 1.04
A088 4.02 4.14 4.22 4.15 3.73 4.04 4.21 4.23 1.08 1.02 1.00 0.98
A089 0.86 1.86 2.40 3.06 0.90 1.86 2.41 3.01 0.96 1.00 0.99 1.01
A090 1.90 2.13 2.32 2.38 1.95 2.10 2.17 2.18 0.97 1.01 1.07 1.09
A091 90.35 99.09 130.33 151.02 91.63 99.36 130.33 151.21 0.99 0.99 1.00 0.99
A092 12684 31798 61048 114449 12605 29818 57383 114332 1.01 1.07 1.06 1.00
A093 28.75 56.62 72.69 83.36 31.78 58.39 78.35 88.52 0.90* 0.97 0.93 0.94
A094 42.41 62.21 87.36 140.26 40.61 63.88 88.70 135.15 1.04 0.97 0.98 1.04
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A095 125.38 212.82 280.64 387.12 123.12 213.13 280.64 386.79 1.02 0.99 1.00 1.00
A096 53.58 60.33 68.99 77.91 54.94 61.13 69.24 78.69 0.98 0.99 0.99 0.99
A097 32113 71065 118949 186205 31455 67931 117557 183615 1.02 1.05* 1.01 1.01
A098 148.99 320.59 489.00 643.24 147.85 320.58 503.24 644.74 1.01 1.00 0.97 0.99
A099 2.63 2.90 3.29 3.73 2.77 2.92 3.28 3.75 0.95 0.99 1.00 0.99
A100 65.59 82.26 98.41 119.21 65.44 80.83 93.73 120.72 1.00 1.02 1.05 0.99
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