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Abstract4

Missing values in time series data is a well-known and important problem which5

many researchers have studied extensively in various fields. In this paper, a new6

nonparametric approach for missing value imputation in time series is proposed.7

The main novelty of this research is applying the L1 norm based version of Singular8

Spectrum Analysis (SSA), namely L1-SSA which is robust against outliers. The9

performance of the new imputation method has been compared with many other10

established methods. The comparison is done by applying them to various real and11

simulated time series. The obtained results confirm that the SSA based methods,12

especially L1-SSA can provide better imputation in comparison to other methods.13

Keywords: Time Series, Basic SSA, L1-SSA, Reconstruction, Missing value, Im-14

putation.15

1 Introduction16

When dealing with real-world situations, missing values are commonly encountered in17

time series due to many reasons such as instrument malfunctions or failures to record18

observations, human mistakes and lost records. Eliminating those values may result in19

the loss of key information relevant to the inference. Imputation, which is the estimation of20

missing values, is an important part of the data cleaning process in time series analysis [1].21

Most statistical analysis tools could be used after the imputation of missing values. It22

is noteworthy that imputing missing values alters the original time series; consequently,23

wrong imputation can severely affect the forecasting performance [2]. To this end, some24

authors believe that the treatment of missing observations can be more important than25

the choice of forecasting method [1]. Hence, employing effective and sound imputing26

algorithms to obtain the best possible imputes is of great importance. Missing data also27

prevents the production of statistically reliable statements about the variables and often28

further data analysis steps rely on complete data sets.29

Imputation is a widespread area in time series analysis and some methods have been30

developed for imputing in time series. Examples of some traditional methods can be31

found in [3–7].32
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Choosing the proper imputing technique depends on the structure of time series con-33

cerned. Different series may require different strategies to impute missing values. An34

Expectation-Maximisation (EM) algorithm based method for imputation of missing val-35

ues in multivariate normal time series has been proposed in [8]. This imputation algorithm36

accounts for both spatial and temporal correlation structures [9]. State-space represen-37

tation or Kalman filter approach is another suitable method used for imputing, see [10]38

for more details. The use of ARIMA and SARIMA models for imputation of univariate39

time series was evaluated in [11]. The missing value estimation in the context of additive40

outliers and influential observations in time series can be found in [12, Chap. 6]. For max-41

imum likelihood fitting of ARMA models and estimation of ARIMA models with missing42

values see [13, 14].43

A major drawback of standard imputation methods in time series is assuming sta-44

tionarity for the data, linearity for the model or normality for the errors which can only45

provide an approximation to the real situation. One solution for overcoming these diffi-46

culties is via the employment of nonparametric approaches. Given the advantage of not47

being restricted by any of the parametric assumptions enables nonparametric methods48

to provide a much closer representation of the real world scenario [15]. As such, non-49

parametric methods are extensively used in statistical analyses. The Singular Spectrum50

Analysis (SSA) technique is a very good example of such methods. Applications of this51

powerful and nonparametric technique is increasingly wide spread in time series analysis52

and other fields; for references see e.g. [15–19].53

Interestingly, one of the effective applications of SSA is imputation in time series.54

Some methods for imputation based on SSA have been designed for stationary time series55

[20, 23] whilst in [21] a more general approach which is applicable to different kinds of56

time series was proposed. An extension of SSA forecasting algorithms for gap filling was57

proposed in [24]. In this subspace approach, the structure of the extracted component58

is continued to the gaps caused by the missing values. In another gap filling method59

proposed in [25], a weighted combination of the forecasts and hindcasts yielded by the60

recurrent SSA forecasting algorithm was used. This approach was further enhanced by61

using bootstrap re-sampling and a weighting scheme based on sample variances in [26].62

In this paper, we propose a new approach for missing data imputation in univari-63

ate time series within the SSA framework. In this method, missing values are replaced64

by initial values and then reconstructed repeatedly until convergence occurs. The last65

reconstructed values are considered as imputed values. It is noteworthy that the idea66

underlying the iterative algorithm was derived from [21] and was in fact suggested earlier67

for imputation of gaps in matrices in [22]. The main novelty of the proposed technique68

is its application of the L1 norm based version of SSA, namely L1-SSA which was intro-69

duced in [27]. Recall that the basic version of SSA is based on the Frobenius norm or L270

norm. The main advantages of this newly proposed approach are its robustness against71

outliers and lack of assumptions relating to the stationarity of time series and normality of72

random errors. The results from the proposed method are compared with those attained73

via other established methods such as Interpolation, Kalman Smoothing and Weighted74

Moving Average. The obtained results confirm that the SSA based methods, especially75

L1-SSA can provide better imputation in comparison to other methods.76

The remainder of this paper is organised as follows. A brief introduction into L1-SSA77

and the new imputation method are given in Section 2. The other imputation methods are78

presented in Section 3 in more detail. In addition, this section also evaluates the perfor-79
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mance of imputation methods via applications which compare them with simulated and80

real time series. Finally, Section 4 presents a summary of the study and some concluding81

remarks.82

2 New Imputation Method83

In this section; first, a short description of L1-SSA is presented. Thereafter, we propose84

the new imputation method based on L1-SSA.85

2.1 A Brief Description of L1-SSA86

The SSA technique consists of two complementary stages: Decomposition and Reconstruc-87

tion, and both of these include two separate steps [28]. At the first stage we decompose88

the series in order to enable signal extraction and noise reduction. At the second stage we89

reconstruct a less noisy series and use the reconstructed series for forecasting new data90

points [19]. The theory underlying SSA is explained in more detail in [28]. The most91

common version of SSA is called Basic SSA [28]. It is notable that the matrix norm used92

in Basic SSA is the Frobenius norm or L2-norm. Recently, a newer version of SSA which is93

based on L1-norm and therefore called L1-SSA was introduced and it was confirmed that94

L1-SSA is robust against outliers [27]. In the following, the steps of L1-SSA are concisely95

presented. For more detailed information on L1-SSA, see [27].96

Stage 1: Decomposition97

Let YN = {y1, . . . , yN} be the time series and L (2 ≤ L < N − 1) be some integer called98

the window length.99

Step 1: Embedding100

In this step; firstly, the lagged vectors of size L are built as follows:

Xi = (yi, . . . , yi+L−1)
T , 1 ≤ i ≤ K,

where K = N −L+1. Secondly, the trajectory matrix of the time series YN is defined as:

X = [X1 : · · · : XK ] = (xij)
L,K
i,j=1 =


y1 y2 y3 . . . yK
y2 y3 y4 . . . yK+1

y3 y4 y5 . . . yK+2
... ... ... . . . ...
yL yL+1 yL+2 . . . yN


Note that X has equal elements on the anti-diagonals i+ j = const. Matrices of this type101

are called Hankel matrices.102
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Step 2: Singular Value Decomposition (SVD)103

In this step, the Singular Value Decomposition (SVD) of the trajectory matrix X is
performed. Suppose that λ1, . . . , λL are the eigenvalues of XXT taken in the decreasing
order of magnitude (λ1 ≥ · · · ≥ λL ≥ 0) and U1, . . . , UL are the eigenvectors of the matrix
XXT corresponding to these eigenvalues. Set d = rankX = max{i, such thatλi > 0}, the
number of positive eigenvalues. If we denote Vi = XTUi/

√
λi (i = 1, . . . , d), the SVD of

the trajectory matrix X in L1-SSA can be written as:

X = X1 + · · ·+Xd =
d∑

i=1

wi

√
λiUiV

T
i ,

where Xi = wi

√
λiUiV

T
i . The wi is the weight of singular value

√
λi. These weights104

are diagonal elements of diagonal weight matrix W = diag(w1, w2, . . . , wd︸ ︷︷ ︸
d

, 0, 0, . . . , 0︸ ︷︷ ︸
L−d

) and105

are computed such that
∥∥X−UWΣVT

∥∥
L1

is minimized; where U = [U1 : · · · : UL],106

V = [V1 : · · · : VL], Σ = diag(
√
λ1,

√
λ2, . . . ,

√
λL) and ∥.∥L1 is the L1 norm of a matrix.107

For more information, see [27].108

Stage 2: Reconstruction109

Step 3: Grouping110

In this step, we partition the set of indices {1, . . . , d} into m disjoint subsets I1, . . . , Im.111

Let I = {i1, . . . , ip}. Then the matrix XI corresponding to the group I is defined as112

XI = Xi1 + · · · +Xip . For example, if I = {1, 2, 7} then XI = X1 +X2 +X7. In signal113

extraction problems, r leading eigentriples are chosen. That is, indices {1, . . . , d} are114

partitioned into two subsets I1 = {1, . . . , r} and I2 = {r + 1, . . . , d}.115

Step 4: L1-Hankelization116

In this step, we seek to transform each matrix XIj of the grouping step into a Hankel117

matrix so that these can subsequently be converted into a time series, which is an additive118

component of the initial series YN . Let HA be the result of the Hankelization of matrix A.119

In L1-SSA, Hankelization corresponds to computing the median of the matrix elements120

over the “antidiagonal”. This type of Hankelization has an optimal property in the sense121

that the matrix HA is the nearest to A (with respect to the L1 norm) among all Hankel122

matrices of the same dimension [27]. On the other hand, ∥A − HA∥L1 is minimum; so123

this type of Hankelization is denoted by L1-Hankelization.124

L1-Hankelization applied to a resultant matrix XIj of the grouping step, produces a
reconstructed series Ỹ

(j)
N = {ỹ(j)1 , . . . , ỹ

(j)
N }. Therefore, the initial series YN = {y1, . . . , yN}

is decomposed into a sum of m reconstructed series:

yt =
m∑
j=1

ỹ
(j)
t , t = 1, 2, . . . , N.
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2.2 New Imputation Algorithm Based on L1-SSA125

Prior to presenting the algorithm, we find it pertinent to clarify that we do not change the126

L2-norm to L1-norm during the construction of projectors. Instead, this change occurs at127

the Hankelization step. Thus, the decomposition stage results in a correction of the L2128

decomposition and is therefore in reality, a L1-L2 decomposition.129

Let Y
(i)
N = {y1, . . . , yi−1, ⋆, yi+1, . . . , yN} be the time series where only the ith value is130

missing (i = 1, . . . , N). The symbol ’⋆’ stands for the missing value and it is obvious that131

i is the position of this value. In the iterative L1-SSA imputation method, missing values132

are replaced by initial values and then reconstructed repeatedly until convergence occurs,133

as proposed in [21]. The last reconstructed values are considered as imputed values. This134

imputation algorithm contains the following steps:135

Step 1) Set a suitable initial value in place of missing data.136

Step 2) Choose reasonable values of L and r.137

Step 3) Reconstruct the time series where its missing data is replaced with a number.138

Step 4) Replace the ith value of time series with its ith reconstructed value.139

Step 5) Repeat steps 3 and 4 until the absolute value of the difference between successive140

replaced values of the time series by their reconstructed value is less than δ. (δ141

is the convergence threshold.)142

Step 6) Consider the final replaced value as the imputed value.143

3 Empirical Results144

In this section; firstly, the other imputation methods are briefly discussed. Secondly, the145

comparison criteria which are used in this paper are defined. Thirdly, the performance146

of algorithms for imputation of one missing value are compared via a simulation study.147

Finally, all of the imputation methods are assessed by applying them to real data.148

3.1 Other Imputation Methods149

The other imputation algorithms of univariate time series which are used in this paper150

are as follows:151

1. Iterative Basic SSA: In this method, the imputation algorithm proposed in Section152

2.2 is used for imputation via Basic SSA.153

2. Interpolation: Linear, spline and Stineman interpolation are used to impute missing154

values.155

3. Kalman Smoothing: The Kalman smoothing on the state space representation of an156

ARIMA model is used for imputation.157

4. LOCF: Each missing value is replaced with the most recent present value prior to158

it (Last Observation Carried Forward).159
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5. NOCB: The LOCF is done from the reverse direction, starting from the back of the160

series (Next Observation Carried Backward).161

6. Weighted Moving Average: Missing values are replaced by its weighted moving162

average. The average in this implementation is taken from an equal number of163

observations on either side of a missing value. For example, for imputation of missing164

value at location i, the observations yi−2, yi−1, yi+1, yi+2, are used to calculate the165

mean for moving average window size 4 (2 left and 2 right). The moving average166

window size 8 (4 left and 4 right) is taken into account in this paper. The weighted167

moving average is used in the following three ways:168

• Simple Moving Average (SMA): All observations in the moving average window169

are equally weighted for calculating the mean.170

• Linear Weighted Moving Average (LWMA): Weights decrease in arithmetical171

progression. The observations directly next to the ith missing value (yi−1, yi+1)172

have weight 1/2, the observations one further away (yi−2, yi+2) have weight 1/3,173

the next yi−3, yi+3 have weight 1/4 and so on.174

• Exponential Weighted Moving Average (EWMA): Weights decrease exponen-175

tially. The observations directly next to the ith missing value have weight 1
21

,176

the observations one further away have weight 1
22

, the next have weight 1
23

and177

so on.178

In SSA based imputation methods (Basic SSA and L1-SSA), for reconstruction of179

simulated series in Section 3.3, the number of leading eigenvalues (r) have been selected180

according to the rank of the corresponding trajectory matrix. All calculations of imputa-181

tion methods (except SSA) are done with the help of the R package imputeTS. For more182

information see [29]. For Basic SSA computations, the R package Rssa is employed. For183

more details see [30–32].184

3.2 Comparing Criteria185

In this paper, the performance of algorithms for imputation of one missing value are
compared by means of the commonly applied accuracy measures of Root Mean Squared
Error (RMSE) and Mean Absolute Deviation (MAD). They are defined as follows:

RMSE =

√√√√ 1

N

N∑
i=1

e2i ,

MAD =
1

N

N∑
i=1

|ei|,

where ei = yi − ŷi is the imputing error and ŷi is the imputed value for yi.186

The following ratios are used for comparing L1-SSA and other methods:

RRMSE =
RMSE based on L1-SSA

RMSE based on another method ,

RMAD =
MAD based on L1-SSA

MAD based on another method ,
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It is clear that if the above ratios are less than 1, then we can conclude that L1-SSA
outperforms the competing method of imputation by 1−RRMSE percent (or 1−RMAD
percent). For comparing Basic SSA and L1-SSA, the Ratio of Absolute Error (RAE) is
used:

RAE(i) =
|ei| based on L1-SSA

|ei| based on Basic SSA ,

where RAE(i) denotes the value of RAE after imputing the ith missing observation. If187

RAE(i) < 1, then L1-SSA outperforms Basic SSA. Alternatively, when RAE(i) > 1,188

it would indicate that the performance of L1-SSA is worse than Basic SSA. For better189

comparison, the dashed horizontal line y = 1 is added to all figures of RAE.190

3.3 Simulation Results191

The following simulated time series are used in this study:192

(a) yt = sin(πt/6) + εt193

(b) yt = exp(0.01t) + εt194

(c) yt = 0.1t+ sin(πt/6) + sin(πt/3) + εt195

(d) yt = 0.1t+ sin(πt/12) + sin(πt/6) + sin(πt/4) + sin(πt/3) + sin(5πt/12) + εt196

where t = 1, 2, . . . , 100 and εt is the noise generated by a normal distribution. In each of197

the simulated series, one observation is removed artificially at different positions to create198

one missing value. Additionally, three outliers with different magnitude are inserted in199

each simulated series at non-equidistant positions for assessing the performance of the200

imputation methods when faced with outliers. It is assumed that the positions of the201

missing values are not the same as of the outliers.202

For SSA imputation, we need two parameters; L and r. The window length (L)203

for those cases is chosen as 48, 50, 48 and 48 respectively. For more details and useful204

recommendations about window length selection, see [17]. The number of the eigenvalues205

that are required for reconstruction for those cases are 2, 1, 6 and 12 respectively. In the206

simulation study; firstly, the noise is generated by a normal distribution. Secondly, the207

generated noise is added to a noiseless time series (e.g. Sine series). Thirdly, the ratio208

of the comparing criteria (RRMSE and RMAD) are calculated. These three stages are209

repeated 1000 times and finally, the mean of RRMSE and RMAD are reported.210

In Table 1, the different imputation methods are compared in terms of RRMSE and211

RMAD. Results show that L1-SSA reports better performance in comparison to other212

methods in all cases. It is noteworthy that Basic SSA is the next best imputation method213

in all cases.214
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Table 1: Comparison of imputation methods.
case a case b case c case d

Method RRMSE RMAD RRMSE RMAD RRMSE RMAD RRMSE RMAD
Basic SSA 0.63 0.6 0.85 0.85 0.58 0.57 0.55 0.48
Linear Inter. 0.26 0.38 0.34 0.52 0.32 0.32 0.47 0.43
Spline Inter. 0.16 0.28 0.21 0.32 0.24 0.39 0.35 0.48
Stineman Inter. 0.26 0.43 0.33 0.51 0.33 0.36 0.49 0.46
Kalman Smoothing 0.32 0.34 0.65 0.67 0.08 0.2 0.33 0.36
LOCF 0.14 0.15 0.25 0.46 0.19 0.17 0.28 0.26
NOCB 0.14 0.15 0.24 0.45 0.18 0.17 0.29 0.27
SMA 0.14 0.12 0.58 0.62 0.18 0.15 0.31 0.25
LMA 0.18 0.16 0.56 0.62 0.2 0.17 0.35 0.28
EWMA 0.24 0.22 0.5 0.6 0.24 0.2 0.39 0.31

Figures 1-4 show the plots of the errors for different imputation methods for all cases.215

From these figures we can conclude that the following results satisfy for all cases:216

1. In the LOCF method, the absolute value of the imputation error increases if the217

missing value has been placed just after the outlier. However in NOCB method,218

this is true if the missing value has been placed just before the outlier.219

2. In interpolation methods (Linear, Spline and Stineman), the absolute values of the220

imputation error for neighborhoods of the outliers are greater than elsewhere.221

In case (a), the wave pattern of the imputation error is visible almost for all methods.222

Also in the L1-SSA method, the imputation error at the end of series is greater than223

elsewhere.
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Figure 1: Plots of imputation errors in Sine series (case a).
224

In case (b), the imputation errors show an upward pattern for Kalman smoothing225

method. Also in Weighted Moving Average methods (SMA, LMA and EWMA), the226

absolute values of the imputation error for neighbourhoods of the outliers are greater227

than elsewhere.228
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Figure 2: Plots of imputation errors in Exponential series (case b).

In case (c) similar to case (a), there is wave pattern in imputation errors almost for all229

methods. Also in the L1-SSA method, the imputation error at the end of series is greater230

than elsewhere.
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Figure 3: Plots of imputation errors for case c.
231

In case (d), similar to cases (a) and (c), there is wave pattern in imputation errors232

almost for all methods. Also in this case, the absolute values of the imputation error for233

neighbourhoods of the outliers are greater than the rest.234
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Figure 4: Plots of imputation errors for case d.

In Figure 5, the plots of absolute errors and RAE for SSA based imputation methods235

are presented for all cases. Interestingly, it is evident from these figures that L1-SSA has236

superiority over Basic SSA for imputation of missing values when there are outliers in237

time series. The solid and dash lines correspond to basic SSA and L1-SSA, respectively.238
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Figure 5: Plots of absolute errors and RAE for all cases.

3.4 Real Data239

In this subsection, the efficiency of imputation methods are compared for imputing of240

one missing value in real data. To this end, three time series data sets are considered as241

follows:242

10



1. War series: The U.S. combat deaths in the Vietnam War, monthly from January243

1966 to December 1971 including 72 observations [33].244

2. Chickenpox series: Monthly reported number of chickenpox in New York city245

from January 1931 to June 1972 comprising 498 observations [34].246

3. Measles series: Number of cases of measles in Baltimore, monthly from January247

1939 to June 1972 containing 402 observations [35].248

Figure 6 shows the time series plot of these data sets. Here, let us assume that there249

are two outliers in February and May 1968 in the War series. Also assume that the250

Chickenpox series includes three outliers in March and April 1949 and March 1953, and251

that there are three outliers in February 1939, March 1944 and March 1949 in the Measles252

series.253
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Figure 6: Time series plot of real data.

For reconstructing, L = 21, 51, 28 and r = 7, 30, 21 are used for SSA based imputation254

in War, Chickenpox and Measles series; respectively. Similar to simulated series, one255

observation is removed deliberately at different positions to create one missing value.256

In Table 2, the different imputation methods are compared according to the RRMSE257

and RMAD criteria. Results indicate that L1-SSA is the best imputation method. It is258

noteworthy that based on the RRMSE, the next best method is Basic SSA.259
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Table 2: Comparison of imputation methods for real data.
War series Chickenpox series Measles series

Method RRMSE RMAD RRMSE RMAD RRMSE RMAD
Basic SSA 0.91 0.79 0.98 0.97 0.95 0.77
Linear Inter. 0.86 0.85 0.78 0.79 0.61 0.74
Spline Inter. 0.82 0.77 0.83 0.85 0.83 0.8
Stineman Inter. 0.86 0.84 0.8 0.84 0.63 0.81
Kalman Smoothing 0.81 0.73 0.94 0.97 0.95 0.94
LOCF 0.69 0.68 0.39 0.39 0.35 0.38
NOCB 0.69 0.68 0.39 0.39 0.36 0.39
SMA 0.85 0.83 0.29 0.26 0.28 0.27
LMA 0.88 0.89 0.36 0.33 0.33 0.32
EWMA 0.9 0.91 0.46 0.42 0.39 0.4

Figures 7-9 depict the plots of imputation errors for different imputation methods. It260

can be seen that the imputation error increases if the missing value is an outlier.261

Position of Missing Value

E
rr

or

−
40

0
0

20
0

40
0

60
0

Basic SSA

0 20 40 60

−
40

0
0

20
0

40
0

60
0

80
0 L1−SSA

−
50

0
0

50
0

Linear Interpolation

0 20 40 60

−
50

0
0

50
0

Spline Interpolation

−
50

0
0

50
0

Stineman Interpolation

−
60

0
−

20
0

0
20

0
40

0
60

0

Kalman Smoothing

−
10

00
−

50
0

0
50

0
10

00

LOCF

−
10

00
−

50
0

0
50

0
10

00

NOCB

0
50

0

0 20 40 60

SMA

0
50

0

LWMA

0
50

0

0 20 40 60

EWMA

Figure 7: Plots of imputation errors in War series.
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Figure 8: Plots of imputation errors in Chickenpox series.
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Figure 9: Plots of imputation errors in Measles series.

Figure 10 shows the plots of absolute errors and RAE for SSA based imputation262

methods in real data. From these plots, it can be deduced that almost always, L1-SSA263

has better performance than Basic SSA.264
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Figure 10: Plots of absolute errors and RAE for real data.

4 Conclusion265

In this paper, we proposed a new nonparametric approach for missing value imputation of266

univariate time series within the SSA framework. In the proposed method, the L1 norm267

based version of SSA, namely L1-SSA, was applied for imputation of missing values in268

the presence of outliers.269

The performance of the new imputation method was compared with many other estab-270

lished methods such as Interpolation, Kalman Smoothing and Weighted Moving Average271

with respect to RMSE and MAD criteria using both simulated and real world data.272

In particular, it was expected that L1-SSA would enable better imputation in com-273

parison to basic SSA when faced with outliers, because L1 norm is less sensitive than L2274

norm to the presence of outliers. It is interesting that the comparison of results confirm275

that almost always L1-SSA outperforms basic SSA.276

The results obtained in this study also indicates that the SSA based methods (L1-277

SSA and basic SSA) can provide better imputation in comparison to other methods when278

faced with time series polluted by outliers. This was proven via both the simulation and279

application to real data.280

In terms of future research, the capability of L1-SSA for multiple imputation will be281

considered. The important issue of selecting the optimal parameters of SSA for impu-282

tation (L and r) has potential for further exploration, and those interested can begin283

by considering the research in [21] which presents one approach to the choice of SSA284

parameters for iterative gap-filling.285
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