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Abstract

The internet gives us free access to a variety of published forecasts. Motivated by this
increasing availability of data, we seek to determine whether there is a possibility of exploiting
auxiliary information contained within a given forecast to generate a new and more accurate
forecast. The proposed theoretical concept requires a multivariate model which can consider
data with different series lengths as forecasts are predictions into the future. Following
applications which consider published forecasts generated via unknown time series models
and forecasts from univariate models, we achieve promising results whereby the proposed
multivariate approach succeeds in extracting the auxiliary information in a given forecast
for generating a new and more accurate forecast, along with statistically significant accuracy
gains in certain cases. In addition, the impact of filtering and the use of Google Trends
within the proposed methodology is also considered. Overall, we find conclusive evidence
which suggests a sound opportunity to exploit the forecastability of auxiliary information
contained within existing forecasts.

Keywords: Forecasting; auxiliary information; published forecasts; Google Trends; Multi-
variate Singular Spectrum Analysis.

1 Introduction

The highly volatile economic, social, political and environmental conditions across the globe
have increased the prolific importance of accurate forecasts for planning and decision making. In
response, a wide range of forecasts are published regularly via online platforms (see for example,
Office for National Statistics in UK, U.S. Energy Information Administration and Central Banks
across the globe), whilst the emergence of Big Data continues to provide new insights and
opportunities for improving the accuracy of forecasts within a multivariate framework [19].
There is also evidence of researchers actively engaging in exploiting such freely available, publicly
accessible data. For example, in [2], the authors exploit such auxiliary information to analyse
the statistical profile of jobs whilst in [53] the authors note that advances in mobile devices and
sensors have increased interest in multivariate time series modelling. Moreover, there is also a
growing interest in developing new forecasting methods and procedures, see for example [9–11].
Motivated by such advances, we seek to show how auxiliary information in the form of forecasts
can also be exploited further.

Prior to diving deeper into the gist of this research, it is important to note the difference
between univariate and multivariate forecasting. Historically, univariate forecasting, the use of
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historical data for a given variable to obtain a forecast for that same variable, has been the
most popular norm with a wide range of successful applications (see for example, [21, 47, 54]
). However, in the recent past, emphasis has been placed on multivariate forecasting, which is
the use of multiple variables to generate a forecast for a particular variable of interest (see for
example, [38,44,49] ). This distinction is important as the published forecasts which are used as
examples in this paper are a result of complex multivariate approaches and are widely regarded
as being highly accurate.

Given the increasing availability of forecasts, our interest lies in investigating the possibility of
exploiting the auxiliary information in forecasts. That is, once any forecast has been generated,
is there a possibility of extracting the auxiliary information contained within a given forecast in a
multivariate framework, to create a new and improved forecast which outperforms the accuracy
of the initial forecast? In other words, the proposed theoretical development suggests the use
of historical data for a given variable with a forecast for that same variable in a multivariate
framework (there is room for additional explanatory variables including the forecast) to produce
a new forecast. In light of the information age and increasing availability of forecasts from
different sources for the same object, methods for combining this information and delivering a
superior forecast can be of obvious value.

It is hypothesized that, given a forecast is accurate to some extent, then a comparatively more
accurate forecast can be generated via a multivariate modelling process which can exploit the
auxiliary information already contained within the original forecast. Historically, many authors
have successfully considered building forecasting models which consider time lags into the past
(see, [8,27,33,46,50] for some recent examples). However, modelling a forecast invariably means
that one must be able to model data which captures information into the future. Herein lies the
complication as there exists no published research on combining and modelling historical data
with forecasts into the future, and to the best of our knowledge there is no published research
which seeks to exploit the forecastability of auxiliary information in forecasts.

This research considers forecasts from various models as benchmarks. The choice of bench-
marks are justified as the tool used for exploiting the forecastability of auxiliary information in
forecasts is of little or no use unless it can outperform the accuracy of existing forecasts based on
some accuracy criterion. It is important to note that; the usual multivariate modelling problem
involves using two different time series with equal series length and extracting any useful infor-
mation for improving the accuracy of forecasts for both variables or one of the two variables.
In contrast, in this research we consider historical data for the variable of interest, along with
a forecast for that same variable, and seek to generate a new forecast which can outperform
the accuracy of the original forecast. Therefore, not all multivariate forecasting techniques can
exploit this new idea as not all of them are able to model time series of different lengths.

Accordingly, the theoretical concept proposed herewith requires a model which can meet two
conditions:

1. It should be able to consider data with different series lengths.

2. It should be able to model forecasts, which are essentially data into the future.

As such, any model which meets these two criteria can be used to exploit the forecastability of
auxiliary information in forecasts.

To the best of our knowledge, the Multivariate Singular Spectrum Analysis (MSSA) [17]
technique is the only contender for this approach at present. This is because of its capability at
modeling multiple time series with different series lengths, which indicates that it could model
data into the future. In brief, the MSSA process filters the data and extracts signals which

2



can be used to generate a new time series that is less noisy, and then uses this less noisy,
reconstructed series for generating a forecast [40]. In comparison to its univariate counterpart,
Singular Spectrum Analysis (SSA) [4,5,14], which has a variety of applications [1,13,21,22,26,
30–32, 34, 37, 41, 43, 51], MSSA is yet to be exploited on a similar scale. As a result there have
been comparatively few applications of MSSA, see for example [6, 20,25,35,39,42,44].

It is noteworthy that the MSSA technique also has the advantage of being nonparametric.
As such, MSSA is not bound by the parametric assumptions of normality and stationarity of
residuals, or linearity of the model [40]. This feature enables one to model the data without any
transformations, which in turn helps ensure a comparatively more accurate approximation to
the real situation with no loss of information [25].

At this stage, it is also pertinent to distinguish between the proposed theory for exploiting
the forecastability of auxiliary information in forecasts and the long existing field of forecast
combination in time series literature. For example, in [7] the authors consider combining com-
peting forecasts to develop a new and improved forecast via variance-covariance based methods
or regression based methods. In another example, the authors create a multivariate combined
forecast by merging principal component regression method, the partial least squares regression
method and the modified partial least squares regression method [52] whilst in [48] the authors
considered a semi-heterogeneous approach to combining crude oil price forecasts. However, the
proposed approach is completely different and novel as it combines historical data with a fore-
cast and seeks to extract the auxiliary information contained within the forecast using a single
multivariate model and produces a new and improved forecast.

It is not the intention of this paper to claim any methodological advances at this stage, and
we subscribe to the view that it is possible to build more sophisticated forecasting models than
those used here. However, we strongly believe that the approach described in this paper can
serve as a foundation to aid forecasters in exploiting their own modelling and analytical skills
to develop methodological advances refined for specific applications. In brief, the findings of our
research provides substantial evidence supporting the applicability and feasibility of the pro-
posed theoretical development along with statistically significant results in certain cases. The
applications we present not only considers exploiting the forecastability of auxiliary informa-
tion in published forecasts, but also forecasts from other time series analysis and forecasting
models. Overall, the findings indicate that there exists a sound possibility for exploiting the
forecastability of auxiliary information in forecasts.

The remainder of this paper is organized as follows. In Section 2 we introduce the theory
underlying exploiting the forecastability of auxiliary information in forecasts. Within the the-
oretical framework we also introduce the MSSA forecasting algorithms used in this research.
Section 3 is dedicated to applications and a concise discussion is presented in Section 4. The
paper concludes in Section 5.

2 Theoretical Development

Assume that we have a time series Y
(1)
N of length N , and further auxiliary information through

a h-step ahead forecast for Y
(1)
N contained in Ω. Thus, Ω is a h× 1 vector of future information

about Y
(1)
N . Note that Y

(1)
N and Ω are time series with different series lengths as shown below.

The data in Ω can represent any forecast for Y
(1)
N , attained using any approach (from experts,

forecasting models, or news). Our hypothesis is that, provided the information contained in Ω is
accurate to a certain degree, then we can utilize this information alongside historical information

in Y
(1)
N within a multivariate framework to develop an all new forecast for Y

(1)
N which will
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outperform the accuracy of the forecast in Ω.

For explanation purposes, let us assume Y
(1)
N is the actual data for a variable and Ω is the

h-step ahead forecast for that same variable, such that:

Y
(1)
N =


y1
y2
...
yN

 and Ω =


ω1

ω2
...
ωh

 . (1)

Then, a new N + h × 1 vector can be constructed by incorporating the historical values with

the forecasted values such that, Y
(2)
N+h = (Y

(1)
N ,Ω):

Y
(2)
h =



y1
...
yN
ω1
...
ωh


. (2)

From this point onwards, we suggest exploiting the MSSA technique [17]. MSSA can model
time series with different series lengths to extract any auxiliary information contained within Ω

and then use this information in combination with the historical data in Y
(1)
N , to produce a new

forecast which can outperform the accuracy of the forecast in Ω.
The entire MSSA process is dependent on the choices of the Window Length L (an integer

such that 2 ≤ L ≤ N/2) and the number of eigenvalues r. Those interested in a discussion
on the selection of these two choices are referred to [40]. The first stage in MSSA is called
Decomposition, and the first step here is embedding which maps a one dimensional time series
into a multidimensional time series [40]. We can define the trajectory matrices X(i) (i = 1, 2)

of the one-dimensional time series Y
(i)
Ni

(i = 1, 2) with different series length. Thus, applying the

above procedure to Y
(1)
N and Y

(2)
N+h separately provides 2 different Li ×Ki trajectory matrices

X(i) (i = 1, 2), such that

X(1) = (xij)
L,K
i,j=1 =


y1 y2 · · · yK
y2 y3 · · · yK+1
...

...
. . .

...
yL yL+1 · · · yN

 , (3)

where K = N − L+ 1. However, our interest is in modelling Y
(1)
N and Y

(2)
N+h. As such, we need

to perform embedding over Y
(2)
N . Thus, X(2) = [X1, ..., XK , . . . , XK+h],

X(2) = (xij)
L,K+h
i,j=1 =


y1 y2 · · · yK yK+1 · · · ωK+h

y2 y3 · · · yK+1 yK+2 · · · ωK+h+1
...

...
. . .

...
...

. . .
...

yL yL+1 · · · yN ωN+1 · · · ωN+h

 . (4)
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Following the embedding process, we organise a new block Hankel matrix. Here, we use the
MSSA approach in vertical form (VMSSA). However, there are some restrictions in the selection
of the values of K and it is required that K1 = K2 = K [17]. Accordingly, the VMSSA approach
enables us to have various window length Li and different series length Ni, but as we mentioned
above, the same Ki for all series. Note also that if one wishes to use the horizontal form, similar
L and different K should be used. Those interested in a detailed discussion are referred to Sanei
and Hassani [40]. However, we find it pertinent to follow Hassani and Mahmoudvand [17] and
present the reader with a summary of the similarities and differences between the VMSSA and
HMSSA forecasting algorithms via Table 1.

Table 1: Similarities and dissimilarities between the VMSSA and HMSSA forecasting algorithms.

Method Series Length Li Ki Number of λi LRF

VMSSA-R Different Different Equal
∑
Li Different

HMSSA-R Different Equal Different L Equal

Then, the block Hankel trajectory matrix can then be defined as

XV =

[
X(1)

X(2)

]
, (5)

where, XV indicates that the output of the embedding step is in vertical form. It is important to
note that the dimensions in XV are compatible because the VMSSA process allows one to have
various Li and different Ni whilst restricting the selection of values of Ki, which must be the
same for all series. Next, we obtain the SVD of XV which is the second step in MSSA. Denote
λV1 , . . . , λVLsum

as the eigenvalues of XV XT
V , arranged in decreasing order

(
λV1 ≥ . . . λVLsum

≥ 0
)

and UV1 , . . . , UVLsum
, the corresponding eigenvectors, where Lsum = L1 +L2. Note also that the

structure of the matrix XV XT
V is as follows:

XV XT
V =

[
X(1)X(1)T X(1)X(2)T

X(2)X(1)T X(2)X(2)T

]
. (6)

The structure of the matrix XV XT
V is similar to the variance-covariance matrix in the classical

multivariate statistical analysis literature. The matrix X(i)X(i)T , which is used in SSA, for

the series Y
(i)
Ni

, appears along the main diagonal and the products of two Hankel matrices

X(i)X(j)T (i 6= j), which are related to the series Y
(1)
N and Y

(2)
N+h, appears in the off-diagonal.

The SVD of XV can be written as XV = XV1 + · · · + XVLsum
, where XVi =

√
λiUViVVi

T

and VVi = XT
V UVi/

√
λVi (XVi = 0 if λVi = 0). Also noteworthy is that, if we used SSA,

whereby we consider information from one variable, then we have singular values in the form
of λi = λ1, λ2, . . . , λL (i = 1, . . . , L). In contrast, with MSSA, the singular values capture
additional information contained within the additional variable(s) included in the model, such
that we obtain λ∗i = λω1, λω2, . . . , λωL, where λ∗i 6= λi + λωi.

Having extracted the singular values, we move on to the second stage of MSSA entitled Re-
construction, which incorporates the steps of Grouping and Diagonal Averaging [17]. Grouping
corresponds to splitting the matrices XV1 , . . . ,XVLsum

into several disjoint groups and summing
the matrices within each group, such that the split of the set of indices {1, . . . , Lsum} into dis-
joint subsets I1, . . . , Im corresponds to the representation Xv = XI1 + · · ·+ XIm . The procedure
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of choosing the sets I1, . . . , Im is called grouping. The purpose of this step is to analyze the
singular values and differentiate between signal and noise. On the other hand, Diagonal Aver-
aging transforms the reconstructed matrix X̂Vi into the form of a Hankel matrix, which can be
subsequently converted to a time series for forecasting future data points. Those interested in
a detailed description of these two steps are referred to [17]. In what follows, we briefly outline
the VMSSA forecasting algorithms and in doing so we mainly follow [17].

2.1 VMSSA Recurrent Forecasting Algorithm (VMSSA-R)

Let us have two series with different length Y
(i)
Ni

= (y
(i)
1 , . . . , y

(i)
Ni

) and corresponding window
length Li, 1 < Li < Ni, i = 1, 2. The VMSSA-R forecasting algorithm for the h-step ahead
forecast is as follows.

1. For a fixed value ofK, construct the trajectory matrix X(i) = [X
(i)
1 , . . . , X

(i)
K ] = (xmn)Li,K

m,n=1

for each single series Y
(1)
N1

, and Y
(2)
N2

separately.

2. Construct the block trajectory matrix XV as follows:

XV =

[
X(1)

X(2)

]
. (7)

3. Denote λV1 ≥ . . . ≥ λVLsum
≥ 0 are the eigenvalues of the XV XT

V , where Lsum = L1 + L2.

4. Let UVj = (U
(1)
j , U

(2)
j )T be the jth eigenvector of the XV XT

V , where U
(i)
j with length Li

corresponds to the series Y
(i)
Ni

(i = 1, 2).

5. Consider X̂V = [X̂1 : . . . : X̂K ] =
∑r

i=1 UViU
T
Vi

XV as the reconstructed matrix achieved
from r eigentriples:

X̂V =

[
X̂(1)

X̂(2)

]
. (8)

6. Consider matrix X̃(i) = HX̂(i) (i = 1, 2) as the result of the Hankelization procedure of
the matrix X̂(i) obtained from the previous step, where H is a Hankel operator.

7. Assume U
(i)O
j denotes the vector of the first Li− 1 components of the vector U

(i)
j and π

(i)
j

is the last component of the vector U
(i)
j (i = 1, 2).

8. Select the number of r eigentriples for the reconstruction stage that can also be used for
forecasting purpose.

9. Define matrix UO(1,2) =
(
U

O(1,2)
1 , . . . , U

O(1,2)
r

)
, where U

O(1,2)
j is as follows:

U
O(1,2)
j =

[
U

(1)O
j

U
(2)O
j

]
. (9)
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10. Define matrix W as follows:

W =

[
π
(1)
1 π

(1)
2 · · · π

(1)
r

π
(2)
1 π

(2)
2 · · · π

(2)
r

]
. (10)

11. If the matrix
(
I2×2 −WWT

)−1
exists and r ≤ Lsum − 2, then the h-step ahead VMSSA

forecasts exist and is achieved by the following formula:

[
ŷ
(1)
j1
, ŷ

(2)
j2

]T
=


[
ỹ
(1)
j1
, ỹ

(2)
j2

]
, ji = 1, . . . , Ni

(
I2×2−WWT

)−1
WUO2TZh, ji = Ni + 1, . . . , Ni+h,

(11)

where, Zh =
[
Z

(1)
h , Z

(2)
h

]T
and Z

(i)
h =

[
ŷ
(i)
Ni−Li+h+1, . . . , ŷ

(i)
Ni+h−1

]
(i = 1, 2). It should be

noted that equation (11) indicates that the h-step ahead forecasts of the refined series Ŷ
(i)
Ni

are obtained by a multi dimensional linear recurrent formula (LRF). For the univariate
case, there is only a one dimensional LRF.

2.2 VMSSA Vector Forecasting Algorithm (VMSSA-V)

Let us have items 1-10 of VMSSA-R. Consider the matrix:

Π = UOU
OT

+R
(
I2×2 −WWT

)
RT , (12)

where, R = UOWT
(
I2×2 −WWT

)−1
. Let Π =

(
Π(1),Π(2)

)T
and R =

(
R(1),R(2)

)T
, where

Π(i) with dimension (Li − 1)× (Lsum − 2) and R(i) (i = 1, 2) with length Lsum − 2 correspond

to the series Y
(i)
Ni

.

Then, Theorem 1 in [17] indicates that the linear projection P(ν) : Lr 7→ RLsum−2 by the
following formula provides the continuation vectors for the multivariate V-forecasting.

P(ν)Y =


Π(1)YM
R(1)TYM
Π(2)YM
R(2)TYM

 , Y ∈ Lr, (13)

where, Y T
M =

(
Y

(1)
M , Y

(2)
M

)
such that Y

(i)
M (i = 1, 2) denotes the last Li−1 entities of Yi with length

Li. Using above notations, the following algorithm is proposed for calculating the VMSSA-V
forecasts.

1. Define vectors Zi as follows:

Zi =

{
X̃i for i = 1, . . . , k

P(ν)Zi−1 for i = k + 1, . . . , k + h+ Lmax − 1,
(14)

where, Lmax = max{L1, L2}.

2. Constructing the matrix Z = [Z1 : ... : ZK+h+Lmax−1] and making its hankelization. Using

this calculation we obtain ŷ
(i)
1 , . . . , ŷ

(i)
N+h+Lmax

(i = 1, 2).

3. The numbers ŷ
(i)
Ni+1, . . . , ŷ

(i)
Ni+h

(i = 1, 2) form the h step ahead VMSSA-V forecasts.
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3 Applications

In this section we consider applications of the proposed theoretical development to show its
validity and feasibility in practice. In the real world, forecasters (for example, consider official
forecasts) are usually interested in providing predictions for the coming year (i.e. 12 steps-ahead
for monthly data and 4 steps-ahead for quarterly data). As such, we consider applications which
provide out-of-sample forecasts for the next year. For example, if we are dealing with monthly
data, the last 12 observations for which 12 forecasted data are available are set aside as the
out-of-sample data and the remainder is used for training and testing the forecasting models.
Where 12 observations are forecasted, this means the first forecasted data point is the h = 1
step-ahead forecast, the second forecasted data point is the h = 2 steps-ahead forecast and so
on up until the final forecasted data point which represents the h = 12 steps-ahead forecast or
the 12 months ahead value for a given variable.

3.1 Metrics

We use the Root Mean Squared Error (RMSE), which is one of the most frequently cited loss
functions in forecasting literature [12, 23, 24, 45], and the Ratio of the RMSE (RRMSE) to
evaluate and distinguish between the forecasts obtained via different models.

RMSE =

(
1

n

n∑
i=1

(Yi − Ŷi)2
) 1

2

, (15)

where, Yi is the actual value, Ŷi refers to a forecast from a given model, and n is the number
of the forecasts. On the other hand, the RRMSE enables one to quantify the percentage gain
or loss made by one model in comparison to another model in terms of its forecast accuracy.
Accordingly, if MSSA

SSA is less than 1, then this shows that MSSA outperforms SSA by 1-MSSA
SSA

percent and vice versa.

3.2 Benchmarks

In addition to considering various published forecasts as benchmarks, this paper also considers
model based forecasts from SSA [40], ARIMA [29], Exponential Smoothing [28], and Holt-
Winters [36] as benchmarks for comparison against forecasts derived through the newly proposed
VMSSA approach. It is noteworthy that the chosen model based benchmarks are frequently used
in time series literature, and represent both parametric and nonparametric time series analysis
and forecasting models.

The applications which follow considers different scenarios. Initially, we begin by considering
the possibility of exploiting the forecastability of auxiliary information in published forecasts.
This is followed by applications which consider exploiting the forecastability of auxiliary informa-
tion in forecasts generated via other univariate time series analysis and forecasting models. All
outcomes are evaluated for statistical significance using not only the modified Diebold-Mariano
(DM) test in [15], but also the Hassani-Silva (HS) test [18] which is based on the Kolmogorov-
Smirnov test and principles of stochastic dominance. It should be noted that as a result of a
small number of observations for evaluating forecast accuracy, it is not entirely surprising that
this research results in minimal statistically significant outcomes at present. Also, all refer-
ences to VMSSA-R and VMSSA-V forecasting results show the RMSE or RRMSE obtained via
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the newly proposed theory for exploiting the forecastability of auxiliary information in forecasts.

Scenario 1: Published Forecasts as Additional Information

Considered as the first example is the possibility of exploiting the forecastability of auxiliary
information in published forecasts. Here, we consider forecasts obtained via the U.S. Energy In-
formation Administration (EIA)1 for a variety of energy variables, and a forecast for inflation by
a group of non-financial service providers which includes manufacturers, universities, forecasting
firms, investment advisors, pure research firms and consulting firms. The EIA time series are
shown in Figure 1. The last year is considered as out-of-sample data and the results from the
forecasting exercise are reported in Tables 2 and 3.
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Figure 1: The EIA time series on energy used as examples.

The first application considers modelling the U.S. industrial sector average regional electricity
prices. The RMSE values in Table 2 show that both VMSSA models are outperforming the EIA
and SSA forecasts. We go a step further and calculate the RRMSE values and then compare
the forecast errors from each model for statistically significant differences. As seen in Table 3,
the RRMSE criterion indicates that both VMSSA forecasts are 4% better than the EIA forecast

1http://www.eia.gov/forecasts/steo/outlook.cfm
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and 26% better than SSA-R and SSA-V forecasts. In this case, there is evidence of the newly
proposed VMSSA approach outperforming SSA forecasts with statistically significant results
and thus provides sound evidence for the validity of the proposed theory in practice.

The next application considers average residential natural gas prices in the United States.
Again, based on the RMSE values, the VMSSA forecasts outperform the EIA and SSA forecasts.
The VMSSA-V model reports the lowest RMSE (Table 2). The RRMSE values show that the
VMSSA-V forecast is 6% better than the EIA forecast, and 9% better than the SSA-V forecast,
whereas the VMSSA-R forecast is 5% better than the EIA forecast and 8% better than the
SSA-R forecast. However, we find no evidence of statistically significant differences between any
of the competing forecasts in this application.

Table 2: RMSE when using official forecasts for forecasting last year of each data set.

Series OF SSA-V SSA-R VMSSA-V VMSSA-R

EIA
Electricity Price 0.24 0.31 0.31 0.23 0.23
Gas Price 0.87 0.90 0.90 0.82 0.83
Electricity Sales 253.46 392.69 306.44 253.95 248.53
Oil Price 4.34 5.42 10.01 4.25 4.32
PF
CPI 0.53 1.17 2.40 0.31 0.40

Note: OF: Official forecast. PF: Professional forecast. Electricity Price - Industrial Sector Average Regional
Electricity Prices. Gas Price - Average Residential Natural Gas Price. Electricity Sales - Residential Sector
Total Electricity Sales. Oil Price - West Texas Intermediate Spot Average Crude Oil Price. PF: Professional

forecast from group of non-financial service providers. CPI - Consumer Price Index.

The third application looks at data on total electricity sales in the U.S. residential sector.
The RMSE results in Table 2 show that the VMSSA-R model can provide the forecast with
the lowest error, whilst the VMSSA-V forecast is on par with the EIA forecast. The RRMSE
values in Table 3 indicates that the VMSSA-V forecast is 35% better than the SSA-V forecast
whilst the VMSSA-R forecast is 2% better than the EIA forecast and 19% better than the SSA-
R forecast. Once again, we find no evidence of statistically significant differences between the
competing forecasts.

The fourth application looks at the oil price (West Texas Intermediary) series. The RMSE
results in Table 2 show that the VMSSA forecast outperforms the EIA and SSA forecasts, along
with the VMSSA-V model reporting the lowest RMSE. In terms of the RRMSE criterion, as
reported in Table 3, the VMSSA-V forecast is 2% better than the official forecast, and 22%
better than the SSA-V forecast. Likewise, the VMSSA-R forecasts are 1% better than the
official forecast, and 57% better than the SSA-R forecast. However, when tested for statistically
significant differences between the forecasts, evidence was only found for significant differences
between the VMSSA-R and SSA-V forecasts. Figure 2 shows the out-of-sample forecasts related
to the EIA applications.

The final application considers forecasting the last four quarters of the quarterly consumer
price index growth rate series. Here, a forecast by professionals is used as more information
and the resulting RMSE is reported in Table 2. Given that there are only four out-of-sample
observations, it is not realistic to expect statistically significant differences between the forecasts
in this case. However, the RRMSE results in Table 3 can provide a reasonable indication of
the comparative performance. The RMSE shows that both VMSSA models outperform not
only SSA, but also the professional forecast, whilst VMSSA-V reports the lowest RMSE. The
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Table 3: RRMSE when using official forecasts for forecasting last year of each data set.

Series VMSSA−V
OF

VMSSA−R
OF

VMSSA−V
SSA−V

VMSSA−R
SSA−R

EIA
Electricity Price 0.96 0.96 0.74∗ 0.74∗,†

Gas Price 0.94 0.95 0.91 0.92
Electricity Sales 1.00 0.98 0.65 0.81
Oil Price 0.98 0.99 0.78 0.43∗,†

PF
CPI 0.58 0.75 0.26 0.17

Note: ∗ indicates a statistically significant difference between the two forecasts based on the modified
Diebold-Mariano test at p = 0.10. † indicates a statistically significant difference between the two forecasts

based on the Hassani-Silva test at p = 0.10.

RRMSE criterion shows that the VMSSA-V forecast is 42% better than the professional forecast
and 74% better than the SSA-V forecast. Likewise, the VMSSA-R forecast is 25% better than
the professional forecast and 83% better than the SSA-R forecast. Figure 3 provides a graphical
representation of the out-of-sample forecasts. It is evident that the VMSSA-V forecast is the
only one which remains comparatively aligned with the actual inflation values.

Scenario 2: Forecasts from Other Forecasting Models

Here, we look at improving the accuracy of forecasts from a variety of other time series
analysis models such as ARIMA, Exponential Smoothing and Holt-Winters. This is important
as especially in government organizations, methods such as ARIMA and Holt-Winters are widely
accepted and continue to be used owing to traditions and familiarity with such models. Figure
4 plots the time series used here as examples. Each time series has been obtained via the
Datamarket2.

These monthly time series include the popular U.S. accidental deaths time series, milk pro-
duction, number of city births in New York over time and residential electricity usage in Iowa,
U.S. It is clear via Figure 4 that the chosen series captures the effects of stationarity, non-
stationarity, increasing trends, seasonality and structural breaks. In reality, we are likely to be
faced with such varying time series and it is therefore important to consider such phenomenons
as examples. In each case, the last 12 monthly observations are left aside as out-of-sample and
the models are trained over the remainder of the observations. The results from the applications
are presented in Table 4.

2https://datamarket.com/
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Figure 2: Out-of-sample forecasts for the last 12 months.
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Figure 3: Out-of-sample forecasts for the last four quarters of the CPI.

The out-of-sample forecasting RMSE is obtained via ARIMA, HW, ETS, SSA-V, SSA-R,
VMSSA-V and VMSSA-R for each data set. Note that when modelling with VMSSA, forecasts
from the univariate model which reports the lowest in-sample forecasting RMSE for the training
data is selected as more information in the VMSSA model to generate the multivariate out-of-
sample forecasts.

The U.S. accidental deaths series has been widely adopted in time series literature, see for
example [16] and [3]. For the death series, ARIMA provided the lowest in-sample forecasting
RMSE and therefore the out-of-sample forecasts from ARIMA were selected as the additional
information for the VMSSA model. It is important to evaluate whether the newly proposed
VMSSA approach can result in forecasts which not only outperform the accuracy of the best
forecast, but also forecasts from its univariate counterpart SSA. Based on the RMSE criterion
and results in Table 4, it is evident that VMSSA can provide forecasts with a lower RMSE in
comparison to all other models for this series, and VMSSA-V in particular reports the lowest
RMSE. However, these forecasting differences can be attributed to chance occurrences. In order
to evaluate if the VMSSA forecast is significantly better, all outcomes are tested for statistically
significant differences with the results reported in Table 5 along with the RRMSE.

Table 4: RMSE for forecasting last year of each data set.

Series ARIMA HW ETS SSA-V SSA-R VMSSA-V VMSSA-R
Death 332 432 338 736 624 312 327
Milk Prod. 14.1 14.8 8.63 19.5 13.7 7.28 7.69
NY Births 0.91 1.06 1.13 1.38 1.46 0.85 0.88
Elec. Use 51.6 78.1 39.9 57.3 53.7 38.73 36.40

Note: Forecasts from the univariate model providing the lowest in-sample forecasting RMSE are selected as the
additional information for the MSSA model.
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Figure 4: Four time series used as examples.

Based on the RRMSE, the VMSSA-V forecasts are 6% better than ARIMA, 28% better than
HW, 8% better than ETS, and 58% better than SSA-V forecasts. Likewise, VMSSA-R forecasts
are 2% better than ARIMA, 24% better than HW, 3% better than ETS, and 48% better than
SSA-R forecasts. In this case, based on both DM and HS tests, we find evidence of statistically
significant differences between the forecasts of VMSSA-V and SSA-V, and VMSSA-R and SSA-
R at a 10% significance level. However, we do not find similar evidence in relation to the other
models. Yet, the fact that VMSSA forecasts are significantly better than the SSA forecasts
indicate that the proposed approach is viable.

Next, we consider the monthly milk production series. In this case, ETS forecasts were
found to be best in-sample and were selected as the additional information for the VMSSA
model. Once again, based on the RMSE in Table 4, it is clear that the VMSSA forecasts can
outperform the rest of the models considered here. Likewise, based on the RRMSE criterion,
we can conclude that VMSSA-V forecasts are 48% better than ARIMA, 51% better than HW,
16% better than ETS, and 63% better than SSA-V forecasts (Table 5). Moreover, VMSSA-R
forecasts are 45% better than ARIMA, 48% better than HW, 11% better than ETS, and 44%
better than SSA-R forecasts (Table 5). Interestingly, in relation to the previous application,
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Table 5: RRMSE for forecasting last year of each data set.

Series V MSSA−V
ARIMA

V MSSA−R
ARIMA

V MSSA−V
HW

V MSSA−R
HW

V MSSA−V
ETS

V MSSA−R
ETS

V MSSA−V
SSA−V

V MSSA−R
SSA−R

Death 0.94 0.98 0.72 0.76 0.92 0.97 0.42∗,† 0.52∗,†

Milk Prod. 0.52∗,† 0.55∗ 0.49∗,† 0.52∗,† 0.84 0.89 0.37∗,† 0.56∗

NY Births 0.93 0.97 0.80 0.83 0.75 0.76 0.62 0.60

Elec. Use 0.75 0.71 0.50∗,† 0.47∗,† 0.97 0.91† 0.68∗,† 0.68∗,†

Note: ∗ indicates a statistically significant difference between the two forecasts based on the modified Diebold-
Mariano test at p = 0.10. † indicates a statistically significant difference between the two forecasts based on the
Hassani-Silva test at p = 0.10.

there are a higher number of statistically significant outcomes in this case. In fact, VMSSA
forecasts via the proposed approach are significantly better than ARIMA, ETS, SSA-V and
SSA-R forecasts.

The third application considers monthly city births in New York. In this instance, ARIMA
provided the best in-sample forecast and was therefore selected as the model which will provide
more information for the VMSSA process. Table 4 shows that VMSSA forecasts once again
outperforms all models based on the RMSE, and that the VMSSA-V forecast records the lowest
RMSE. The RRMSE values in Table 5 indicates that VMSSA-V forecasts are 7%, 20%, 25%
and 38% better than ARIMA, HW, ETS and SSA-V forecasts respectively, whilst VMSSA-
R forecasts are 3%, 7%, 24% and 40% better than ARIMA, HW, ETS and SSA-V forecasts,
respectively. Regardless of the gains suggested via the RRMSE criterion, there is no sufficient
evidence of statistically significant differences between VMSSA and competing forecasts in this
case. Given the comparatively large gains reported here, the inability of the statistical tests at
picking up significant differences could be a result of small sample sizes.

The final application relating to the use of forecasts from other models as more information,
considers monthly average residential electricity usage in Iowa. ETS provided the best in-sample
forecast for this series and therefore its out-of-sample forecast was considered as more informa-
tion within the VMSSA framework. As reported in Table 4, once again the VMSSA models
outperform the rest based on the RMSE criterion. The RRMSE indicates that the VMSSA-V
forecast reports gains of 25%, 50%, 3% and 32% in relation to forecasts from ARIMA, HW, ETS
and SSA-V, respectively. At the same time, the VMSSA-R forecast reports gains of 29%, 53%,
9%, 32% in relation to the forecasts from ARIMA, HW, ETS and SSA-R, respectively. The tests
for statistical significance indicates there exists significant differences between VMSSA and HW
forecasts, and VMSSA and SSA forecasts. In addition, there is a statistically significant differ-
ence between the VMSSA-R and ETS forecasts. Figure 5 provides a graphical representation of
the out-of-sample forecasts from all four applications.

15



U.S. Accidental Deaths

Time

N
o
. 
o
f 
D

e
a
th

s

1978.6 1978.8 1979.0 1979.2 1979.4

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Actual

ARIMA

HW

ETS

SSA−V

SSA−R

VMSSA−V

VMSSA−R

Monthly Milk Production

Time

P
o
u
n
d
s
 p

e
r 

C
o
w

1975.0 1975.2 1975.4 1975.6 1975.8

8
0
0

8
5
0

9
0
0

9
5
0

Actual

ARIMA

HW

ETS

SSA−V

SSA−R

VMSSA−V

VMSSA−R

New York City Births

Time

N
o
. 
o
f 
B

ir
th

s

1959.0 1959.2 1959.4 1959.6 1959.8

2
5

2
6

2
7

2
8

2
9

3
0

Actual

ARIMA

HW

ETS

SSA−V

SSA−R

VMSSA−V

VMSSA−R

Electricity Use (Iowa)

Time

k
W

h

1978.8 1979.0 1979.2 1979.4 1979.6

4
0
0

4
5
0

5
0
0

5
5
0

6
0
0

6
5
0

7
0
0

Actual

ARIMA

HW

ETS

SSA−V

SSA−R

VMSSA−V

VMSSA−R

Figure 5: Out-of-sample forecasts for the last 12 months.

4 Discussion

4.1 Noise Reduction and Forecastability of Auxiliary Information in Fore-
casts

If we consider the results generated via the exploitation of auxiliary information contained
within published forecasts (Table 3) and purely model based forecasts (Table 5), these show
very different outcomes. Note how the RRMSE’s in Table 5 show comparatively larger gains
when purely model based forecasts are considered, in relation to the RRMSE’s in Table 3 where
the EIA’s forecasts are used as auxiliary information.

This discrepancy suggests two possibilities. Firstly, it shows that published forecasts are
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likely to be considerably more accurate than univariate model based forecasts, which can be one
explanation as to why the proposed methodology for exploiting the forecastability of auxiliary
information in forecasts cannot provide significantly large gains when published forecasts are
taken into consideration. In other words, this implies that there is comparatively less auxiliary
information contained within published forecasts in relation to purely model based forecasts,
i.e. the errors of published forecasts are likely to be much smaller than the errors from a model
based forecast. Secondly, if there is comparatively less auxiliary information in a published
forecast, then the gains made by MSSA in exploiting the forecastability of auxiliary information
in forecasts can be a result of filtering which leads to noise reduction.

In order to evaluate whether noise reduction is likely to be an explanation, we consider the
weighted correlation (w-correlation) statistic which is a measure used to determine separability
between signal and noise [40]. According to [16], the w-correlation statistic can be computed

as follows for two series Y
(1)
N and Y

(2)
N , where Y

(1)
N represents the signal and Y

(2)
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noise:

ρ
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If the w-correlation between two reconstructed components are close to zero, this implies that
the corresponding series are w-orthogonal, and suggests that the two components are well sepa-
rable. Table 6 below reports the w-correlations following MSSA filtering in the case of published
forecasts. As all w-correlations are considerably small and close to zero, it indicates that the
MSSA decompositions have led to a sound separation between signal and noise. These results
show that even when a forecast is of a very high quality (such that there is likely to be a very
small error when compared with actual data), there is still room for exploiting the forecastability
of auxiliary information in forecasts, if the tool being used has filtering capabilities.

Table 6: The w-correlation between signal and residuals for the EIA data.

Series VMSSA-V VMSSA-R
Electricity Price 0.001 0.001
Gas Price 0.004 0.004
Electricity Sales 0.006 0.006
Oil Price 0.010 0.009

4.2 A Hybrid Model for the Forecastability of Auxiliary Information in Fore-
casts

Up to this point, we have considered published forecasts and purely model based forecasts
as auxiliary information for exploiting the forecastability of auxiliary information in forecasts.
However, it is noteworthy that the proposed theoretical development enables the generation of
hybrid forecasts too. This is because, in addition to considering published forecasts as auxiliary
information alongside historical data for a given variable, there is also scope to consider trends
based on news, expert opinions and judgements, and even other indicators as additional auxiliary
information. Therefore, we find it pertinent to discuss whether the inclusion of additional
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indicators and trends, alongside the proposed theory can help improve the accuracy of forecasts
further, beyond the current levels.

4.2.1 Indicators as Auxiliary Information

As the first example, we consider re-modelling the EIA Electricity Sales series. However, in this
instance, we include the historical data for Gas Prices from the EIA as an indicator, alongside the
initial framework, such that a total of three variables are considered in the multivariate model.
Given that the model which follows has additional independent variables, we would expect a
natural improvement in the forecast performance. The resulting output from the forecasting
exercise is reported via Table 7.

Table 7: RRMSE for exploiting the forecastability of EIA’s Electricity Sales forecast alongside
historical Gas Price data.

Series VMSSA−V ∗
OF

VMSSA−R∗
OF

VMSSA−V ∗
VMSSA−V

VMSSA−R∗
VMSSA−R

EIA
Electricity Sales 0.79 0.73 0.79 0.74

Note: VMSSA-V* and VMSSA-R* indicates the multivariate model with Gas Price as an indicator variable.

Recall the results for this same variable in Table 3. There, the initial VMSSA-V model
reported no gain or loss in relation to the EIA’s official forecast for the Electricity Sales, whilst
the VMSSA-R model was only able to report a small 2% gain over the EIA forecast. In contrast,
by incorporating an indicator variable in the form of historical data for Gas Price into the
multivariate model, and modelling this data alongside the historical data and the EIA forecast
for Electricity Sales has resulted in considerable gains as per the RRMSE. In fact, the newly
built VMSSA-V* model reports forecasts which are 21% better than the official forecast whilst
the VMSSA-R* model reports forecasts which are 27% better than the official forecast. In
addition, the newly built VMSSA-V* and VMSSA-R* models record forecasts which are 21%
and 26% better than the previous VMSSA-V and VMSSA-R forecasts, respectively. However,
this exercise did not yield evidence for statistically significant differences between the forecasts
based on both DM and HS tests. Figure 6 shows the out-of-sample forecasts generated via
the various models. Notice clearly how the VMSSA-V* and VMSSA-R* models provide much
better forecasts for this variable over majority of the 12 month period in relation to both the
EIA forecast and the previous multivariate forecasts generated through this study.
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Figure 6: Out-of-sample forecasts for the last 12 months of the Electricity Sales series.

4.2.2 Google Trends as Auxiliary Information

Next, we consider Google Trends as auxiliary information for building a hybrid forecast for the
Average Residential Natural Gas Price. Google Trends (https://www.google.com/trends)
are freely accessible historical information pertaining to Google searches. Here, we consider
the Google Trend for the search term ‘Natural Gas’ as auxiliary information alongside the EIA
forecast for Gas Price to generate a hybrid forecast.

Figure 7 shows the actual data for Gas Price, the Google Trends for Natural Gas and the
SSA trend for both data sets. Based on this figure, it is evident that both the actual data and
Google Trends show seasonality and that the addition of the SSA trend to these graphs are
able to show a declining trend over time for both data sets. Recall the results from the earlier
forecasting exercise for the variable Gas Price as reported in Table 3. There, the VMSSA-V
forecast was 6% better than the official forecast whilst the VMSSA-R forecast was 5% better.
The output from the hybrid forecasting exercise is reported via Table 8. In this case, we notice
that the inclusion of Google Trends within the proposed theoretical framework has improved
the forecast accuracy such that the VMSSA-V* forecast is 24% better than the official EIA
forecast whilst the VMSSA-R* forecast is 22% better than the EIA forecast. In comparison to
the original MSSA models, the VMSSA-V* forecast has improved by 19% whilst the VMSSA-R
forecast has improved by 18%. Once again, we do not find evidence of statistically significant
differences between the forecasts.

Finally, Figure 8 provides a graphical representation of the out-of-sample forecasts generated
via the various models for Gas Price. It is clear that the inclusion of Google Trends and
generation of a hybrid forecast has improved the accuracy of the forecast attainable via the
proposed model for exploiting the forecastability of auxiliary information in forecasts.
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Figure 7: Historical data, Google Trend and SSA Trend for Natural Gas.

Table 8: RRMSE for exploiting the forecastability of EIA’s NGRCUUS forecast alongside Google
Trends.

Series VMSSA−V ∗
OF

VMSSA−R∗
OF

VMSSA−V ∗
VMSSA−V

VMSSA−R∗
VMSSA−R

EIA
Gas Price 0.76 0.78 0.81 0.82

Note: VMSSA-V* and VMSSA-R* indicates the multivariate model with Google Trends as auxiliary
information.
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Figure 8: Out-of-sample forecasts for the Gas Price.
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5 Conclusion

Historically, the Granger idea used time lags into the past for causality detection. In contrast,
this paper begins with the aim of introducing a theoretical framework for exploiting the fore-
castability of auxiliary information in forecasts. That is, it seeks to answer the question as
to once a forecast is generated, is there any possibility of exploiting the information contained
within a given forecast for generating a new and more accurate forecast? Answering this ques-
tion requires a tool which can consider modelling multiple series with different series lengths, as
a forecast represents data into the future. Whilst any model which meets the above criteria can
be used, here we use the MSSA technique as a tool for achieving the objective of this research.

The proposed methodology seeks to exploit forecasts and couples this information with his-
torical data pertaining to the same variable in order to generate a new and improved forecast.
The only condition is that the original forecast must have some level of good accuracy as other-
wise there would not be any useful auxiliary information that can be extracted from the forecast.
Following the theoretical development it is applied to several real world applications. It is note-
worthy that the proposed theory can be used with any time series analysis and forecasting
technique that can handle multiple time series with different series lengths. The MSSA model
we have chosen for this purpose is one such example of a time series analysis and forecasting
technique which can handle data with different series lengths as explained to the reader in Sec-
tion 2. The results indicate that VMSSA forecasts which exploit the proposed theory are able to
outperform its univariate counterpart, SSA in all instances (with statistically significant results
in some cases). Moreover, there has always been at least one VMSSA model which can outper-
form published or purely model based forecasts in all cases based on the RMSE criterion. The
low number of out-of-sample forecasts available for comparison purposes makes it an arduous
task for the statistical tests to pick up significant differences. However, the RRMSE criterion is
able to show that in certain cases the VMSSA models report gains of well over 20% in relation
to a competing forecast.

The discussion which has been presented enlightens the reader on the positive impact of noise
reduction on exploiting the forecastability of auxiliary information in forecasts. In addition, the
discussion also covers the inclusion of additional indicators and information for generating hybrid
forecasts combined with the theory for exploiting the forecastability of auxiliary information in
forecasts. The two example hybrid forecasts which consider an indicator and Google Trends have
illustrated how the accuracy of published forecasts can be greatly improved via the inclusion of
such variables in the modelling process.

In conclusion, through this paper we have presented a novel theoretical development and
shown that there is indeed an opportunity to exploit the forecastability of auxiliary information
in forecasts for improving the accuracy of existing forecasts. The introductory nature of this
theoretical concept opens up new research avenues with specific interests for the future. For
example, given the findings of this study, further research and development should focus on
developing linear models with new adaptations to enable other models to exploit the approach
proposed in this paper. Moreover, future research should also consider using this development
alongside SSA change point detection and with automated algorithms which will promote the
effective use of this new theoretical development. For example, firstly, an automated algorithm
should be developed for extracting the VMSSA parameters for a given data set. Thereafter,
extensive simulation studies which takes into account different noise levels, stationarity and non-
stationarity amongst other time series features should be carried out to provide more justification
for this theory. It is expected that this new theoretical development will be of utmost importance
whilst motivating researchers at Central Banks, Governments and Professional Forecasters across
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the globe.
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