
 Write once run anywhere revisited: machine learning and
audio tools in the browser with C++ and emscripten

Michael Zbyszyński
EAVI Group

Computing, Goldsmiths
 London

m.zbyszynski@gold.ac.uk

Mick Grierson
EAVI Group

Computing, Goldsmiths
 London

Leon Fedden
Computing, Goldsmiths

 London

Matthew Yee-King
Computing, Goldsmiths

 London

ABSTRACT

A methodology for deploying interactive machine learning and
audio tools written in C++ across a wide variety of platforms,
including web browsers, is described. The work flow involves
development of the code base in C++, making use of all the
facilities available to C++ programmers, then transpiling to asm.js
bytecode, using Emscripten to allow use of the libraries in web
browsers. Audio capabilities are provided via the C++ Maximilian
library that is transpiled and connected to the Web Audio API, via
the ScriptProcessorNode. Machine learning is provided via the
RapidLib library which implements neural networks, k-NN and
Dynamic Time Warping for regression and classification tasks.
An online, browser-based IDE is the final part of the system,
making the toolkit available for education and rapid prototyping
purposes, without requiring software other than a web browser.
Two example use cases are described: rapid prototyping of novel,
electronic instruments and education. Finally, an evaluation of the
performance of the libraries is presented, showing that they
perform acceptably well in the web browser, compared to the
native counterparts but there is room for improvement here. The
system is being used by thousands of students in our on-campus
and online courses.

1. INTRODUCTION

The last few years have seen a step change in the level of activity
around machine learning, Most recently, there has been increased
interest in the application of machine learning in the context of
computational creativity, for example the generation of sound and
graphics using neural networks. The techniques being developed
have amazing potential to transform the creative process,
especially if they can be placed into the hands of artists. The
problem is that the techniques and software used in machine
learning are currently, somewhat impenetrable to non-specialists.
The software is complicated to install, the models are difficult to
design and train, and there is therefore a steep learning curve to
climb.

The aim of the work presented in this paper is to address this
problem, by providing a lower barrier of entry to machine
learning techniques (and their creative applications, especially
sound), aligned with a rapid prototyping philosophy. The target
audience includes creatives wishing to experiment with machine
learning, and students, who we wish to expose to machine
learning as early as possible in their studies.

The challenge here is to provide powerful, reliable libraries, with
high quality code bases, which at the same time can be easily
deployed and used by people with limited experience of machine
learning and audiovisual techniques, and which provide real-time,
interactive performance. In addition, we are keen to provide a
pathway through to more advanced, performant use of the
libraries such as one might expect from native applications written
in C++.

In this paper, we describe an approach to solving this problem in
the specific context of machine learning combined with audio,
involving three key elements:

1. Machine learning and audio libraries implemented in
C++

2. Transpiled, asm.js versions of the libraries, accessible in
web browsers

3. A browser-based IDE which makes it possible to access,
run and adapt examples and tutorials with minimal setup
time

In the following sections, we describe the components of this
system and how they interoperate, and we present an initial
performance evaluation.

1.1 Related work

The RapidLib library described later draws extensively on the
Wekinator interactive machine learning library, which was
originally implemented in Java [4]. Interactive machine learning
has long been used for creative purposes, for example the use of
interactive genetic algorithms to design sound synthesis
algorithms [5]. Wekinator makes this much easier and faster to
achieve.

There are several machine learning libraries available in
JavaScript, via the node package manager (NPM) ecosystem. An
example is Specht’s Thoughtful library , which provides Feed 1

Forward Neural Networks, Naive Bayes Classification, K-Nearest
Neighbours and K-Means Clustering. Such libraries are not
typically designed for beginners, but they show it is possible to do
this work in JavaScript.

The Web Audio API provides some audio analysis capabilities
such as FFT, but more advanced feature extraction requires other
libraries such as Meyda [1]. JavaScript libraries are less mature

1 https://github.com/T-Specht/thoughtful

than other languages - Moffat et al. selected the Meyda library as
the only JS library in a recent survey of toolboxes in a range of
languages [3]. The library we describe combines sound synthesis
with audio analysis, with an aim to provide this functionality with
the minimal amount of starter code.

Emscripten is a tool that is used to convert C++ code into fast
JavaScript code (asm.js), to run this code in the web browser, and
to expose hooks into the code to normal JavaScript code [7].
Emscripten has been used before, to allow the development of
sound synthesis algorithms in non-JavaScript environments, then
their conversion to Web Audio API. For example, Faust [6] and
PureData via Roth’s Heavy compiler . 2

2. IMPLEMENTATION

In this section, we briefly describe how we have implemented the
three key components of our rapid prototyping toolchain: the
machine learning library, the audio library, and the Codecircle
IDE. Figure 1 shows an overview of how the machine learning
and audio libraries interact with each other and the rest of the web
browser.

Figure 1. Overview of the library components of the

system

2.1 RapidLib: a machine learning library

RapidLib is a machine learning library that was developed as part
of the ​Real-time Adaptive Prototyping for Industrial Design of
Multimodal Interactive and eXpressive technologies
(RAPID-MIX) project, an Innovation Action funded by the
European Commission under the Horizon 2020 program. It is a
lightweight set of libraries, written in C++, that implements
Interactive Machine Learning (IML) in the style of Fiebrink's [4]
Wekinator . Like Maximilian (below), this library was written for 3

easy transition between C++ and JavaScript API’s. The RapidLib
C++ and JS API’s share a JSON import/export format with a
custom version of Wekinator, so users can move easily between

2 https://enzienaudio.com​/
3 ​http://www.wekinator.org/

them.

IML allows developers and end-users to quickly customize
interactions by demonstration, encoding intuitive knowledge
about performance gestures into trained machine learning models.
IML is characterized by smaller data sets (relative to classical
machine learning) and rapid iteration between training and testing.

At the time of writing, the core RapidLib library provides the
following features:

● Feedforward, multilayer percetptron neural networks
with backpropagation for regression

● K-Nearest Neighbours for classification
● Dynamic Time Warping for time series classification
● Basic signal processing for sensor conditioning
● Easy access to interactive machine learning

Using RapidLib in Codecircle, performers can create a set of
gestures associated with desired outcomes and immediately (a few
seconds) experiment with an interactive space based on those
gestures. Undesirable results can be refined or discarded as the
design process continues.

The following JavaScript code fragment shows how to create a
regression model using RapidLib, train the model and query the
model with a new input:
//Access the global instance of the library

var rapidMix= window.RapidLib();

//Create a regression (MLP) object

var myRegression= new rapidMix.Regression();

//Specify training data (normally we’d train

from sensor input)

var trainingSet= [

{ input: [0,0], output: [0]},

{ input: [0,1], output: [1]},];

// train it

myRegression.train(trainingSet)

// run the model with mouse position input

regressionOutput= myRegression.run([mouseX,

mouseY]);

2.2 Maximilian: an audio library.

Maximilian is a cross platform audio library written in C++
[Grierson, 2010]. It was originally developed with the aim of
providing artists, with limited experience of audio programming a
means to utilise high performance, advanced synthesis and
analysis techniques in C++ projects. It was also developed for the
purposes of teaching these techniques, to artists and others who
were learning C++. The core library provides the following
features:

● sample playback, recording and looping
● a selection of oscillators and filters
● enveloping
● multichannel mixing for 1, 2, 4 and 8 channel setups
● effects including delay, distortion, chorus, flanging
● granular synthesis, including time and pitch stretching
● realtime music information retrieval functions: spectrum

analysis, spectral features, octave analysis, Bark scale
analysis, and MFCCs

Maximilian has been adapted such that it can be transpiled to

asm.js, then accessed in the web browser. Importantly, the
JavaScript code that users write looks almost the same as the C++
code, meaning users can transition to the native C++ mode when
necessary.

The following JavaScript code extract illustrates the use of
Maximilian to create a basic synthesis patch:

var maxiAudio = new maxiLib.maxiAudio();

var myWave = new maxiLib.maxiOsc();

maxiAudio.init();

maxiAudio.play = function() {

this.output = myWave.sinewave(440);

};

2.3 Codecircle: a browser based IDE

Codecircle is a browser based, integrated development
environment, that we created initially for use in our teaching of
creative computing. It has been iteratively developed to have the
features that we have deemed necessary for this task, as opposed
to being developed in a top down way to offer a more typical, IDE
feature set. Codecircle has been used by thousands of students,
from our on campus and online, MOOC courses. Figure 2 shows a
screenshot of the Codecircle user interface. The key features are
as follows:

● Code is edited and executed in the browser
● Programmers can use JavaScript, HTML and CSS.
● It is very simple to fork and edit programs (e.g. example

code provided during a programming lab).
● It allows live coding where code is re-interpreted as you

type.
● It allows assets such as audio files to be added to

projects
● It generates high resolution, timestamped code editing

logs for the purposes of learning analytics.
● It uses jshint to highlight basic coding errors.
● Audiovisual and machine learning libraries are

integrated, allowing scaffolded use of real-time graphics
and sound.

More information about Codecircle, including a comparison to
other browser programming environments, is provided in [8].
Details of how we are using Codecircle for teaching and research
are provided in [9].

Figure 2. Screenshot of the codecircle platform,

showing the program running on the left and the code

being edited on the right

2.4 Integration with external hardware and

sensors

This section is a brief survey of methods to bring sensor and
media data into the browser environment. Characteristic of web
development, there are many methods and implementations are
sometimes inconsistent across browsers and platforms. The
sections below describe methods we have been able to use. Some
modes of interaction, such as stylus and multitouch, are not
available at this time.

2.4.1 Mouse & keyboard
Keyboard and mouse gestures can be used to control complex
musical material. IML can allow users to quickly map
two-dimensional control spaces to high-dimensional control
spaces [10]; these mappings can be generated and refined without
any programming by the end-user.

2.4.2 Gamepad API
The Web Gamepad API is still in the draft stage. The current API 4

supports buttons (which can have an analog value) and axes
(normalized from -1.0 to 1.0) for up to four controllers. There is
also a draft for extensions to this API that includes haptic
feedback and gamepad position . 5

The authors were able to use this API in Chrome and Firefox on
OSX and Windows, using a Saitek Xbox-type controller, a
GameTrak, and a Logitech Flight controller. We view this API as
very promising, and are planning future prototypes to explore
further.

2.4.3 Sensors on mobile devices
Mobile operating systems (both iOS and Android) provide
specific API's for web apps directly to access on-board sensors,
including accelerometers, gyroscopes, magnetometers, and GPS.
These data can be forwarded to a central server, as in the CoSiMa
project [11], or processed directly on the device.

2.4.4 MIDI
The Web MIDI API (https://webaudio.github.io/web-midi-api/) is
also in draft form, and is currently only implemented in Chrome
and Opera . While this might be a serious limitation for a 6

commercial product, it does not seem unreasonable to ask
developers of experimental instruments to download a common
browser. In December 2016, Chrome had more than 50% share of
desktop browsing , and even more users have Chrome on their 7

computer.

2.4.5 WebSockets
The most secure and rich method for two-way data exchange
between browser and server is currently via the WebSocket
protocol. For communication between sensors and browsers
running on the same computer, WebSockets require that a server
be running locally. Although this is somewhat inconvenient, it is
not an insurmountable obstacle.

Many manufacturers provide WebSocket software that facilitates
communication with their devices. For example, Myo's daemon 8

4 ​https://www.w3.org/TR/gamepad/
5 ​https://w3c.github.io/gamepad/extensions.html
6 http://caniuse.com/#feat=midi
7http://gs.statcounter.com/#all-browser-ww-monthly-201612-2016
12-bar
8 ​https://github.com/logotype/myodaemon

and BITalino's python server . 9

WebSockets can also be a general transport for Open Sound
Control. [12] We have developed a stand-alone NodeJS server 10

that passes OSC packets to and from the browser, and a special
build of Codecircle that understands OSC. Users of OSC-enabled
software can send OSC to the server over UDP.

2.4.6 WebRTC
WebRTC is a protocol for real-time communication between
browsers, and allows for peer-to-peer exchange of audio, video,
and control data. Incoming audio buffers can be passed to
MaxiLib as arrays of 32-bit floats for processing and/or feature
extraction, while video frames can be passed to RapidLib via a
canvas.

3. EXAMPLE USE CASES

3.1 Rapid NIME prototyping

When designing new interfaces for musical expression (NIMEs),
it is usually desirable to refine a design by iterating over a number
of prototypes. As a design iterates, it should become more aligned
with the physical affordances of the performer as well as the
aesthetic needs of the performance. Web browsers have been
identified as appealing hosts for new expressive interfaces.
Roberts, Wakefield and Wright [13] demonstrated the potential
for browsers, and specifically the Web Audio API to allow both
synthesizers and interfaces to be programmed in JavaScript. Wyse
and Subramanian [14] examine computer music in browsers more
generally, noting the potential offered by browsers' intrinsic
connection to networks, ease of access, and portability. New
standards from W3C and extensions to JavaScript have made
browser technology more “viable” for musical work. Our tool
chain builds on this, adding easy access to machine learning, and
more sound synthesis and analysis capabilities. Also we can easily
provide working examples for different types of input sensors and
controllers. The Codecircle platform adds more here, providing
real-time coding, and easy sharing of programs.

3.2 Education

The tool chain can be used for teaching in a variety of ways.
During a lab class, the tutor might provide example code in the
Codecircle platform, which students can quickly evaluate in class,
download, fork, customise, etc. Students might share code with
each other online, for feedback or even peer assessment, knowing
that it will run as soon as their peer hits the URI. The key features
that make it very useful in the educational use case are the instant,
no setup access to sound synthesis and machine learning,
real-time coding capabilities, and the easy sharing and forking of
code.

4. EVALUATION

We have conducted a preliminary performance evaluation,
wherein we compared the performance of Maximilian and
RapidLib running on the same machine in native, compiled mode
and in transpiled mode in the Chrome browser. For Maximilian,
we calculated how many times we would be able to call the
various sound synthesis functions before the audio thread would
run late. This was achieved by timing thousands of calls to the
various functions and averaging the time required, then combining

9 ​https://github.com/BITalinoWorld/python-serverbit
10 ​http://gitlab.doc.gold.ac.uk/rapid-mix/rapid_web_service

this with the sample rate. We verified these theoretical
calculations about the performance, by attempting to run that
many oscillators, filters etc. in real time and listening for audio
dropouts. For RapidLib, we simply measured the time taken to
train a neural net on a single example, i.e. feeding the input,
output pair in and back propagating the error, and then the time
taken to compute the output based on an unseen input.

Table 1. Performance comparison of native libraries and their

transpiled JavaScript counterparts

C++
Maximilian/
RapidLib Linux

Transpiled
Maximilian/ RapidLib
in Chrome, Linux

maxiOsc.sinewa
ve(): how many
calls?

315 29

maxiOsc.sinebuf
(): how many
calls?

617 26

maxiFFT.process
(): how many
calls?

5 2

maxiSVF.play() :
how many calls? 668 18

NN train ms per
example 8.762 24.445

NN test ms per
example 0.015 0.058

The results of the tests are shown in Table 1. We found that the
performance of the audio library in the browser was an order of
magnitude slower than its native counterpart, and the machine
learning library was approximately 3 times slower on training and
4 times slower on testing. Further testing revealed that we should
be able to improve the performance of the audio library in the
browser significantly with some optimisation, as a basic
ScriptProcessorNode calling Math.sin seemed to run a lot faster
than one calling maxiOsc.sinwave via the transpiled library. This
work is ongoing. and the code for the tests is available as Github
gists . 11

5. CONCLUSION

We have described a novel tool chain which can be used to
rapidly prototype interactive machine learning and audio
programs, in the web browser. The technical approach is to

11 ​https://gist.github.com/fedden/33abe0700b9df4efcce96828061b4a98
https://gist.github.com/fedden/01fd102662b382982a2c7bb29d74f11d
https://gist.github.com/fedden/280f7199818b6cd91f123194d5f7184b
https://gist.github.com/fedden/54ff0f8e5122368eaf7801abaff9b9f9

develop machine learning and audio libraries in C++, then to use
Emscripten to transpile them into asm.js code that can be
understood by web browsers. The RapidLib library provides
interactive machine learning functionality, such as neural
networks, k-NN, and DTW based on a novel C++ implementation
of a subset of the Wekinator functionality. The Maximilian
library provides extensive, real-time sound synthesis and analysis
capabilities, and has been designed to be accessible to artists, and
useful for teaching purposes. It is transpiled to asm.js then fed to
the Web Audio API using a ScriptProcessorNode. The Codecircle
platform is a browser based IDE, developed for educational
purposes, that makes it easy to rapidly prototype digital musical
instruments with machine learning functionality. The libraries
perform acceptably well in the browser, but are significantly
slower than their native counterparts. There is plenty of scope for
adding more functionality to the libraries and improving their
performance in the future.

6. ACKNOWLEDGMENTS

This work was partially funded under the HEFCE Catalyst
Programme, project code PK31.

The research leading to these results has also received funding
from the European Research Council under the European Union's
Horizon2020 programme, H2020-ICT-2014-1 Project ID 644862

7. REFERENCES

[1] Rawlinson, Hugh, Nevo Segal, and Jakub Fiala. 2015
"Meyda: an audio feature extraction library for the web audio
api." The 1st Web Audio Conference (WAC). Paris, Fr.
2015.

[2] Grierson, M. 2010. “Maximilian: A cross platform c++ audio
synthesis library for artists learning to program”. In
Proceedings of the International Computer Music Conference
(Jan. 2010), New York.

[3] Moffat, David, David Ronan, and Joshua D. Reiss. 2015,
"An evaluation of audio feature extraction toolboxes."
Proceedings of the 18th International Conference on Digital
Audio Effects (DAFx-15), Trondheim, Norway.

[4] Fiebrink, Rebecca, and Perry R. Cook, 2010. "The
Wekinator: a system for real-time, interactive machine
learning in music." Proceedings of The Eleventh
International Society for Music Information Retrieval
Conference (ISMIR 2010), Utrecht.

[5] Woolf, Sam, and Matthew Yee-King, 2002, "Virtual and
physical interfaces for collaborative evolution of sound."
Contemporary Music Review 22.3 (2003): 31-41.

[6] Borins, Myles. 2014, "From faust to web audio: Compiling
faust to javascript using emscripten." Linux Audio
Conference, Karlsruhe, Germany. 2014.

[7] Zakai, Alon. 2011, "Emscripten: an LLVM-to-JavaScript
compiler." Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion. ACM, 2011.

[8] Fiala, Jakub, Matthew Yee-King, and Mick Grierson. 2016,
"Collaborative coding interfaces on the Web." Proceedings
of the 2016 International Conference on Live Interfaces.

[9] Yee-King, Matthew, Mick Grierson, and Mark d’Inverno.

2017 "STEAM WORKS: Student coders experiment more
and experimenters gain higher grades." IEEE Engineering
Education Conference, Athens Greece, 2017

[10] Momeni, Ali, and David Wessel. 2003 "Characterizing and
controlling musical material intuitively with geometric
models." Proceedings of the 2003 conference on New
interfaces for musical expression. National University of
Singapore, 2003.

[11] Schnell, Norbert, et al. "Collective Sound Checks: Exploring
Intertwined Sonic and Social Affordances of Mobile Web
Applications." Proceedings of the Ninth International
Conference on Tangible, Embedded, and Embodied
Interaction. ACM, 2015.

[12] Wright, Matthew. 2005 "Open Sound Control: an enabling
technology for musical networking." Organised Sound 10.03
(2005): 193-200.

[13] Roberts, Charles, Graham Wakefield, and Matthew Wright.
2013, "The Web Browser As Synthesizer And Interface."
NIME. 2013.

[14] Wyse, Lonce, and Srikumar Subramanian. "The viability of
the web browser as a computer music platform." Computer
Music Journal 37.4 (2013): 10-23.

Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.

