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Abstract—For  the  last  decade,  there  has  been  growing  interest  in  the
STEAM  approach  (essentially  combining  methods  and  practices  in  arts,
humanities  and  social  sciences  into  STEM  teaching  and  research)  with  its
potential to deliver better research and education, and to enable us to produce
students who can work more effectively in the current and developing market-
place.  However,  despite  this  interest,  there  seems  to  be  little  quantitative
evidence of the true power of STEAM learning, especially describing how it
compares and performs with respect to more established approaches. To address
this, we present a comparative, quantitative study of two distinct approaches to
teaching programming,  one based on STEAM (with an open-ended inquiry-
driven, inductive approach), the other based on a more traditional, non-STEAM
approach (where constrained problems are set and solved deductively). Our key
results  evidence  how  students  exhibit  different  styles  of  programming  in
different types of lessons and, crucially, that students who tend to exhibit more
of  the  style  of  programming  observed  in  our  STEAM lessons  also  tend  to
achieve higher grades. We present our claims through a range of visualisations
and statistical  validations which clearly show the significance of the results,
despite the small scale of the study. We believe that this work provides clear
evidence  for  the  advantages  of  STEAM over  non-STEAM,  and  provides  a
strong theoretical and technological framework for future, larger studies.
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1 Introduction

Over  the  last  10  years,  we  have  developed  and  delivered  a  range  of  degree
programmes at our institution that aim to bring an arts inflected pedagogy into the
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teaching  of  computer  science.  We make  extensive  use  of  what  is  considered  a
STEAM approach to engineering education [1],  an approach we describe in detail
later in the paper. Over the last decade, we have seen how a range of employers,
especially  from  the  creative  industries,  are  keen  to  employ  graduates  from  our
courses.  Anecdotally, the graduates  demonstrate  a  more creative and experimental
approach to engineering, and are able to adapt quickly to using new technologies in
new settings. 

But anecdotal  evidence is not enough. We would like to know the measurable
impact, if any, this pedagogical approach actually has on student learning. Do students
learn to code in a different way with this approach, compared to more traditional
approaches? If they do, does this impact positively upon learning outcomes? In this
paper, we set out to investigate these questions, as we find there is a lack of research
explicitly  comparing  how  different  pedagogical  approaches  impact  on  the  way
students learn programming.

Our first  step towards addressing this apparent  gap in knowledge has  been to
design and deploy a  novel  technological  platform for  teaching programming.  The
system has been designed to support our teaching and research by providing specific
interactive, data gathering and analytics functionality. The system includes a browser
based, integrated development environment, which is accessible online1. It has been
used by hundreds of students in our department and its data gathering functionality
makes it possible to conduct detailed, quantitative analyses of student coding activity.
We provide full  technical  details  of the system in [31],  and highlight the relevant
features for this study in section 3.1. 

In this paper, we use this system to examine and compare the activities of students
when they are exposed to STEAM and non-STEAM style computing lessons. This
allows us to produce clear  evidence about  how people change their  coding styles
depending on the type of instruction they are given. 

1.1  The need for inclusive coding instruction

Another  aspect  of  our  endeavour  to  understand  how  people  respond  to  different
instructional  styles  when  learning  programming  is  the  need  to  make  coding
instruction more inclusive. Coding has been highlighted by industry leaders as ’the
red thread that runs through Europe’s future professions’ [2]. To maximise the number
of ‘computational thinkers’ [3] entering the job market, more people, from a much
greater range of backgrounds and disciplines, will need to learn how to code. We need
to ensure that the methods we use to teach coding are both inclusive and effective.
This is not an easy task - Margolis and Goode summarise the challenge of developing
inclusive CS education as follows: “The goal is to bring the students to the subject in
a  way  that  allows  them  to  understand  it  deeply  and  make  it  part  of  their  own
experience without watering down the content or neglecting the fundamental concepts
and modes of inquiry that characterize the discipline” [4]. 

We think that the prevailing approach to teaching programming, which seems to
be largely derived from classical engineering education, is not the most effective way
to attract and educate a diverse group of new coders who can function effectively in

1 https://live.codecircle.com
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the  modern  workplace.  This  ‘non-STEAM’ approach  typically  involves  students
studying a large body of pre-existing technical knowledge and learning how to apply
it  deductively  to  constrained  problems  that  are  designed  to  test  this  knowledge.
STEAM offers an alternative approach involving an inductive, exploratory process
driven by self-defined goals, more akin to that seen in creative arts education. 

The question we wish to consider is: do these distinct approaches actually impact
on the way a student goes about programming and, if so, is one approach better than
the other? In this paper, we shed some light on these questions by describing the
results  of  a  study  wherein  students  worked  on  STEAM  and  non-STEAM  style
programming activities. In particular, we address the following research questions: Do
students code differently when undertaking STEAM and non-STEAM exercises? Do
students report qualitatively different experiences when working on different types of
exercises?  Is  there  a  relationship between coding behaviour and final  grades?  By
exploring these questions, this paper makes three main contributions:

1. A comparative, quantitative analysis of student programming behaviour in 
STEAM and non-STEAM lessons.

2. A clear definition of STEAM and non-STEAM pedagogy with specific examples 
of lessons using both.

3. A reusable experimental and technological framework within which it is possible 
for researchers to conduct a range of computer science education studies.

As we will  demonstrate  in  the  following report,  our  results  support  anecdotal
evidence from teachers and lecturers that experiential learning, such as that found in
arts  education  and  STEAM,  is  a  critical  component  of  successful,  deeper  STEM
learning.

The  paper  is  organised  as  follows:  in  the  following  section,  we  will  discuss
background  work  around  STEAM  pedagogy  and  approaches  to  analysing  coding
activity. In section 3 we describe the experimental and technological framework we
have developed to enable studies into computer science education. In section  4 we
will describe the method used for this particular study. In section 5 we will describe
and analyse the data that resulted from the study. In section  6 we will discuss and
evaluate the results, concluding in section 7.

2 Background

In this section we will explain what we mean by STEAM and non-STEAM pedagogy,
based on references to the education literature, then we will discuss some previous
studies which analysed student coding behaviour. 

2.1  STEAM and non-STEAM

STEAM is an approach to teaching engineering, science, technology and maths which
adopts  methods  from  art  school  teaching  to  better  teach  “problem  solving,
fearlessness, and critical thinking and making skills” [5]. Students are encouraged to
construct their own ontologies of understanding through an active process of creation
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[6].  Rose and Smith stated: ‘the STEAM agenda should be about deep, sustained,
powerful engagement as a way of learning’ [7]. The ideas and methods in STEAM are
not new, though. It is based on a constructivist theory of learning, after Piaget, and is
influenced by Dewey, a key figure in arts pedagogy who believed in teaching the
whole person and that “inquiry [was] of necessity an experimental transaction” [8].
Thus STEAM can be seen as the latest in a series of related approaches, which we can
trace back to Dewey’s experience driven education [9], Papert’s constructionism [10]
and Rutherford’s inquiry based learning [11].

Science educators have adopted many of the techniques underpinning STEAM,
for  example,  inquiry  learning  and  project  based  learning  [12],  but  this  type  of
instruction  has  been  attacked  by  some educational  psychologists.  Kirschner  et  al.
claimed that  ‘unguided learning’ stands to fail  as  a pedagogical  approach since it
involves an excessive cognitive load that will interfere with the basic mechanisms of
learning, namely the interaction between working memory and long term memory
[13]. Minner et al. responded to this work by providing a meta study, through which
they  were  able  to  dismiss  Kirschner  et  al.’s  basic  description  of  these  learning
methods as ‘not the way that most inquiry-oriented practitioners or researchers would
describe these kinds of instructional approaches’ [14]. Hmelo-silver et al. provided
further clarity about this by carrying out another meta study, this time examining the
use of scaffolding in inquiry based learning [15]. They explain that scaffolding is used
exactly  for  the  purpose  of  reducing  cognitive  load  during  inquiry  learning,  thus
addressing Kirschner et al’s key issue about the excessive cognitive load caused by
this type of instruction. They also highlighted the impact of this type of instruction on
the more holistic goals of education, such as soft skill development, which takes us
back to Dewey, who emphasised the importance of teaching the whole person in their
social context. 

Surprisingly, given its practical and applied character, this style of instruction has
been slow to catch on in engineering education, as noted by Ben-Ari  [16].  Many
educators  still  employ  ‘chalk  and  talk’,  where  the  sage  on  the  stage  transmits
knowledge to the receptive vessels in front of them, which can then be measured
through  the  trusted  and  rigourous  method  of  written  examination.  Despite  its
persistence, there is very strong evidence against the efficacy of this approach. In the
largest meta-study to date of the impact of active, constructivist learning in STEM
education, Freeman et al. stated that failure rates under traditional lecturing increase
by 55% over the rates observed under active learning and that average examination
scores after active learning improved by about 6% [17]. Given these results and the
fact that STEAM is a quite extreme form of active learning, we consider it a very
interesting pedagogical approach to investigate. 

This discussion of well established education theory is necessary as a background
to our work, as there has been a lack of work in the computing education literature
that builds on previous theories, as noted by Malmi et al [18]. Therefore, we have
designed  the  study  reported  here  based  on  a  clear  theoretical  perspective  upon
STEAM  learning.  We also  describe  a  re-useable,  experimental  framework  within
which the theory can be practically investigated. Finally, our data driven approach
makes use of  standards and approaches  being developed in the  fields  of  learning
analytics and educational data mining [19]. 
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2.2  Analysing coding behaviour

We shall now consider some examples of work that describes and analyses student
programming behaviour, since this is the key mode of analysis in this paper and this
work  has  inspired  some of  the  approaches  we use.  Rodrigo  and  Baker  looked at
programming behaviour, such as repeated attempts to compile the same code [20].
They  developed  a  model  that  was  able  to  detect  affects  such  as  frustration  in
programming labs. The data we use in our study is higher resolution, allowing us to
examine  coding  behaviour  at  the  keystroke,  rather  than  the  compile  event  level.
Blikstein et al. describe a range of metrics that can be automatically extracted from
IDE code snapshots, and use them to characterise student coding behaviour [21]. The
techniques included observing the sizes of changes in the programs over time using
abstract  syntax  trees.  Using  these  metrics,  they  clustered  and  classified  learners,
mapping their  student  classifications onto Papert’s tinkerer  and  planner  categories
[10]. Our work differs in that we are looking at a higher time resolution, we do not
analyse  the  programs  themselves,  and  we  focus  on  comparing  pedagogical
approaches, not comparing students. 

Mahadevan  et  al.  describe  a  STEAM  oriented  coding  environment  wherein
students learn Javascript and Python by computationally re-arranging chunks of audio
(remixing) in a web based system called EarSketch [22]. They reported significant
increases in self  efficacy regarding coding in students using the system [23].  Our
work differs in this phase in that we are focused on fine grained details of student
coding  behaviour  and  how  this  changes  with  changing  pedagogy, as  opposed  to
investigating the high level impact of STEAM on student self-efficacy. 

Fields et al. examined the use of initialisation, events and parallelism in Scratch
programs written by youths at  a summer school [24].  They used a constructionist
pedagagy  and  were  able  to  make  observations  about  different  students  and  their
development of these programming concepts. Our study differs from this one in that
we are looking at lower level information about the coding behaviour, and we actively
compare different pedagogies.

Yang et al. developed a method to model and analyse informal learning in online
communities of Scratch programmers [25]. They modelled the amount of learning, the
speed of learning and the amount of prior knowledge, all based on patterns of use of
the 170 different blocks available in Scratch (the vocabulary). They clustered learners
based on their trajectories through a weighted vocabulary space. Our work differs in
that  we  have  a  formal  learning  context,  we  are  not  considering  programming
vocabulary, and we compare different teaching techniques as opposed to comparing
different learners. 

As we can see, there is much interesting work analysing student programs and
programming  styles,  but  what  is  perhaps  lacking  is  a  comparison  of  how
programming behaviour changes in response to different pedagogical approaches. Our
work addresses this gap in the literature,  with a comparison of STEAM and non-
STEAM approaches. 
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3  Experimental and technological framework

In this section, we will describe the experimental and technological framework we
have  developed  in  order  to  carry  out  comparative  investigations  of  different
pedagogical styles in computer science education. The framework consists of 1) an
education focused integrated development environment (IDE) 2) learning analytics
and 3) a reusable experimental method. 

 

Figure 1: Screen shot of the IDE. The code for the program can be edited on the right. 
The output of the running program can be seen on the left. The code editing panel is 
made opaque when editing so the code can be clearly seen. 

3.1  The educational IDE

We have developed an educational, browser based IDE which allows students to write
programs in their web browser. The system is currently being used in a range of our
teaching, including MOOCs and various on campus courses.  A screen shot can be
seen in figure 1. The key features of the system are as follows:

1. Web browser based. 

2. Live coding where code is re-interpreted as you type. 

3. High resolution, timestamped code editing logs. 

4. Programs are written in Javascript. 

5. Jshint highlights basic coding errors. 

6. integrated audiovisual libraries for scaffolded use of real-time graphics and sound.

7. Real time, collaborative coding via an operational transformation engine [26]. 
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The essential feature from the above list for the experimental framework is the
ability to gather high resolution, code editing log data. This data describes all edits
made to the code at the keystroke level, with timestamps, and the content of the edit.
Interestingly, this data comes as a side effect of the operational transformation (OT)
engine  underlying  the  code  editor.  This  engine  is  there  to  enable  real  time
collaborative coding, similar to Google Documents. It is implemented using Gentle’s
sharejs library which grew out of the Google Wave project [27]. OT provides a set of
algorithms which work together to provide the best possible version of a document
that has been simultaneously edited by multiple editors. The operations can also be re-
run such that the process of creating the document can be observed step by step. We
have  not  fully  explored  the  educational  experimental  possibilities  of  this  logging
system yet, and in the work presented here, we use it as a means of gathering high
level statistics about the types of code edits single students were making during the
lessons. 

3.2  Learning analytics

 

Figure 2: Screen shot of the learning analytics dashboard. On the left is the data 
browser, currently showing an anonymised list of users; on the right are two 
visualisations of coding behaviour over the 6 days of the study.

The second part of our experimental framework is a learning analytics system.
The code editing logs are converted from their raw form, generated by the OT engine,
into a semantic form according to the xAPI specification [28]. Briefly, xAPI provides
a formal way of describing interactions between learners and learning technology as a
set  of  xAPI statements in  JSON format.  It  is  common for  researchers  to develop
xAPI ‘recipes’ for particular learning activities, and we have defined recipes suitable
for describing the activities of programmers, and published it as a github repository2

2 https://github.com/yeeking/xapi-coding-recipes
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as we found that there were no pre-existing recipes for such. The main elements of a
generic xAPI statement are shown below:

{
"actor" : who acted?
"verb" : what did they do?
"object" : what were they interacting with 
"timestamp" : when?
"result" : what was the outcome?
"context" : what was the lesson/ activity?
}

The verbs we selected to describe coding actions in this study were ‘create’ (new
document),  ‘insert’  (code  to  document),  ‘delete’  (code  from  document)  and
‘terminate’ (a code statement). Terminating a code statement means inserting code
that ends with a semicolon. As our work develops in the future, we can define further
statement types, for example, we might want to log when coders use control flow
constructs like loops,  when they use library functions or when they access online
documentation. 

The xAPI statements describing all the logged actions are stored in a Learning
Record Store (LRS), which is a web application specifically designed to store xAPI
statements for the purposes of applying learning analytics to them. We developed our
learning analytics to talk to the LRS and to process xAPI statements. 

To make accessing and browsing our  xAPI statements  easier, we developed a
dashboard  that  connects  to  the  LRS to retrieve and  visualise xAPI  statements,  as
shown in figure 2. With this system, it is possible to rapidly explore live data on the
system, for example viewing all actions by a certain user, in a single document or
within a particular lesson. 

3.3  Experimental design

Having introduced our education and analytics technology, we will now describe our
general approach to experimental design. In essence, a set of students participate in a
set  of  lessons  which  include  programming activities  with  different  characteristics
(described  in  more  detail  below).  The  characteristics  that  can  vary  might  be  the
structure of the learning activity, or the configuration of the IDE. The students are
asked  to  complete  short  surveys  after  every  lesson  wherein  they  self-report  their
experiences in the lessons. The analytics system gathers data which is connected to
lessons  via  tagging  and  time  stamping.  The  experimental  design  aims  for  high
ecological validity [29] - these are real lessons and they are designed to be effective
and enjoyable. We rely on the high resolution data gathering to provide us with robust
quantitative  results,  and  the  data  gathering  should  be  non-instrusive  as  much  as
possible. 
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4  The study

Having described our general technological, experimental framework, we will now
describe a specific  instance of  an experiment that  we have carried out within the
framework which aims to compare programming behaviour and student experience in
STEAM and non-STEAM style lessons. 

The  study  involved  11  undergraduate,  arts  computing  students  at  a  summer
school. They participated in 12, two hour, group lessons over two weeks, wherein six
activities were STEAM and six were non-STEAM. There were two lessons in a day,
one in the morning and one in the afternoon,  one STEAM and one non-STEAM.
Sometimes STEAM was in the morning, sometimes non-STEAM. The activities are
described  in  more  detail  below.  All  lessons  were  taught  by  the  same  tutor  and
involved  a  short  presentation  by  the  tutor  followed  by  students  working  on  a
programming activity. Finally, all of the students had beginner to intermediate level
programming skills - we knew this because they had been using the programming
environment (described above) for two weeks prior to the study and this allowed us to
estimate their programming experience level. 

All 12 lessons were based around learning to manipulate audio and graphics using
Javascript,  so  both  STEAM  and  non-STEAM  lessons  involved  a  multimedia
component.  We are  taking  a  philosophical  position  here  -  just  because  a  lesson
involves  graphics  or  sound,  it  does  not  make  it  STEAM.  STEAM  is  a  specific
approach to education which is visible in the structure of the learning activities. The
programming activities in the lessons fell into four categories: Fill in the gaps (FITG/
non-STEAM),  Implement  a  specification (SPEC/ non-STEAM),  Work to  aesthetic
goals (WTAG/ STEAM) and Fork and customise (FAC/ STEAM). In FITG, students
were provided with an incomplete program and they had to fill in the gaps. This is a
typical non-STEAM style teaching method as they were provided with a constrained
problem requiring that  they engaged with very specific engineering techniques.  In
SPEC, students were given a simple list of requirements that they had to implement in
a program; it was slightly less constrained than FITG but was still designed to engage
them with specific techniques. In WTAG, students were encouraged to engage with an
aesthetic  concept  such  as  timbre  or  motion  and  to  develop  an  idea  for  a  simple
program to explore that concept.  This was STEAM as their exploration was open
ended and driven by their own interests. The FAC lessons involved students browsing
through eachothers’ work and selecting something they would like to customise. This
was STEAM as they were not forced to customise in any particular way, but to be
driven by their own ideas about what they should do. It also required that they operate
within a community of their peers, sharing and co-creating. 

After each activity the students completed a short survey, where they rated their
experience  from  1  to  5  for:  ‘motivation’,  ‘difficulty’,  ‘enjoyment’,  ‘learning’,
‘creativity’, ‘technicality’, ‘sense of completion’ and ‘want to continue’. We selected
these measures based on consideration of what might allow differentiation between
STEAM and non-STEAM. For example, one might imagine that students who had to
fill  in  some  gaps  in  a  program  (non-STEAM)  would  feel  a  stronger  sense  of
completion than students who were asked to work to aesthetic goals (STEAM), or that
students who had set their own project goals (STEAM) might be more motivated to
continue. 
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5  Results and analysis  

Figure 3: Screenshot of how the survey looked in our VLE.

The code logs and survey results form the raw data for the analysis below. The
total number of code editing operations logged by the system for all students in the 12
activities  was 77,923 and 91 surveys were completed (out of  a possible 132).  An
example of how the survey looked in our VLE is shown in figure 3.

The main thrust of our analysis is to separate the data into two sets: those data
resulting from STEAM lessons and those resulting from non-STEAM lessons. This
provides us with two conditions between which we can compare student experience
and coding behaviour. In the following subsections, we will describe four analyses of
the  data:  1)  self  reported  experience  metrics,  2)  activity  levels  in  the  lessons,  3)
activity  patterns  in  the  lessons  and  4)  the  relationship  between  final  grades  and
activity patterns. 

5.1  Self reported experience

Table 1: P-values for variation between STEAM and non-STEAM lessons per self 
reported experience metric.

 Metric p-value

 Motivation 0.533
 Difficulty 0.7
 Enjoyment 0.862
 Learning 0.674
 Creativity 0.037*

 Technicality 0.707
 Sense of completion 0.407

 Want to continue 0.927
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Figure 4: Histogram of the two distributions of self reported creativity, showing the 
tendency for students to report higher levels of creativity in STEAM.

In our first analysis, we measured the significances of the variation between the
answers to the post STEAM and non-STEAM activity questions using a Wilcoxon
signed-rank test which is appropriate for estimating non-parametric effect size. We
used non-parametric statistics since we could not assume that the answers followed
any particular  distribution.  As mentioned above,  we selected experience questions
which we thought might differentiate between the two lesson styles, or more formally,
our aim was to attempt to nullify the hypothesis that students would report having the
same experience in both lesson styles. 

The p-values obtained from the test are shown in Table  1. The only metric that
was  significantly  different  was  the  students’  reported  experience  of  creativity  -
participants  reported  higher  levels  of  creativity  for  the  STEAM  lessons.  The
distributions of self reported creativity levels from the two lesson types are shown in
figure 4 and it can be seen that the ratings tended to be higher in the STEAM lessons.
We will discuss this result, and the lack of significant variation in the other metrics, in
the discussion section. 
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5.2  Coding activity

In  our  second analysis,  we looked  at  the  number  of  editing  actions  made  in  the
different lessons. Table 2 shows the total, mean and standard deviation of each type of
action,  separated  by  lesson  type.  The  total  number  of  actions  taken  in  the  non-
STEAM lessons is greater, and the difference seems to be made up by extra insert
actions. There are more insert actions in non-STEAM lessons by approximately one
standard deviation of the non-STEAM lesson set. We will discuss this result in the
discussion section. 

Table 2: Actions of each type, logged in STEAM (S) and non-STEAM lessons (NS) 
by the 11 participants.

 Lesson create delete insert terminate

  S all 190.0 12605.0 20551.0 1013.0
 NS all 186.0 11700.0 29193.0 1285.0
 S mean 31.7 2100.8 3425.2* 168.8

 NS mean 31.0 1950.0 4865.5* 214.2
 S std 6.1 412.8 712.6 76.3

 NS std 7.0 655.3 1387.6 75.2

 

Figures 5 and 6 show the variation of code editing activity levels during the 2 hour
lessons for all students. The aim is to show if students were active throughout the
lessons or if the activity level varied. A smooth gradient indicates steady activitty, a
jagged gradient  indicates  students stopping and starting. The non-STEAM lessons
appear to have a slightly smoother activity curve, indicating more consistent activity
levels  during  the  lessons.  We will  discuss  these  graphs  further  in  the  discussion
section.
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Figure 5: Cumulative edits made in the lessons against time for all students in non-
STEAM lessons. The number of edits is normalised against the total number of edits.
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Figure 6: Cumulative edits made in the lessons against time for all students in 
STEAM lessons. The number of edits is normalised against the total number of edits.
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5.3  Coding activity ratios

Figure 7: Distribution of insert:delete ratios in STEAM and non-STEAM. A value of 
1 means the same number of deletions and insertions happened in a lesson. A value > 
1 means there were more insertions than deletions. 
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Figure 8: Ratios of code operation types in STEAM and non-STEAM lessons. Each 
box shows the range of values for a verb in a lesson type. High up boxes indicate 
more common actions, box size indicates the range of values observed.

In our next analysis, we investigated the relationship between insert and delete
actions, which the previous analysis suggested was a key differentiator between the
two lesson types. We computed ratios between the types of actions (verbs) observed
in the STEAM and non-STEAM datasets, one ratio for each student in each lesson.
For  example,  given  our  verb  set  of  create-insert-delete-terminate,  a  ratio  of
0.1:0.3:0.5:0.1 would indicate that  in  that  lesson,  the code logs consisted of  10%
creations, 30% insertions, 50% deletions and 10% terminations. 

The range of ratios observed across all the lessons is shown in a box plot in figure
8, where each box represents a verb, and its size and position indicate the range of
values observed for that  verb’s occurrence ratio.  A visual  inspection of this graph
suggests that there were more insertions relative to deletions in all lessons, but this
was less pronounced in STEAM, where there seemed to be relatively more deletions
happening.  Or,  relatively  fewer  inserts.  To verify  this,  we  calculated  two sets  of
values:  the insert:delete  ratios for  all  students in all  STEAM and the insert:delete
ratios for all students in all non-STEAM lessons. This gave us two sets of values of
length 66 (11 students, 6 lessons), where each value represented the ratio between
insertions and deletions for one student in one lesson. E.g. a value of 7 means there
are 7 inserts for every delete. A value of 0.5 means there are 2 deletes for every insert.
We used  a  two  sided  Kolmogorov-Smirnov  test  which  is  a  non-parametric  test
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suitable for testing the null hypothesis that two continuous valued samples are drawn
from the same distribution. This would allow us to decide if the visually apparent
difference  between the  two sets  of  ratios  was  significant.  It  yielded  a  p-value  of
7.747e-6, which is very significant. Therefore, the null hypothesis can be rejected -
insert:delete ratios  are different in STEAM and non-STEAM lessons. A histogram
showing the distribution of insert:delete ratios is shown in figure 7. It it clear that the
STEAM lessons tend towards  parity  between insert  and  delete  operations (values
close  to  1),  whereas  non-STEAM lessons  tend  to  have  more  inserts  than  deletes
(values higher than 1). 

5.4  Correlating final grade with activity ratios

Figure 9: Final grades achieved by students plotted against their ratio of deletion to 
insertion edits across all lessons. A value of 0.5 on the axis means there were twice as 
many insertions as deletions, a value of 1 on the x axis means there were the same 
number of insertions and deletions. 

In the next analysis, we follow up on the observation of greater relative deletion
behaviour in STEAM lessons and ask the question: is deleting code something that
successful  students  tend  to  do  more  relative  to  inserting  code?  We do  this  by
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examining  the  final  grades  achieved  by  students  and  their  relationship  with  the
students’ individual delete:insert ratios. After the 12 lessons, the students carried out a
project of their own devising, which was graded by two tutors based on a presentation
and on the technical and aesthetic quality of the work. A scatter plot showing grades
plotted against the ratio of deletions to insertions (for coding done during the lessons,
not the project) is shown in figure 9. Visual inspection suggests a positive correlation
between the grade and the delete:insert ratio - students with high grades seem to do
relatively more deletions.  The Pearson correlation coefficient  was 0.612 with a  p-
value of 0.046 - a significant, positive correlation. We also measured correlations of
other  metrics  with  the  final  grade:  total  number  of  edits,  number  of  inserts  and
deletes. This yielded values of -0.179, -0.304 and 0.096 respectively, all much weaker
correlations, some negative. This suggests that sheer number of edit operations does
not predict  the final  grade. In conclusion,  there are two clear, final  grade related
features of this relatively small dataset: 1) successful students do not tend to generate
more actions overall in lessons and 2) successful students tended to have more deletes
relative to inserts. 

6  Discussion

We shall now return to the research questions posed at the beginning of the paper and
view them through the lens of the evidence we have presented in the previous section.

Do  students  code  differently  when  undertaking  STEAM  and  non-STEAM
exercises?

We have defined four lesson types - two are STEAM and two are non-STEAM. We
gathered  detailed  logs  of  student  coding  activity  in  multiple  examples  of  these
lessons.  Our  data  suggests  that  the  coding  behaviour  patterns  of  the  same set  of
students varied significantly between STEAM and non-STEAM activities in several
ways. The total number of coding operations observed in the non-STEAM lessons
was greater. In particular, the number of code insert operations was greater. Secondly,
the ratio of insert to delete operations logged in the code editor was closer to 1 in
STEAM lessons and higher in non-STEAM lessons, so students were doing relatively
more deletes, or less inserts in STEAM lessons. 

We interpret this result as a possible sign that students were experimenting more
in the STEAM lessons - they were trying things out then deleting them, they were
exploring the problem space through trial and error. This is exactly the kind of activity
we would want to encourage. 

Do  students  report  qualitatively  different  experiences  when  working  on
different types of exercises?

We asked students to complete experience surveys after taking part in a series of 12
lessons  wherein  they  rated  their  experience  on  five  point  scales  for  motivation,
difficulty,  enjoyment,  learning,  creativity,  technicality,  ‘sense  of  completion’  and
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‘want to continue’. We designed these scales based on our own intuition about which
metrics might allow us to differentiate between the lesson styles. We were somewhat
surprised to find that the lessons were not rated significantly differently on any of the
metrics aside from creativity. Students rated their experience of creativity higher in
STEAM lessons so students felt more creative in STEAM lessons. Since the other
metrics did not vary between lessons, it  seems possible to infer that this gain was
obtained without a detrimental effect on those metrics. 

Is there a relationship between coding behaviour and final grades?

Our final analysis was to look for relationships between the proposed "trial and error"
behaviour which manifested in our data as higher delete to insert ratios, and some sort
of ground truth about student ability. In other words, did successful students carry out
more  trial  and  error?  We were  able  to  find  a  reasonably  significant  correlation
between our trial and error metric and final grades achieved by students. People with
higher final grades tended to have done more trial and error coding. The sheer number
of edits made did not correlate at all with the grades achieved - the important feature
was the nature of the editing behaviour. This is a really interesting result especially
combined with the observation that STEAM lessons encouraged more trial and error
behaviour  in  general  across  the  cohort.  Perhaps  STEAM teaching  can  encourage
students to develop better learning strategies involving greater experimentation. We
need  to  carry  out  a  longer  term  study  to  gain  a  greater  understanding  of  this
suggestion. 

7  Conclusion

In this paper, we have described a study comparing classical, and STEAM approaches
to  computer  science  education.  The  study  was  motivated  by  our  need  to  better
evidence  and  describe  the  advantages  and  disadvantages  of  the  arts  inflected
pedagogy that we have developed over the last 10 years or so at our institution, and
the lack of programming-specific, comparative studies in the literature. In order to
carry out the study, we have developed an experimental and technological framework
which  makes  it  possible  to  carry  out  a  range  of  studies  into  computer  science
education, and specifically to look at how students approach programming in different
learning contexts. It involves the careful design of lessons based on clear pedagogical
theory,  intensive  data  gathering  using  a  novel  browser  based  programming
environment, and the use of learning analytics and statistical methods to analyse and
interpret the data, with an emphasis on a comparative approach. 

The  study  reported  in  this  paper  provided  some  key  results.  First,  students
reported higher  levels  of  creative  experience  in  STEAM lessons but  they did not
report  any undesirable reductions in other areas of their  experience.  Second,  their
coding  patterns  were  different,  with  relatively  more  delete  operations  in  STEAM
lessons. We interpret this as evidence of a more exploratory approach to programming
with students more open and confident about exploring the landscape through trial
and error. Third, we observed that successful students tended to do relatively more
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deleting than unsuccessful students, suggesting that this trial and error approach is a
successful strategy in learning to program. 

In  future  work,  we plan  to  improve and  repeat  the  study with larger  cohorts.
Currently, we have several MOOCs with many thousands of users and run a range of
on-campus  courses  at  UG  and  PG  level  with  many  hundreds  of  students.  This
provides the perfect opportunity to expand the study. We also plan to develop new
studies within our framework which will allow us to examine the effect of the other
features of our IDE such as collaborative coding, live coding and audiovisual coding.
We are also planning to expose the analytics to students, which would allow us to
investigate student meta cognition, where students gain an understanding of their own
learning process [30]. 

We believe  that  we have  set  the  theoretical  and  experimental  foundations  for
providing strong empirical evidence for the benefits of STEAM learning. 
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