
Paper—Evidencing the value of inquiry based, constructionist learning for student coders

Evidencing the value of inquiry based, constructionist
learning for student coders

https://doi.org/10.3991/ijxx.vx.ix.xxxx

Matthew John Yee-King
Department of Computing, Goldsmiths, University of London

m.yee­king@gold.ac.uk

Mick Grierson
Department of Computing, Goldsmiths, University of London

m.grierson@gold.ac.uk

Mark d‘Inverno
Department of Computing, Goldsmiths, University of London

dinverno@gold.ac.uk

Abstract—For the last decade, there has been growing interest in the
STEAM approach (essentially combining methods and practices in arts,
humanities and social sciences into STEM teaching and research) with its
potential to deliver better research and education, and to enable us to produce
students who can work more effectively in the current and developing market-
place. However, despite this interest, there seems to be little quantitative
evidence of the true power of STEAM learning, especially describing how it
compares and performs with respect to more established approaches. To address
this, we present a comparative, quantitative study of two distinct approaches to
teaching programming, one based on STEAM (with an open-ended inquiry-
driven, inductive approach), the other based on a more traditional, non-STEAM
approach (where constrained problems are set and solved deductively). Our key
results evidence how students exhibit different styles of programming in
different types of lessons and, crucially, that students who tend to exhibit more
of the style of programming observed in our STEAM lessons also tend to
achieve higher grades. We present our claims through a range of visualisations
and statistical validations which clearly show the significance of the results,
despite the small scale of the study. We believe that this work provides clear
evidence for the advantages of STEAM over non-STEAM, and provides a
strong theoretical and technological framework for future, larger studies.

Keywords—STEAM; xAPI; coding; education; pedagogy

1 Introduction

Over the last 10 years, we have developed and delivered a range of degree
programmes at our institution that aim to bring an arts inflected pedagogy into the

mailto:m.yee-king@gold.ac.uk
mailto:m.yee-king@gold.ac.uk
https://doi.org/10.3991/ijxx.vx.ix.xxxx

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

teaching of computer science. We make extensive use of what is considered a
STEAM approach to engineering education [1], an approach we describe in detail
later in the paper. Over the last decade, we have seen how a range of employers,
especially from the creative industries, are keen to employ graduates from our
courses. Anecdotally, the graduates demonstrate a more creative and experimental
approach to engineering, and are able to adapt quickly to using new technologies in
new settings.

But anecdotal evidence is not enough. We would like to know the measurable
impact, if any, this pedagogical approach actually has on student learning. Do students
learn to code in a different way with this approach, compared to more traditional
approaches? If they do, does this impact positively upon learning outcomes? In this
paper, we set out to investigate these questions, as we find there is a lack of research
explicitly comparing how different pedagogical approaches impact on the way
students learn programming.

Our first step towards addressing this apparent gap in knowledge has been to
design and deploy a novel technological platform for teaching programming. The
system has been designed to support our teaching and research by providing specific
interactive, data gathering and analytics functionality. The system includes a browser
based, integrated development environment, which is accessible online1. It has been
used by hundreds of students in our department and its data gathering functionality
makes it possible to conduct detailed, quantitative analyses of student coding activity.
We provide full technical details of the system in [31], and highlight the relevant
features for this study in section 3.1.

In this paper, we use this system to examine and compare the activities of students
when they are exposed to STEAM and non-STEAM style computing lessons. This
allows us to produce clear evidence about how people change their coding styles
depending on the type of instruction they are given.

1.1 The need for inclusive coding instruction

Another aspect of our endeavour to understand how people respond to different
instructional styles when learning programming is the need to make coding
instruction more inclusive. Coding has been highlighted by industry leaders as ’the
red thread that runs through Europe’s future professions’ [2]. To maximise the number
of ‘computational thinkers’ [3] entering the job market, more people, from a much
greater range of backgrounds and disciplines, will need to learn how to code. We need
to ensure that the methods we use to teach coding are both inclusive and effective.
This is not an easy task - Margolis and Goode summarise the challenge of developing
inclusive CS education as follows: “The goal is to bring the students to the subject in
a way that allows them to understand it deeply and make it part of their own
experience without watering down the content or neglecting the fundamental concepts
and modes of inquiry that characterize the discipline” [4].

We think that the prevailing approach to teaching programming, which seems to
be largely derived from classical engineering education, is not the most effective way
to attract and educate a diverse group of new coders who can function effectively in

1 https://live.codecircle.com

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

the modern workplace. This ‘non-STEAM’ approach typically involves students
studying a large body of pre-existing technical knowledge and learning how to apply
it deductively to constrained problems that are designed to test this knowledge.
STEAM offers an alternative approach involving an inductive, exploratory process
driven by self-defined goals, more akin to that seen in creative arts education.

The question we wish to consider is: do these distinct approaches actually impact
on the way a student goes about programming and, if so, is one approach better than
the other? In this paper, we shed some light on these questions by describing the
results of a study wherein students worked on STEAM and non-STEAM style
programming activities. In particular, we address the following research questions: Do
students code differently when undertaking STEAM and non-STEAM exercises? Do
students report qualitatively different experiences when working on different types of
exercises? Is there a relationship between coding behaviour and final grades? By
exploring these questions, this paper makes three main contributions:

1. A comparative, quantitative analysis of student programming behaviour in
STEAM and non-STEAM lessons.

2. A clear definition of STEAM and non-STEAM pedagogy with specific examples
of lessons using both.

3. A reusable experimental and technological framework within which it is possible
for researchers to conduct a range of computer science education studies.

As we will demonstrate in the following report, our results support anecdotal
evidence from teachers and lecturers that experiential learning, such as that found in
arts education and STEAM, is a critical component of successful, deeper STEM
learning.

The paper is organised as follows: in the following section, we will discuss
background work around STEAM pedagogy and approaches to analysing coding
activity. In section 3 we describe the experimental and technological framework we
have developed to enable studies into computer science education. In section 4 we
will describe the method used for this particular study. In section 5 we will describe
and analyse the data that resulted from the study. In section 6 we will discuss and
evaluate the results, concluding in section 7.

2 Background

In this section we will explain what we mean by STEAM and non-STEAM pedagogy,
based on references to the education literature, then we will discuss some previous
studies which analysed student coding behaviour.

2.1 STEAM and non-STEAM

STEAM is an approach to teaching engineering, science, technology and maths which
adopts methods from art school teaching to better teach “problem solving,
fearlessness, and critical thinking and making skills” [5]. Students are encouraged to
construct their own ontologies of understanding through an active process of creation

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

[6]. Rose and Smith stated: ‘the STEAM agenda should be about deep, sustained,
powerful engagement as a way of learning’ [7]. The ideas and methods in STEAM are
not new, though. It is based on a constructivist theory of learning, after Piaget, and is
influenced by Dewey, a key figure in arts pedagogy who believed in teaching the
whole person and that “inquiry [was] of necessity an experimental transaction” [8].
Thus STEAM can be seen as the latest in a series of related approaches, which we can
trace back to Dewey’s experience driven education [9], Papert’s constructionism [10]
and Rutherford’s inquiry based learning [11].

Science educators have adopted many of the techniques underpinning STEAM,
for example, inquiry learning and project based learning [12], but this type of
instruction has been attacked by some educational psychologists. Kirschner et al.
claimed that ‘unguided learning’ stands to fail as a pedagogical approach since it
involves an excessive cognitive load that will interfere with the basic mechanisms of
learning, namely the interaction between working memory and long term memory
[13]. Minner et al. responded to this work by providing a meta study, through which
they were able to dismiss Kirschner et al.’s basic description of these learning
methods as ‘not the way that most inquiry-oriented practitioners or researchers would
describe these kinds of instructional approaches’ [14]. Hmelo-silver et al. provided
further clarity about this by carrying out another meta study, this time examining the
use of scaffolding in inquiry based learning [15]. They explain that scaffolding is used
exactly for the purpose of reducing cognitive load during inquiry learning, thus
addressing Kirschner et al’s key issue about the excessive cognitive load caused by
this type of instruction. They also highlighted the impact of this type of instruction on
the more holistic goals of education, such as soft skill development, which takes us
back to Dewey, who emphasised the importance of teaching the whole person in their
social context.

Surprisingly, given its practical and applied character, this style of instruction has
been slow to catch on in engineering education, as noted by Ben-Ari [16]. Many
educators still employ ‘chalk and talk’, where the sage on the stage transmits
knowledge to the receptive vessels in front of them, which can then be measured
through the trusted and rigourous method of written examination. Despite its
persistence, there is very strong evidence against the efficacy of this approach. In the
largest meta-study to date of the impact of active, constructivist learning in STEM
education, Freeman et al. stated that failure rates under traditional lecturing increase
by 55% over the rates observed under active learning and that average examination
scores after active learning improved by about 6% [17]. Given these results and the
fact that STEAM is a quite extreme form of active learning, we consider it a very
interesting pedagogical approach to investigate.

This discussion of well established education theory is necessary as a background
to our work, as there has been a lack of work in the computing education literature
that builds on previous theories, as noted by Malmi et al [18]. Therefore, we have
designed the study reported here based on a clear theoretical perspective upon
STEAM learning. We also describe a re-useable, experimental framework within
which the theory can be practically investigated. Finally, our data driven approach
makes use of standards and approaches being developed in the fields of learning
analytics and educational data mining [19].

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

2.2 Analysing coding behaviour

We shall now consider some examples of work that describes and analyses student
programming behaviour, since this is the key mode of analysis in this paper and this
work has inspired some of the approaches we use. Rodrigo and Baker looked at
programming behaviour, such as repeated attempts to compile the same code [20].
They developed a model that was able to detect affects such as frustration in
programming labs. The data we use in our study is higher resolution, allowing us to
examine coding behaviour at the keystroke, rather than the compile event level.
Blikstein et al. describe a range of metrics that can be automatically extracted from
IDE code snapshots, and use them to characterise student coding behaviour [21]. The
techniques included observing the sizes of changes in the programs over time using
abstract syntax trees. Using these metrics, they clustered and classified learners,
mapping their student classifications onto Papert’s tinkerer and planner categories
[10]. Our work differs in that we are looking at a higher time resolution, we do not
analyse the programs themselves, and we focus on comparing pedagogical
approaches, not comparing students.

Mahadevan et al. describe a STEAM oriented coding environment wherein
students learn Javascript and Python by computationally re-arranging chunks of audio
(remixing) in a web based system called EarSketch [22]. They reported significant
increases in self efficacy regarding coding in students using the system [23]. Our
work differs in this phase in that we are focused on fine grained details of student
coding behaviour and how this changes with changing pedagogy, as opposed to
investigating the high level impact of STEAM on student self-efficacy.

Fields et al. examined the use of initialisation, events and parallelism in Scratch
programs written by youths at a summer school [24]. They used a constructionist
pedagagy and were able to make observations about different students and their
development of these programming concepts. Our study differs from this one in that
we are looking at lower level information about the coding behaviour, and we actively
compare different pedagogies.

Yang et al. developed a method to model and analyse informal learning in online
communities of Scratch programmers [25]. They modelled the amount of learning, the
speed of learning and the amount of prior knowledge, all based on patterns of use of
the 170 different blocks available in Scratch (the vocabulary). They clustered learners
based on their trajectories through a weighted vocabulary space. Our work differs in
that we have a formal learning context, we are not considering programming
vocabulary, and we compare different teaching techniques as opposed to comparing
different learners.

As we can see, there is much interesting work analysing student programs and
programming styles, but what is perhaps lacking is a comparison of how
programming behaviour changes in response to different pedagogical approaches. Our
work addresses this gap in the literature, with a comparison of STEAM and non-
STEAM approaches.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

3 Experimental and technological framework

In this section, we will describe the experimental and technological framework we
have developed in order to carry out comparative investigations of different
pedagogical styles in computer science education. The framework consists of 1) an
education focused integrated development environment (IDE) 2) learning analytics
and 3) a reusable experimental method.

Figure 1: Screen shot of the IDE. The code for the program can be edited on the right.
The output of the running program can be seen on the left. The code editing panel is
made opaque when editing so the code can be clearly seen.

3.1 The educational IDE

We have developed an educational, browser based IDE which allows students to write
programs in their web browser. The system is currently being used in a range of our
teaching, including MOOCs and various on campus courses. A screen shot can be
seen in figure 1. The key features of the system are as follows:

1. Web browser based.

2. Live coding where code is re-interpreted as you type.

3. High resolution, timestamped code editing logs.

4. Programs are written in Javascript.

5. Jshint highlights basic coding errors.

6. integrated audiovisual libraries for scaffolded use of real-time graphics and sound.

7. Real time, collaborative coding via an operational transformation engine [26].

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

The essential feature from the above list for the experimental framework is the
ability to gather high resolution, code editing log data. This data describes all edits
made to the code at the keystroke level, with timestamps, and the content of the edit.
Interestingly, this data comes as a side effect of the operational transformation (OT)
engine underlying the code editor. This engine is there to enable real time
collaborative coding, similar to Google Documents. It is implemented using Gentle’s
sharejs library which grew out of the Google Wave project [27]. OT provides a set of
algorithms which work together to provide the best possible version of a document
that has been simultaneously edited by multiple editors. The operations can also be re-
run such that the process of creating the document can be observed step by step. We
have not fully explored the educational experimental possibilities of this logging
system yet, and in the work presented here, we use it as a means of gathering high
level statistics about the types of code edits single students were making during the
lessons.

3.2 Learning analytics

Figure 2: Screen shot of the learning analytics dashboard. On the left is the data
browser, currently showing an anonymised list of users; on the right are two
visualisations of coding behaviour over the 6 days of the study.

The second part of our experimental framework is a learning analytics system.
The code editing logs are converted from their raw form, generated by the OT engine,
into a semantic form according to the xAPI specification [28]. Briefly, xAPI provides
a formal way of describing interactions between learners and learning technology as a
set of xAPI statements in JSON format. It is common for researchers to develop
xAPI ‘recipes’ for particular learning activities, and we have defined recipes suitable
for describing the activities of programmers, and published it as a github repository2

2 https://github.com/yeeking/xapi-coding-recipes

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

as we found that there were no pre-existing recipes for such. The main elements of a
generic xAPI statement are shown below:

{
"actor" : who acted?
"verb" : what did they do?
"object" : what were they interacting with
"timestamp" : when?
"result" : what was the outcome?
"context" : what was the lesson/ activity?
}

The verbs we selected to describe coding actions in this study were ‘create’ (new
document), ‘insert’ (code to document), ‘delete’ (code from document) and
‘terminate’ (a code statement). Terminating a code statement means inserting code
that ends with a semicolon. As our work develops in the future, we can define further
statement types, for example, we might want to log when coders use control flow
constructs like loops, when they use library functions or when they access online
documentation.

The xAPI statements describing all the logged actions are stored in a Learning
Record Store (LRS), which is a web application specifically designed to store xAPI
statements for the purposes of applying learning analytics to them. We developed our
learning analytics to talk to the LRS and to process xAPI statements.

To make accessing and browsing our xAPI statements easier, we developed a
dashboard that connects to the LRS to retrieve and visualise xAPI statements, as
shown in figure 2. With this system, it is possible to rapidly explore live data on the
system, for example viewing all actions by a certain user, in a single document or
within a particular lesson.

3.3 Experimental design

Having introduced our education and analytics technology, we will now describe our
general approach to experimental design. In essence, a set of students participate in a
set of lessons which include programming activities with different characteristics
(described in more detail below). The characteristics that can vary might be the
structure of the learning activity, or the configuration of the IDE. The students are
asked to complete short surveys after every lesson wherein they self-report their
experiences in the lessons. The analytics system gathers data which is connected to
lessons via tagging and time stamping. The experimental design aims for high
ecological validity [29] - these are real lessons and they are designed to be effective
and enjoyable. We rely on the high resolution data gathering to provide us with robust
quantitative results, and the data gathering should be non-instrusive as much as
possible.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

4 The study

Having described our general technological, experimental framework, we will now
describe a specific instance of an experiment that we have carried out within the
framework which aims to compare programming behaviour and student experience in
STEAM and non-STEAM style lessons.

The study involved 11 undergraduate, arts computing students at a summer
school. They participated in 12, two hour, group lessons over two weeks, wherein six
activities were STEAM and six were non-STEAM. There were two lessons in a day,
one in the morning and one in the afternoon, one STEAM and one non-STEAM.
Sometimes STEAM was in the morning, sometimes non-STEAM. The activities are
described in more detail below. All lessons were taught by the same tutor and
involved a short presentation by the tutor followed by students working on a
programming activity. Finally, all of the students had beginner to intermediate level
programming skills - we knew this because they had been using the programming
environment (described above) for two weeks prior to the study and this allowed us to
estimate their programming experience level.

All 12 lessons were based around learning to manipulate audio and graphics using
Javascript, so both STEAM and non-STEAM lessons involved a multimedia
component. We are taking a philosophical position here - just because a lesson
involves graphics or sound, it does not make it STEAM. STEAM is a specific
approach to education which is visible in the structure of the learning activities. The
programming activities in the lessons fell into four categories: Fill in the gaps (FITG/
non-STEAM), Implement a specification (SPEC/ non-STEAM), Work to aesthetic
goals (WTAG/ STEAM) and Fork and customise (FAC/ STEAM). In FITG, students
were provided with an incomplete program and they had to fill in the gaps. This is a
typical non-STEAM style teaching method as they were provided with a constrained
problem requiring that they engaged with very specific engineering techniques. In
SPEC, students were given a simple list of requirements that they had to implement in
a program; it was slightly less constrained than FITG but was still designed to engage
them with specific techniques. In WTAG, students were encouraged to engage with an
aesthetic concept such as timbre or motion and to develop an idea for a simple
program to explore that concept. This was STEAM as their exploration was open
ended and driven by their own interests. The FAC lessons involved students browsing
through eachothers’ work and selecting something they would like to customise. This
was STEAM as they were not forced to customise in any particular way, but to be
driven by their own ideas about what they should do. It also required that they operate
within a community of their peers, sharing and co-creating.

After each activity the students completed a short survey, where they rated their
experience from 1 to 5 for: ‘motivation’, ‘difficulty’, ‘enjoyment’, ‘learning’,
‘creativity’, ‘technicality’, ‘sense of completion’ and ‘want to continue’. We selected
these measures based on consideration of what might allow differentiation between
STEAM and non-STEAM. For example, one might imagine that students who had to
fill in some gaps in a program (non-STEAM) would feel a stronger sense of
completion than students who were asked to work to aesthetic goals (STEAM), or that
students who had set their own project goals (STEAM) might be more motivated to
continue.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

5 Results and analysis

Figure 3: Screenshot of how the survey looked in our VLE.

The code logs and survey results form the raw data for the analysis below. The
total number of code editing operations logged by the system for all students in the 12
activities was 77,923 and 91 surveys were completed (out of a possible 132). An
example of how the survey looked in our VLE is shown in figure 3.

The main thrust of our analysis is to separate the data into two sets: those data
resulting from STEAM lessons and those resulting from non-STEAM lessons. This
provides us with two conditions between which we can compare student experience
and coding behaviour. In the following subsections, we will describe four analyses of
the data: 1) self reported experience metrics, 2) activity levels in the lessons, 3)
activity patterns in the lessons and 4) the relationship between final grades and
activity patterns.

5.1 Self reported experience

Table 1: P-values for variation between STEAM and non-STEAM lessons per self
reported experience metric.

 Metric p-value

 Motivation 0.533
 Difficulty 0.7
 Enjoyment 0.862
 Learning 0.674
 Creativity 0.037*

 Technicality 0.707
 Sense of completion 0.407

 Want to continue 0.927

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

Figure 4: Histogram of the two distributions of self reported creativity, showing the
tendency for students to report higher levels of creativity in STEAM.

In our first analysis, we measured the significances of the variation between the
answers to the post STEAM and non-STEAM activity questions using a Wilcoxon
signed-rank test which is appropriate for estimating non-parametric effect size. We
used non-parametric statistics since we could not assume that the answers followed
any particular distribution. As mentioned above, we selected experience questions
which we thought might differentiate between the two lesson styles, or more formally,
our aim was to attempt to nullify the hypothesis that students would report having the
same experience in both lesson styles.

The p-values obtained from the test are shown in Table 1. The only metric that
was significantly different was the students’ reported experience of creativity -
participants reported higher levels of creativity for the STEAM lessons. The
distributions of self reported creativity levels from the two lesson types are shown in
figure 4 and it can be seen that the ratings tended to be higher in the STEAM lessons.
We will discuss this result, and the lack of significant variation in the other metrics, in
the discussion section.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

5.2 Coding activity

In our second analysis, we looked at the number of editing actions made in the
different lessons. Table 2 shows the total, mean and standard deviation of each type of
action, separated by lesson type. The total number of actions taken in the non-
STEAM lessons is greater, and the difference seems to be made up by extra insert
actions. There are more insert actions in non-STEAM lessons by approximately one
standard deviation of the non-STEAM lesson set. We will discuss this result in the
discussion section.

Table 2: Actions of each type, logged in STEAM (S) and non-STEAM lessons (NS)
by the 11 participants.

 Lesson create delete insert terminate

 S all 190.0 12605.0 20551.0 1013.0
 NS all 186.0 11700.0 29193.0 1285.0
 S mean 31.7 2100.8 3425.2* 168.8

 NS mean 31.0 1950.0 4865.5* 214.2
 S std 6.1 412.8 712.6 76.3

 NS std 7.0 655.3 1387.6 75.2

Figures 5 and 6 show the variation of code editing activity levels during the 2 hour
lessons for all students. The aim is to show if students were active throughout the
lessons or if the activity level varied. A smooth gradient indicates steady activitty, a
jagged gradient indicates students stopping and starting. The non-STEAM lessons
appear to have a slightly smoother activity curve, indicating more consistent activity
levels during the lessons. We will discuss these graphs further in the discussion
section.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

Figure 5: Cumulative edits made in the lessons against time for all students in non-
STEAM lessons. The number of edits is normalised against the total number of edits.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

Figure 6: Cumulative edits made in the lessons against time for all students in
STEAM lessons. The number of edits is normalised against the total number of edits.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

5.3 Coding activity ratios

Figure 7: Distribution of insert:delete ratios in STEAM and non-STEAM. A value of
1 means the same number of deletions and insertions happened in a lesson. A value >
1 means there were more insertions than deletions.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

Figure 8: Ratios of code operation types in STEAM and non-STEAM lessons. Each
box shows the range of values for a verb in a lesson type. High up boxes indicate
more common actions, box size indicates the range of values observed.

In our next analysis, we investigated the relationship between insert and delete
actions, which the previous analysis suggested was a key differentiator between the
two lesson types. We computed ratios between the types of actions (verbs) observed
in the STEAM and non-STEAM datasets, one ratio for each student in each lesson.
For example, given our verb set of create-insert-delete-terminate, a ratio of
0.1:0.3:0.5:0.1 would indicate that in that lesson, the code logs consisted of 10%
creations, 30% insertions, 50% deletions and 10% terminations.

The range of ratios observed across all the lessons is shown in a box plot in figure
8, where each box represents a verb, and its size and position indicate the range of
values observed for that verb’s occurrence ratio. A visual inspection of this graph
suggests that there were more insertions relative to deletions in all lessons, but this
was less pronounced in STEAM, where there seemed to be relatively more deletions
happening. Or, relatively fewer inserts. To verify this, we calculated two sets of
values: the insert:delete ratios for all students in all STEAM and the insert:delete
ratios for all students in all non-STEAM lessons. This gave us two sets of values of
length 66 (11 students, 6 lessons), where each value represented the ratio between
insertions and deletions for one student in one lesson. E.g. a value of 7 means there
are 7 inserts for every delete. A value of 0.5 means there are 2 deletes for every insert.
We used a two sided Kolmogorov-Smirnov test which is a non-parametric test

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

suitable for testing the null hypothesis that two continuous valued samples are drawn
from the same distribution. This would allow us to decide if the visually apparent
difference between the two sets of ratios was significant. It yielded a p-value of
7.747e-6, which is very significant. Therefore, the null hypothesis can be rejected -
insert:delete ratios are different in STEAM and non-STEAM lessons. A histogram
showing the distribution of insert:delete ratios is shown in figure 7. It it clear that the
STEAM lessons tend towards parity between insert and delete operations (values
close to 1), whereas non-STEAM lessons tend to have more inserts than deletes
(values higher than 1).

5.4 Correlating final grade with activity ratios

Figure 9: Final grades achieved by students plotted against their ratio of deletion to
insertion edits across all lessons. A value of 0.5 on the axis means there were twice as
many insertions as deletions, a value of 1 on the x axis means there were the same
number of insertions and deletions.

In the next analysis, we follow up on the observation of greater relative deletion
behaviour in STEAM lessons and ask the question: is deleting code something that
successful students tend to do more relative to inserting code? We do this by

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

examining the final grades achieved by students and their relationship with the
students’ individual delete:insert ratios. After the 12 lessons, the students carried out a
project of their own devising, which was graded by two tutors based on a presentation
and on the technical and aesthetic quality of the work. A scatter plot showing grades
plotted against the ratio of deletions to insertions (for coding done during the lessons,
not the project) is shown in figure 9. Visual inspection suggests a positive correlation
between the grade and the delete:insert ratio - students with high grades seem to do
relatively more deletions. The Pearson correlation coefficient was 0.612 with a p-
value of 0.046 - a significant, positive correlation. We also measured correlations of
other metrics with the final grade: total number of edits, number of inserts and
deletes. This yielded values of -0.179, -0.304 and 0.096 respectively, all much weaker
correlations, some negative. This suggests that sheer number of edit operations does
not predict the final grade. In conclusion, there are two clear, final grade related
features of this relatively small dataset: 1) successful students do not tend to generate
more actions overall in lessons and 2) successful students tended to have more deletes
relative to inserts.

6 Discussion

We shall now return to the research questions posed at the beginning of the paper and
view them through the lens of the evidence we have presented in the previous section.

Do students code differently when undertaking STEAM and non-STEAM
exercises?

We have defined four lesson types - two are STEAM and two are non-STEAM. We
gathered detailed logs of student coding activity in multiple examples of these
lessons. Our data suggests that the coding behaviour patterns of the same set of
students varied significantly between STEAM and non-STEAM activities in several
ways. The total number of coding operations observed in the non-STEAM lessons
was greater. In particular, the number of code insert operations was greater. Secondly,
the ratio of insert to delete operations logged in the code editor was closer to 1 in
STEAM lessons and higher in non-STEAM lessons, so students were doing relatively
more deletes, or less inserts in STEAM lessons.

We interpret this result as a possible sign that students were experimenting more
in the STEAM lessons - they were trying things out then deleting them, they were
exploring the problem space through trial and error. This is exactly the kind of activity
we would want to encourage.

Do students report qualitatively different experiences when working on
different types of exercises?

We asked students to complete experience surveys after taking part in a series of 12
lessons wherein they rated their experience on five point scales for motivation,
difficulty, enjoyment, learning, creativity, technicality, ‘sense of completion’ and

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

‘want to continue’. We designed these scales based on our own intuition about which
metrics might allow us to differentiate between the lesson styles. We were somewhat
surprised to find that the lessons were not rated significantly differently on any of the
metrics aside from creativity. Students rated their experience of creativity higher in
STEAM lessons so students felt more creative in STEAM lessons. Since the other
metrics did not vary between lessons, it seems possible to infer that this gain was
obtained without a detrimental effect on those metrics.

Is there a relationship between coding behaviour and final grades?

Our final analysis was to look for relationships between the proposed "trial and error"
behaviour which manifested in our data as higher delete to insert ratios, and some sort
of ground truth about student ability. In other words, did successful students carry out
more trial and error? We were able to find a reasonably significant correlation
between our trial and error metric and final grades achieved by students. People with
higher final grades tended to have done more trial and error coding. The sheer number
of edits made did not correlate at all with the grades achieved - the important feature
was the nature of the editing behaviour. This is a really interesting result especially
combined with the observation that STEAM lessons encouraged more trial and error
behaviour in general across the cohort. Perhaps STEAM teaching can encourage
students to develop better learning strategies involving greater experimentation. We
need to carry out a longer term study to gain a greater understanding of this
suggestion.

7 Conclusion

In this paper, we have described a study comparing classical, and STEAM approaches
to computer science education. The study was motivated by our need to better
evidence and describe the advantages and disadvantages of the arts inflected
pedagogy that we have developed over the last 10 years or so at our institution, and
the lack of programming-specific, comparative studies in the literature. In order to
carry out the study, we have developed an experimental and technological framework
which makes it possible to carry out a range of studies into computer science
education, and specifically to look at how students approach programming in different
learning contexts. It involves the careful design of lessons based on clear pedagogical
theory, intensive data gathering using a novel browser based programming
environment, and the use of learning analytics and statistical methods to analyse and
interpret the data, with an emphasis on a comparative approach.

The study reported in this paper provided some key results. First, students
reported higher levels of creative experience in STEAM lessons but they did not
report any undesirable reductions in other areas of their experience. Second, their
coding patterns were different, with relatively more delete operations in STEAM
lessons. We interpret this as evidence of a more exploratory approach to programming
with students more open and confident about exploring the landscape through trial
and error. Third, we observed that successful students tended to do relatively more

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

deleting than unsuccessful students, suggesting that this trial and error approach is a
successful strategy in learning to program.

In future work, we plan to improve and repeat the study with larger cohorts.
Currently, we have several MOOCs with many thousands of users and run a range of
on-campus courses at UG and PG level with many hundreds of students. This
provides the perfect opportunity to expand the study. We also plan to develop new
studies within our framework which will allow us to examine the effect of the other
features of our IDE such as collaborative coding, live coding and audiovisual coding.
We are also planning to expose the analytics to students, which would allow us to
investigate student meta cognition, where students gain an understanding of their own
learning process [30].

We believe that we have set the theoretical and experimental foundations for
providing strong empirical evidence for the benefits of STEAM learning.

Acknowledgments

We would like to thank the students for taking part in the lessons and for agreeing to
the data capture. Current development of the codecircle platform is funded through
the Higher Education Funding Council for England’s Catalyst scheme, under project
code K31.

References
[1] A. M. Connor, S. Karmokar, C. Whittington, and C. Walker, “Full STEAM ahead a

manifesto for integrating arts pedagogics into STEM education,” Proceedings of
IEEE International Conference on Teaching, Assessment and Learning for
Engineering: Learning for the Future Now, TALE 2014, no. December, pp. 319–326,
2014.

[2] Microsoft, Facebook, Liberty-Global, and Rovio, “Open letter to EU Ministers
for Education Brussels,,” 2014. [Online]. Available:
https://www.microsoft.com/global/eu/RenderingAssets/pdf/2014 Oct 14 EU Code
Week - European Coding Initiative Open Letter.pdf =0pt

[3] J. M. Wing, “Computational Thinking,” Communications of the ACM, vol. 49, no. 3,
pp. 33–35, 2006.

[4] Margolis and J. Goode, “Ten Lessons for Computer Science for All,” ACM Inroads,
vol. 7, no. 4, pp. 52–56, nov 2016. [Online]. Available:
http://doi.acm.org/10.1145/2988236 =0pt

[5] J. Maeda, “STEM + Art = STEAM,” The STEAM Journal, vol. 1, no. 1, pp. 1–3,
2013. [Online]. Available: http://scholarship.claremont.edu/steam/vol1/iss1/34 =0pt

[6] Applying the styles to an existing paperD. Henriksen, “Full STEAM Ahead:
Creativity in Excellent STEM Teaching Practices,” The STEAM Journal, vol. 1, no. 2,
feb 2014. [Online]. Available: http://scholarship.claremont.edu/steam/vol1/iss2/15
=0pt

[7] C. Rose and B. K. Smith, “Bridging STEM to STEAM: Developing new frameworks
for Art-Science-Design Pedagogy,” Rhode Island School District Press Release,
2011.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

[8] J. Dewey, A. W. Moore, H. C. Brown, G. H. Mead, B. H. Bode, H. W. Stuart, J. H.
Tufts, and H. M. Kallen, Creative intelligence: Essays in the pragmatic attitude. plus
0.5em minus 0.4emH. Holt, 1917.

[9] J. Dewey, Experience and education. plus 0.5em minus 0.4emNew York: McMillan,
1938.

[10] S. Papert, Mindstorms: children, computers, and powerful ideas. 1em plus 0.5em
minus 0.4emBasic Books, Inc. New York, NY, USA, 1980. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1095592 =0pt

[11] F. J. Rutherford, “The role of inquiry in science teaching,” Journal of Research in Sci
ence Teaching, vol. 2, no. 2, pp. 80–84, 1964.

[12] J. E. Mills, D. F. Treagust, and R. M. B. Ãž, “Engineering Education - is Problem-
based or Project-based learning the answer?” Autralasian Journal of Engineering
Education, vol. 3, no. 2, pp. 2–16, 2003. [Online]. Available:
http://www.aaee.com.au/journal/2003/mills_treagust03.pdf =0pt

[13] P. A. Kirschner, J. Sweller, and R. E. Clark, “Why Minimal Guidance During
Instruction Does Not Work,” Educational Psychologist, vol. 41, no. March 2015, pp.
87–98, 2006. [Online]. Available:
http://www.cogtech.usc.edu/publications/kirschner_Sweller_Clark.pdf =0pt

[14] D. D. Minner, A. J. Levy, and J. Century, “Inquiry-based science instruction-what is it
and does it matter? Results from a research synthesis years 1984 to 2002,” Journal of
Research in Science Teaching, vol. 47, no. 4, pp. 474–496, 2010.

[15] C. E. Hmelo-silver, R. G. Duncan, and C. A. Chinn, “Scaffolding and Achievement in
Problem-Based and Inquiry Learning : A Response to Kirschner , Sweller , and Clark
(2006),” Educational Psychology, vol. 42, no. 2, pp. 99–107, 2007.

[16] M. Ben-ari, “Constructivism in computer science education,” Journal of Computers
in Mathematics and Science Teaching, vol. 20, pp. 45–73, 2001.

[17] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor, H. Jordt, and
M. P. Wenderoth, “Active learning increases student performance in science,
engineering, and mathematics,” Proceedings of the National Academy of Sciences,
vol. 111, no. 23, pp. 8410–8415, 2014.

[18] L. Malmi, J. Sheard, L. Malmi, J. Sheard, R. Bednarik, A. Korhonen, N. Myller, and
A. Taherkhani, “Theoretical underpinnings of computing education research - What is
the evidence ?” in Proceedings of the tenth annual conference on International
computing education research, no. July, 2014, pp. 27–34.

[19] Z. Papamitsiou and A. A. Economides, “Learning Analytics and Educational Data
Mining in Practice : A Systematic Literature Review of Empirical Evidence The
research questions,” Educational Technology & Society, vol. 17, no. 4, pp. 49–64,
2014.

[20] M. M. T. Rodrigo and R. S. Baker, “Coarse-grained detection of student frustration
in an introductory programming course,” Proceedings of the fifth international
workshop on Computing education research workshop - ICER ’09, p. 75, 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1584322.1584332 =0pt

[21] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller,
“Programming Pluralism: Using Learning Analytics to Detect Patterns in the
Learning of Computer Programming,” Journal of the Learning Sciences, vol. 23,
no. 4, pp. 561–599, 2014. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/10508406.2014.954750 =0pt

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

[22] A. Mahadevan, J. Freeman, B. Magerko, and J. C. Martinez, “EarSketch: Teaching
Computational Music Remixing in an Online Web Audio Based Learning
Environment,” Proceedings of the Web Audio Conference (WAC), pp. 0–5, 2015.

[23] B. Magerko, J. Freeman, T. O. M. Mcklin, S. Consulting, G. Llc, M. Reilly,
E. Livingston, S. Mccoid, B. Magerko, J. Freeman, T. Mcklin, M. Reilly,
E. Livingston, and S. Mccoid, “EarSketch: A STEAM-Based Approach for
Underrepresented Populations in High School Computer Science Education,” ACM
Transactions on Computing Education, vol. 16, no. 4, 2016.

[24] D. A. Fields, O. M. Hill, J. Amely, and J. Maughan, “Combining Big Data and Thick
Data Analyses for Understanding Youth Learning Trajectories in a Summer Coding
Camp,” in SIGCSE ’16 Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, 2016, pp. 150–155.

[25] S. Yang, C. Domeniconi, M. Revelle, M. Sweeney, B. U. Gelman, C. Beckley, and
A. Johri, “Uncovering Trajectories of Informal Learning in Large Online
Communities Of Creators,” in L@S ’15 Proceedings of the Second (2015) ACM
Conference on Learning @ Scale, 2015.

[26] C. S. Ellis, “Operational Transformation in Real-Time Group Editors: Issues ,
Algorithms , and Achievements,” in Proceedings of the 1998 ACM conference on
Computer supported cooperative work, 1998, pp. 59–68.

[27] J. Gentle, “ShareJS - Live Concurrent Editing in your App,” 2012. [Online].
Available: https://github.com/josephg/ShareJS =0pt
[28] ADLNET, “xAPI-Spec,” 2016. [Online]. Available:
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md =0pt

[29] W. A. Sandoval and W. A. Sandoval, “Design-Based Research Methods for Studying
Learning in Context : Introduction Design-Based Research Methods for Studying
Learning in Context : Introduction,” Educational Psychologist, vol. 39, no. 4, pp.
199–201, 2004.

[30] G. Biswas, J. S. Kinnebrew, and D. L. C. Mack, “How do students ’ learning
behaviors evolve in Scaffolded Open-Ended Learning Environments ?” in roceedings
of the 21st International Conference on Computers in Education, 2013.

[31] J. Fiala, M. Yee-king, and M. Grierson, “Collaborative coding interfaces on the Web,”
in Proceedings of the 2016 International Conference on Live Interfaces, 2016, pp.
49–58. [Online]. Available: http://www.liveinterfaces.org/proceedings2016.html

8 Authors

Matthew Yee-King is a Lecturer in the Department of Computing at Goldsmiths,
University of London. His research interests include analytics and evidence driven
learning technology, computer science education, and machine learning applied to
signal processing.

Mick Grierson is a Reader in the Department of Computing at Goldsmiths,
University of London. His research interests are in applied Computer Science and
Engineering for the Creative Industries, specifically digital signal processing, machine
learning and interaction.

Mark d’Inverno is Professor of Computer Science at Goldsmiths, University of
London. He has a range of experience leading interdisciplinary research projects
across music, education, art and design.

Paper—Evidencing the value of inquiry based, constructionist learning for student coders

 XXXX. Published as resubmitted by the authors XX Month XXXX.

