
STEAM WORKS: Student coders experiment more
and experimenters gain higher grades

Matthew Yee-King, Mick Grierson and Mark d’Inverno
Department of Computing

Goldsmiths, University of London, UK

Abstract—For the last decade, there has been growing interest
in the STEAM approach (essentially combining methods and
practices in arts, humanities and social sciences into STEM
teaching and research) to develop better research and education,
and enable us to produce students who can work most effectively
in the current and developing market-place. However, despite this
interest, there seems to be little quantitative evidence of the true
power of STEAM learning, especially describing how it compares
and performs with respect to more established approaches. To
address this, we present a comparative, quantitative study of
two distinct approaches to teaching programming, one based
on STEAM (with an open-ended inquiry-based approach), the
other based on a more traditional, non-STEAM approach (where
constrained problems are set and solved). Our key results
evidence how students exhibit different styles of programming
in different types of lessons and, crucially, that students who
tend to exhibit more of the style of programming observed
in our STEAM lessons also tend to achieve higher grades.
We present our claims through a range of visualisations and
statistical validations which clearly show the significance of the
results, despite the small scale of the study. We believe that this
work provides clear evidence for the advantages of STEAM over
non-STEAM, and provides a strong theoretical and technological
framework for future, larger studies.

Keywords—STEAM; xAPI; coding; education; pedagogy

I. INTRODUCTION

Over the last 10 years, we have been central to the develop-
ment and delivery of a range of degree programmes at Gold-
smiths that aim to bring an arts inflected pedagogy into the
teaching of computer science. These include music computing,
digital arts computing and creative computing at undergraduate
level then computational studio arts at postgraduate level,
and we make extensive use of what is considered a STEAM
approach to engineering education1. Over the last decade, we
have observed how a range of employers, especially from
the creative industries, are keen to employ graduates from
our courses as they demonstrate a creatively driven approach
to engineering and are able to adapt quickly to using new
technologies in new settings.

However, despite the apparent success of these courses and
the pedagogical approach taken, we have not as yet been able
to empirically evidence any specific impact upon the way
students learn. We have set out to address this large gap in our

1strictly STEAM = STEM + Arts, but we do not exclude input from other
non-STEM disciplines.

knowledge by developing and trialling a suite of educationally
focused, social media type tools with learning analytics baked
in. ([1], [2], [3]). Codecircle2 is the most recent of these tools
and is the system used for the research described in this paper.
It is a browser based, integrated development environment, a
full technical description of which can be found in [4]. The
system is being used by hundreds of students in our department
and its built in data gathering functionality makes it possible to
conduct quantitative analyses of usage patterns. In this paper,
we use codecircle to examine and compare the activities of
students when they are exposed to STEAM and non-STEAM
style lessons.

We believe it is important to produce clear evidence on
how people learn programming, and how different pedagogical
approaches are most effective and have developed tools that
enable us to do so. We are especially interested in making
the learning of programming available to everyone because
coding has been highlighted by industry leaders as ’the red
thread that runs through Europe’s future professions’ [5]. To
maximise the number of ‘computational thinkers’ [6] entering
the job market, more people, from a much greater range of
backgrounds and disciplines, will need to learn how to code.
We need to ensure that the methods we use to teach coding are
both inclusive and effective. This is not an easy task - Margolis
and Goode summarise the challenge of developing inclusive
CS education as follows: “The goal is to bring the students to
the subject in a way that allows them to understand it deeply
and make it part of their own experience without watering
down the content or neglecting the fundamental concepts and
modes of inquiry that characterize the discipline” [7].

We think that the prevailing approach to teaching pro-
gramming, which seems to be largely derived from classical
engineering education, is not the most effective way to attract
and educate a diverse group of new coders who can function
effectively in the modern workplace. This ‘non-STEAM’ ap-
proach typically involves students studying a large body of
pre-existing technical knowledge and learning how to apply
it deductively to constrained problems that are designed to
test this knowledge. STEAM offers an alternative approach
involving an inductive, exploratory process driven by self-
defined goals, more akin to that seen in creative arts education.

The question we wish to consider is: do these distinct

2https://live.codecircle.com

approaches actually impact on the way a student goes about
programming and, if so, is one approach better than the other?
In this paper, we shed some light on these questions by
describing the results of a study wherein students worked
on STEAM and non-STEAM style programming activities.
In particular, we address the following research questions: Do
students code differently when undertaking STEAM and non-
STEAM exercises? Do students report qualitatively different
experiences when working on different types of exercises?
Is there a relationship between coding behaviour and final
grades? By exploring these questions, this paper makes three
main contributions:

1) A comparative, quantitative analysis of student program-
ming behaviour in STEAM and non-STEAM lessons.

2) A clear definition of STEAM and non-STEAM peda-
gogy with specific examples of lessons using both.

3) A reusable experimental and technological framework
within which it is possible for researchers to conduct a
range of computer science education studies.

Our results support anecdotal evidence from teachers and
lecturers that experiential learning, such as that found in arts
education and STEAM, is a critical component of successful,
deeper STEM learning.

The paper is organised as follows: in the following section,
we will introduce some previous work that describes STEAM
and non-STEAM approaches to teaching coding and which
analyses student coding behaviour. In section III we describe
the experimental and technological framework we have de-
veloped to enable studies into computer science education. In
section IV we will describe the method used for this particular
study. In section V we will describe and analyse the data that
resulted from the study. In section VI we will discuss and
evaluate the results, concluding in section VII.

II. BACKGROUND

In this section we will explain what we mean by STEAM
and non-STEAM pedagogy, based on references to the lit-
erature, then we will discuss some previous studies which
analysed student coding behaviour.

A. STEAM and non-STEAM

Classical STEM teaching, which is sometimes characterised
as ‘chalk and talk’, lecture based learning, is still prevalent
in undergraduate engineering education. In 2015, Connor et
al stated that ‘Developments in student-centric learning such
as problem-based and project-based learning have so far had
relatively little impact on mainstream engineering education’
[8]. This non-STEAM approach involves a well established
and substantive body of knowledge about an engineering
subject being explained to students, who are then required
to deductively apply it to carefully designed and constrained
problems. This approach is perhaps most clearly seen in
assessments, which ‘tend to focus on whether knowledge or
skills have been obtained’, in a Thorndikian manner [9]. Non-
STEAM project work can be characterised as tutors setting

carefully constrained projects with goals aligned with the pre-
existing ontology of knowledge about the subject. The learner
is given limited autonomy about how they approach a project
and what its goals are [10].

STEAM, on the other hand, offers an arts inspired approach
to engineering education where students are encouraged to
construct their own ontologies of understanding through an
active process of creation [11]. It is clearly based on a con-
structivist theory of learning, after Piaget, but another influence
is Dewey. Assessment is a qualitative, formative process, based
around Deweyian ‘creative feedback’ and an appreciation of
the self organisational characteristics of a deeper learning
process [12]. Further insight into STEAM can be gained
from Rose and Smith who state: ‘the STEAM agenda should
be about deep, sustained, powerful engagement as a way of
learning’ [13]. This leads to a quite open ended, project based
approach to learning which certainly pre-dates the acronym
STEAM, and which has been previously discussed in a science
education context by researchers such as Gallagher et al., and
Papert [14], [15]. Perhaps STEAM has arisen as a result of
the growing recognition of the lack of constructivist learning
in computer science education, as noted by Ben-Ari, who
contrasts this with its prevalence in Mathematics and Science
[16].

Thus we find that the character of STEAM education
appears well understood, but crucially there is a lack of studies
which attempt to quantify its nature or to compare it directly
with the traditional STEM approach. This is not surprising
- in a recent review of computing education research (CER)
literature, Malmi et al. noted a general lack of theory driven
research in CER, and indeed in engineering education research
in general [17].

In response to calls seen in the literature, we have designed
the study reported here based on a theoretical perspective
upon STEAM learning. We also describe a re-useable, exper-
imental framework within which the theory can be practically
investigated. Finally, our data driven approach makes use of
standards and approaches being developed in the fields of
learning analytics and educational data mining [18].

B. Analysing coding behaviour

We shall now consider some examples of work that de-
scribes and analyses student programming behaviour. Rodrigo
and Baker looked at programming behaviour, such as repeated
attempts to compile the same code [19]. They developed a
model that was able to detect affects in programming labs,
such as frustration. The data we use in our study is higher
resolution, allowing us to examine coding behaviour at the
keystroke, rather than the compile event level. Blikstein et al.
describe a range of metrics that can be automatically extracted
from IDE code snapshots, and use them to characterise student
coding behaviour [20]. They linked their classifications to
Papert’s tinkerer and planner categories [15].

Mahadevan et al. describe a STEAM oriented coding en-
vironment wherein students learn Javascript and Python by
computationally re-arranging chunks of audio (remixing) in

a web based system called EarSketch[21]. EarSketch is now
being trialled at scale with thousands of high school age chil-
dren based around a carefully designed STEAM curriculum
which aims to match the learning goals of the equivalent non-
STEAM curriculum. Our work differs in this phase in that we
are focused on fine grained details of student coding behaviour
and how this changes with changing pedagogy.

III. EXPERIMENTAL AND TECHNOLOGICAL FRAMEWORK

In this section, we will describe the experimental and
technological framework we have developed in order to carry
out comparative investigations of different pedagogical styles
in computer science education. The framework consists of
1) an education focused integrated development environment
(IDE) 2) learning analytics and 3) a reusable experimental
method.

A. The educational IDE

We have developed an educational, browser based IDE
which allows students to write programs in their web browser
[4]. The system is currently being used in a range of our
teaching, including MOOCs and various on campus courses.
A screen shot can be seen in figure 1. The key features of the
system are as follows:

1) Web browser based.
2) Live coding where code is re-interpreted as you type.
3) High resolution, timestamped code editing logs.
4) Programs are written in Javascript.
5) Jshint highlights basic coding errors.
6) integrated audiovisual libraries for scaffolded use of

real-time graphics and sound.
7) Real time, collaborative coding via an operational trans-

formation engine [22].
The key feature from the above list for the experimental

framework is the high resolution code editing log data. It
describes all edits made to the code at the keystroke level, with
timestamps, and the content of the edit. Interestingly, this data
comes as a side effect of the operational transformation (OT)
engine which underlies the code editor. This engine is there
to enable real time collaborative coding, similar to Google
Documents. It is implemented using Gentle’s sharejs library
which grew out of the Google Wave project [23]. OT provides
a set of algorithms which work together to provide the best
possible version of a document that has been simultaneously
edited by multiple editors. The operations can also be re-run
such that the process of creating the document can be observed
step by step. We have not fully explored the educational
experimental possibilities of this logging system yet, and in
the work presented here, we use it as a means of gathering
high level statistics about the types of code edits students were
making during the lessons.

B. Learning analytics

The second part of our experimental framework is a learning
analytics system. The code editing logs are converted from
their raw form, generated by the OT engine, into a semantic

form according to the xAPI specification [24]. Briefly, xAPI
provides a formal way of describing interactions between
learners and learning technology as a set of xAPI statements in
JSON format. We have defined a set of xAPI statement types
which are suitable for describing the activities of programmers,
and published it as a github repository3 as we found that there
were no pre-existing ‘recipes’ for such. The main elements of
a statement are shown below:

{
"actor" : who acted?
"verb" : what did they do?
"object" : what were they interacting with
"timestamp" : when?
"result" : what was the outcome?
"context" : what was the lesson/ activity?
}

The verbs we selected to describe coding actions in this
study were ‘create’ (new document), ‘insert’ (code to docu-
ment), ‘delete’ (code from document) and ‘terminate’ (a code
statement). Terminating a code statement means inserting code
that ends with a semicolon. As our work develops in the future,
we can define further statement types, for example, we might
want to log when coders use control flow constructs like loops,
when they use library functions or when they access online
documentation.

The xAPI statements describing all the logged actions are
stored in a Learning Record Store (LRS), which is a web
application specifically designed to store xAPI statements
for the purposes of applying learning analytics to them. We
developed our learning analytics to talk to the LRS and to
process xAPI statements.

To make accessing and browsing our xAPI statements
easier, we developed a dashboard that connects to the LRS
to retrieve and visualise xAPI statements, as shown in figure
2. With this system, it is possible to rapidly explore live data
on the system, for example viewing all actions by a certain
user, in a single document or within a particular lesson.

C. Experimental design

Having introduced our education and analytics technology,
we will now describe our general approach to experimental
design. In essence, a set of students participate in a set of
lessons which include programming activities with different
characteristics (described in more detail below). The charac-
teristics that can vary might be the structure of the learning
activity, or the configuration of the IDE. The students are asked
to complete short surveys after every lesson wherein they self-
report their experiences in the lessons. The analytics system
gathers data which is connected to lessons via tagging and time
stamping. The experimental design aims for high ecological
validity [25] - these are real lessons and they are designed to
be effective and enjoyable. We rely on the high resolution data
gathering to provide us with robust quantitative results.

3https://github.com/yeeking/xapi-coding-recipes

Fig. 1: Screen shot of the IDE. The code for the program can be edited on the right. The output of the program can be seen
on the left. The code editing panel is made opaque when editing so the code can be clearly seen.

Fig. 2: Screen shot of the learning analytics dashboard. On the left is the data browser, currently showing an anonymised list
of users, on the right are two visualisations of coding behaviour over the 6 days of the study.

IV. THE STUDY

Having described our general technological, experimental
framework, we will now describe a specific instance of an
experiment that we have carried out within the framework
which aims to compare programming behaviour and student
experience in STEAM and non-STEAM style lessons.

The study involved 11 undergraduate, arts computing stu-
dents at a summer school. They participated in 12, 2 hour,
group lessons over two weeks, wherein 6 activities were

STEAM and 6 were non-STEAM. There were two lessons
in a day, one in the morning and one in the afternoon, one
STEAM and one non-STEAM. Sometimes STEAM was in the
morning, sometimes non-STEAM. The activities are described
in more detail below. All lessons were taught by the same
tutor and involved a short presentation by the tutor followed by
students working on a programming activity. Finally, all of the
students had beginner to intermediate level programming skills
- we knew this because they had been using the programming
environment (described above) for 2 weeks prior to the study

Fig. 3: Screenshot of how the survey looked in our VLE.

and this allowed us to estimate their programming experience
level.

All 12 lessons were based around learning to manipulate
audio and graphics using Javascript, so both STEAM and non-
STEAM lessons involved a multimedia component. We are
taking a philosophical position here - just because a lesson
involves graphics or sound, it does not make it STEAM.
STEAM is a specific approach to education which is visible
in the nature of the learning activities. The programming
activities in the lessons fell into 4 categories: Fill in the
gaps (FITG/ non-STEAM), Implement a specification (SPEC/
non-STEAM), Work to aesthetic goals (WTAG/ STEAM) and
Fork and customise (FAC/ STEAM). In FITG, students were
provided with an incomplete program and they had to fill
in the gaps. This is a typical non-STEAM style teaching
method as they were provided with a contrained problem
that required that they engaged with very specific engineering
techniques. In SPEC, students were given a simple list of
requirements that they had to implement in a program; it was
slightly less constrained than FITG but was still designed to
engage them with specific techniques. In WTAG, students were
encouraged to engage with an aesthetic concept such as timbre
or motion and to develop an idea for a simple program that
explored that concept. This was STEAM as their exploration
was open ended and driven by their own interests. The FAC
lessons involved students browsing through eachothers’ work
and selecting something they would like to customise. This
was STEAM as they were not forced to customise in any
particular way, but to be driven by their own ideas about what
they should do.

After each activity the students completed a short survey,
where they rated their experience from 1 to 5 for: ‘motivation’,
‘difficulty’, ‘enjoyment’, ‘learning’, ‘creativity’, ‘technicality’,
‘sense of completion’ and ‘want to continue’. We selected
these measures based on consideration of what might allow
differentiation between STEAM and non-STEAM. For ex-
ample, one might imagine that students who had to fill in
some gaps in a program (non-STEAM) would feel a stronger
sense of completion than students who were asked to work
to aesthetic goals (STEAM), or that students who had set
their own project goals (STEAM) might be more motivated
to continue.

TABLE I: P-values for variation between STEAM and non-
STEAM lessons per self reported experience metric.

Metric p-value

Motivation 0.533

Difficulty 0.7

Enjoyment 0.862

Learning 0.674

Creativity 0.037*
Technicality 0.707

Sense of completion 0.407

Want to continue 0.927

 0

 5

 10

 15

 20

 25

lo
w

e
st

lo
w

m
e
d

iu
m

h
ig

h

h
ig

h
e
st

co
u
n
t

Self reported creativity in STEAM and non-STEAM

non-steam
steam

Fig. 4: Histogram of the two distributions of self reported
creativity, showing the tendency for students to report higher
levels of creativity in STEAM.

V. RESULTS AND ANALYSIS

The code logs and survey results form the raw data for the
analysis below. The total number of code editing operations
logged by the system for all students in the 12 activities was
77,923 and 91 surveys were completed (out of a possible 132).
An example of how the survey looked in our VLE is shown
in figure 3.

The main thrust of our analysis is to separate the data
into two sets: those data resulting from STEAM lessons and
those resulting from non-STEAM lessons. This provides us
with two experimental conditions between which we can
compare student experience and coding behaviour. We will
describe three analyses in the following sub sections: self
reported experience metrics, coding activity ratios and final
grade correlation with activity ratios.

A. Self reported experience

In our first analysis, we measured the significances of the
variation between the answers to the post STEAM and non-

 0

 5

 10

 15

 20

 25

 30

 35

0
.9

7

1
.6

9

2
.4

2

3
.1

4

3
.8

6

4
.5

9

5
.3

1

6
.0

3

6
.7

6

7
.4

8

O
cc

u
re

n
ce

s
o
f

th
is

 i
n
se

rt
:d

e
le

te
 r

a
ti

o

Bin centres

Distribution of ratios of insertions to deletions in STEAM and non-STEAM

non-steam
steam

Fig. 5: Distribution of insert:delete ratios in STEAM and non-
STEAM. A value of 1 means the same number of deletions
and insertions happened in a lesson. A value > 1 means there
were more insertions than deletions.

STEAM activity questions using a Wilcoxon signed-rank test
which is appropriate for estimating non-parametric effect size.
We used non-parametric statistics since we could not assume
that the answers followed any particular distribution. As
mentioned above, we selected experience questions which we
thought might differentiate between the two lesson styles, or
more formally, our aim was to attempt to nullify the hypothesis
that students would report having the same experience in both
lesson styles.

The p-values obtained from the test are shown in Table
I. The only metric that was significantly different was the
students’ reported experience of creativity - participants re-
ported higher levels of creativity for the STEAM lessons. The
distributions of self reported creativity levels the lessons are
shown in figure 4 and it can be seen that the ratings tended to
be higher in the STEAM lessons. We will discuss this result,
and the lack of significant variation in the other metrics in the
discussion section.

B. Coding activity ratios

In our second analysis, we looked at the codecircle logs
which had been converted into xAPI statements. We computed
ratios between the types of actions (verbs) observed in the
STEAM and non-STEAM datasets, one ratio for each student
in each lesson. For example, given our verb set of create-insert-
delete-terminate, a ratio of 0.1 : 0.3 : 0.5 : 0.1 would indicate
that in that lesson, the code logs consisted of 10% creations,
30% insertions, 50% deletions and 10% terminations.

The range of ratios observed across all the lessons is shown
in a box plot in figure 6, where each box shows the spread

created deleted
inserted

terminated_statement
0.0

0.2

0.4

0.6

0.8

1.0

Ratios of action types in STEAM and non-STEAM lessons

non-steam
steam

Fig. 6: Ratios of code operation types in STEAM and non-
STEAM lessons. Each box shows the range of values for a
verb in a lesson type. High up boxes indicate more common
actions, box size indicates the range of values observed.

of values for a verb’s ratio across all lessons of a particular
type. A visual inspection of this graph suggests that there
were more insertions relative to deletions in all lessons, but
this was less pronounced in STEAM, where there seemed to
be relatively more deletions happening. To verify this, we
calculated two sets of values: the insert:delete ratios for all
students in all STEAM and the insert:delete ratios for all
students in all non-STEAM lessons. This gave us two sets
of values of length 66 (11 students, 6 lessons), where each
value represented the ratio between insertions and deletions
for one student in one lesson. E.g. a value of 7 means there
are 7 inserts for every delete. A value of 0.5 means there are
2 deletes for every insert. We used a two sided Kolmogorov-
Smirnov test which is a non-parametric test suitable for testing
the null hypothesis that two continuous valued samples are
drawn from the same distribution. This would allow us to
decide if the visually apparent difference between the two
sets of ratios was significant. It yielded a p-value of 7.747e-6,
which is very significant. Therefore, the null hypothesis can
be rejected - insert:delete ratios are different in STEAM and
non-STEAM lessons. A histogram showing the distribution of
insert:delete ratios is shown in figure 5. It it clear that the
STEAM lessons tend towards parity between insert and delete
operations (values close to 1) whereas non-STEAM lessons
tend to have more inserts than deletes (values higher than 1).

C. Correlating final grade with activity ratios

In the next analysis, we follow up on the observation of
greater deletion behaviour in STEAM lessons and ask the
question: is deleting code something that successful students
tend to do more? We do this by examining the final grades
achieved by students and their relationship with the students’
individual delete:insert ratios. After the 12 lessons, the stu-

 65

 70

 75

 80

 85

 90

 95

 100

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Fi
n
a
l
g

ra
d
e

Ratio of deletes to inserts

Delete to insert ratios against grade

Fig. 7: Final grades achieved by students plotted against their
ratio of deletion to insertion edits across all lessons. A value
of 0.5 on the axis means there were twice as many insertions
as deletions, a value of 1 on the x axis means there were the
same number of insertions and deletions.

dents carried out a project of their own devising, which
was graded by two tutors based on a presentation and on
the technical and aesthetic quality of the work. A scatter
plot showing grades plotted against the ratio of deletions to
insertions (for coding done during the lessons, not the project)
is shown in figure 7. Visual inspection suggests a positive
correlation between the grade and the delete:insert ratio -
students with high grades seem to do relatively more deletions.
The Pearson correlation coefficient was 0.612 with a p-value
of 0.046 - a significant, positive correlation. We also measured
correlations of other metrics with the final grade: total number
of edits, number of inserts and deletes. This yielded values
of -0.179, -0.304 and 0.096 respectively, all much weaker
correlations, some negative. This suggests that sheer number
of edit operations does not predict the final grade. Therefore
we can conclude that in this somewhat small data set, more
successful students tended to do relatively more deletions.

VI. DISCUSSION

We shall now return to the research questions posed at the
beginning of the paper and view them through the lens of the
evidence we have presented in the previous section.

a) Do students code differently when undertaking
STEAM and non-STEAM exercises?: We have defined 4 lesson
types, 2 STEAM and 2 non-STEAM lessons. We gathered
detailed logs of student coding activity in multiple examples of
these lessons. Our data suggests that the coding behaviour pat-
terns of the same set of students varied significantly between
STEAM and non-STEAM activities. Specifically, the ratio of

insert to delete operations logged in the code editor was closer
to 1 in STEAM lessons and higher in non-STEAM lessons,
so students were doing relatively more deletes in STEAM
lessons.

We interpret this result as a possible sign that students were
experimenting more in the STEAM lessons - they were trying
things out then deleting them, they were exploring the problem
space through trial and error. This is exactly the kind of activity
we would want to encourage.

b) Do students report qualitatively different experiences
when working on different types of exercises?: We asked
students to complete experience surveys after taking part in
a series of 12 lessons wherein they rated their experience on
5 point scales for motivation, difficulty, enjoyment, learning,
creativity, technicality, ‘sense of completion’ and ‘want to
continue’. We designed these scales based on our own intuition
about which metrics might allow us to differentiate between
the lesson styles. We were somewhat surprised to find that the
lessons were not rated significantly differently on any of the
metrics aside from creativity. Students rated their experience
of creativity higher in STEAM lessons so students felt more
creative in STEAM lessons. Since the other metrics did not
vary between lessons, it seems possible to infer that this gain
was obtained without a detrimental effect on those metrics.

c) Is there a relationship between coding behaviour and
final grades?: Our final analysis was to look for relation-
ships between the proposed ”trial and error” behaviour which
manifested in our data as higher delete to insert ratios and
some sort of ground truth about student ability. In other
words, did successful students carry out more trial and error?
We were able to find a reasonably significant correlation
between our trial and error metric and final grades achieved
by students. People with higher final grades tended to have
done more trial and error coding. The sheer number of edits
made did not correlate at all with the grades achieved - the
important feature was the nature of the editing behaviour.
This is a really interesting result especially combined with the
observation that STEAM lessons encouraged more trial and
error behaviour in general across the cohort. Perhaps STEAM
teaching can encourage students to develop better learning
strategies involving greater experimentation. We would need
to carry out a longer term study to gain a greater understanding
of this suggestion.

VII. CONCLUSION

In this paper, we have described a study comparing classical,
and STEAM approaches to computer science education. The
study was motivated by our need to better evidence and
describe the advantages and disadvantages of the arts inflected
pedagogy that we have developed over the last 10 years or so at
Goldsmiths. In order to carry out the study, we have developed
an experimental and technological framework which makes it
possible to carry out a range of studies into computer science
education and specifically to look at how students approach
programming in different learning contexts. It involves the
careful design of lessons based on clear pedagogical theory,

intensive data gathering using a novel browser based pro-
gramming environment, and the use of learning analytics and
statistical methods to analyse and interpret the data, with an
emphasis on a comparative approach.

The study reported in this paper provided some key results.
First, students reported higher levels of creative experience
in STEAM lessons but they did not report any undesirable
reductions in the other areas of the experience. Second, their
coding patterns were different, with relatively more delete
operations in STEAM lessons. We interpret this as evidence
of a more exploratory approach to programming with students
much more open and confident about exploring the landscape
through trial and error. Third, we observed that successful
students tended to do relatively more deleting than unsuccess-
ful students, suggesting that this trial and error approach is a
successful strategy in learning to program.

In future work, we plan to improve and repeat the study with
larger cohorts. Currently, we have several MOOCs with many
thousands of users and run a range of on-campus courses at
UG and PG level with many hundreds of students so have
the perfect opportunity to do so. We also plan to develop
new studies within our framework which will allow us to
examine the effect of the other features of our IDE such as
collaborative coding, live coding and audiovisual coding. We
are also planning to expose the analytics to students, which
would allow us to investigate student meta cognition, where
students gain an understanding of their own learning process
[26].

We believe that we have set the theoretical and experimental
foundations for providing strong empirical evidence for the
benefits of STEAM learning.

ACKNOWLEDGMENT

We would like to thank the students for taking part in
the lessons and for agreeing to the data capture. Current
development of the codecircle platform is funded through
the Higher Education Funding Council for England’s Catalyst
scheme, under project code K31.

REFERENCES

[1] H. Brenton, M. Yee-King, A. Grimalt-Reynes, M. Gillies, M. Krivenski,
and M. d’Inverno, “A Social Timeline for Exchanging Feedback about
Musical Performances,” in British HCI Conference, 2014, pp. 1–6.

[2] M. Yee-King, M. Krivenski, H. Brenton, and M. d’Inverno, “Designing
educational social machines for effective feedback,” in 8th International
Conference on e-learning. Lisbon: IADIS, 2014. [Online]. Available:
https://eric.ed.gov/?id=ED557308

[3] M. Yee-King and M. d’Inverno, “Stimulating collaborative activity in
online social learning environments with Markov decision processes Cat-
egories and Subject Descriptors,” Proceedings of the 9th International
Conference on Educational Data Mining, pp. 652–653, 2016.

[4] J. Fiala, M. Yee-king, and M. Grierson, “Collaborative coding
interfaces on the Web,” in Proceedings of the 2016 International
Conference on Live Interfaces, 2016, pp. 49–58. [Online]. Available:
http://www.liveinterfaces.org/proceedings2016.html

[5] Microsoft, Facebook, Liberty-Global, and Rovio, “Open letter to
EU Ministers for Education Brussels,,” 2014. [Online]. Available:
https://www.microsoft.com/global/eu/RenderingAssets/pdf/2014 Oct 14
EU Code Week - European Coding Initiative Open Letter.pdf

[6] J. M. Wing, “Computational Thinking,” Communications of the ACM,
vol. 49, no. 3, pp. 33–35, 2006.

[7] J. Margolis and J. Goode, “Ten Lessons for Computer Science for All,”
ACM Inroads, no. 4, pp. 52–56, nov.

[8] M. Connor, S. Karmokar, and C. Whittington, “From STEM to STEAM
: Strategies for Enhancing Engineering & Technology Education,” Inter-
national Journal of Engineering Pedagogies., vol. 5, no. 2, pp. 37–47,
2015.

[9] N. Radziwill, M. Benton, and C. Moellers, “From stem to steaml
reframing what is means to learn,” The STEAM Journal, no. 1, sep.

[10] A. M. Connor, S. Karmokar, C. Whittington, and C. Walker, “Full
STEAM ahead a manifesto for integrating arts pedagogics into STEM
education,” Proceedings of IEEE International Conference on Teaching,
Assessment and Learning for Engineering: Learning for the Future Now,
TALE 2014, no. December, pp. 319–326, 2015.

[11] D. Henriksen, “Full STEAM Ahead: Creativity in Excellent STEM
Teaching Practices,” The STEAM Journal, vol. 1, no. 2, feb 2014.
[Online]. Available: http://scholarship.claremont.edu/steam/vol1/iss2/15

[12] M. d’Inverno and A. Still, “Creative Feedback: a manifesto for social
learning,” In Proceedings of the Workshops held at Educational Data
Mining 2014 conference, EDM 2014. London, UK, 2014.

[13] C. Rose and B. K. Smith, “Bridging STEM to STEAM: Developing new
frameworks for Art-Science-Design Pedagogy,” Rhode Island School
District Press Release.

[14] Gallagher, Shelagh A., William J. Stepien, B. T. Sher, and D. Work-
man, “Implementing Problem Based Learning in Science Classrooms,”
School Science and Mathematics, p. 136, 1995.

[15] S. Papert, Mindstorms: children, computers, and powerful ideas.
Basic Books, Inc. New York, NY, USA, 1980. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1095592

[16] M. Ben-ari, “Constructivism in computer science education,” Journal of
Computers in Mathematics and Science Teaching, vol. 20, pp. 45–73,
2001.

[17] L. Malmi, J. Sheard, L. Malmi, J. Sheard, R. Bednarik, A. Korhonen,
N. Myller, and A. Taherkhani, “Theoretical underpinnings of computing
education research - What is the evidence ?” in Proceedings of the tenth
annual conference on International computing education research, no.
July, 2014, pp. 27–34.

[18] Z. Papamitsiou and A. A. Economides, “Learning Analytics and Edu-
cational Data Mining in Practice : A Systematic Literature Review of
Empirical Evidence The research questions,” Educational Technology &
Society, vol. 17, no. 4, pp. 49–64, 2014.

[19] M. M. T. Rodrigo and R. S. Baker, “Coarse-grained detection of student
frustration in an introductory programming course,” Proceedings of the
fifth international workshop on Computing education research workshop
- ICER ’09, p. 75.

[20] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller,
“Programming Pluralism: Using Learning Analytics to Detect Patterns
in the Learning of Computer Programming,” Journal of the Learning
Sciences, no. 4, pp. 561–599.

[21] A. Mahadevan, J. Freeman, B. Magerko, and J. C. Martinez, “EarS-
ketch: Teaching Computational Music Remixing in an Online Web
Audio Based Learning Environment,” Proceedings of the Web Audio
Conference (WAC), pp. 0–5, 2015.

[22] C. S. Ellis, “Operational Transformation in Real-Time Group Editors:
Issues , Algorithms , and Achievements,” in Proceedings of the 1998
ACM conference on Computer supported cooperative work, 1998, pp.
59–68.

[23] J. Gentle, “ShareJS - Live Concurrent Editing in your App,” 2012.
[Online]. Available: https://github.com/josephg/ShareJS

[24] ADLNET, “xAPI-Spec,” 2016. [Online]. Available:
https://github.com/adlnet/xAPI-Spec/blob/master/xAPI.md

[25] W. A. Sandoval and W. A. Sandoval, “Design-Based Research Methods
for Studying Learning in Context : Introduction Design-Based Research
Methods for Studying Learning in Context : Introduction,” EDUCA-
TIONAL PSYCHOLOGIST, vol. 39, no. 4, pp. 199–201, 2004.

[26] G. Biswas, J. S. Kinnebrew, and D. L. C. Mack, “How do students
’ learning behaviors evolve in Scaffolded Open-Ended Learning Envi-
ronments ?” in Proceedings of the 21st International Conference on
Computers in Education, 2013.

