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Abstract

User interaction with intelligent systems need not be lim-
ited to interaction where pre-trained software has intelligence
“baked in.” End-user training, including interactive machine
learning (IML) approaches, can enable users to create and
customise systems themselves. We propose that the user ex-
perience of these users is worth considering. Furthermore,
the user experience of system developers—people who may
train and configure both learning algorithms and their user
interfaces—also deserves attention. We additionally propose
that IML can improve user experiences by supporting user-
centred design processes, and that there is a further role for
user-centred design in improving interactive and classical ma-
chine learning systems. We are developing this approach and
embodying it through the design of a new User Innovation
Toolkit, in the context of the European Commission-funded
project RAPID-MIX.

Introduction

When considering the user experience of machine learn-
ing systems, it is important to consider the experiences of
users designing, training, evaluating, and refining such sys-
tems. One relevant group of users is the “end users” of
software tools in which machine learning facilitates per-
sonalisation or adaptation. Tools that afford customisation
or adaptation—for instance by learning on user-provided
training examples—are useful in domains including the cre-
ation of new control interfaces for people with disabilities,
data monitoring applications for “quantified self” or smart
homes, new interactive interfaces for music and art, and the
creation of diverse sensor-driven interactions by hackers and
makers.

Interactive machine learning (IML) approaches can en-
able such users to create and customise machine learning
applications. Fails and Olsen 2003 define IML as a new
machine-learning paradigm with a workflow that features
rapid, iterative cycles of the user training a model, evalu-
ating its performance, and modifying the model to improve
its performance. In the simplest case, users can interact with
the machine learning process by iteratively providing new
training examples (e.g., examples of a human action or ac-
tivity, alongside the label that a classifier should apply to
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that action/activity). In this paper, we describe how IML can
support new types of end-user customisation, which can be
understood in terms of end-user development (Lieberman et
al. 2006) or of user innovation (von Hippel 2005). We de-
scribe considerations and challenges for supporting user ex-
perience in this context. We also discuss a similar context,
that of system developers employing machine learning to
create intelligent systems for use by others. These develop-
ers are also “users” of machine learning tools, and the tools
they use influence the type of systems that can be built and
the types of experiences that are possible for their end users.

We also describe how IML and user-centred design pro-
cesses may inform one another. User-centred design (UCD)
(Norman and Draper 1986) is an approach to design based
upon the understanding of users, their tasks, and environ-
ments; it involves the user at an early stage of project de-
velopment and throughout the project lifetime. In UCD, the
design is driven and refined through an iterative cycle of de-
velopment and user-centred evaluation. IML provides a set
of mechanisms to support UCD, by making it possible to
translate users’ demonstrations or observations of user ac-
tions into training examples that are used to build or refine
a new technology. At the same time, UCD can and should
play a role in the design of interactive and classical machine
learning systems, whether aimed at developers or end users.

We frame our work in the context of innovation studies,
where we introduce the concept of User Innovation Toolkits
(von Hippel 2001) and explain how we are appropriating it
to create IML tools to support end-user innovation.

The final section of our paper describes RAPID-MIX, a
design project that places next-generation machine learning
tools in the hands of end users in the form of a User Innova-
tion Toolkit (von Hippel 2001). We describe the aims of this
project and the methodologies employed to understand and
improve the user experiences of both end users and profes-
sional developers using machine learning to build new inter-
active systems.

Claims

Interactive machine learning can enable end-user
customisation

As described above, IML can make it possible for end users
to create customised systems. Typically, IML users itera-



tively adjust training data or learning parameters to “steer” a
machine-learned model toward a desired behaviour. A user
interface for IML may enable users who have domain ex-
pertise (but possibly no machine learning expertise) to steer
models by providing new training examples (Fiebrink 2011;
Fails and Olsen Jr 2003), adjusting misclassification costs
(Kapoor et al. 2010), adjusting weightings of component
classifiers in an ensemble system (Talbot et al. 2009), or
taking other actions. This approach can be used to create
simple computer vision classifiers (Fails and Olsen Jr 2003),
new sensor-based interactions (Hartmann et al. 2007), cus-
tomised gestural controllers including new musical instru-
ments (Fiebrink 2011), customised alerts (Amershi et al.
2011), and potentially many other bespoke systems.
Amershi et al. (2014) describe the IML workflow as more
rapid, focused and incremental than classic machine learn-
ing (CML), which can be laborious and sometimes ineffi-
cient. IML can also offer users without machine learning or
programming expertise an effective way to customise sys-
tems. For instance, systems that learn to recognise human
gestures or mimic human decision-making can be trained on
users’ own demonstrations of gestures or decisions. When
systems make mistakes, users can often fix them providing
corrective demonstrations to the system rather than chang-
ing the machine learning algorithm or program code. For in-
stance, a user can provide additional examples of an action
that was misclassified by a trained model, along with the cor-
rect label for this action, and reasonably hope that the next
model trained on the augmented training set will improve its
performance on that type of action. IML can thus be under-
stood as a tool for end-user programming, as well as a way
to “democratise” machine learning, making the benefits of
learning algorithms realisable by a wider range of people.
Based on work by Fiebrink and collaborators (Fiebrink,
Cook, and Trueman 2011; Fiebrink et al. 2010; Fiebrink
2011), we argue that using IML for end-user programming
and customisation can provide the following advantages:

e IML can be used by people without programming or ma-
chine learning expertise.

e IML can facilitate rapid prototyping and iterative refine-
ment activities which are known to be important to design
of new systems.

e Providing training examples can be a direct and effective
way for a user to communicate the desired behaviour of a
system, particularly when designing a system to recognise
or respond to human actions. Even expert programmers
may have difficulty coding how an embodied activity is
to be analysed, but may be able to easily demonstrate an
example of the activity.

At the same time, supporting end-user customisation with
IML presents several challenges:

e It may be hard for users to reason about how well a sys-
tem will work in the future. Fiebrink et al. (2011) show
that conventional metrics of quality computed from the
training data (e.g., cross-validation) are inappropriate for
IML systems in which the user employs training data to
steer the model behaviour. It may not be clear how to as-
sess whether a model is trustworthy, how to identify likely

model mistakes, or how to do these efficiently (i.e., with-
out experimentally feeding the model new data and ob-
serving its response).

e It may be difficult for users to select or construct appro-
priate features. Many real-world applications cannot be
built easily from raw data, but rather require some pro-
cessing of the data in order for learning to be possible.
For instance, building new interactions with sensors may
require smoothing, segmentation, or analysis of statistics
over time windows. Such feature engineering can be diffi-
cult even for users with programming and signal process-
ing expertise.

e [t may be difficult to collect appropriate training data and
understand this data, especially when the user’s goal is
to build a system that generalises well to new users or
environments whose data he/she cannot easily replicate
for training or testing.

e [t may be difficult for end users to connect machine learn-
ing tools to other tools of interest (e.g., existing systems
for home automation, music, activity sensors, etc.) Exist-
ing sensors, hardware, and software may not use interop-
erable or open communication protocols.

e Not all designs a user might imagine will be learnable
with the available algorithms, features, and data. Users
may struggle to understand what is learnable and what is
not.

IML can also be useful for developers and
designers

Even when the end user interacts with a pre-trained intelli-
gent system, the user experience of the developer or designer
deserves consideration. Both the set of supported learning
algorithms and user interfaces for employing those algo-
rithms affect the developer experience. Just as with end-user
development, IML can allow developers to build new sys-
tems by demonstration, resulting in a faster development
process. When the goal is to build a system that responds
to complex phenomena the developer cannot easily describe
in code (e.g., high-dimensional or noisy sensor data, or em-
bodied interactions), IML can also result in systems that are
more accurate in their labeling or response to new data.

The speed, directness, and iterative nature of interaction
involved in IML makes it a good fit for supporting rapid pro-
totyping for interaction design. IML-based prototyping tools
like Wekinator (Fiebrink, Cook, and Trueman 2011) and Ex-
emplar (Hartmann et al. 2007) can yield a smaller gulf of
execution (Norman and Draper 1986) than other techniques
for building functional interactive systems. Furthermore, re-
ducing the time needed to instantiate and modify prototypes
facilitates exploration of the design space.

Improving the interfaces used by developers can make the
process of training machine learning systems more efficient
and effective (e.g., Patel et al. 2010, Amershi et al. 2015).
Yet developers still face many challenges in applying ma-
chine learning effectively, and not all these have obvious so-
lutions. In addition to the challenges facing end users, de-
scribed above, developers and designers must translate their
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Figure 1: Design space for end-user interaction with machine learning, abstracted from Amershi’s (2012) textual description of

design factors and dimensions.

design ideas into choices about machine learning configu-
rations. For instance, developers may may have to choose
among the many potentially useful learning algorithms. A
developer of a gestural control system may choose between
classification, regression, and temporal modelling methods
such as hidden Markov models. Variants of these algorithms
have also been designed specifically to support interactive
training or new types of user interaction (e.g., hierarchi-
cal HMMs enable gesture segmentation and tracking within
segments (Francoise et al. 2014)). Each algorithm may af-
ford a different type of interaction by end users, as well as
different trade-offs in accuracy, training time, the number of
training examples needed, and so on. Developers may also
struggle with feature engineering, despite having more sig-
nal processing and programming expertise than end users.
They may also encounter substantial challenges in under-
standing and cleaning training datasets collected from target
users.

Another significant challenge is that designers of systems
that allow end-user customisation must choose which inter-
actions to expose and how to expose them in a user interface.
Amershi (2012) argues that there are a lack of established
principles and proven techniques for designing interaction
with machine learning, and that knowledge should advance
from ad-hoc solutions into generalized understanding about
the IML process.

IML can support user-centred design

UCD typically involves iterative cycles of working with
users to identify design directions, implementing prototype
designs, and getting feedback from users. IML can acceler-
ate this iteration for the design of systems that respond to hu-
man gestures or actions, or to other events that can be easily
simulated or demonstrated by end users. IML can be used
to collect training examples directly from user demonstra-
tions and to instantiate new prototype designs on the spot,
which is useful to elicit feedback from users. Or, design-
ers or developers can translate observations of users in UCD
activities into training examples for the system being devel-
oped. We have previously used both approaches to develop
new gestural musical instruments for people with disabilities
(Katan, Grierson, and Fiebrink 2015).

UCD should be applied to IML & CML

UCD can and should be applied to understanding and im-
proving usability of interactive and classical machine learn-
ing, by both end users and developers. Talbot et al. (2009)
observe that “a critical human-computer interaction chal-
lenge is to provide adequate tools to allow non-experts to
wield [machine learning] techniques effectively. In order to
design these tools, we must start at current best practices in
applied machine learning and identify tasks that can be sup-
ported or augmented by an effective combination of human



intuition and input with machine processing” (p. 1283). This
challenge and the previously enumerated ones in the sections
above cannot be met by algorithmic or technical innovation
alone. Rather, meeting these challenges requires understand-
ing of users’ practices and goals.

Amershi (2012) highlights the importance of studying
users of interactive machine learning applications based on
the tighter link that is established between learning systems
and their users. She found that users’ goals have a significant
impact on the success of system design; for instance, design
requirements can be influenced by whether end users want
to train an accurate or a reusable model; or, whether they
are interacting directly with machine learning or using it in
the background. These factors can lead to interface designs
that differ, for instance, in terms of provisions for alternative
mechanisms for end user control and system feedback, and
varying degrees of guidance about the quality of the model.
These are just a few examples of many factors that impact
and constrain how people interact with machine learning
systems, which Amershi has distilled into a description of
the design space for interactive machine learning (Figure 1).

Prior work contains a number of examples of how UCD
processes can improve the user experiences of developers
and end-users applying machine learning. For instance, Pa-
tel et al. (2010) worked with software developers to create
improved development environments for applying conven-
tional machine learning. Fiebrink et al. (2010) used partici-
patory design processes with composers both to design more
usable interfaces for applying interactive machine learning
to musical instrument design, and to better understand the
utility of machine learning in this application domain.

The goals of understanding and improving user experi-
ences with machine learning should also apply when the “in-
terface” employed by the user is a software API. This is the
case for many developers who currently use a variety of ma-
chine learning libraries to create new software. Some exist-
ing research considers the user experience of programming
languages, IDEs, and APIs (e.g., (Ko and Riche 2011)), but
very little research has considered the challenges that are
unique to developers working with machine learning. Un-
derstanding the needs of developers building real-time sen-
sor applications and using that understanding to build better
APIs are current goals of the RAPID-MIX project.

An innovation studies perspective on IML

Fagerberg (2013) defines innovation studies as “the study of
how innovations emerge and diffuse, what factors influence
these processes..., and what the social and economic conse-
quences are.” (Fagerberg 2013)

One branch of research within innovation studies consid-
ers end users’ involvement in innovation activities (Von Hip-
pel 1986; Flowers et al. 2010). This work provides a com-
plementary perspective to human-computer interaction re-
search on end-user programming, development, and cus-
tomisation. Whereas HCI research tends to focus on under-
standing and supporting end-user engagement, innovation
studies research is more concerned with the economic and
social contexts that motivate end-user development or cus-

tomisation, as well as the factors that contribute to the suc-
cess of end-user innovation.

For instance, von Hippel (1986) notes that in markets with
highly heterogeneous consumer needs, certain end users—
“lead users”—are highly motivated to develop products for
their own needs, and well-positioned to anticipate general
demand and identify specific market needs for new products.
In many of these cases, both end users and product develop-
ers can benefit from the existence of user-innovation toolk-
its (UITs), which von Hippel (2001) defines as “integrated
sets of product-design, prototyping, and design-testing tools
intended for use by end users” (p. 163). The fundamental
principle behind UITs is to repartition product development
tasks by shifting design activities to end users, enabling them
to design high-quality custom products, or to customize es-
sential parts of products, and meet their needs in a more ac-
curate and complete way. Integrated circuits (ICs) are the
seminal early example a UIT that efficiently and flexibly en-
abled end-user innovation (von Hippel 2001). Other exam-
ples include game level editors such as Final Alert 2 (Jeppe-
sen and Molin 2003) and music synthesis environments such
as Propellerhead’s Reason (Jeppesen and Frederiksen 2006).

Von Hippel (2001) identified the conditions in which user-
innovation toolkits are able to provide the highest value:

i) for types of products and services in which users require
high degrees of customisation;

ii) when users have “sticky” information, i.e., need-
related, context-of-use or product usage information
that is costly to acquire, transfer and apply, and which
might grow outdated quickly;

iii) when users ‘“must engage in learning by doing to clarify
what they want” (p. 22).

IML offers a set of techniques for addressing these needs
in many contexts: As we have discussed earlier in this paper,
IML can support efficient customisation and prototyping.
General-purpose machine learning algorithms enable learn-
ing of diverse concepts, making them suitable for heteroge-
neous user needs. IML provides users with natural ways to
embed specialist or changing knowledge about the intended
design into a new system.

Work in innovation studies can therefore inform the cre-
ation of IML tools that aim to support end-user innovation,
and it can also suggest new uses of IML in creating or im-
proving UITs across a variety of application domains. For
instance, Von Hippel (2001) discusses the importance of
UITs that enable user learning and problem solving through
trial-and-error. This suggests that IML tools for innovation
should gracefully accommodate user mistakes and back-
tracking (e.g., by supporting multiple levels of “undo’-ing,
such as rolling back user changes to the training examples).
Von Hippel also notes the importance of UITs facilitating the
translation of users’ designs into production. This suggests
it may be beneficial to provide IML users with easy ways to
use trained models outside of prototyping environments, for
instance embedding them into users’ own software or hard-
ware projects.



RAPID-MIX

We are currently participating in a research project involv-
ing the application of UCD methodologies to improve tools
for applying machine learning and, by extension, the in-
teractive systems built with these tools. Real-time Adaptive
Prototyping for Industrial Design of Multimodal, Interac-
tive and eXpressive technologies (RAPID-MIX) is an Inno-
vation Action funded by the European Commission under
the Horizon 2020 program. The RAPID-MIX consortium
aims to accelerate the production of the next generation of
multimodal, interactive, and expressive technologies, such
as gesturally-controlled musical instruments and games and
immersive audiovisual experiences. Specifically, we aim to
accelerate this production by creating hardware and software
tools for rapid prototyping and product development, and
placing these tools in the hands of developers and designers
in the form of a UIT (von Hippel 2001).

The members of the RAPID-MIX consortium, which
include three European research labs and five small and
medium—sized creative technology enterprises, have estab-
lished research portfolios in the design and evaluation of em-
bodied and wearable human-computer interfaces for creative
and music technology. We have also developed and accumu-
lated a significant portfolio of technologies for multimodal
and expressive interaction, including music information re-
trieval and digital signal processing libraries, cloud-based
repositories for storing and visualizing audiovisual and mul-
timodal data, and the following tools for applying IML:

e Wekinator (Fiebrink, Cook, and Trueman 2011): a
general-purpose, standalone application for applying ma-
chine learning. It provides a high-level interface to super-
vised learning algorithms and their parameters, and it en-
ables users to rapidly create and edit datasets, train and
run models in real time.

e XMM (Frangoise, Schnell, and Bevilacqua 2013): li-
braries for using Hierarchical Hidden Markov Models for
classification and regression to model gesture and sound
parameters, and for creating mappings between gesture
and sound in interactive music systems.

e Gesture Variation Follower (Caramiaux et al. 2015): a
library for real-time gesture recognition and analysis
that employs a template-based method using Sequential
Monte Carlo inference.

We are integrating these technologies into a UIT for ap-
plying IML to sensors, audio, and other realtime data.
This UIT includes developer-facing libraries with a modu-
lar and multi-layered architecture for cross-device and cross-
platform deployment. The UIT aims to make IML efficient
and accessible to developers who are new to machine learn-
ing by providing high-level APIs with default settings—such
as the choice of learning algorithm and its parameters—that
are appropriate for many interaction prototyping applica-
tions. For instance, developers prototyping interactions will
often provide very small datasets, because they are creating
training data by demonstrating interactions at the moment of
design rather than curating large datasets in advance. Learn-
ing algorithms such as nearest-neighbour may be more ap-

propriate in this context than in more conventional machine
learning applications.

Our UIT also includes access to lower-level parameters of
the learning algorithms and data processing pipeline, along
with numerous examples, to help intermediate and expert
users engage in more complex projects. Our UIT also in-
cludes mechanisms for exporting trained models and data
processing chains from rapid prototyping environments, and
running them in production environments (e.g., within other
C++ or JavaScript applications).

To facilitate the design of these tools, we have developed
a UCD framework that provides a set of guidelines for UCD
research actions, which will be used to answer and refine
key research questions within the RAPID-MIX project. We
are performing multiple UCD actions, including co-design
workshops with project partners, hack-a-thons, public work-
shops, and interviews with professional developers as well
as students and hobbyist developers. These actions con-
tribute to define the design space of the UIT based on in-
sights that were obtained from:

i) Assessing and aligning the consortium partners’ think-
ing through ideation, identification of scenarios and de-
sign challenges.

ii) Deploying technology probes based on early and back-
ground technologies.

iii) Prototyping the integration of component technologies
into new products.

iv) Defining an initial set of target users and contexts of
use, and evolving gradually to a more scoped definition
based on user engagement.

v) Gathering of direct insights from the future users of the
toolkit.

vi) Evaluating early products from industry partners, and
their integration of the alpha version of the UIT.

Early UCD actions focused on refining and understanding
the primary users of the UIT. These include web develop-
ers, mobile developers, game developers, creative coders, in-
teraction designers, data analysts/scientists, hackers/makers,
researchers and students, teachers, professional audio devel-
opers, music creators, and composers.

Deployment of technology probes and testing of early
prototypes and UID implementations has led to some better
understanding of challenges that exist for these users. For
instance, we have found that many participants in our UCD
actions struggle to grasp fundamental concepts of machine
learning (e.g. classifier, labels, numerical data comes in and
labels come out), even when users are professional devel-
opers when they are provided with documentation. This has
informed our approach to documenting our UIT, which goes
beyond code documentation to include interactive code ex-
amples as well as video tutorials of machine learning funda-
mentals.

The effort of intertwining several rounds of rapid pro-
totyping with user engagement uncovered design problems
and specific technical challenges for the RAPID-MIX con-
sortium. For instance, some of the IML technologies such
as XMM were favoured over classifiers of current market



products for classifying dynamic body gestures, but seen as
more difficult to use; Wekinator has been perceived as very
user-friendly for beginners and designers with few program-
ming skills and was used to build, but for a few participants
it was appointed as limited for temporal data and recognition
of continuous gestures.

We also observed in a hack-a-thon how different teams
of developers were able to successfully integrate our library
with their projects for basic machine learning features. Some
of the feedback demonstrated that our API design approach
could be facilitating understanding with respect to how ma-
chine learning can aid design - for example, one participant
commented that “(I) could have programmed it in a more
traditional manner but I realised how ML makes it easier.
You worry about it in some specific ways, here’s a couple
of things, get to it and it seems to work! What RAPID-
MIX brought to me is that, it’s just quite usable”. Another
participant mentioned that it was “great to have a toolkit
just ready to use and to plug in”. We also uncovered how,
for instance, API design decisions regarding data types and
containing data structures could have an impact on the con-
ceptual model of professional developers and mislead which
machine learning tasks to use in slightly more sophisticated
projects.

Reports on our UCD methodologies and our de-
sign guidelines can be found on our website at:
http://rapidmix.goldsmithsdigital.com/downloads/

Conclusion

IML can enable end users and developers to customize in-
teractive systems and can support UCD. Furthermore, UCD
can and should be applied to the process of creating ma-
chine learning applications of all kinds. These positions are
informed by, and inform the RAPID-MIX project, which is
ongoing. By engaging with members of the user experience
design, service design, HCI, HRI and AI communities at
this symposium, we hope to connect with complementary
perspectives and potential users of our toolkit and use that
feedback in our next cycle of design and prototyping.
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