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Abstract5

This application note investigates the causal relationship between oil price and tourist arrivals to6

further explain the impact of oil price volatility on tourism related economic activities. The analysis7

itself considers the time domain, frequency domain and information theory domain perspectives.8

Data relating to the US and nine European countries are exploited in this paper with causality9

tests which include time domain, frequency domain, and Convergent Cross Mapping (CCM). The10

CCM approach is nonparametric and therefore not restricted by assumptions. We contribute to11

existing research through the successful and introductory application of an advanced method, and12

via the uncovering of significant causal links from oil prices to tourist arrivals.13

Keywords: Oil price; tourist arrivals; causality; convergent cross mapping; granger causality.14

1 Introduction15

In the recent past, it was oil prices hikes that influenced investigations into the relationship between16

tourism and oil price fluctuations [1]. However, today it is falling oil prices that continue to necessitate17

further investigations, and given the tourism industry’s energy-intensive nature [1,2] it is not surprising18

that the relationship between oil prices and tourist arrivals remains a crucial research topic. This19

relationship has drawn significant attention [2–5] as the accurate detection of causality between oil20

prices and tourist arrivals can help the tourism planning process and aid in improving the quality of21

tourist arrival forecasts and related managerial decisions [35].22

Previous research indicates negative effects between oil price and tourism [3,5], which is identified23

with overwhelming evidences from factors like inflation, CPI, oil production, tourism income, and24

industrial production indices. A critical review of the studies on tourism and oil can be found in [6] and25

therefore these are not reproduced here. With regard to the more recent causality testing applications26

relating to tourist arrivals from 2012 onwards, Granger causality test under a vector autoregression27

framework [7–12,14–22] or with an error correction model [23–33] continue to remain the mainstream28

methods for assessing causality between tourist arrivals and influential variables, the literature has29

expanded its horizon to a global scale that cover a variety of countries/regions, i.e. Malaysia [24,29,30],30

Jamaica [25], Italy [8], Spain [26], Singapore [27], Cyprus [28], Lebanon [9], OECD countries [10],31

EU [11,14,15,34], Taiwan [12], US [14], Turkey [33], China [17,21], and Australia [22] (to name a few).32

The main aim of this application note is to further evaluate this oil-tourism relationship and effi-33

ciently investigate the existence of causal links by conducting a data driven research with an advanced34
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non-parametric method known as Convergent Cross Mapping (CCM) [36]. Instead of building a com-35

plex model by incorporating many possible influential variables based on regression modelling which36

is restricted by a number of assumptions, this paper adopts CCM which is popular for its significant37

sensitivity at detecting causal links within complex systems whilst not being restricted by assumptions38

pertaining to linearity or nonlinearity. It only requires two key variables for conducting analyses with39

proven robust and sufficient performance even with the existence of common determinants.40

Moreover, another motivation of conducting this research is to reflect the inherent efficiency and41

power of CCM in relation to empirical tests so as to further promote its use in future. Accordingly, we42

seek to find significant evidences of oil-tourism causal relationships on a global scale by involving only43

the two key variables - oil price and tourist arrivals alone as an alternative data driven approach that44

empirical methods fail to do so. It is acknowledged that the existence of a variety of determinants in45

oil-tourism literature and the establishments of model based analyses, and this paper is not providing46

suggestion of replacing any statistical test, but an alternative, data-driven path that can still achieve47

better understanding of their relationship without the complex model.48

The results from CCM are compared with two empirical causality methods which fall under the49

time domain and frequency domain criteria. To the best of our knowledge, this application note50

marks the introductory and successful adoption of CCM for identifying causality between oil price51

and tourist arrivals. Accordingly this research presents three contributions to scientific literature on52

causality between oil and tourism. Firstly, our research focuses on a data driven investigation of causal53

effects across both US and nine European countries via the introductory application of CCM. Secondly,54

we consider monthly data in our analysis and this is important as such data is seldom used in the55

analysis of causal relationships between tourism demand and its influencing factors [14, 37]. Thirdly,56

our findings enable us to prove that this advanced and assumption free CCM causality test is a robust,57

solid and efficient method that can produce reliable evidences by using only two key variables. As58

such, it is possible to introduce CCM as a method with great potential for other causal analyses in59

tourism studies and more importantly in a broader range of subjects.60

2 Methodology of Causality Tests61

2.1 Convergent Cross Mapping (CCM)62

CCM was introduced in [36] with the aim of detecting the causation among time series and providing63

a better understanding of the dynamical systems that have not been covered by other well established64

methods like Granger causality. CCM has proven to be an advanced non-parametric technique for65

distinguishing causation in a dynamic system that contains complex interactions covering a broad66

range of subjects [39–41]. CCM is briefly introduced below by mainly following [36].67

Assume there are two variables Xi and Yi, for which Xi has a causal effect on Yi. CCM test will68

test the causation by evaluating whether the historical record of Yi can be used to obtain reliable69

estimates of Xi. Given a library set of n points (not necessarily the total number of observations N70

of two variables) and here set i = 1, 2, · · · , n, the lagged coordinates are adopted to generate an E-71

dimensional embedding state space [42,43], in which the points are the library vector Xi and prediction72
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vector Yi73

Xi : {xi, xi−1, xi−2, · · · , xi−(E−1)}, (1)

Yi : {yi, yi−1, yi−2, · · · , yi−(E−1)}. (2)

The E + 1 neighbors of Yi from the library set Xi will be selected, which actually form the smallest74

simplex that contains Yi as an interior point. Accordingly, the forecast is then conducted by this75

process, which is the nearest-neighbour forecasting algorithm of simplex projection [43]. The optimal76

E will be evaluated and selected based on the forward performances of these nearby points in an77

embedding state space.78

Therefore, by adopting the essential concept of Empirical Dynamic Modeling (EDM) and general-79

ized Takens’ Theorem [42], two manifolds are conducted based on the lagged coordinates of the two80

variables under evaluation, which are the attractor manifold MY constructed by Yi and respectively,81

the manifold MX by Xi. The causation will then be identified accordingly if the nearby points on MY82

can be employed for reconstructing observed Xi. Note that the correlation coefficient ρ is used for the83

estimates of cross map skill due to its wide acceptance and understanding. Additionally, leave-one-out84

cross-validation is considered a more conservative method and adopted for all evaluations in CCM.85

2.2 Comparative Models86

The results from CCM are compared with those from the time domain Granger causality test [44]87

and the frequency domain causality test [45, 46], which is an extension of the time domain Granger88

causality test that identifies the causality between different variables for each frequency.89
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Figure 1: Monthly oil price data from 1996 to 2015.
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Figure 2: Monthly tourists arrivals data from 1996 to 2015 by countries.

The data used for this paper are at monthly frequency covering the period from January 1996 to91

December 2015 of both US and nine European countries, including Austria, Italy, Germany, Greece,92

Netherland, Portugal, Spain, Sweden, UK. In terms of the data, sample period and countries selections93

are considering the choice of [15], also due to such data is seldom used in the analysis of causal94

relationships between tourism demand and its influencing factors [14, 37]. US tourist arrivals were95

obtained from the US Department of Commerce National Travel & Tourism Office, while data for96

European countries were obtained from Eurostat. The data for oil prices include both West Texas97
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Intermediary Crude Oil Spot Price (WTI) and Europe Brent Spot Price (BRT) measured in the unit98

of dollars per barrel, and were obtained via the US Energy Information Administration [47].99

Figure 1 shows the time series plots of the monthly oil prices, whilst, Figure 2 presents the time100

series plots of the monthly tourist arrivals by countries. It can be observed that the WTI and BRT101

oil prices are very similar except for a few months whereby the BRT reports a slightly higher price in102

relation to the WTI. The impacts of several structural breaks are also visible in Figure 1. In terms103

of the tourist arrivals data for the ten countries considered (Figure 2), it is evident that these series104

portray high levels of seasonality and increasing trends over time.105

3.1 Descriptive Statistics106

The summary of descriptive statistics are listed in Table 1. The data sets include 240 monthly107

observations for each variable. The descriptive statistics clearly confirm the similarity between BRT108

and WTI oil prices. In terms of tourist arrivals, all countries generally show almost identical levels of109

Skewness and Kurtosis except Sweden.110

Table 1: Descriptive statistics for the data.

Oil Prices

Obs Mean Median Max Min Std. Dev. Skewness Kurtosis

BRT 240 56.41 49.22 132.72 9.82 35.24 0.47 1.85
WTI 240 54.78 49.06 133.88 11.35 31.19 0.40 1.89

Tourist Arrivals

Obs Mean Median Max Min Std. Dev. Skewness Kurtosis

Austria 240 1481894 1434455 3205966 446240 504448 0.39 3.21
Germany 240 1918394 1788583 4401682 747141 724552 0.75 3.29
Greece 240 765847 564523 3107955 29856 710611 1.11 3.66
Italy 240 3343953 3277084 8084209 907367 1709118 0.50 2.45

Netherland 240 870900 864200 1745779 275000 284180 0.34 2.79
Portugal 240 539796 522395 1359284 155438 256280 0.70 3.03
Spain 240 3229314 2934373 7443749 671109 1533209 0.51 2.42
Sweden 240 357927 239902 1428207 98357 289081 1.93 5.97
UK 240 1668020 1541000 3390515 692120 582239 0.59 2.64
US 240 4325374 4222034 8364940 2094287 1292787 0.59 2.88

3.2 Stationarity of data111

In order to evaluate the stationarity of data, three different unit root tests including Kwiatkowski-112

Phillips-Schmidt-Shin (KPSS), augmented Dickey-Fuller (ADF) and Phillips and Perron (PP) are113

conducted and summarized in Table 2. The results overwhelmingly suggest trend stationary for all114

variables, whilst, the PP test indicates stationarity for a few countries in terms of the tourist arrivals115

data. In general, the variables are concluded non-stationary with one unit root.116
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Table 2: Unit root test results.

Variables Series Methods
None Intercept Intercept and Trend

Level Decision Level Decision Level Decision

Oil Prices
(240 Obs)

1996:1-2015:12

BRT
KPSS ———– ———– 1.675***(11) I(1) 0.139*(11) I(0)
ADF -10.284***(0) I(1) -10.264***(0) I(1) -10.294***(0) I(1)
PP -10.279***(4) I(1) -10.258***(4) I(1) -10.283***(4) I(1)

WTI
KPSS ———– ———– 1.663***(11) I(1) 0.166**(11) I(1)
ADF -10.104***(0) I(1) -10.083***(0) I(1) -10.109***(0) I(1)
PP -10.104***(0) I(1) -10.083***(0) I(1) -10.109***(0) I(1)

Tourists Arrivals
(240 Obs)

1996:1-2015:12

Austria
KPSS ———– ———– 1.458***(15) I(1) 0.144*(27) I(0)
ADF -3.938***(14) I(1) -16.637***(11) I(1) -17.093***(11) I(0)
PP -49.801***(23) I(1) -9.945***(31) I(0) -10.345***(24) I(0)

Germany
KPSS ———– ———– 2.305***(9) I(1) 0.115 (1) I(0)
ADF -2.524***(13) I(1) -3.581***(13) I(1) -3.825***(13) I(1)
PP -12.185***(16) I(1) -4.832***(5) I(0) -5.169***(0) I(0)

Greece
KPSS ———– ———– 0.755***(3) I(1) 0.058(2) I(0)
ADF -4.411***(11) I(1) -4.791***(11) I(1) -4.985***(11) I(1)
PP -4.056***(5) I(0) -5.414***(6) I(0) -5.529***(6) I(0)

Italy
KPSS ———– ———– 1.079***(5) I(1) 0.014(2) I(0)
ADF -3.527***(13) I(1) -4.403***(13) I(1) -4.527***(13) I(1)
PP -2.828***(3) I(0) -6.291***(4) I(0) -6.604***(4) I(0)

Netherland
KPSS ———– ———– 1.744***(8) I(1) 0.084(4) I(0)
ADF -2.976***(13) I(1) -3.496***(13) I(1) -3.503***(13) I(1)
PP -14.361***(3) I(1) -5.952***(2) I(0) -6.548***(1) I(0)

Portugal
KPSS ———– ———– 1.653***(7) I(1) 0.111(1) I(0)
ADF -4.077***(12) I(1) -4.658***(12) I(1) -4.848***(12) I(1)
PP -2.101**(6) I(0) -5.731***(5) I(0) -5.672***(6) I(0)

Spain
KPSS ———– ———– 1.991***(8) I(1) 0.071(1) I(0)
ADF -2.353**(12) I(1) -2.857*(12) I(0) -3.469**(13) I(0)
PP -2.306**(4) I(0) -5.646***(4) I(0) -6.118***(5) I(0)

Sweden
KPSS ———– ———– 1.052***(2) I(1) 0.161**(9) I(1)
ADF -5.708***(13) I(1) -6.117***(13) I(1) -6.104***(13) I(1)
PP -3.940***(14) I(0) -5.961***(19) I(0) -5.794***(24) I(0)

UK
KPSS ———– ———– 0.818***(5) I(1) 0.090(3) I(0)
ADF -4.889***(12) I(1) -4.981***(12) I(1) -5.196***(12) I(1)
PP -10.446***(4) I(1) -5.821***(1) I(0) -6.387***(2) I(0)

US
KPSS ———– ———– 1.825***(11) I(1) 0.392***(9) I(1)
ADF -3.591***(12) I(1) -3.928***(12) I(1) -4.074***(12) I(1)
PP -19.331***(6) I(1) -3.796***(8) I(0) -7.063***(8) I(0)

a The *, ** and *** indicate significance at the 10%, 5% and 1% respectively.
b The critical values are as follows:(1)None: -2.574, -1.942 and -1.616 for ADF and PP at 1%, 5% and 10% level of significance, respec-
tively; (2)Intercept: -3.457, -2.873 and -2.573 {0.739, 0.463, 0.347} for ADF and PP {KPSS} at 1%, 5% and 10% level of significance,
respectively;(3)Intercept and Trend: -3.996, -3.428 and -3.137 {0.216, 0.146, 0.119} for ADF and PP{KPSS} at 1%, 5% and 10% level
of significance respectively.

c Numbers in parentheses for ADF and PP tests indicates lag-lengths selected based on the Schwarz Information Criterion (SIC). For the
KPSS test, based on the Bartlett kernel spectral estimation method, the corresponding numbers are the Newey-West bandwidth.

117

4 Causality Results118

In this section, the causality tests are applied to tourist arrivals and both BRT and WTI oil prices re-119

spectively for each country. The corresponding results are summarized based on the different causality120

detection techniques employed.121

4.1 Time domain granger causality122

We begin by conducting the Granger causality test given its significance based on past literature123

and the empirical role in time series causality analysis. Note that all tests conducted satisfy the124

preconditions of time domain causality test with results by the corresponding optimal lag determined125

by a group of information criteria, including the Akaike Information Criterion (AIC) , SIC, Hannan126

Quinn Information Criterion (HQ) and Final Prediction Error Information Criterion (FPE). The127

results indicate that the null hypothesis of either direction of non-causality cannot be objected, which128

means that no causal link can be detected regardless of countries and types of oil price index. More129

specifically, the P -values of tests on tourist arrivals causing oil prices are relatively higher than the130

other way around for both BRT and WTI scenarios, also the values across countries vary. However,131
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we find that the null hypothesis of non-causality cannot be rejected even at a 10% significance level132

for all countries considered. In brief, time domain Granger causality fails to detect any causal links133

between tourist arrivals and oil prices in a complex oil-tourism system for both US and nine European134

countries.135

Table 3: Time domain granger causality test results.

Country Oil Prices

BRT WTI

→ ← → ←
P -value Yes/No P -value Yes/No P -value Yes/No P -value Yes/No

Austria 0.68 No 0.56 No 0.81 No 0.34 No
Germany 0.52 No 0.27 No 0.29 No 0.17 No
Greece 0.54 No 0.36 No 0.46 No 0.44 No
Italy 0.60 No 0.98 No 0.67 No 0.74 No
Netherland 0.30 No 0.83 No 0.29 No 0.65 No
Portugal 0.38 No 0.41 No 0.72 No 0.31 No
Spain 0.62 No 0.24 No 0.54 No 0.12 No
Sweden 0.21 No 0.55 No 0.14 No 0.93 No
UK 0.63 No 0.95 No 0.53 No 0.82 No
US 0.48 No 0.85 No 0.53 No 0.48 No

Notes: → indicates tourist arrivals causes oil price;
← indicates oil price causes tourist arrivals.

4.2 Frequency domain causality136

The frequency domain causality is then conducted for tourist arrivals and oil price data considering137

the possible causal link at specific frequencies. The results are briefly summarized in Table 4 due to138

the space limit1. It is noteworthy that the optimal lag-structures are maintained for all tests. The139

results show that no significant causality can be identified for any frequency, and the frequency domain140

test fails to prove the causal links between tourist arrivals and oil prices regardless of the countries.141

Table 4: Frequency domain causality test results.

Country Oil Prices

BRT WTI

→ ← → ←

Austria No No No No
Germany No No No No
Greece No No No No
Italy No No No No
Netherland No No No No
Portugal No No No No
Spain No No No No
Sweden No No No No
UK No No No No
US No No No No

Notes: → indicates tourist arrivals causes oil price;
← indicates oil price causes tourist arrivals.

4.3 Convergent Cross Mapping (CCM)142

In this subsection we present the findings following the initial application of CCM for the causality143

detection in oil-tourism studies, where tourist arrivals and oil prices in US and nine European countries144

1Note that the detailed diagrams of testing results by countries, types of oil prices and directions of causality are

available upon request.
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are taken into consideration. Given the nonparametric nature of the CCM technique, we make no prior145

linear model assumptions as we seek for a better understanding of causal relationships in a complex146

dynamical system. Note that all the test results are obtained by the optimal embedding dimension147

respectively. More specifically, it is determined by the nearest neighbor forecasting performance using148

simplex projection; library size range is identical for the sake of further comparisons; and leave-one-out149

cross validation is applied for the best choice on library size with optimal performance. The results150

of CCM tests between tourist arrivals and oil prices are briefly summarized in Table 52.151

Table 5: CCM causality test results.

Country Oil Prices

BRT WTI

→ ← → ←

Austria No Yes No Yes
Germany No Yes No Yes
Greece No Yes No Yes
Italy No Yes No Yes
Netherland No Yes No Yes
Portugal No Yes No Yes
Spain No Yes No Yes
Sweden No Yes No Yes
UK No Yes No Yes
US No Yes No Yes

Notes: → indicates tourist arrivals causes oil price;
← indicates oil price causes tourist arrivals.

We find that significant causality is proved in general for all countries, as the test results strongly152

reflect a one-directional causal link from oil price to tourist arrivals. The results are very similar153

between BRT and WTI. For most of the countries, the cross map skill of oil price on tourist arrivals154

is also relatively high (still lower than the cross map skill of opposite direction). For instance the155

result of US in Figure 3, the red line presents relatively high cross mapping capability, however, as156

long as the other holds significant gap above, it indicates strong unidirectional causality. These results157

not only reflect the close significant relationship between these two tested variables regardless of the158

directions, but also confirm the findings in established literature. It is also observed that Austria159

shows the most significant causality from tourist arrivals on oil prices, whilst UK and US have slightly160

less significant outcomes on the average level (see Figure 4.3). Note that the improving trend in line161

with the increasing size of library is reasonable as larger size of data are used in cross validation for162

the cross map evaluation. The cross map skill from tourist arrivals to oil price (effect factor on cause163

factor) is much higher with a significant gap in between representing the level of causation from oil164

price on tourist arrivals. The greater the gap, the stronger the causality. In general, the CCM results165

prove one-directional causal link from oil price to tourist arrivals for both US and nine European166

countries.167

2Note that the detailed diagrams of testing results by countries and types of oil prices are available upon request.
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Figure 3: CCM causality results for Austria, UK and US tourists arrivals and oil prices (WTI).

As an advanced nonparametric causality detection method, CCM outperforms the empirical meth-168

ods with its sensitiveness and ability to accurately detect causality when faced with a complex system169

and less amount of data. More importantly, the tests show its significant ability of nonlinear causality170

detection and strong performance of identifying complex causal links in dynamical system. The results171

also indicate that CCM is a viable alternative for causality detection in the tourism industry.172

5 Conclusion173

This paper begins with the aim of investigating the causality between oil price and tourist arrivals in US174

and nine European countries. Both empirical and novel methods of causality detection are conducted175

to contribute towards explaining the impacts of oil price volatility on tourist arrivals across countries.176

More specifically, the advanced nonparametric causality technique CCM proves the existence of one-177

directional causality from oil prices to tourist arrivals for all countries when the empirical methods all178

fail to detect same.179

This paper is also the first attempt at conducting CCM causality detection in oil-tourism studies.180

The consistent and significant evidences presented herewith in terms of for identifying significantly181

causal links across countries, CCM has proved to be a reliable and efficient method for causality182

detection when faced with complex and nonlinear scenarios as witnessed in oil-tourism studies. We183

believe that the findings of this research would motivate further research in relation to the development184

and increased application of CCM in tourism studies where the multivariate analysis of complex185

systems can be of utmost importance.186

As the initial attempt of adopting advanced techniques in the causality analysis between oil price187

and tourist arrivals, this paper establishes consistent evidences across countries. By providing better188

understanding of the impacts from oil price on tourist arrivals, we hope to contribute on offering easy,189

efficient, data-driven and robust techniques for causality analyses of nonlinear and complex systems190

whilst assisting policy makings in terms of oil price volatility and economical activities closely related191

to tourism.192

9



References193

[1] Chatziantoniou, I., Filis, G., Eeckels, B., and Apostolakis, A. (2013). Oil prices, tourism in-194

come and economic growth: A structural VAR approach for European Mediterranean countries.195

Tourism Management, 36, 331-341.196

[2] Becken, S. (2008). Developing indicators for managing tourism in the face of peak oil. Tourism197

Management, 29(4), 695-705.198

[3] Yeoman, I., Lennon, J. J., Blake, A., Galt, M., Greenwood, C., and McMahon-Beattie, U. (2007).199

Oil depletion: What does this mean for Scottish tourism? Tourism Management, 28(5), 1354-200

1365.201

[4] Pentelow, L. and Scott, D. (2010). The implications of climate change mitigation policy and202

oil price volatility for tourism arrivals to the Caribbean. Tourism and Hospitality Planning &203

Development, 7(3), 301-315.204

[5] Becken, S. and Lennox, J. (2012). Implications of a long-term increase in oil prices for tourism.205

Tourism Management, 33(1), 133-142.206

[6] Becken, S. (2011). A critical review of tourism and oil. Annals of Tourism Research, 38(2), 359-207

379.208

[7] Selvanathan, S., Selvanathan, E. A., and Viswanathan, B. (2012). Causality Between Foreign209

Direct Investment and Tourism: Empirical Evidence from India. Tourism Analysis, 17(1), 91-98.210

[8] Cellini, R., and Cuccia, T. (2013). Museum and monument attendance and tourism flow: a time211

series analysis approach. Applied Economics, 45, 4733482.212

[9] Tang, C. F., and Abosedra, S. (2014). Small sample evidence on the tourism-led growth hypothesis213

in Lebanon. Current Issues in Tourism, 17(3), 234-246.214

[10] Fereidouni, H. G., and Al-mulali, U. (2014). The interaction between tourism and FDI in real215

estate in OECD countries. Current Issues in Tourism, 17(2), 105-113.216

[11] Antonakakis, N., Dragouni, M., and Filis, G. (2015). Tourism and growth: The times they are217

a-changing. Annals of Tourism Research, 50, 165-169.218

[12] Chen, M-H., Lin, C-P., and Chen, B. T. (2015). Drivers of Taiwans Tourism Market Cycle.219

Journal of Travel and Tourism Marketing, 32(3), 260-275.220

[13] Antonakakis, N., Dragouni, M., and Filis, G. (2015). How strong is the linkage between tourism221

and economic growth in Europe? Economic Modelling, 44, 142-145.222

[14] Gunter, U., and Onder, I. (2015). Forecasting international city tourism demand for Paris: Accu-223

racy of uni- and multivariate models employing monthly data. Tourism Management, 46, 123-135.224

[15] Antonakakis, N., Dragouni, M., and Filis, G. (2015). How strong is the linkage between tourism225

and economic growth in Europe? Economic Modelling, 44, 142-145.226

10



[16] Durbarry, R., and Seetanah, B. (2015). The Impact of Long Haul Destinations on Carbon Emis-227

sions: The Case of Mauritius. Journal of Hospitality Marketing and Management, 24(4), 401-410.228

[17] Tsui, W. H. K., and Fung, M. K. Y. (2016). Causality between business travel and trade volumes:229

Empirical evidence from Hong Kong. Tourism Management, 52, 395-404.230

[18] Tang, C. F., and Abosedra, S. (2016). Tourism and growth in Lebanon: new evidence from231

bootstrap simulation and rolling causality approaches. Empirical Economics, 50, 679-696.232

[19] Zhang, H. Q., and Kulendran, N. (2016). The Impact of Climate Variables on Sea-233

sonal Variation in Hong Kong Inbound Tourism Demand. Journal of Travel Research, doi:234

10.1177/0047287515619692.235

[20] Hatemi-J, A. (2016). On the tourism-led growth hypothesis in the UAE: a bootstrap approach236

with leveraged adjustments. Applied Economics Letters, 23(6), 424-427.237

[21] Li, X., Pan, B., Law, R., and Huang, X. (2017). Forecasting tourism demand with composite238

search index. Tourism Management, 59, 57-66.239

[22] Valadkhani, A., Smyth, R., and OMahony, B. (2017). Asymmetric causality between Australian240

inbound and outbound tourism flows. Applied Economics, 49(1), 33-50.241

[23] Massidda, C., and Mattana, P. (2012). A SVECM Analysis of the Relationship between Interna-242

tional Tourism Arrivals, GDP and Trade in Italy. Journal of Travel Research, 52(1), 93-105.243

[24] Tang, C. F. and Tan, E. C. (2013). How stable is the tourism-led growth hypothesis in Malaysia?244

Evidence from disaggregated tourism markets. Tourism Management, 37, 52-57.245

[25] Ghartey, E. E. (2013). Effects of tourism, economic growth, real exchange rate, structural changes246

and hurricanes in Jamaica. Tourism Economics, 19(4), 919-942.247

[26] Albaladejo, I. P., Gonzlez-Martnez, M. I., Martnez-Garca, M. P. (2014). Quality and endogenous248

tourism: An empirical approach. Tourism Management, 41, 141-147.249

[27] Katirciolu, S. T. (2014). Testing the tourism-induced EKC hypothesis: The case of Singapore.250

Economic Modelling, 41, 383-391.251

[28] Katircioglu, S. T., Feridun, M., Kilinc, C. (2014). Estimating tourism-induced energy consump-252

tion and CO2 emissions: The case of Cyprus. Renewable and Sustainable Energy Reviews, 29,253

634-640.254

[29] Solarin, S. A. (2014). Tourist arrivals and macroeconomic determinants of CO2 emissions in255

Malaysia. Anatolia, 25(2), 228241.256

[30] Tang, C. F., and Tan, E. C. (2015). Does tourism effectively stimulate Malaysia’s economic257

growth? Tourism Management, 46, 158-163.258

[31] Shahbaz, M., Kumar, R. R., Ivanov, S., and Loganathan, N. (2015). The nexus between tourism259

demand and output per capita, with the relative importance of trade openness and financial260

development: a study of Malaysia. Tourism Economics, doi: 10.5367/te.2015.0505.261

11



[32] Al-Mulali, U., Fereidouni, H. G., and Mohammed, A. H. (2015). The effect of tourism arrival on262

CO2 emissions from transportation sector. Anatolia, 26(2), 230-243.263

[33] Ertugrul, H. M., and Mangir, F. (2015). The tourism-led growth hypothesis: empirical evidence264

from Turkey. Current Issues in Tourism, 18(7), 633-646.265

[34] Paerez-Rodrguez, J. V., Ledesma-Rodrguez, F., and Santana-Gallego, M. (2015). Testing depen-266

dence between GDP and tourism’s growth rates. Tourism Management, 48, 268-282.267

[35] Goh, C. (2012). Exploring impact of climate on tourism demand. Annals of Tourism Research,268

39(4), 1859-1883.269

[36] Sugihara, G., May, R., Ye, H., Hsieh, C. H., Deyle, E., Fogarty, M., and Munch, S. (2012).270

Detecting causality in complex ecosystems. Science, 338(6106), 496-500.271

[37] Song, H., and Li, G. (2008). Tourism demand modelling and forecasting: a review of recent272

research. Tourism Management, 29, 203-220.273

[38] Deyle, E., Fogarty, M., Hsieh, C., Kaufman, L., MacCall, A., Munch, S., Perretti, C., Ye, H.,274

& Sugihara, G. (2013). Predicting climate effects on Pacific sardine. Proceedings of the National275

Academy of Sciences, 110(16), 6430-6435.276

[39] Ye, H., Deyle, E., Gilarranz, L., & Sugihara, G. (2015). Distinguishing time-delayed causal inter-277

actions using convergent cross mapping. Scientific Reports, 5, 14750.278

[40] Clark, A. T., Ye, H., Isbell, F., Deyle, E., Cowles, J., Tilman, G., & Sugihara, G. (2015). Spatial279

convergent cross mapping to detect causal relationships from short time series. Ecology, 96(5),280

1174-1181.281

[41] Huang, X., Hassani, H., Ghodsi, M., Mukherjee, Z., & Gupta, R. (2017). Do trend extraction282

approaches affect causality detection in climate change studies?. Physica A: Statistical Mechanics283

and its Applications, 469, 604-624.284

[42] Takens, F. (1981). Detecting strange attractors in turbulence Dynamical Systems and Turbulence.285

Dynamic Systems and Turbulence, 898, 366-381.286

[43] Sugihara, G., & May, R. (1990). Nonlinear forecasting as a way of distinguishing chaos from287

measurement error in time series. Nature, 344(6268), 734-741.288

[44] Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral289

methods. Econometrica: Journal of the Econometric Society, 37(3), 424-438.290

[45] Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series.291

Journal of the American Statistical Association, 77, 304-324.292

[46] Ciner, C. (2011). Eurocurrency interest rate linkages: A frequency domain analysis. Review of293

Economics and Finance, 20(4), 498-505.294

[47] EIA. (2016). U.S. Energy Information Administration. Available via:295

http://www.eia.gov/outlooks/steo/outlook.cfm [Accessed: 15.12.2016].296

12


