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Abstract
The literature on mixed-frequency models is relatively recent and has found applications
across economics and finance. The standard application in economics considers the use
of (usually) monthly variables (e.g. industrial production) for predicting/fitting quarterly
variables (e.g. real GDP). This paper proposes a multivariate singular spectrum analysis
(MSSA) based method for mixed-frequency interpolation and forecasting, which can be
used for any mixed-frequency combination. The novelty of the proposed approach rests
on the grounds of simplicity within the MSSA framework. We present our method using
a combination of monthly and quarterly series and apply MSSA decomposition and
reconstruction to obtain monthly estimates and forecasts for the quarterly series. Our
empirical application shows that the suggested approach works well, as it offers forecasting
improvements on a dataset of eleven developed countries over the last 50 years. The
implications for mixed-frequency modelling and forecasting, and useful extensions of this
method, are also discussed.
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1. Introduction

The last two decades has seen the development of an expanding body of
literature on the theoretical foundations and empirical applications of singular
spectrum analysis (SSA) (see for example Kalantari, Yarmohammadi, Hassani,
& Silva, 2018; Hassani, Silva, Gupta, & Das, 2018; Silva, Ghodsi, Ghodsi,
Heravi, & Hassani, 2017; and references therein). SSA turns out to be a fairly
versatile approach for modelling and forecasting, as it allows users to cope with
both linear and nonlinear, as well as with stationary and non-stationary, time
series structures (Sanei & Hassani, 2015). Although SSA is a powerful tool in
time series analysis and has been applied in a wide range of fields, there has
been an increasing interest over recent years in the use of SSA in economics and
finance (see for example Hassani & Thomakos, 2010; and Hassani & Patterson,
2014; for two comprehensive overviews).

SSA-based models have proved to be reasonably useful for forecasting
economic and financial variables. For instance, SSA has been used to
forecast economic activity, namely industrial production (Hassani, Heravi, &
Zhigljavsky, 2009; Hassani, Heravi, & Zhigljavsky, 2013; Hassani, Ghodsi, Silva,
& Heravi, 2016; Patterson, Hassani, Heravi, & Zhigljavsky, 2011; Silva, Hassani,
& Heravi, 2018), and GDP (Hassani & Zhigljavsky, 2009; Hassani, Soofi, &
Avazalipour, 2011; Hassani, Heravi, Brown, & Ayoubkhani (2013). Likewise,
Papailias & Thomakos (2017) consider a set of US variables including GDP.
In addition, de Carvalho, Rodrigues, & Rua (2012) and de Carvalho & Rua
(2017) resort to SSA for nowcasting the US output gap, a first application of the
ideas for mixed-frequency SSA. SSA has also been used for forecasting tourism,
and in particular UK tourism income by Beneki, Eeckels, & Leon (2012), US
tourist arrivals by Hassani, Webster, Silva, & Heravi (2015), and European
tourist arrivals by Hassani, Silva, Antonakakis, Filis, & Gupta (2017), and Silva,
Hassani, Heravi, & Huang (2019). Applications exploiting SSA for forecasting
exchange rates (Lisi & Medio, 1997; and Hassani, Soofi, & Zhigljavsky, 2009),
inflation (Hassani, Soofi, & Zhigljavsky, 2013; Silva, Hassani, & Otero, 2018),
energy (Beneki & Silva, 2013; Silva, 2013), and more recently, fashion consumer
behaviour (Silva, Hassani, Madsen & Gee, 2019) are also available.

This paper attempts to solve the mixed-frequency interpolation/forecasting
problem in the context of SSA. Such an approach has not been considered
in the previous literature and has certain a priori advantages which suggest
the advisability of examining its efficacy: first, SSA is a complete, stand-
alone smoothing/filtering/forecasting method; second, SSA is model-free and
its performances across different types of time series have been found to be very
good (Ghodsi, Hassani, Rahmani, & Silva, 2017); and, third, SSA can easily
handle multivariate applications.

Early works on the use of mixed frequencies were related to the strand of
literature that focuses on the temporal disaggregation of time series, namely by
obtaining high-frequency estimates of a series observed at a lower frequency by
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resorting to high-frequency indicators. Naturally, the underlying relationship
can be used to obtain estimates for the out-of-sample period covered by the low-
frequency variable. In this respect, one should mention the well-known seminal
work of Chow and Lin (1971), who developed a regression-based framework
for temporal disaggregation. However, the usefulness of the proposed method
was limited in practice, as it depends on the validity of the regression model,
which is bound by a variety of parametric assumptions that are unlikely to
hold in the real world. Subsequent work includes the studies by Fernandez
(1981), Litterman (1983), Wei and Stram (1990), Guerrero (1990), Liu and
Hall (2001) and Santos Silva and Cardoso (2001), among others. Recently,
the interest in mixed-frequency models has increased again with, for example,
the MIDAS (mixed-data sampling) approach of Eric Ghysels and co-authors
(see for example Ghysels, Sinko, & Valkanov, 2007; and Andreou, Ghysels, &
Kourtellos, 2010, 2013). The body of work on the use of the MIDAS approach
for forecasting includes the studies by Kuzin, Marcellino, and Schumacher
(2011), Clements and Galvão (2012), Monteforte and Moretti (2013), Galvão
(2013), Ghysels and Ozkan (2015), Duarte, Rodrigues, and Rua (2017), among
others. In addition, dynamic factor models for mixed-frequency forecasting
have also been developed (see for example Schumacher & Breitung, 2008;
Mariano & Murasawa, 2003; Foroni & Marcellino, 2014; Marcellino, Porqueddu,
& Venditti, 2016). Other mixed-frequency approaches have been pursued by,
for example, Gotz, Hecq, and Urbain (2014), Carriero, Clark, and Marcellino
(2015), Schorfheide and Song (2015), Foroni, Guérin, and Marcellino (2015),
Barsoum and Stankiewicz (2015), and Marcellino and Sivec (2016).

All of the above approaches, and their refinements, not only attract a
considerable amount of attention in the literature, but also offer solutions
for the faster tracking of important economic variables, mainly GDP, by
approximating their paths with the use of auxiliary, correlated variables that
are observed at higher frequencies (such as monthly, weekly or even daily).
Based on the literature mentioned above, it is clear that mixed-frequency
forecasting is an important topic. However, the majority of the models used
for mixed-frequency forecasting are restricted by their parametric nature and
related assumptions pertaining to normality, linearity and stationarity. Here,
we extend the list of models used for mixed-frequency forecasting by resorting
to the multivariate singular spectrum analysis (MSSA). Whilst initially SSA
and MSSA were used for nowcasting through the work done by de Carvalho
and Rua (2017), this paper marks the introduction of the use of MSSA for
mixed-frequency forecasting. Given its nonparametric nature, modelling with
MSSA enables users to ensure that there is no loss of information, as no data
transformations are required, and it enables the smoothing, filtering and signal
extraction that can also be useful when modelling data with mixed frequencies.

We follow the same underlying intuition as the other methods in the
literature when developing our approach in the simplest possible context:
interpolating and forecasting the monthly path of GDP, which is observed only



4

at the quarterly frequency, by using industrial production as a highly correlated
monthly proxy. We highlight the usefulness of our suggested approach, based
on mixed-frequency multivariate SSA, by considering an empirical application
that uses data for eleven developed countries for the period from the beginning
of 1960 up to the end of 2013. We find that, once a monthly measure of GDP
growth has been obtained through the mixed frequency multivariate SSA, one
can improve the forecasting performance substantially by taking into account
the monthly dynamics vis-à-vis the case where one forecasts the quarterly series.
The forecasting gains are noteworthy across all countries, with the average
improvement in terms of both the root mean squared forecast error (RMSFE)
and the mean absolute forecast error (MAFE) being around 40%. We also find
that the suggested method still improves the quarterly counterpart even in
a pseudo real-time environment, though only slightly. Moreover, one should
stress the fact that this approach allows economic developments to be tracked
on a monthly basis, which is valuable per se for real time monitoring and
policymaking.

The remainder of the paper is organized as follows. Section 2 introduces our
novel approach based on multivariate SSA for coping with a mixed frequency
data framework. Section 3 describes the dataset considered. Section 4 conducts
the empirical application and discusses the results. Finally, Section 5 concludes.

2. A mixed-frequency multivariate SSA approach

2.1. Multivariate SSA: decomposition and reconstruction

This section reviews (one of the possible ways of doing) multivariate
SSA. Our presentation is for the bivariate case, but pure multivariate
adaptations are straightforward. Thus, consider the bivariate time series{

Xt
def
= [Xt1,Xt2]

>
}
t∈S

, which takes values in RX ⊆ R. The index set S can
be either Z or N, thus covering the cases of both stationary and nonstationary
time series. It is assumed that both series are already scaled appropriately and
expressed in commensurable units of measurement. This becomes important in
the next subsection, when we introduce mixed frequencies.

Suppose that we have a sample of size N available, and let m denote
the embedding dimension that we propose to use. Applying the hankelization
operator Hm(·) to each of the component series of Xt, we obtain the trajectory
(n×m) matrices Ti,

def
= Hm(X1i,X2i, . . . ,XNi), for i= 1, 2 and n=N −m+1.

Concatenating the trajectory matrices horizontally, we obtain the (n × 2m)

MSSA trajectory matrix TX
def
= [T1,T2] that we use for decomposition and

reconstruction.
The (2m× 2m) sample covariance matrix is then defined as:

C
def
= n−1T>XTX , (1)
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which is block-symmetric and is given by:

C =

[
C1 C12

C21 C2

]
, (2)

such that it contains the own and cross-covariance matrices as its elements.
Denote the spectral decomposition of C, in standard notation, by:

Cn
def
= VΛV> =

2m∑
j=1

λjvjv
>
j , (3)

with λ1 ≥ λ2 ≥ · · · ≥ λ2m. Splitting the (2m × 2m) matrix V that holds
the eigenvectors appropriately into V

def
=
[
V>1 ,V

>
2

]>, we can estimate the
individual trajectory matrices as:

T̂i(k)
def
= TiQ(k), (4)

where Q(k)
def
=
∑
j∈Ik

vijv
>
ij and Vi

def
= [vi1,vi2, . . . ,vim] for i = 1, 2. Here,

k
def
= dimIk ≤ m and Ik denotes the set of eigenvalue indices used in the

reconstruction process. Finally, we obtain the reconstructed series by applying
the diagonal averaging operator D(m,N)(·) to the estimated trajectory matrix
as in: {

X̂ti(k)
}N

t=1

def
= D(m,N)

[
T̂i(k)

]
. (5)

2.2. MSSA when one series has a higher frequency

We now turn to the proposed methodology for MSSA when one of the series
exhibits a higher sampling frequency, i.e., mixed-frequency MSSA or MFMSSA.
We make things concrete and relate them to our empirical results by supposing
that Xt1 is a quarterly time series and Xt2 is a monthly time series. Now,
N denotes the length of the higher-frequency series; note that we must have
expressed the units of measurement of the two series so that they match the
higher sampling frequency. For example, when dealing with a quarterly and a
monthly series, which are both expressed as growth rates, we must transform
them so that their growth rates correspond to the same period and the same
sampling interval. In particular, our empirical application takes the quarterly
growth rate of GDP to be the value observed at the third month of the quarter,
whereas the values for the remaining months of the quarter are unknown. In
the case of industrial production, the value for each month corresponds to the
quarter-on-quarter growth rate for the quarter ending at that month. Hence,
as a first step, we prepare our data according to the following format, marking
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the positions of the quarterly series for which actual data are available:

(Q1,M1) X11 X21 0
(Q1,M2) X11 X22 0
(Q1,M3) X11 X23 1
(Q2,M4) X21 X24 0
(Q2,M5) X21 X25 0
(Q2,M6) X21 X26 1
(Q3,M7) X31 X27 0
(Q3,M8) X31 X28 0
(Q3,M9) X31 X29 1
(Q4,M10) X41 X2,10 0
(Q4,M11) X41 X2,11 0
(Q4,M12) X41 X2,12 1



, (6)

so that initially we fill-in the monthly values of the quarterly series with the
actual, end-of-quarter, values. Note that we mark the positions/dates of the
quarterly series that should not be changed during our iterations below with
ones in the last column. That is, the positions for which actual data are available
must be retained as such, but the data for the other monthly positions for which
we have no information can be approximated.1

The idea that we use for the monthly interpolation is very simple: pass
the initial data to the standard MSSA approach described earlier and obtain
the fitted values, re-insert the actual values in the fixed positions indicated
by the ones in Eq. (6), measure the mean-squared deviations between rounds
of approximation, and terminate when an appropriate condition is met. If we
denote the value of the slower-frequency series at the rth round/iteration of
the above procedure by X

(r)
t1 , we can illustrate the method schematically as

follows:

Step 0. Using the data formatting in Eq. (6), apply MSSA to the two series and
obtain the higher-frequency fitted values X̂(0)

t1 . Initialize the mean-squared

measure as RMSE(0)
def
=

√√√√N−1
N∑
t=1

[
X̂

(0)
t1

]2
.

Step 1. Substitute the actual values into X̂
(0)
t1 in the positions indicated by the

ones in Eq. (6) and reapply MSSA to obtain the updated higher-frequency
fitted values X̂(1)

t1 ; again, substitute the actual values as before into this

1. Our objective here is to find an unknown high-frequency series whose last values
are consistent with a known low-frequency series; alternatively, though, depending on the
application, one could search for a series that could be considered to be consistent with the
first values, sums or averages.
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new series and compute the new mean-squared measure as RMSE(1)
def
=√√√√N−1

N∑
t=1

[
X̂

(0)
t1 − X̂

(1)
t1

]2
.

Step 2. If RMSE(1)≤RMSE(0) but |RMSE(1)−RMSE(0)|> ε, for some small
predefined number ε, then iterate again by passing X̂(1)

t1 to another round
of MSSA to obtain X̂(r)

t1 for r > 1.
Step 3. While RMSE(r + 1) ≤ RMSE(r) but |RMSE(r + 1) − RMSE(r)| >

ε, continue along steps 1 and 2; if RMSE(r + 1) ≤ RMSE(r) and
|RMSE(r + 1)−RMSE(r)| ≤ ε terminate the iterations and use X̂(r+1)

t1

as the final estimate of the higher-frequency series.

Note that the actual, appropriately measured, quarterly series are always
used in the positions with ones in Eq. (6). Thus, only the missing months are
filled-in with the interpolated values. In of all our experiments, we set ε to the
range [1e− 5, 5e− 4] and achieved convergence of the above algorithm in an
average of fewer than 20 iterations.

There are a number of practical issues that the reader will no doubt ask
about immediately: how should one select the higher-frequency series so as to
achieve meaningful interpolation values for the lower-frequency series? What
kinds of embedding dimensions work well for this procedure, assuming that
the first question is answered? How many eigenvectors should one use in
the reconstruction phase of the higher-frequency fitted values of the lower-
frequency series? These questions must be answered before one can implement
the method. Here are our suggestions.

It is clear that the higher-frequency series needs to be highly correlated
if there is to be any a priori reason to believe that a good interpolation will
take place. Therefore, we start by seeking good (i.e., highly correlated) higher-
frequency proxies for the lower-frequency series. If we agree on this suggestion,
then one can consider doing a direct search on the length of the embedding
dimension m that maximizes the statistical correlation between the actual
higher-frequency series Xt2 and the fitted values of the lower-frequency series
X̂

(r)
t1 . That is, a plausible value m∗ for m in our interpolation procedure might

be selected to satisfy the condition:

m∗
def
= argmaxmCorr

(
Xt2, X̂

(r)
t1

)
. (7)

Our empirical application below found that selecting a value of m that was
equal to the higher sampling frequency (i.e., m = 12) was a reasonable
compromise, as it gave results that were practically identical to a search for m∗
as above. In essence, we found that the correlation was maximized at or close
to the higher sampling frequency. Such results merit further investigation with
other kinds of series as well.

Finally, we answered the last question by again looking at the ex-post
correlation between Xt2 and X̂

(r)
t1 . We found that essentially all eigenvectors
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Min Max Mean Med IQR SD CV Skew KS (p) ADF r
Quarterly GDP
Austria −4.38 4.51 0.72 0.73 1.16 1.04 144.93 −0.36 0.07† −5.97 0.52∗

Belgium −2.16 3.76 0.67 0.73 0.89 0.74 110.42 −0.36 0.02† −4.58 0.49∗
France −7.58 11.37 0.70 0.65 0.85 1.17 168.15 1.99 <0.01 −6.64 0.90∗

Germany −4.48 4.48 0.62 0.66 1.26 1.12 180.67 −0.34 0.03† −7.45 0.66∗

Italy −2.88 6.00 0.63 0.56 1.29 1.04 166.46 0.53 0.03† −5.28 0.75∗

Japan −3.97 5.7 0.99 0.91 1.60 1.34 135.12 −0.08 0.04† −4.50 0.63∗
Netherlands −6.27 8.94 0.69 0.76 1.13 1.45 209.24 0.27 <0.01 −8.14 0.38∗

Portugal −2.33 4.90 0.81 0.81 1.46 1.22 151.38 0.16 0.20† −4.31 0.58∗
Sweden −4.77 5.50 0.64 0.66 1.33 1.31 204.78 −0.18 <0.01 −7.48 0.63∗
United Kingdom −2.41 5.28 0.62 0.65 0.84 0.97 157.89 0.43 <0.01 −6.01 0.67∗
United States −2.11 3.89 0.76 0.77 0.82 0.85 111.01 −0.27 <0.01 −4.34 0.76∗

Monthly IP
Austria −6.44 7.22 0.92 1.04 2.23 1.75 189.93 −0.39 0.03† −9.71
Belgium −10.36 17.16 0.68 0.75 2.12 2.20 323.50 0.22 <0.01 −13.87
France −14.12 21.73 0.47 0.45 1.85 2.27 486.28 1.36 <0.01 −15.99
Denmark −13.40 5.89 0.61 0.76 2.27 2.00 325.63 −1.73 <0.01 −9.62
Italy −10.85 15.24 0.54 0.56 2.49 2.47 459.33 −0.10 <0.01 −11.44
Japan −19.70 10.42 1.01 1.13 2.48 2.81 277.49 −1.99 <0.01 −9.53
Netherlands −7.30 9.82 0.70 0.77 2.69 2.01 285.62 −0.25 0.09† −12.30
Portugal −7.51 10.86 0.77 0.70 2.83 2.49 325.5 0.41 <0.01 −13.18
Sweden −11.47 7.16 0.61 0.64 2.40 2.19 356.96 −0.79 <0.01 −12.23
United Kingdom −7.04 8.64 0.26 0.30 1.53 1.60 610.21 −0.03 <0.01 −13.61
United States −7.38 4.51 0.69 0.90 1.41 1.58 228.36 −1.27 <0.01 −9.35
Note: † indicates that the data are distributed normally based on the Kolmogorov-Smirnov
(KS) test at a p-value of 0.01. r indicates the Pearson’s correlation between GDP and IP. ∗
indicates a statistically significant correlation between GDP and IP quarterly growth at the

usual 0.05 significance level.

Table 1. Descriptive statistics for GDP and IP growth rates.

should be used in the reconstruction phase of MSSA; that is, all available
statistical information from the decomposition of the joint trajectory matrix.
This makes intuitive sense, as there is no reason to believe that one can discard
information from the higher frequency when obtaining interpolated values for
the lower frequency, and thus we consistently found that k should be set equal
to m.

3. Data

The data used in our empirical application include the quarterly real GDP
from Q1:1960 up until Q4:2013 and the monthly industrial production from
January 1960 to December 2013 for 11 developed countries, namely Austria,
Belgium, France, Denmark, Italy, Japan, Netherlands, Portugal, Sweden,
United Kingdom and United States. The data have been retrieved from the
OECD Main Economic Indicators database. The data are referred to as mixed-
frequency because the GDP figures are quarterly whilst the IP figures are
reported on a monthly basis. In general, the GDP growth and IP appear to be
highly correlated for all countries, and this study exploits this dependence in
order to improve the forecastability of GDP. Table 1 provides a set of descriptive
statistics regarding GDP and IP growth over the sample period considered.
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Our analysis begins by considering the quarterly GDP growth. The
minimum and maximum columns indicate that, during this period, both the
worst and the best quarterly growth rates achieved during a particular quarter
were those reported for France. In terms of the average quarterly GDP growth,
the highest average has been reported by Japan, whilst the lowest average
quarterly GDP growth rate is equivalent in Germany and the UK. Based on
the standard deviation, the most variable quarterly GDP growth has been
recorded for the Netherlands, while the most stable quarterly growth rate for
GDP was recorded for the US. The KS test for normality indicates evidence of
normally distributed quarterly GDP growth for six of these countries, whilst all
quarterly GDP growth series are found to be stationary based on an augmented
Dickey-Fuller (ADF) test for a p-value of 0.05. All correlations between GDP
and IP growth were found to be statistically significant at the 5% significance
level.

We can perform a similar analysis in terms of IP. The worst and best
monthly IP growth rates during this time period were reported for Japan and
France, respectively. Japan also has the highest average monthly IP growth rate,
whilst the UK reports the lowest average growth. The KS test for normality
indicates that the majority of the monthly IP series are skewed, and therefore
the results remain unchanged if we give prominence to the median growth
rather than the mean growth, with the highest median monthly IP growth
being reported for Japan and the lowest for the UK. The SD criterion suggests
that Japan has the least stable average monthly IP growth rate and that the
US has the most stable. If we consider the IQR, as most of the data are skewed,
then the least stable average IP growth is recorded for Portugal, whilst the US
continues to report the most stable average IP growth rate. As with quarterly
GDP growth rates, there is no evidence in monthly IP growth rates of the
time series being nonstationary based on the ADF test for unit root problems.
The coefficient of variation (CV) criterion enables us to compare the variation
between the quarterly GDP growth and the monthly IP growth. The CV clearly
indicates that the monthly IP growth rate is more variable than the quarterly
GDP growth for all countries.

We then go a step further and perform an ANOVA test to determine
whether there are statistically significant differences between countries in
terms of their quarterly GDP growth rates and monthly IP growth rates.
Interestingly, the post-hoc Tukey HSD (p = 0.05) test shows evidence of
statistically significant differences between the average quarterly GDP growth
rates of only three combination of countries, namely Germany and Japan, Italy
and Japan, and Japan and the UK. On the other hand, the post-hoc Tukey HSD
test (p = 0.05) for statistically significant differences in the average monthly
growth rates of IP found the following significant combinations: Austria and
France, Austria and UK, Belgium and UK, France and Japan, Germany and
Japan, Italy and Japan, Japan and Sweden, Japan and UK, Netherlands and
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UK, Portugal and UK, and UK and US, all of which were found to be countries
with statistically significant differences in monthly IP growth rates.

4. Evaluating the MFMSSA approach

As was discussed in Section 2.2, we conduct the following exercise here: based
on the whole sample period, we take the quarterly GDP growth and perform
the MFMSSA interpolation, using the monthly industrial production growth as
the covariate. The resulting monthly estimates for GDP growth are displayed
in Figure 1 alongside the corresponding covariate series. It can be seen from
Figure 1 that the monthly estimates of GDP are much less volatile than those
for industrial production, and Table 2 reports the corresponding correlations.2

The weighted correlation (w-correlation) is another measure of the
dependence between two series that is considered when evaluating the
appropriateness of the separability between signal and noise, as achieved via
MSSA. If we consider two time series Y 1

N and Y 2
N , then the w-correlation can

be calculated as:

ρ
(w)
12 =

(
Y

(1)
N , Y

(2)
N

)
w

‖ Y (1)
N ‖w‖ Y

(2)
N ‖w,

where Y (1)
N and Y (2)

N are two time series, ‖ Y (i)
N ‖w =

√(
Y

(i)
N , Y

(i)
N

)
w
,
(
Y

(i)
N , Y

(j)
N

)
w
=∑N

k=1wky
(i)
k y

(j)
k (i, j = 1, 2), wk =min{k,L,N − k} (here, assume L ≤ N/2).

As was explained by Hassani, Mahmoudvand, Zokaei, and Ghodsi (2012),
if the absolute value of the w-correlations is small, then the corresponding
series are almost w-orthogonal, but if it is large, then the two series are far
from being w-orthogonal and are therefore badly separable. As an example,
Figure 2 presents the w-correlation matrix for the United States, to show the
dependence between the signal and noise components.

2. We also find that the IP series does not Granger-cause the monthly GDP series, which
seems natural, as the information from the IP is already embedded in the estimation of the
monthly GDP, but the monthly GDP series seems to Granger-cause the IP series in most
countries.
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Figure 1: Monthly GDP and IP growth.
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Figure 1: Monthly GDP and IP growth (continued).
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Figure 2: Weighted correlation for the US.

Table 2 also reports the correlations of the MFMSSA estimates with those
obtained by using the widely used Chow-Lin method to disaggregate time
series. The correlations range from 0.62 for the Netherlands up to 0.97 for
Belgium, reaching more than 0.8 on average across all countries. As the Chow-
Lin method, in its original formulation, applies only to static models, we also
consider the dynamic model variant of the Chow-Lin method (see Santos Silva
& Cardoso, 2001), as it is a more natural working assumption when dealing
with time series. In this case, the MFMSSA estimates present even higher
correlations for most countries, ranging from 0.72 for Sweden up to 0.99 for
Belgium and achieving a value close to 0.9 on average across all countries. Such
a comparison reinforces the plausibility of the monthly GDP estimates obtained
using the MFMSSA approach.

Another exercise for evaluating the MFMSSA approach consists of assessing
its usefulness in a forecasting context. In this case, one can compare the three-
step-ahead monthly forecast of the interpolated series with the one-step-ahead
quarterly forecast of the actual series. In particular, we take the full sample of
observations, perform the MFMSSA interpolation and then take the resulting
monthly estimates for GDP growth and forecast it three months ahead via
a parsimonious AR model with the order length chosen according to standard
information criteria. The forecasts obtained for the third month of each quarter
can be compared directly with the ones obtained by simply fitting an AR model
to the quarterly GDP series and forecasting one quarter ahead. This exercise
allows us to assess how much is gained in terms of forecasting performance by
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IP Chow-Lin Dynamic model
Austria 0.48 0.69 0.90
Belgium 0.46 0.97 0.99
France 0.80 0.85 0.85
Germany 0.64 0.78 0.94
Italy 0.76 0.86 0.97
Japan 0.64 0.93 0.78
Netherlands 0.32 0.62 0.83
Portugal 0.47 0.91 0.96
Sweden 0.55 0.72 0.72
United Kingdom 0.63 0.77 0.77
United States 0.76 0.85 0.97

Table 2. Correlation of the MFMSSA monthly GDP with the monthly IP, the monthly
GDP with the Chow-Lin method, and the monthly GDP with the dynamic extension
of the Chow-Lin method.

taking on board the monthly dynamics obtained via MFMSSA.3 We conduct
the forecasting exercise using an expanding window and recursive model
selection and estimation.4 Since the business cycle frequency range is defined
in the literature typically as between two and eight years, we considered a
starting period of sixteen years so as to encompass at least two complete
business cycles. The forecasting results of such an exercise are presented in
Table 3. In particular, we report the relative RMSFE, i.e., the ratio of the
RMSFE of the monthly model to that of its quarterly counterpart, as well as
the relative MAFE defined in a similar way. Furthermore, we computed the
superior predictive ability (SPA) test proposed by Hansen (2005), to compare
the performances of the two forecasting models. Both loss functions (the mean
squared error and the mean absolute error) are considered, and therefore we
report SPAMSE and SPAMAE respectively. The statistic reported in the table
refers to the SPA p-value, where a low value signals that the benchmark is
outperformed by the MFMSSA-based approach.

Table 3 shows clearly that taking on board the monthly dynamics of GDP
estimates can improve the forecasting performance. In fact, both the RMSFE
and the MAFE are lower in the case where the monthly model is used for
forecasting one quarter ahead. This finding holds for all countries under study,

3. Since the quarterly GDP growth figures correspond to the values in the third month of
the corresponding quarter in the monthly series, as described in Section 2.2, one is already
mixing the quarterly and monthly information in a spirit similar to the MIDAS approach
when modelling the monthly series. However, richer dynamics can be exploited, since a higher
frequency series is being considered when fitting the model. In fact, we find that resorting to a
MIDAS approach does not deliver better forecasting results.
4. We also conducted the forecasting exercise using a rolling window scheme, but the
forecasting performance deteriorated. This may reflect the fact that an expanding window
means that more information is taken on board as time goes by.
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RMSFE MAFE SPAMSE SPAMAE

Austria 0.606 0.613 0.001 0.000
Belgium 0.728 0.825 0.049 0.033
France 0.615 0.619 0.000 0.000
Germany 0.460 0.495 0.000 0.000
Italy 0.822 0.792 0.000 0.000
Japan 0.482 0.484 0.000 0.000
Netherlands 0.560 0.594 0.002 0.000
Portugal 0.446 0.446 0.000 0.000
Sweden 0.579 0.592 0.000 0.000
United Kingdom 0.545 0.539 0.001 0.000
United States 0.542 0.528 0.000 0.000

Table 3. Forecast evaluation with full sample estimates.

and the gains across countries are quite noteworthy. The average improvement
in terms of the RMSFE and MAFE is around 40%. The countries where these
gains are the highest are Germany, Japan, Portugal, the United Kingdom and
the United States, whereas the countries which present lower gains include
Belgium and Italy. Based on the SPA test results, one can conclude that the
MFMSSA-based approach outperforms the benchmark, at the usual statistical
significance level, for all countries and both loss functions.

We assess what the forecasting performance would have been in a pseudo
real time scenario by using the same recursive approach as before, performing
the MFMSSA interpolation within such a window, and then forecasting three
months ahead in the case of the monthly model and one quarter ahead based
on the quarterly model. The results are displayed in Table 4.

RMSFE MAFE SPAMSE SPAMAE

Austria 0.996 0.996 0.435 0.446
Belgium 0.881 0.949 0.139 0.222
France 0.803 0.777 0.008 0.001
Germany 0.944 0.958 0.070 0.129
Italy 0.925 0.900 0.056 0.021
Japan 0.986 0.981 0.365 0.318
Netherlands 0.934 0.985 0.069 0.346
Portugal 0.975 0.973 0.128 0.162
Sweden 0.972 1.014 0.256 0.599
United Kingdom 0.957 0.995 0.159 0.440
United States 0.994 1.002 0.426 0.513

Table 4. Forecast evaluation with recursive sample estimates.

Table 4 shows that one improves the one-quarter-ahead forecasts even when
taking into account the pseudo real-time computation of the GDP monthly
estimates. However, the gains are much smaller in this case, being around
5% on average. One notable case is France, where the forecasting gains were
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around 20%. Naturally, the SPA test results are weaker, although there is
statistical evidence of a forecasting improvement over the benchmark in a
few cases. Furthermore, one should stress that the computation of monthly
estimates enables one to compute forecasts every month, meaning that one is
not restricted to forecasting only on a quarterly basis. This can be a valuable
feature for tracking economic conditions in a real-life environment.

5. Conclusions

This paper has suggested a new approach based on SSA for coping with
data sampled at different frequencies. In particular, we lay out the theoretical
foundations and the rationale underlying such a mixed-frequency multivariate
SSA approach and address some practical issues related to its implementation.

The empirical application considered two variables, namely GDP and
industrial production. The former was sampled at a quarterly frequency,
whereas the latter was monthly. Applying the MFMSSA approach, we obtain
monthly estimates for GDP growth and assess the forecasting performances of
both a monthly model and its quarterly counterpart. We analyze a set of eleven
developed countries over the period running from the beginning of 1960 up to
the end of 2013.

The results obtained are quite promising. We find that taking on board
the monthly dynamics obtained via the MFMSSA method allows noteworthy
forecasting gains to be achieved for all countries. Although the gains are lower in
a pseudo real-time exercise, one should note that such an approach also enables
one to deliver monthly forecasts, which can constitute a valuable feature for
monitoring economic evolution in a real-life environment.
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