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Abstract 

Vnencumbered-gesture-interaction (VGI) describes the use of unre­

stricted gestures in machine interaction. The development of such 

technology will enable users to interact with machines and virtual 

environments by performing actions like grasping, pinching or wav­

ing without the need of peripherals. Advances in image-processing 

and pattern recognition make such interaction viable and in some 

applications more practical than current modes of keyboard, mouse 

and touch-screen interaction provide. VGI is emerging as a popular 

topic amongst Human-Computer Interaction (HCI), Computer-vision 

and gesture research; and is developing into a topic with potential to 

significantly impact the future of computer-interaction, robot-control 

and gaming. This thesis investigates whether an ergonomic model 

of VGI can be developed and implemented on consumer devices by 

considering some of the barriers currently preventing such a model of 

VGI from being widely adopted. This research aims to address the 

development of freehand gesture interfaces and accompanying syntax. 

Without the detailed consideration of the evolution of this field the 

development of un-ergonomic, inefficient interfaces capable of placing 

undue strain on interface users becomes more likely. In the course of 

this thesis some novel design and methodological assertions are made. 

The Gesture in Machine Interaction (GiMI) syntax model and the 

Gesture-Face Layer (GFL), developed in the course of this research, 

have been designed to facilitate ergonomic gesture interaction. The 

GiMI is an interface syntax model designed to enable cursor control, 

browser navigation commands and steering control for remote robots 

or vehicles. Through applying state-of-the-art image processing that 

facilitates three-dimensional (3D) recognition of human action, this 



research investigates how interface syntax can incorporate the broad­

est range of human actions. By advancing our understanding of er­

gonomic gesture syntax, this research aims to assist future developers 

evaluate the efficiency of gesture interfaces, lexicons and syntax. 
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Chapter 1 

Reviewing the field of UGI 

Chapter 1.1 introduces the concept of the gesture interface, discussing how human 

gestures and tools have evolved in parallel. Chapter 1.2 reviews developments in 

the field of unencumbered gesture interface design. Chapter 1.3 identifies criteria 

that can be used to determine the potential commercial and ergonomic success 

of a user interface. 

1.1 Introduction 

First described by Archimedes, the lever and compound pulley are mechanisms 

that extend the natural capacities of human gesture. Through the use of these 

mechanisms we are able to multiply the amount of mechanical force that can 

be applied to physical entities. The lever and compound pulley are some of the 

earliest examples of encumbered machine interaction. To extend the capabilities 

of human gestures an array of mechanisms have subsequently been developed. 

Introduced during the nineteenth century the typewriter became an innovation 

that made the communication and dissemination of knowledge both clearer and 

physically sustainable. It has enhanced our ability to use gesture in the produc­

tion of standard legible print. The analogue joystick is another mechanism that 

facilitates encumbered machine interaction. Through the use of this mechanism 

manual hand gestures can be used for controlling machines across the horizontal 

and vertical axes. This innovation has facilitated the precision control of vehicles 

1 



1. Reviewing the field of UGI 

across multiple lines, making the steering of aeroplanes and industrial machinery 

both possible and efficient. Much of our daily real-world interactions are me­

diated by gestures, whether they are used to open doors or to grasp a cup to 

quench a thirst. The evolution of human culture is evidently link to the devel­

opment and refinement of physical actions. The physical tools that shape these 

actions underpin technological and cultural development in human society. In 

essence, the physical tools we utilise in our daily interactions are extensions of 

human gesture. The advent of the microprocessor has ushered in a new phase 

of gestural machine interaction. Through its use our gestures are able to ma­

nipulate large volumes of information. The microprocessor also enables physical 

actions to be transmitted over large distances and relayed across the globe. Hu­

man actions have been successfully translated into the digital world through the 

use of peripherals, such as the keyboard, mouse and touchpad. The product 

and quality of our interactions are affected by their underlying efficiency. Con­

sequently, as interface users we can only operate within the constraints of these 

devices. The encumbered interfaces described require users to remain proximal 

to manual devices. These interfaces al 0 limit the freedom of movements of users, 

such constraints present interface developers with many opportunities to improve 

human computer-interaction. Increased freedom of movement has been proven 

to offer significant physiological and performance benefits to users [Zlmi et al. , 

1996). Through the advancements in computer-vision and pattern recognition it 

is becoming increasingly possible for human gestures to be optically recognised by 

digital machine [Bowdcll et al. , 2003; Starn<'l' and PC'ntland, 1995; Zahc<ii et al. , 

2005; Ziel'<'u aud Kraiss , 2005). Through using this technology people can be 

liberated from having to be proximal to digital devices. Offering users the chance 

to control computers through unencumbered means. Optical gesture-recognition 

has real potential to enable people to engage with computers through fully un­

restricted movement of the hand. Interfaces that enable greater hand freedom 

may also facilitate a greater precision and control of digital devices, such as tools, 

robots and vehicles [Kortpnkamp ('t al. , 1996; Wa('hs et al. , 2(08). Hand-free inter­

action has the potential to produce more expressive and intuitive interaction. The 

field of unencumbered ge ture-interaction (UCI) is likely to flourish as a result of 

the increase ' in computer processing power together with decreases in computer 

2 



1. Reviewing the field of U GI 

hardware costs. VCI is also benefitting from advances made in computer pro­

gramming and encumbered interaction. The challenge facing CI developers i 

how best to create sustainable and ergonomic interaction. 

1.1.1 Mixing virtual and augmented reality 

(a) GUI 

(.)-.....-y 

@ CoMouIor WorId 

@Real WortI 

®~RooI"""" 

) VhMo1 Roolty 

(d) -"'9_ 11110'_ 

- H\i"lW\ • Com_ Inlo,-"" 
·· Ho./'IIlII· __ Ir'IIlIrIo:I:OOII 

- Roe WOItO· Com...,« ifttet8C!JOn 

Figure 1.1: (a)(b)(c)(d) Rekimoto and Nagao [1995J illustrate real and virtual 
interaction. (e) Leon Barker illustrates mixed reality 

The desire to create multisensory machine interaction has been a long held 

aspiration for developers and advocates of Virtual-Reality (VR) and Human­

Computer Interaction (HCI). Aspirations that can be traced back to the late 

1960s when computer interface design was beginning to emerge as a topic of dis­

course and debate. Early innovators such as Ivan Sutherland and Myron Krueger 

were beginning to shape the direction of computer interaction. Kl'1l<'g<'r <'t al. 

[1985] believed computers could be used in the school classrooms to t rain chil­

dren through the creation of educational simulations. Snth<'rlalld [19(j ] believed 

that computers could be used to give mathematicians and scicnt i ,ts a tangible 

3 



1. Reviewing the field of UGI 

sense of the imperceptible through the use of simulations. Both Sutherland and 

Krueger defined the concept of virtual-reality (VR) through the creation of a se­

rie of prototypes. However, Sutherland s head mounted display and Krueger's 

VIDEOPLACE define oppo ite hemispheres within VR. Though both approaches 

are subtly different the divergence in outcomes are significant. Sutherland's vi­

sion of HCI is based on representing virtual worlds and objects to the user. 

This approach corresponds to a field of VR research called augmented reality 

(AR). Sutherland and Sproull create an augmented reality head mounted dis­

play (HMD), the first AR interface of its kind. Sub equently, a variety of other 

AR interfaces have been developed, the e range from the ec-through optical 

di play to the video-coupling display. The HMD is a device that superimposes 

virtual objects or data on to repre entation of the real world, presenting the 

user with a visual synthesis of the virtual and real. For example, the helmet visor 

worn by military pilots augment mission data with the real world environment. 

Sutherland' model of VR amalgamated both the real and the virtual to create a 

single ensory experience. Krueger, a pioneer within the fields of Virtual reality 

and unencumbered computer-interaction, offers an alternative model of HeI. He 

introduces the concept of UGI through the creation of the VIDEOPLACE proto­

type, advocating the u e of freehand gesture as oppo ed to tactile and mechanical 

user input. Krueger' model of VR represents an archetypal model of Augmented 

Virtuality (AV), which inhabits the opposite pole to AR in the Reality Virtuality 

Continuum [1.Iilgralll and KiHhino, 1994; Tamura and Yamamoto, 1998] . Unlike 

AR, which focuses on representing virtual spaces and data to interface users, AV 

repre ent a practice of augmenting virtual respon e to physical input. In the 

VIDEOPLACE prototype people could use their hand, to alter the shape and 

po ition of virtual objects. The modern weather forecast simulation is an example 

of an AV system that uses live satellite sensory data to create a virtual map of 

global weather patterns. The inherent ambiguity of the Reality Virtuality Con­

tinuum has led to the definition of virtual reality being expanded and interpreted 

as the mixed reality (MR) continuum [~1ilgnllll and KishillO, 1994; Tamura clnd 

Yml1<Ulloto, 1998] . Th(' mixed reality model of VR reflects that there is a range 

of pO' ible permeations for how Virtual and phy ical realities can overlap to affect 

one and other. 

4 



1. R eviewing the field of UGr 

Both Sutherland and Krueger utilised contrasting methodologies to achieve 

their aims. Sutherland 's research relies on the use of encumb red technology, 

where as Krueger advocated the use of unencumbered interaction. To date, en­

cumbered forms of interaction have largely dominated both VR and HCI. To see 

this dominance, one needs only to examine the wide range of peripheral device 

currently utilised within the computing and gaming industries, with interfaces 

such as the joystick control pad, the mouse and keyboard . Computer interac­

tion has not deviated from the model of interaction developed by Sut IH'rland 

[1964]. Four decades after the introduction of VR and GI, personal computing 

has continued to develop along the model of graphic user interaction (G UI) via 

a windows-icons-menu-pointing (WIMP) interface, with a keyboard and mouse. 

Such interaction provides basic mechanical augmented reali ty at be t. Recent ad­

vancements in signal-processing algorithms coupled with the reduction of in mi­

croprocessor costs increase the economic viability for novel forms of augmented­

virtuality and augmented-reality interaction to be developed . A chronological 

review of developments of unencumbered AR interaction from its inception in 

1970 to the present is documented in the following section. 

1.2 Critical review of unencumbered gesture­

interfaces 

This review will discuss developments made within the field of unencumbered 

gesture interaction. Looking primarily at the development of modes of interac­

tion that facilitate hands free interaction ; where the user is not encumbered or 

physically burdened with tactile or haptic control mechanisms, such as in Key­

board, joystick or mouse interaction. The aim of this review is not simply to 

consider the merits of novel user-interfaces; it is intended to investigate the types 

of apparatus that might effect ively facilitate the implementation of a robust and 

ergonomic mode of unencumbered human-computer interaction. 
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Figure 1.2: Krueger ct al. [1985] demonstrate a means of modifying a B-spline 
curve with the hand 

1.2.0.1 VIDEOPLACE 

As previously discu ed (1.1.1 ) the VIDEOPLACE developed by Krueger in 1970 

is a pioneering form of UGI. In the VIDEOPLACE interface the user's silhouette 

is captured against a plain background and digitised. The digitised silhouette is 

then superimposed into a mixed reality environment. Through using their phys­

ical action the user is then able to affect virtual objects within the scene. This 

interface presents one of the earliest forms of computer-vision mediated inter­

action. Krueger expands the VIDEO PLACE concept with the creation of the 

VIDEODESK. The VIDEODESK is a ceiling mounted camera that monitors the 

user's hand as they rest on a desktop. The user can then utilise their hand ges­

tures to engage with a range of applications. For example, the user can use their 

hands to make and re hape objects in order to create virtual sculptures. By creat­

ing these interfaces Krueger demonstrates how deictic, ergotic and iconic ge tures 

can be used for manipulating virtual objects. Using these methods Krueger illu.­

trates that the thumb and forefinger can effectively be used to modify a B-spline 

curve through using a limited number of control points (Figure 1.2 page 6). In 

this way, the VIDEODESK system facilitates object and graphic modelling via 

ge ture. The VIDEO PLACE is a pioneering, but simple, real-time application 

that demon trates the u e of a straightforward gesture command structure. This 
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model of computer interaction mediated by clearly defined ge ture syntax rna 

become the archetypal method of facilitating unencumbered ge tur interaction. 

As discussed (chapter 2 pages 36 - 38) , the development of such command has 

become a significant area of debate with conflicting ideal , with some re 'earchers 

advocating the use of natural and instinctive g stures. Th strength and weak­

ne ses of this interface hav been summarised in the conclu ion of thi chapter 

(see page 20). 

1.2.0.2 'Put that there' and 'Put that where ' 

Figure 1.3: Bolt [1980J 'Put that there' int rface 

The 'put that there' interface, developed by Bolt [19 OJ is one of the fir t 

multimodal interfaces to combined both speech and pointing gesture in com­

puter interaction. To convey the deictic pointing gesture users of Bolt' , interface 

wore a data-glove. This mode of interaction is encumbered in nature, however 

Billillghurst and Kato [2002J later created an unencumbered version that utilises 

computer vision. Thi ' later model i ' called 'put that where '. In the creation 

of these interfaces both Bolt and Billinghurst presents a strong case for combin­

ing the modalities of gesture and peech. Both demonstrate that gesture and 

speech can be combined to create a powerful interface. The voice can interact 

with virtual objects regardless of whether they are hidden or occluded from view 

in an on-screen environment and gesture allows us to intui tively investigate and 
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manipulate objects in a direct way, each modality complements the deficiencies 

of the other. There is sufficient evidence that supports the conclusion that users 

overwhelmingly prefer a combination of voice and gestural interaction. Seventy 

one percent of users tested in a survey, conducted by Hanptmanu and MeA viu­

ney [1993], suggested that multimodal speech and gesture input was preferable to 

using independent modalities. Despite this evidence such interaction is not yet 

commonplace even though speech recognition has been implemented into a range 

of commercial operating systems. The combination of speech and encumbered 

gesture has found usage with military applications such as in the Euro-fighter 

Typhoon flight cockpit, where maintaining uninterrupted sight of other vehicles 

and geographical features can be critical. The use of speech recognition is a 

feature aimed at reducing a pilot's physical workload. Developing multimodal 

interfaces will enhance our interactions with computers. However, as discussed in 

chapter 2 (page 39) there are significant concerns regarding the physical sustain­

ability of speech recognition interfaces. Furthermore, there are situation where 

the u e of speech is not practical or desirable. Using speech interfaces within a 

busy environment might create very loud working conditions. As a result such 

an interface would be inappropriate for use in some places, such as libraries. A 

speech interface would al 0 be inappropriate for acce sing and documenting per­

sonal and confidential information, especially in public places. Speech interfaces 

would also be inappropriate to use in noisy environments, as ambient noise can 

diminish speech recognition accuracy. The inherent issues surrounding the use 

of speech interface suggests a framework that enables each modality to oper­

ate independently remains essential to providing interfaces that cater to a broad 

range of human affordances and preference. The strengths and weaknesses of 

this interface have been summarised in the conclusion of this chapter (see page 

22). 

1.2.0.3 'The DigitalDesk calculator ' 

The DigitalDesk calculator is an interface that responds to multi-sensory input. 

Combining pointing gestures with text recognition the DigitalDesk integrates a 

digital virtual desktop with a real-world desktop. This type of interface conforms 
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Figure 1.4: Wellner [1991] DigitalDesk calculator 

to Milgram and Kishino [1994] description of both the augmented real and vir­

tual. The interface utilises a ceiling mounted video camera and data projector, 

which have been calibrated to focus on the surface of a table. When activated , 

the virtual desktop environment is projected on to the physical desktop to cre­

ate a hybrid, mixed reality. Any document placed upon the desk becomes an 

interactive element in the newly created space. Direct interaction takes place 

using deictic pointing gestures. For example, scrolling down the document with 

the finger will highlight passages of interest contained within the text. Through 

the use of text recognition the selected text can then be transcribed into digital 

form. Wellner [1991] has essentially managed to integrate an optical scanner into 

the desktop environment and creates an efficient and intuitive means of selecting 

and manipulating text. Although the DigitalDesk receives multi-sensory input 

the full potential of gesture is not utilised. Wellner's study identified issues with 

determining whether a gesture is actively selecting text or simply moving around 

the desktop. These problems were a result of recognit ion problems, which could 

have been solved through the use of better detection algorithms or the use of more 

distinctive gestures . The problem of recognition ambiguity encountered by Well­

ner highlight the potential need for a gesture efficiency dataset that documents 

the recognition accuracy of gestures. Such a dataset would enable developers like 

Wellner to create interfaces with recognisable vocabulary syntax. Other issues 
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that affected the efficiency of Wellner's interface involved the physical layout of 

the Digital desk interface. The users physical position placed them between the 

projector and the table surface, as a result users were wary of their shadow effect­

ing and occluding the GUI. The strengths and weaknesses of this interface have 

been summarised in the conclusion of this chapter (see page 23). 

1.2.0.4 Television control by hand gestures 

Figure 1.5: Freeman ct al. [1995] TV hand control interface 

In an attempt to replace the television remote control Fr('cman ct al. [1995] 

developed an unencumbered gesture interface that enabled viewers to adjust and 

control their television sets. Using a mixture of symbolic and deictic gestures this 

interface enables similar interaction to that of a computer mouse. To initialise 

control of the television the viewer holds up his or her hand so that it faces the 

screen and performs a trigger gesture. After performing this gesture a graphic 

sliding control is superimposed on the bottom of the screen. Using the same hand 

posture the viewer can then control the slider, by moving their hand from left to 

right. The viewer is able to monitor a graphic representation that corresponds 

to the motion of their hand and a simple form of augmented visnal feedback is 

presented to the viewer. In demonstrating this interface Freeman illustrated the 

potential for unencumbered gesture interaction to be employed in real world ap-
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plications. The strengths and weaknesses of this interface have been ummari ed 

in the conclusion of thi chapter (see page 23). 

1.2.0.5 A consumer electronics control system 

Figure 1.6: Pn'maratnc and Ngllycn [2007] ge ture set 

PrCIIlaratnc and Nguyen [2007] produced a more efficient and robu t version 

of Frf'cman ('t al. [1995] Television hand control interface. In this interface hand 

posture are captured using skin colour segmentation. This is a method t hat en­

ables the hand to be recognised against coloured backgrounds. Premaratne and 

Nguyen identified seven gestures that are distinctive and easily recogni able by 

the system and designed a simple ge ture syntax that can facili tate interaction 

with consumer devices nch as video recorders and television et. The fini te 

number of distinctive gestures in Premaratne and Nguyen's gc .. turc set enabled it 

to be embedded into electronic devices that can be posit ioned adj acent to home 

appliances. Their sy t ern has the potential to be one of the first unencumbered 

devices to go into ma.<.Js production. The syntax created for this interface contain 

gestures that can be evaluated through examining the GEf dataset compiled in 

Chapter 4 and documented in appendix 1.1 and 1.2. The strengths and weak­

nesses of this interface have b en summarised in the conclusion of t his chapter 

(see page 24). 
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1.2.0.6 A gesture operated mobile robot 

Figure 1.7: Kortcnkamp et al. [1996] Gesture command 

Kortellkamp et al. [1996] developed a multimodal interface for controlling a 

mobile robot with a combination of speech, deictic and symbolic gestures. De­

veloped to work alongside humans in challenging environments such as space, 

underwater or on the battlefield where ambient noises often reduce the quality 

of speech interaction. The robot is equipped with the ability to clarify speech 

commands by recognising accompanying gestures. Utilising gestures to support 

voice commands the mobile robot interface can be controlled within noisy envi­

ronments. In the development of this interface Kortenkamp et al identified that 

geometric information can be communicated with greater ease through the use 

of gestures. A gestural instruction set containing six distinct gestures was de­

veloped, maximising natural forms of human communication in a remote control 

interface. The gesture operated mobile robot (GOMR) created by Kortenkamp et 

al demonstrates further the potential of unencumbered gesture interaction. Un­

encumbered interaction has the potential to facilitate the control of vehicles and 

robots, through the use of a clearly defined gesture vocabulary and syntax. The 

strengths and weaknesses of this interface have been summarised in the conclusion 

of this chapter (see page 25). 
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1.2.0.7 The Graylevel VisualGlove 

CI 

Figure 1.8: Iannizzotto et al. [2001] Graylevel VisualGlove 

The Graylevel VisualGlove developed by Iannizzotto rt al. [2001] is another 

example of unencumbered gesture interaction mediated by computer vision. Due 

to the increase in processing power the modern CP offers computers are becom­

ing smaller and more portable. The reduction in size of the computer interface 

poses significant questions to interface designers, as to what types of interface 

should be used for interacting with small devices. Iannizzotto identifies this issue 

in the development of his VisualGlove interface. He suggest that by integrating 

an optical computer display into a pair of spectacles, ge ture can be used for 

interacting with small devices. By using deictic and ergotic gestures to create a 

point and click interface, an intuitive freehand mouse was created . The modified 

spect acles are not a necessary requirement and the VisualGlove can be utilised 

within the context of the traditional screen display. Despite the inherent limita­

tions of point and click interaction, Iannizzotto presents a practical solution to 

gesture based GUI interaction. The strengths and weaknesses of this interface 

have been summarised in the conclusion of this chapter (se page 25). 
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Figure 1.9: Lin et al. [2000] modelling the constraints of the human hand 

1.2.0.8 Hand Shape Estimation 

Confronted with the problem of programming a computer to visually recognise 

multiple hand po tures, Lin ct al. [2000] recognise that the physiological con­

straints of gesture is a significant aspect to understand if a accurate method for 

recognising gesture is to be developed. In his re earch he develops predictive 

models, which use information about the position of certain fingers to estimate 

the shape of the whole hand. Lin demon trates that an accurate 3D model can be 

produced from 2D images of the hand. Though this method take into account 

the physiological constraint of hand gestures it primarily serves to enable greater 

gesture recognition accuracy. Through the use of this method hand shape can 

effectively be approximated.The strengths and weaknesses of this interface have 

been summarised in the conclusion of this chapter (see page 26). 

1.2.0.9 Light Widgets 

Developed by FaitH and .11. [2002]' the Light Widget operates by merging a virtual 

digital environment with physical analogue spaces. The Light Widget interface' 

is an example of an MR interface, as is mixes a physical analogue space with the 

virtual digital environment. Though this interface sharf'S similarities with the' 

Digital Desk calculator there are significant distinctions between cach interface. 
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- - _ .. . _--_ .. _ .. - -_ .... 

Figure 1.10: Fails and Jr. [2002] Light Widget 

Whilst the DigitalDesk calculator visually superimposes the virtual environment 

into the real environment using a light projection Fails ' Light Widget manage 

to superimpose the cont rol funct ions of electronic devices on to real objects. Fail 

d~xnon':'.\;r a\'es , ~or examp\ , 'now t'ne vOlume control of a radio can b upenm­

posed on to a bed po t , enabling the user to alter the volume of the radio by 

simply moving their hand up or down th post. U ing computer vi ion , the light 

widget interface contextually relates human physical interact ion with real-world 

surfaces with the operation of electronic devices. In the creation of thi interface 

Fails pre 'ents a model of fully immersive interface that utilises natural ge tur . 

The Light Widget is a post-desktop model of H CI and repres nts an interface 

with the potential to change our relationship to electronic devices. The strengths 

and weaknesses of this interface have been summarised in the coneI usion of this 

chapter ( ee page 26). 

1.2.0.10 Visual Interpretation of sign language 

Bowden et al. [2003] develops a range of technique for optically recognising man­

ual sign language. In developing this framework he highlight the advantage of 

working with established syntax. sing toko(' [1960] notation mod I HA TAB , 

SIC and DEZ, Bowden develops algorithms for opt ically recoguising Brit ish sign 

language (BSL). Bowden bypar.;scs issues regarding the development of ergonomic' 
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Figure 1.11: Bowden ct al. [2003J BSL recognition system 

syntax, by focus ing pecifically on developing detection algorithms. The devel­

opment of ergonomic syntax pecific to computer interaction is however a crucial 

area of re earch (see chapter 2 page 35). Bowden employs training algorithms 

to create probability models from stati tical image data. He uses the models 

generated as templates for detecting the pre ence of a gesture in an image. The 

strengths and weaknes e of this interface have been summarised in the conclusion 

of this chapter (see page 27). 

1.2.0.11 Multi-touch interface 

The multi-touch interface is an innovation that has significant potential to revolu­

tionise computer interaction. Developed by Han [2005bJ, the multi-touch interface 

offers a complete alternative to the current desktop workspace paradigm. Under 

the sy tern the user is able to directly interact with a GUl, however unlike the Dig­

italDe k, the u er does not have to worry about the effect of their shadow. Hans 

eliminates the n ed for peripheral, like the mouse or the keyboard , integrating 

user input with screen output. The current system uses a mixture of symbolic 

and deictic gestur s. Early incarnations of this interface utilised frustrated total 

internal reflection (FTIR) , a phenomenon that occurs when light travels through 

a medium such as glass. Light tran mitted across the length of a pane of glass 

internally reflects within the pane at regular wavelengths. The contact of an 
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Figure 1.12: Han [2005b] Multi touch interface using FTIR techniques 

external body, such as a hand or finger, disrupts this and causes light to be re­

leased from the glass in the region where contact is made. Hans exploits this 

phenomenon by channelling infrared light through glass and monitoring the es­

caping light with an infrared camera . Despite using computer-vision to recognise 

gesture this interface currently represents a form of semi-unencumbered interac­

tion SUI, as physical contact with a screen interface is required. However, the 

multi- touch interface shows great promise in being the interface that ushers in 

the next paradigm of computer interaction. Interfaces that utilise the principles 

developed by Hans have subsequently entered the marketplace, the Apple iPhone 

(Apple Inc. 2006), and the Microsoft Surface Interface (Microsoft 2007) represent 

two such examples. The use of the multi-touch interface has enable both Apple' 

and Microsoft' to abandon the need to incorporate a physical keyboard into there 

respective multi-touch interfaces. In respect to Apple' iPhone this has enable 

them to increase to size of the visual display screen and incorporate a dynamic 

customisable software keyboard into their interface. The dynamic nature of the 

keyboard created enable user 's to customise the keyboard to their own specifi­

cations and thus improves the ergonomics of their interface. The customisable 

interface is very attractive to interface developers and it is increasingly likely that 

mobile devices will adopt similar models of interaction. The strengths and weak­

nesses of this interface have been summarised in the conclusion of this chapter 
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(see page 27). 

1.2.0.12 Thumb and forefinger interface (TAFFI) 

Figure 1.13: Wilsoll [2006] Thumb and forefinger interface (TAFFI) 

The thumb and forefinger interface (TAFFI) is an interaction system devel­

oped at Microsoft Podtech research laboratory by Wilsoll [2006]. The TAFFI uses 

a pinch detection technique as the basis for unencumbered gesture input. Util­

ising a set of symbolic gestures, the TAFFI maps the movement of the pinched 

hand to an on- creen cursor. Input is received via a web camera, which is posi­

tioned to capture the topology of the computer keyboard. The image received 

is analysed and stored. Placing a hand between the camera and keyboard and 

pinching creates a new shape within the image. The centroid of the new shape 

can then be tracked and interaction can be created. The pinch interface is similar 

to the multi-touch interface developed by Han [2005b], in that it enables multiple 

point interaction. However, Han's interface requires physical tactile interaction, 

whereas Wilson's interface works independent of touch. Wilson's interface adopts 

an innovative approach to the problems associated with gesture recognition, in­

stead of focussing upon hand recognition Wilson has developed an interface that 

detects shapes. However, there are limits to the amount of pinch shapes that can 

comfortably be made with the hand. An interface that relies upon pinch shape 

detection alone can only facilitate a limited range of interactions. A significant 
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limitation of the current TAFFI prototype is its reliance upon a static background 

image, which makes it inappropriate for use with small mobile device . Devices, 

such as the iPhone' are increasingly commonplace and are very rarely tatic when 

in use. Han [2005 b] interface allows direct interaction wit h the G I, making it 

suitable for mobile devices. The main advantage the pinch interface offer is that 

no specialised equipment , other than a computer and web camera, is required. 

Despite the limitations described, the TAFFI offers a cheap and practical model 

of unencumbered gesture interaction and a viable alternative to the mouse. The 

strengths and weaknesses of this interface have been summarised in t he conclusion 

of this chapter (see page 28). 

1.2.0.13 Gestix 

Figure 1.14: Wachs ct al. [2007] Gestix interface 

Developed by Wachs et al. [2007], Gestix is an interface developed for use 

in a surgical environment . Using symbolic gesture, this interfa e is designed to 

give surgeons hands-free access to the computers and visual displays used in an 

operating theatre. Such a model of interaction would help surgeons and doctors 
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reduce the potential for cro s contaminates and infections to be spread through 

contact with medical equipment. Using gestures to navigate pie menus and repli­

cate symbolic instruction, the Gestix interface allows surgeons to comfortably 

navigate a WIMP interface. Wachs et al correctly identify the need to evalu­

ate a gesture's efficiency. They do not, however, explicitly identify the need to 

measure how uniformly multiple users utilise particular gestures when executing 

specific tasks. Furthermore, the measures Wachs ('t a1. [2007] define are weighted 

in favour of the proficiencies of computer vision rather than physical preferences 

of computer users. Like most UGI research, Wachs et al derive their findings 

from the analysis of 2D image datasets. The potential for visual occlusion of 

fingers to occur when using 2D image representations limits the overall accu­

racy of optical gesture recognition. Using this approach semiotic postures, such 

as the thumbs-up-sign, have been extensively utilised as they represent postures 

that can most accurately be recognised through 2D image processing. Though 

Wachs et al present a framework for measuring a gesture's performance, they 

admit limitations in their method for evaluating the intuitiveness and comfort of 

a gesture. The strengths and weaknesses of this interface have been summarised 

in the conclusion of thi chapter (see page 28). 

1.2.1 Strengths and Weaknesses 

As mentioned at the beginning of the section (pa.ge 5) this review is primarily 

concerned with examining the feasibility of creating ergonomic unencumbered 

models of computer interaction. The following section will outline the legacy of 

the interface examined during this review, specifically highlighting the potential 

benefits these might offer future computer users. 

1.2.1.1 VIDEOPLACE (page 6) 

Innovations: 

• A pioneering form of UGr that enables users to interact with projected 

graphics u ing their gestures 

Strengths: 
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Figure 1.15: Illustration of a silhouette occluding a graphic interface 

• An innovation that has the potential to facilitate the creation of dynamic 

updateablc( sic) graphic interfaces. 

• The interface enables direct manipulation of graphic models through the 

use of the hands, employing straight forward gesture commands . 

• This early prototype has great potential for the technology to be improved 

through novel image processing and computer-vision algorithms. 

Weaknesses: 

• The configuration of interface components allowed the interface user s ac­

tions to occlude the graphic display (see figure 1.15), meaning the u, ers 

presence negatively affected their own view of the graphic interface 

• The interaction between the user and interface could also be improved by 

the use of emerging techniques such as segmentation using motion and depth 

mapping (see chapter 3 page 63 - 66). 
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• The physical construction of the interface limits the overall portability of 

the system 

• Such an interface configuration might be acceptable for general purpose 

non-critical applications. However, for systems requiring precise interaction 

where errors maybe costly the occlusion of the graphic interface maybe 

unacceptable. 

1.2.1.2 "Put that there" and "Put that where" (page 7) 

Innovations: 

• A multimodal interface that facilitates users with the ability to utilise both 

speech and gesture in a single interface. 

Strengths: 

• An innovative multimodal form of interaction that enables users to both 

utilise speech and gesture when interacting with a computer. 

• The interface enables direct interaction with drop-down menu interfaces 

through the use of speech and pointing commands. 

• The interface enables users to interact with visually occluded regions of the 

on-screen environment via the use of speech input. 

• There is evidence to suggest that multimodal speech and gcstme input is 

preferred by computer users as opposed to the use of independent modali­

ties. 

Weaknesses: 

• Potential to negatively impact users as a consequence of voice loading (chap­

ter 2 page 39). 

• The speech component of this multimodal interface may become less effec­

tive in noisy public environments, such as libraries, cafe and outdoor urban 

spaces. 
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1.2.1.3 "The DigitalDesk calculator " (page 9) 

Innovations: 

• Successfully creates a hybrid real-virtual working environment that int -

grates the real world office desk with the virtual digital workspace environ­

ment . 

Strengths: 

• The interface enables user to treat passages of printed text on paper as 

you would text stored in digital memory, eliminating the need to hand type 

un-digitised text. 

• Translates real world information into digital data. 

Weaknesses: 

• The digital desk suffers from a limited set of gestures 

• The configuration of the interface meant that the user presence negatively 

affected their own view of the graphic interface 

• The physical construction of the interface limits the overall portability of 

the system 

1.2.1.4 Television control by hand gestures (page 10) 

Innovations: 

• Utilising a mixt ure of symbolic and deictic gestures to create a simple inter­

face for controlling the volume of a television set this application success­

fully demon- strates the feasibility of ut ilising computer-vision and gesture 

recognition in a domestic setting. 

St rengths: 

• The suggested interface offers users the opportuni ty to replace the standard 

television remote control with their own gestural actions. 
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• Such an interface would eliminate the need to buy replacement batteries for 

the remote control and prevent people from having to locate a sometime 

elu'ive control device. 

• Successfully demonstrates the feasibility of using gesture recognition in a 

domestic setting using consumer devices. 

Weakne ses: 

• No mechanism for determining the primary user. 

• The interface only has a limited set of ge ture commands 

1.2.1.5 A consumer electronics control system (page 11) 

Innovations: 

• This interface facilitate. users with the ability to utilise seven symbolic 

gesture to interact with consumer devices uch as video recorders and tele­

vision sets. 

Strengths: 

• Similar to Fr<'cmall ct al. [1995] TV hand control interface this interface 

offers users the opportunity to use their own gestural actions to command 

remote controlled consumer devices. 

• Offer improved gesture recognition to that of Fr<'cmun et al. [1995] TV 

hand control interface. 

• Sucres. fully demonstrate the feasibi lity of using gesture recognition for 

operating consumer device .. 

• The ge ture et created was optimised sufficiently to allow the detection 

algorithm to be embedded into electronic devices that can be positioned 

adjacent to home appliances .. 

Weakne e: 

• No mechanism for determining the primary user . 

• The interfac: only utili c symbolic ge ture . 
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1.2.1.6 A gesture operated mobile robot (page 12) 

Innovations: 

• Provides a multimodal method for interacting with robots and machines in 

challenging environments. 

Strengths: 

• An system capable of being utilised in challenging environments such as 

space, underwater, heavy industry or on the battlefield. 

• Provides a mechanism for controlling robots through a combination of 

speech and gestures 

• Demonstrates the feasibility of using gesture recognition and computer­

vision for controlling precision critical devices. 

• Illustrates that systems can be developed to accurately distinguish between 

a range of gestures. 

Weaknesses: 

• The potential to negatively impact users as a result of voice loading is 

a significant factor limiting the overall ergonomics of this communication 

interface (see chapter 2 page 39). 

1.2.1.7 The Graylevel VisualGlove (page 13) 

Innovation: 

• This interface provide a method for interacting with small device using 

unencumbered gesture interaction. 

Strengths: 

• Introduces a novel approach for interacting with small mobile devices, which 

could potentially allow the facades of such devices to be dedicated to dis­

playing graphic output. 
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• Facilitate drag-and-drop functionality without the use of a computer mouse 

Weaknesses: 

• The practicality of using unencumbered gestures to control a handheld mo­

bile device are yet unproven. Such a device is unlikely to out-perform a 

mouse or touch based interface. 

1.2.1.8 Hand Shape Estimation (page 14) 

Innovation: 

• Recognises that there are physiological constraints within human hand 

anatomy that prevent fingers from moving independently, an approach for 

estimating hand posture was developed. 

Strengths: 

• Useful method for generating 3D models of hand posture through using 2D 

images 

• Could be expanded to facilitate full body shape estimation. 

Weaknesses: 

• Though this could be a useful approach to utilise in a gesture recognition 

system it is not a complete interface. 

1.2.1.9 Light Widgets (page 15) 

Innovation: 

• Using computer vision, the light widget interface contextually relates human 

physical interaction with real-world surfaces with the operation of electronic 

devices. This interface demonstrates how the volume control of a radio can 

be superimposed on to a bed post, enabling the user to alter the volume of 

the radio by simply moving their hand up or down the post. 

Strengths: 
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• Creates a fully immersive interface that utilises natural gesture. 

• Present post-desktop model of H C1. 

• Presents an interface with the potential to change our relationship to elec­

tronic devices. 

Weaknesses: 

• Needs to be in a fixed location so is not portable. 

1.2.1.10 Visual Interpretation of sign language (page 16) 

Innovation: 

• Develops a range of techniques for optically recognising a large lexicon of 

manual sign language. 

Strengths: 

• Publishes a wide array of approaches and techniques that can be utilised by 

developers to create computer-vision systems capable of recognising sym­

bolic gestures. 

Weaknesses: 

• Lexicon only includes symbolic gestures 

1.2.1.11 Multi-touch interface (page 17) 

Innovation: 

• The multi-touch interface offers a complete alternative to the current desk­

top workspace paradigm. Vnder this system the user is able to directly 

interact with a GVI using touch interaction. 

Strengths: 

• V ser is able to directly interact with a G VI. 

• System uses a mixture of symbolic and deictic gestures. 
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• The dynamic nature of the keyboard created enable users to customise the 

keyboard to their own specifications and thus improves the ergonomics of 

their interface. 

• Introduces a novel approach for interacting with small mobile devices, which 

could potentially allow the facades of such devices to be dedicated to dis­

playing graphic output. 

Weaknesses: 

• Does not facilitate a fully unencumbered mode of interaction 

1.2.1.12 Thumb and forefinger interface (TAFFI) (page 18) 

Innovation: 

• This interface maps the movement of the pinched hand to an on-screen 

cursor, via the use of a web camera. 

Strengths: 

• Does not require specialised hardware 

• Offers a cheap and practical model of unencumbered gesture interaction 

and a viable alternative to the mouse 

Weaknesses: 

• An interface that relies upon pinch shape detection alone can only facilitate 

a limited range of interactions. 

• The prototype relied upon having a static background image, which makes 

it inappropriate for use with small mobile devices. 

1.2.1.13 Gestix (page 19) 

Innovation: 

• Using symbolic gesture, this interface is designed to give surgeons hands-free 

access to the computers and visual displays used in an operating theatre 
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Strengths: 

• Such a model of interaction would help surgeons and doctors reduce the 

potential for cross contaminates and infections to be spread through contact 

with medical equipment. 

• Using gestures to navigate pie menus and repli- cate symbolic instruction, 

the Gestix interface allows surgeons to comfortably navigate a WIMP in­

terface. 

• Develop an optimised gesture vocabulary 

Weaknesses: 

• Potential issues regarding the ergonomics of the set of gesture commands 

used in the interface. 

1.3 Summary of review findings 

This review illustrates that varied and dynamic modes of interaction can be fa­

cilitated through the use of computer-vision and optical gesture recognition. The 

varied range of prototypes demonstrate that there is great potential to facilitate 

unencumbered human computer interaction through the use of computer-vision. 

The VIDEOPLACE developed by Krueger is a definitive example of how gestures 

could be used in unencumbered computer interaction. Krueger demonstrates that 

a broader range of actions than mechanical button input can be recognised by 

computers and utilised in the operation of a computer application. These ex­

amples illustrate that there are a multitude of potential applications that would 

benefit from the implementation of robust ergonomic UGI systems. Though the 

prototypes discussed earlier in this chapter demonstrate successful proof of con­

cept, they also highlight areas that need development. This review ha.") identified 

three important criteria, which can be used to determine the success and viability 

of a gesture interface 
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1.3.1 Three steps to the development of a viable gesture 

interface 

The first important element of an interface is the establishment of a coherent plat­

form, with a cohesive framework that limits potential for negative feedback to be 

experienced by the user. For example, an interface that is uncomfortable and cog­

nitively challenging represents a failure of this criterion. The second requirement 

for success relies on whether an interface fulfils concrete needs or functions. The 

need might be completely novel, as with the Gestix interface. Alternatively it 

may simply be an improvement on a previous interface. Either way, the user will 

need to believe that they will benefit from the adoption of an interface. The third 

criterion refers to the gesture syntax required to operate the interface sustain­

ably and efficiently. For example, the procedure required to effectively operate 

and complete a task has to be clear and repeatable. An example of an interface 

that succeeds in fulfilling all three criteria is Han [2005 a] multi-touch interface. 

The success of this semi-unencumbered gesture interface can be attributed to the 

design of the physical interface and that it allows users greater amount of cus­

tomisation than other handheld devices. The design and customisable nature of 

its physical interface means that it fulfils the first criterion identified. This inter­

face offer a significant improvement to previous GUI's on small devices, which as 

a result of previously having a fixed inflexible keyboard compromised by reducing 

the overall size of the visual display. This improvement upon previous interfaces 

means that the second criterion is also fulfilled. In addition to these criteria 

the Han [2005a] interface benefitted from integrating the syntax previously de­

veloped by Westerman [1999J, a syntax developed specifically for the purpose of 

being intuitive and ergonomic. Thus the third criterion is also met. In contrast, 

the DigitialDe k developed by Wellner [1991 J though it represents a triumph in 

the advancement of UGI research it failed to fulfil any of these criterion. One 

reason for this failure is the lack of cohesion between the various elements of 

the interface. For example, the user of DigitialDesk interface was sandwiched 

between the projected display and the GUI, as a result the user casted a visual 

shadow over the interface. The composition of this interface creates a negative 

feedback out of the user's physical presence. As a result this interface fails to 
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fulfil the first criterion. The DigitalDesk failed to fill a concrete need or improve 

a previous mode of interaction and thus does not meet the second criterion ei­

ther. The DigitalDesk calculator also suffered from having ambiguous gesture 

syntax, determining whether a gesture was actively selecting text or simply mov­

ing around the desktop were problematic. Consequently this interface fails to 

fulfil the third criterion also. With the right interface technology and syntax the 

DigitalDesk might find greater success in commercial HeI applications. However, 

without addressing these stated criteria the concept of the DigitalDesk calculator 

as presented by Wellner will not find widespread usage. The Gestix interface 

produced by Wachs et al utilises a viable interface technology and is able to fulfil 

the first criterion discussed. In addition, the Gestix interface is an example of a 

fully unencumbered gesture interface that has the potential to play a significant 

role in medical robot control, thus it fulfils the second criterion. However, though 

the vocabulary and syntax they utilise is accurately recognised by computers it is 

not user centric and as a consequence may prove physically unsustainable. The 

Gestix interface demonstrates that fully unencumbered interfaces can be utilised 

in precision critical modes of interaction. 

The most significant obstacle preventing UGI platforms from being success­

fully utilised in commercial HCI applications is the failure to fulfil the third 

criterion. The establishment of an ergonomic gesture syntax that can be accu­

rately recognised by computers and sustainably performed by users is essential 

to the development of U G I. Though there is a significant amount of research 

into the physiology of gesture there is little understanding regarding the sustain­

ability of UGI, as most UGI research prioritises recognition accuracy over the 

physical preferences of users [Nielsen et aI., 2004; Pavlovic et aI., 1997] . Ground­

ing gesture syntax development around the limitation of current technologies will 

only extend the cycle of obsolescence to incorporate UGI syntax in addition to 

computer hardware. It is understandable that interface developers shape human 

computer interaction around the capabilities of computers. However, the develop­

ment of robust and ergonomic syntax needs to be prioritised and the capabilities 

and preferences of people placed central to such developments. As advances are 

made in programming and hardware, the conclusions of techn<rcentric research 

will quickly date and be less pertinent. Our physical and cognitive capacities are 
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Table 1.1: Criteria determining the success of an interface 
Criteria 1 Coherent Interface Limits potential for nega-

tive feedback 
Criteria 2 Fulfils jImproves function Novel or improvement on a 

previous interface 
Criteria 3 Sustainable syntax Efficient method for effec-

tively complete a task 

constant relative to the speed of development in computing. As a consequence, 

grounding UGI research on the capabilities of people would prove to be the most 

sustainable approach to interface development. Such an emphasis on syntax and 

interface development would limit the cycle of obsolescence to apply to UGI hard­

ware, not the underlying gestural syntax. Though the prioritisation of computer 

recognition accuracy is indicative of UGI research. The future success of the field 

is dependent on the development of intuitive and ergonomic gestural syntax. 

1.3.2 The importance of syntax to UGI 

As advances are made, the line delineating the augmented real from the virtual 

are becoming increasingly blurred. Currently, the boundaries delineating the in­

terface from the ambient environment are clearly identifiable. Interactions with 

analogue devices, such as the keyboard and the mouse, are mediated through 

the physical contact of a user. For example, devices such as the keyboard or 

mouse cannot be successfully utilised without physical contact from the user. 

Consequently, there is little ambiguity regarding whether a user is engaged in 

interaction with such devices. However, the creation of algorithms capable of 

recognising human action through unencumbered methods creates the potential 

for ambiguities to arise. When interaction is no longer mediated by the necessity 

to touch a physical surface the boundaries separating the user from the interface 

evaporate. Under such circumstances, the user's body becomes the interface and 

all of their subsequent actions are interpreted as input. Separating the inter­

face from the user becomes increasingly difficult. The user may still be able to 
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clearly distinguish virtual objects and AR environments, but the parameters and 

boundaries of the actual digital AV interface may become visually imperceptible 

to the user. The resulting AV interface behaves like a econd kin, which can ei­

ther enable users to control digital machines as naturally as they move their own 

body; or create a potential straight jacket that restricts and inhibits the user 's 

interaction. To reduce user error and minimise the potential for unintended in­

teraction to occur, a clear and unambiguous syntax has to be created. The future 

of immersive interfaces present ignificant challenges regarding how to define ac­

tive and passive interaction. Furthermore, there are conflicting approaches being 

undertaken when addressing these challenges. Some developers advocate the cre­

ation of artificial gesture syntax to mediate interaction with computers. Other 

researchers believe that developing algorithms capable of completely recognising 

natural gesture should be the ultimate goal of UGI [Qu('k ('t al. , 2002; W('x{'lblat , 

1995J (see 2.1 page 38). The latter approach will require either the develop­

ment of complex and sophisticated algorithms or the use of multimodal speech 

in combination with gesture interaction . The former approach will demand that 

the interface user adopt and learn the necessary ge ture vocabularies. Current 

developments in gesture syntax suggest that artificial syntax has a significant 

role to play in the development of unencumbered interaction. For example in 

a short period of time the multi-touch interface, with Westerman [HH.J9] syntax, 

has gained wide spread usage through the creation of touch screen devices by Ap­

ple (Apple Inc. 2006). Though these devices are only semi-unencumbered , with 

proximal interaction still being a necessary requirement of interaction. The e 

developments demonstrate that unencumbered models of interaction will need 

to create ergonomic gesture vocabulary and syntax. As the first generation of 

fully unencumbered interfaces emerge from various computer 'cience laboratories 

around the world [Bowd('n ('t a1. , 2003; Stampr and P<'utlalld , 1995; Zah<'<ii <'t al. , 

2005; Zi{'[(~n and KraiHs, 2005] the need for a more comprehensive gestural syntax 

becomes more pronounced. The development of ustainable and universal gesture 

syntax is in the format ive stage. In order for syntax to exist beyond the shelf 

life of current technology, the affordances and preferences of humans need to be 

primary concerns. The construction of a gesture efficiency database that cata­

logues the performance of syntax vocabularies will aid the development of robust 
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and ergonomic gesture syntax. Such developments will accelerate the evolution 

of dynamic and sustainable forms of computer interaction. To utilise gesture for 

precision critical systems, such as operating vehicles, robots or surgical apparatus, 

a dataset of gesture efficiency is essential. 
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Chapter 2 

Gesture Research 

Chapter 2.1 defines clear taxonomies for describing intrinsic facets of gesture. 

The psycholinguistics of human gesture is interrogated and diverse impulses that 

dictate our physical actions are identified. Chapter 2.2 reviews the underlying 

constraints and biomechanics of human gesture and discusses the cognitive and 

physical apparatus behind our actions. This section considers what methods are 

most appropriate to use by unencumbered gesture interface developers, when 

evaluating physical exertion and user comfort. Chapter 2.3 defines the methodol­

ogy that will be utilised during this investigation, which evaluates the efficiencies 

of gestures. 

2.1 Taxonomy of gesture 

Gesture is an intrinsic part of the vocabulary of human communication. Offering 

similar capacities for expression as speech, gestures also enable people to manipu­

late and feel their environments. Though our gestures facilitate a broad range of 

activities there overall capacity to perform physical ta."ks and actions is limited by 

physiological constraints. These constraints can prevent certain actions from be­

ing comfortable and sustainable. Focussing specifically upon whether ergonomic 

gesture reliant interfaces can bc created, this chapter (pages 41 - 52) examines 

inherent limitations and prescribes a method for evaluating the performance of 

UGI interface lexicons and framework..,. In order that gesture can be uscd in its 
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Gesture 

...... phorlc '1.m1otiG 
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I F .... bM:k 

Figure 2.1: Diagram illu trating the various facets of gesture 

optimal capacity a detailed understanding of gesture is needed. Psycholinguists 

uch as 1.ku('ill [1992] de cribc gesture as being a bridge between our conceptual­

ising capacities and our linguistic abilities. This would explain why we often use 

gesture to communicate what we cannot easily express with words. Researchers 

like K(,llcioll [1994], ~Icll('ill [1992], ~hllder [1996], Efron [1941]' Cacioz [1998] 

Rilll(' and Schiaratura [1991] have devised taxonomies that help foster insight 

into how we usc ge ture. Unlike Stokoe [1960] notation model, which describes 

the appearance of ign language, contemporary research has focussed upon the 

kind of functions and actions that gestures facilitate. This has led to a better un­

derstanding of how and why we use gestures. Cadoz uggests that human gesture 

can be divided into three major groups the semiotic gesture most often used to 

communicate information, the ergotic gesture that we use when we manipulate 

objects in the physical world and the epistemic gestures, which are exploratory 

and provide us with sen 'ory feedback from our environment. All of these gestures 

can be broken down into further classifications. Within semiotic these include 
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T bl 2 1 D a e . . escn mg b t f ' f t le su se s 0 semlO IC ges ure 
Subset Description 
Iconic gestures Convey information about th dimen-

sions and orientation of an object . 
Metaphoric ge tures Similar to iconic ge ture except that 

they are more descriptive. For exam-
ple, when giving a person directions one 
might indicate the course of a road with 
a gesture. 

Beat gest ure Used in conjunction with speech to il-
lustrate tempo or emphasise a point 
wit hin a discussion 

Symbolic gestures Communicate the entirety of an idea or 
instruction - an out tretched index fin-
ger held to the lips communicates the 
request for silence without the need for 
spoken words. 

Deictic gesture Traditionally defined as the pointing 
gesture, a gesture used to define areas 
of interest . 

iconic, metaphoric, beat , symbolic and deictic gestures. Within ergot ic ge ture 

further categories include holding, pushing pulling and turning. Within epistemic 

gesture these include haptic feedback that is gained from actions such as tOllching, 

feeling and squeezing. (Figure 2.1 page 36). Figure 2.1 illu trates how each ges­

ture can be categorised. Despite having such a broad range of gesture ' available 

for t udy, psycholinguists and GI researchers tend to focus on the development 

of semiotic gesture commands. Table 2.1 describes the specific subset of emiot ic 

gestures. 

Cadoz. Kendon, McNeil , Rime and Efron present independent taxonomies to 

describe these facet . However , the taxonomies they identify are similar in most 

cases. Table 2.2 shows the similarit ies between these taxonomic. In this the is 

the definition of semiotic gesture adheres to the taxonomy applied by ~kll('ill 

[1992]. Salut ing, using sign language, or thumbing a lift when hi tchhiking are 

all examples of semiotic gestures. The semiotic range of gesture includes: iconic 
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Table 2.2: Labels and characteristics of semiotic gesture [Wcxclblat , 1998J 

Kendon McNeill Rime and Efron Identifying 
and Levy Schiaratura Characteristics 

Phy iographic Iconic Physiographic Kinetographic Picture the con-
tent of speech 

Ideographic Metaphoric Iconic Ideographic Portray the 
speaker's ideas, 
but not directly 
the speech 
content 

Gesticulation Beats Speech- Baton Marking the 
marking rhythm of 

speech 
Autonomous Symbolic Symbolic Symbolic/ Standardised 
gestures emblematic gestures, com-

plete within 
themselves, 
without speech 

none Deictic Deictic none Pointing at 
objects or areas 
within a space 
using the hand. 

metaphoric, beat, symbolic and deictic gestures. 

Gestures offer a multifaceted way to interact with analogue environments. To 

fully exploit these facets in computer interaction it would help if a dedicated se­

mantic structure were defined. Human interface developers will increasingly need 

to examine the finding of gesture research and psycholinguistics, in order that 

accurate models of interaction can be developed. Research conducted by QuC'k 

('f al. [2002J and W('xclblat [1998J has made significant progress towards estab­

lishing an unambiguous set of taxonomies. Pavlovic ('t al. [1997] and \V('xC'lblat 

[1995J suggests that interface developers should focus efforts on implementing 

natural gesture recognition in computers, utilising gestures already used in ev­

eryday encounters, because they are intuitive. HowC'ver, the gestures commonly 

applied arC' used primarily to support and emphasise speech. This suggests that 
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the use of natural gesture in computer interaction is lik ly to rely on the use of 

speech, releg~ting gesture to fulfil a secondary up port role. Though combining 

the u e of gesture and speech in an interface reduce any need for an artificial 

set of gesture commands, the underlying ergonomics of gesture hould till be 

examined. Although evidence suggests that most users pr felTed multimodal 

interaction[Hanptmann and McAvinncy, 1993] there is conflicting research that 

demonstrates some unsustainable aspects of peech interaction. Intensive u e of 

speech recognit ion systems can stress the speech organs, increasing th risk of 

conditions such as voice loading being acquired by users [Vilkmau, 2000]. Cudd 

et al. [1998] suggest that such injuries are an inevitable result of using speech 

recognition technology. The suitability of an interface with such latent potential 

to damage as critical a function as speech i therefore questionable. Since th 

hands are currently the primary tools used in H CI, an increase of tres load 

upon the hands would be comparatively far less than what speech-interaction 

would place on the vocal apparatus. Furthermore, as previously mention there 

are situations where the use of speech is not practical or desirable. Th use of 

multiple speech interfaces in busy environments might create very loud working 

conditions. As a consequence such an interface would be inappropriate for u e 

in some places such as libraries . As a result of these issues, despite argument 

put forward by Pavlovic' ct al. [1997], W('xdblat [1995] and Qu('k ct al. [2002] the 

development of artificial gesture control syntax that facilitates the control of com­

puters cannot be overlooked. When developing interfaces for gesture interaction 

it is necessary to understand the physical impact of certain actions. Though it 

is understandable that interface developers prioritise the performance accuracy 

of an interface over the longer term cognitive and physical effect on user, this 

research will prioritise the user. This research will examine factors influencing 

the viability of unencumbered gesture interaction and examine its capacity to 

facilitate diverse tasks. 

2.2 Developing an evaluation framework 

The propensities of users to cognitivcly and physically utili 'e gesture for unen­

cumbered machine interaction has to be identified if ergonomic models of UGI 
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are to be created. The following section will discuss some of the cognitive and 

physical apparatus that facilitate and constrain human gesture. In addition, is­

sues pertaining to the potential benefits of unencumbered machine interaction 

will also be interrogated. The results of previouc usability studies have been 

assessed in parallel to the development of a methodology for evaluating the per­

formance of gestures. The merits of interfaces such as the keyboard, pen and 

speech-responsive-interfaces will be discussed and methodologies for developing 

ergonomic UGI frameworks will also be defined. Addressing these issues will 

enable the merits of future interfaces to be determined. 

2.2.1 Gesture cognition 

In humans the uperior temporal cortices region of the neural system has been 

demonstrated to show greater activity during spoken language than with sign 

language. Where as, the posterior middle temporal gyri region shows greater ac­

tivities during sign language. Despite this both manual and aural languages have 

been identified as using similar sensorimotor processing apparatus. Comprehen­

sion of both signed and spoken languages shows similar activation in both the left 

superior temporal gyrus and the left inferior frontal gyrus. In addition, both sign 

and spoken languages have been shown to utilise the mirror neural system, in the 

left frontal lobe broca region of humans. The mirror neuron system is an impor­

tant piece of cognitive apparatus that enables people to both observe and execute 

physical actions [Iamboui <'t al. , 1999; Rizzolatti and Craighpro, 2004; Rizzolatti 

et al. , 2001] . First identified in Macaque monkeys this system is active during 

the observation of phy ical action and recreated during the execution of similar 

actions. The mirror neuron represent a mental model of a physical action, which 

has either been performed or observed. These sensorimotor processes enable thC' 

reproduction and dissemination of complex and subtle physical activities such as 

speech and gesture. The inherent similarities between the neural networks used 

in visual, audible and manual languages demonstrate both the complexity and 

potential of manual communication and interaction. 
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2.2.2 Gesture physiology 

When we try to move our fingers individually we are able to observe neighbouring 

fingers move, to varying degrees, depending on which finger we actively move. If 

each of our fingers, thumbs and wrists could work independently we would be able 

to configure each hand into over 4 million subtle arrangements. However , since 

our fingers share tendons and nerves, individuated finger movement is not pas ible 

and the degree of freedom is largely constrained by the interdependence of each 

finger. In a series of laboratory experiments Schieber [1991]studied interrelated 

and individuated finger movement . Using rhesus monkeys, Schieber measured 

the inter-physical relationships of individual fingers when engaged in flexion and 

extension. The results of this study produced a detailed picture to describe 

the levels of finger interrelation. The thumb and the wrist were shown to have 

significantly higher degrees of individuated flexion while the middle, ring and li t tle 

finger showed the least. The same is true in the case of finger extension, but on 

the whole all fingers showed less individuation when extended than when flexed. 

In further studies, Schkbcr [1995] identified which nerv and tendons were most 

active during finger motion, creating a map illustrating the interrelation of nerve 

and tendons in the hand and wrist (Sec figure 2.2 page 42). 

2.2.3 Measuring physiological exertion and efficiency 

The average person ha~ the ability to type words using a QWERTY keyboard at 

approximately 35-65 words per minute. This is significantly faster than the 20-30 

words per minute handwriting average. The computer keyboard also enable user 

to easily revise and manipulate text. The combination of these factors mean the 

keyboard offers the reduced risk of repetitive strain injuries (RSI) occurring than 

when a pen is used . When directly compared with handwriting typing emerge 

as the more ergonomic word-processing tool. Despite these advantages the risk of 

RSI associated with keyboard interaction remains, particularly for those who type 

over 20,000 keystrokes per day [Armstrong C't aI. , 1994; P <'t al. , 1999]. pper ex­

tremity musculoskeletal disorders, such as carpal tunnel syndrome and tendinitis 

are some of t he condit ions that occur as a result of highly repetitive activities like 

typing [Marklin d al. , 1999; Marra'> and Scil()(,llmarkliu, 1993; Moore ('t aI. , El91 ; 
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Figure 2.2: Left: Schiebers map illustrating the interrelation of extrinsic finger 
muscles. Middle and Right: illustration of the nerves and tendons of hands and 
forearm. 

Serilla pt al. , 1999; SOllllllcrich d al. , 1996; \~/clls et al. , 1994J. The average fluent 

signer is able to sign at a rate of 100-120 words per minute placing the perfor­

mance of an interface based on hand gesture ncar to that of speech, which affords 

a rate of 120-170 words per minute. This demonstrates the underlying potential 

for gesture to enhance computer interaction. However, there remain significant 

questions regarding the sustainability of gesture-ba..'1ed interaction. There is, at 

pre ent, limited knowledge of how unencumbered gestural interaction will phys­

ically affect computer users. One of the most significant obstacles effecting the 

identification of sustainable gestures is the difficulty of evaluating muscular activ­

ity and physical exertion. Within clinical and biomechanical practice a method 

often used when asse ing phy ical exertion and muscle activity is electromyog­

raphy (EMG). This method measures muscle activity by monitoring the small 

electrical charge that is released by muscles when they are active. Measuring 

phy ical exertion in this manner can be very invasive, as this method requires a 
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needle electrode to be inserted into the muscle. As a result of this proce s only a 

finite number of muscles can be t ested at anyone time. Surface electromyography 

(SEMG) can be used as a less invasive alternative. By measuring mu cle activity 

from the skins surface the SEMG is only able to offer a general indicator of the 

muscular activity of the user, as opposed to pecific fibre offered by the intra­

muscular EMG. Subsequently, SEMGs can only provide a limited picture about 

exertion experienced by the human hand . either of these methods represents a 

practical solution for interface developers or u ability evaluators, as a pecialist 

with the necessary equipment would be an indi pensable part of the as es ment 

process. Though these methods produces significant information about the mu -

cle activities of users , there are underlying questions about whether part icular 

gestures are effective and sust ainable, which are not completely addressed . In or­

der to address these concerns another method for evaluating the performance of 

a gesture will be investigated. Sommerich ct a1. [1996] suggests an alternative ap­

proach to evaluating physical exertion. Instead of collecting physical data through 

EMG Sommcrich et a1. [1996] suggests collecting anecdotal measurements from 

participants. Using this method Sommeri('ll ('t a1. [1996] demonstrates that an 

accurate assessment of physical exertion can be obtained . In a study that evalu­

ates the physiological impact of ign language on sign interpreters SdH'llcri<' d a1. 

[2000] employs Sommerichs approach. This study -haws that a large percentage of 

sign language interpreters suffer from cumulative trauma disorders (CTD), such 

as carpal tunnel syndrome, tendinit is and bursit is. In a survey questionnaire de­

veloped to study the degree of pain and discomfort experienced by sign language 

interpreters, 82 percent of the one hundred and nineteen people surveyed experi­

enced disabling pain or discomfort during and following their occupational tasks. 

33 percent of the survey participants experienced pain and discomfort in the 

hands and wrists. Further studies of sign language interpreters from Quebec doc­

ument that 81 percent of respondents had experienced shoulder pain during the 

previous 12 months, 79 percent had experienced neck pain, and 74 percent hand , 

wrist and forearm pain [Ddh·;!c ct a1. , 2005j. These figures contrasted starkly wi th 

the 50 percent , 41 percent and 28 percent of pain and discomfort experienced by 

the general adul t population of Quebec, [Dav(,lllY, 2000] this iilu, trates the acute 

strain heavy sign language usage can place upon human physiology. This study 
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also demonstrates that anecdotal information can successfully be used to evalu­

ate the physical impact of gesture on users. The most frequent postures assumed 

by sign language practitioners [Shealy ('t al. , 1991]include ulnar deviation of the 

wrist, flexion in the elbows at angles greater than 90 degrees, and pronation of 

the forearm. The degree of supination and pronation achieved by those engaging 

with sign language exceeds values found within occupations that represented a 

high risk of CTD [~Iarra.." and SchoC'lllllarklin, 1993]. Together with evidence 

illustrating the high static load placed upon the back, torso, shoulders and neck 

we can begin to form a picture as to some of the burdens that sign language 

places upon the human physiology. Though the investigations discussed in this 

chapter are insightful they do not provide a direct picture of how gesture can 

effectively be utilised in computer interaction. Furthermore, these investigations 

do not provide direct information regarding the potential physiological effects of 

unencumbered interaction. The lack of research in this area highlights that there 

is a particular need for a rigorou empirical study into the physical preferences 

of users. Therefore, a theoretical model of sustainability and a methodology for 

evaluating the performance efficiencies of gestures will have to be established. To 

limit the potential for unsustainable paths of development to occur in widespread 

interaction, an optimal model of VGr needs to be clearly defined. It is therefore 

important that a methodology and framework for evaluating the ergonomics of 

VGl be established early, in tandem or prior to advancements in technology. The 

methodology utili ed ill this re earch is a solution to unsustainable development 

and provide a model of optimal VGl. Some of the methods and practices used 

by usability researchers and engineers have been explored in the creation of this 

model. An iterative framework will be developed so that the performance of users 

can be evaluated in parallel to the recognition accuracy of gesture lexicons. By 

understanding these i sues the most appropriate uses of gesture can be defined 

and machine applications that maximise the use of gestures can be constructed. 

2.2.4 Defining an approach for UGI development 

Prior to devdoping open and accessible gesture interfaces, the capabilities and 

preferences of end lls('r should be identified. Addressing these issues will help 
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identify whether a particular mode of interaction is accessible to heterogeneou 

users or only cater for people with a specialised need and ability. Through their 

research Nielsen et al. [2004] have recognised that interface developers gener­

ally prioritise computer recognition accuracy to the detriment of user comfort. 

Though some identify the conflicting priorities between developing fast accurate 

recognition and producing sustainable user interaction, few re earchers present 

solutions to address this conflict. A user centric approach, which prioriti e the 

physiological and cognitive concerns of people, i advocated in Nicls('n et al. 

[2004] research. Though in the course of their research a number of ge tures were 

evaluated , limited guidance was given about how to develop sustainable gesture 

vocabularies. Acknowledging that the optical recognition of a human-based ges­

ture vocabulary presents significant technical challenges to interface developers 

Nidscn et al. [2004] suggests the development of shared datasets. He also sug­

gests a et of guidelines for evaluating gestures. The resulting guideline use five 

usability principles, defined by Nielsen [1994] , as a framework for assessing the 

performance of their gesture vocabulary (Figure 2.3 page 46). These principles 

evaluate how learnable, efficient and memorable an interface is. In addi t ion, the 

potential errors and coverage a user encounters when using the interface is mea­

sured. The principles defined by Nielsen [1994] can be divided into two ubsets. 

The first subset is concerned with how intuitively u ers find an interface; these 

principles include learn-ability, memorability and coverage. The second subset is 

concerned with the overall performance of an interface and measures the errors 

and efficiency encountered . For the purposes of this investigation, the second 

subset will be prioritised in the evaluation of gesture efficiency and user comfort. 

As the user study undertaken in the course of this research is primarily con­

cerned wit h ident ifying hand postures hat can be comfortably rep licated, the 

study focusses on evaluating perceived user preferences in addition to replication 

accuracy. The reason for this distinction is primarily regarding issues of iden­

t ifying intuition, learnability and memorability beyond the context of a specific 

interaction. As a consequence the first subset of the principles defined by NiC'lsen 

[1994] will only be examined in the context of a specific interaction or interface. 
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Figure 2.3: Categorising Nielsen [1994] five usability principles. 

2.2.5 Usability testing methods 

Computer interface have the potential to negatively impact human performance 

and affect human reliability, which can lead to significant errors occurring dur­

ing human interaction [Coblentz, 1989; Rasmusscn, 1987; WicHcr, 1988; \Voods 

{'t aI. , 1988]. There are a variety of different approaches that can be used in a 

usability test environment when examining the performance of an interface. The 

approaches rno t often used include the automatic, the empirical, formal and 

informal. 

Usability testing methods: 

• The automatic approach utilises a program or procedure to assess the per­

formance of an interface. This may omctimes be in the form of a set 

of prescriptive guidelines that can be followed by inexperienced interface 

evaluator .. 
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• An empirical approach to usability testing defines the efficiency of an inter­

face by examining the interaction of real users . This can be in the guise of 

a user trial study or a questionnaire. 

• A formal approach to usability testing utilises precise models and formulas 

to measure the usability of an interface. An example of this approach is the 

popular usage of Fitts law in the assessment of cursor navigation of a GUI 

environment. 

• The informal utilises heuristic evaluations based on the assessments of an 

experience evaluator. 

In a study that compared the performance of some of the four most commonly 

utilised HeI usability test methods .Jeffries and Desllfvire [1992] identifies the 

benefits that derive from each method. The methods evaluated include heuris­

").c, -a.'l\'()ffi-a.\'\c, gu.lucYmes, cognitive walkthroughs and the usability in 'pection 

method. Each of these methods where applied in the asse sment of an inter­

face. The interface investigated had two hundred and six predefined usability 

problems. The study identifies how successfully each method is able to iden­

tify inherent interface problems. From the two hundred and six known usability 

problems associated with the test interface heuristic analysis found 73 percent of 

them, usability inspection found 18.4 percent , guideline group found 1 .4 percent 

and the cognitive walkthrough found 19.4 percent of the problems. In Jeffries 

and Desurvirc [1992]study, heuristic evaluation was proven to be the best at find­

ing the largest number of problems, these included thos that were low priority 

together with a significant number of the most serious one '. Heuri tic evalua­

tion also proved to be the most expensive of the four techniques tested, and as a 

consequence might be unattractive to interface developers. The guideline eval­

uation method and the cognitive walkthrough method where joint third . Both 

methods proved effective at finding general and recurring problems. Despite thi , 

there were many serious problems that neither method managed to find. Jefferie 

research demonstrates that a well-designed set of guidelines can significantly aid 

novice evaluators or software developers to comprehensively examine the usabil­

ity of an interface. The guideline evaluation method allowed evaluators to be 
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confident in their assessments of an interface. As it forced evaluators to engage 

in an extensive examination of the interface, as opposed to a narrow personal as­

sessment. An evaluator using this method is significantly restricted to inspect the 

interface according to the guidelines. As a consequence an evaluators assessment 

can only be as good as the guidelines used. Despite this, there are genuine bene­

fits that can be gain from using the guideline inspection method. The guideline 

inspection method enables non-usability specialist to assess the efficiency of an 

interface in the absence of a usability specialist . 

Examining the potential of an interface prior to its development can be diffi­

cult and challenging. Usability specialists can be either expensive or hard to find , 

as a result of this expen e the ergonomics of an interface is often evaluated late 

in the development cycle after substantive changes can be made. In .Jeffries and 

Dcsnrvirc [1992] tudy no individual heuristic evaluator was able to find more 

than 40 usability problems. Notably, the number of problems identified by in­

dividual heuristic evaluators was similar to those found by guideline evaluators. 

The development of a robu t set of general guidelines for inspecting the efficiency 

of ge ture would greatly benefit UGI developers. The creation of an open iter­

ative guideline framework that allows multiple evaluators to assess each others 

findings may produce an assessment as effective a heuristic evaluation. 

2.3 Underpinning focus of methodology 

UGI is based upon relatively novel technologies that are continually developing. 

Restricting the focus of interface research to the current limitations of hardware 

is not just short sighted, it is also unsustainable both economically and environ­

mentally. Grounding UGI re earch on the capabilities of people would prove to 

be a more sustainable approach to interface development as the abilities of people 

are relatively constant. Such an approach would not only help to inform interface 

developers it would improve the durability of research outcomes. In the process of 

researching the implementation of unencumbered gesture interfaces, methods for 

evaluating the performance of user and machines have been undertaken. These 

methods are outlined in this section. 
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2.3.0.1 Separating Syntax from the Interface 

Once the capabilities of people have been prioritised, the need to separate a sys­

tems functional apparatus from a user's physical interactions becomes increas­

inglyevident. At some stage in the evolution of unencumbered interface develop­

ment a formal distinction between the action required to mediate an interaction 

and the mechanical system confronting the user will be needed. At such a stage 

it might be sensible to refer to the physical mechanism as the interface and the 

actions required to operate the system as the syntax. Emphasising these issues 

during interface development may limit the cycle of obsolescence to apply only to 

hardware not UGI syntax. This would also suggest that future evaluations would 

benefit from a having a broader focus beyond the proficiencies of the mechanical 

system. 

2.3.0.2 Methodological scope 

It has generally been accepted that advancements in gesture-interaction will en­

hance user experience. However, there is still much potential for such interfaces 

to negatively impact human performance and reliability. Despite the recent de­

velopments in interface technology that include multi-touch and computer vision 

interaction, there is little understanding of how these interfaces will effect hu­

man performance during the operation of critical systems, such as those used in 

aviation, surgery and laboratories. A method for integrating and assessing the 

gestural preferences of users are presented in section 2.3.1 (page 50). The frame­

work presented encompasses the initial stages of interface development, from its 

conception through to first prototype. The method is intended to encourage 

developers to assess and evaluate their proposed interfaces in the absence of a us­

ability specialists, at a stage in the development cycle when substantive changes 

can still be easily made. 

2.3.0.3 UGI performance testing Issues 

In UGI, the configuration of the interface is flexible and is currently not as well 

defined as with current hardware interfaces, such as the keyboard and mouse. 

Unencumbered gesture interfaces are of an augmented virtual and software na-
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ture. In contrast to hardware interfaces software mechanisms are hidden from the 

user. For example, by pressing the keys on a keyboard a user will know whether 

the interface is responding to there input, through receiving either tactile, visual 

or audible feedback. The unencumbered interface will be void of any immediate 

tactile feedback and thus will have to rely on other forms of augmented feedback. 

Consequently the quality of user experience will be heavily reliant upon the speed 

and type of augmented response. As a result of these observations the underlying 

issue becomes a case of how best to study user performance and exertion. Subse­

quent methods will have to address more general aspects of user interaction, using 

anecdotal evidence to define user preferences and perceived physical exertion. 

2.3.1 Methodology framework 

There are relatively few guidelines available for evaluating the impact gesture 

lexicons have on people in comparison to those available for mechanical hardware 

interfaces. As a consequence of this limited resource this investigation intends 

to outline a methodology that could serve to enable a set of iterative guidelines 

to be created. Following what has previously been stated in section 2.3.0.2, the 

subsequent guidelines would only be intended to be utilised during the early 

phases of interface development when substantive changes can still be made and 

when the resources for a usability specialists are not available. Any subsequent 

guidelines should be open and iterative, so that they can be adapted universally. 

At present the method outlined is composed of twelve clements and is divided 

into three review phases. 

Review phases: 

• Design analysis 

• Interface design 

• Evaluation and comparison (see Figure 2.3 page 46). 

2.3.1.1 Design analysis 

Develop performance evaluation method or use a pre-compiled efficiency dataset 

such as the GEf dataset (see Appendix 1.1 and 1.2). 
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Assessing physiological impact: 

• Static load occurs when parts of the body are in one position for extended 

periods; this causes greater strain than when the body is active. 

• Postures that deviate significantly from neutral posture are considered to 

be at risk for musculoskeletal stress. A neutral posture is where the joints 

are midway between full extension and flexion. 

• Consider the environment where the interface will be used as movement and 

vibrations can change how effectively a gesture is replicated and recognised. 

This information will help to determine what types of gestures could be used 

in the operation of active and mobile interfaces. 

2.3.1.2 Interface design 

In examining a framework consider how effectively it is capable of fulfilling these 

three criteria: 

• Construct a coherent and unambiguous interface framework that limits the 

potential for negative feedback to be experienced by users. 

• Construct an interface that either fulfils a needed requirement or is an 

improvement upon a given function. 

• Evaluate the ergonomics and effectiveness of the underlying interface control 

framework. 

2.3.1.3 Evaluation and comparison 

Consider how intuitively users find an interface, by examining these principle 

issues and evaluate the overall performance of the interface : 

• Examine the repeatability of a lexicon 

• Evaluate the effectiveness of a lexicon for completing specific tasks 
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• Evaluate how inclusive a lexicon is by finding the percentage of users able 

to succe fully compl te the pecified action. This will help to determine 

whether it will benefit the majority of users. 

• Examine human error 

• Recognition ac uracy 

• Examine human-computer error ratio 

Ge.ture-,_ ~ 
GiMI 0-.. -.. synIIa 
GEl GeRn _ 

0. a-..1)'IIIaIC~ II,- SlMlIIIId W11d1 42OOtJ 

Figure 2.4: Illustrating the iterative process underpinning research method 

2.3.1.4 Guideline Application 

The validity of the e guid line is documented in an empirical research investiga­

tion (Chapter 4, pag 74). 
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Chapter 3 

Gesture Interface 

Chapter 3.1 Outlines the issues discussed and gives an introduction to the research 

undertaken in this chapter. Chapter 3.2 introduces the Gesture-Face, which is 

a conceptual unencumbered gesture interface designed in conjunction with an 

optimised gesture lexicon. Chapter 3.3 describes the challenges confronted when 

configuring a computer for optical gesture recognition. Recommendations for 

improving detection and recognition in busy places with variable lighting condi­

tions are presented. Chapter 3.4 describes how to implement 4D optical gesture 

recogniti~n and discusses how this approach will improve ergotic, semiotic and de­

ictic gesture detection. Chapter 3.5 Discusses the main outcomes of the research 

documented in this chapter. 

3.1 UGI framework, developing the gesture-face 

The purpose of this investigation is to demonstrate how to implement optical 

gesture recognition that is capable of accurately responding in real-time. An 

exploration of image processing and analysis has been undertaken, in order to 

achieve these aims. Efficient and robust solutions for real time optical rccogni­

tion have been explored and will be presented. A prototypal interface called the 

gesture-face-layer (GFL) has also been designed. The techniques and processes 

used are able to facilitate robust interaction with machines especially when in­

tegrated with the GiMI syntax outlined in chapter 5 of this thesis. Applications 
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have been written in C++ and Matlab and components of these applications have 

been documented in appendix .3 . This work demonstrates that accurate optical 

recognition of ge 'ture is viable and can be implemented on a range of commercial 

computing platforms. 

3.2 The Gesture-Face 

z 

x 
r 

Figure 3.1: Illu trates motion and depth disparity model 

In the development of the gesture-face layer a combination of techniques and 

method have b('('n utili cd. Image segmentation has been conducted through the 

use of both motion and depth disparity mapping, Dirchfirld {'t al. [1999]. Shape 

and posture analy L is conducted through the use of statistical and probability 

modelling, using a combination of haar-like feature df'tection and boosting using 
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principal component analysis and mahalanbois distancing. The classifiers utilised 

in statistical training and posture estimation are built from motion templates and 

depth disparity maps (see appendix .3). The image maps produced enable the 

creation of an algorithm capable of estimating to a high level of accuracy the 

shape, form and context of a gesture. A gesture when performed by the user 

is captured and recognised through the use of motion segmentation, for code 

example see appendix .3 page 232. Once the region of interest has been deter­

mined, the proximity of the gesture is analysed using depth disparity mapping, 

for code example see appendix .3 page 224. The interface is now able to deter­

mine active and passive states of a gesture. If a gesture falls within a predefined 

distance the gesture is perceived as active and further shape and posture analysis 

is conducted. The gesture-face is a digital interface capable of modelling and 

recognising activity within the visible environment. A system where parameters 

can be set within the memory and input is modelled from activity in the 3D 

real-time environment. Interface input can now be designed and augmented into 

analogue real sllace. This research proposes the interlace l?resented as a model of 

ergonomic interaction, especially when used in conjunction with the GiMI lexicon 

(see Chapter 5) . 

Though the gesture-face represents an optimal interface model, its success 

will depend upon the development of efficient and physically ergonomic gesture 

lexicon. A model and dataset of gesture efficiency is compiled in chapter 4 (page 

74). The methodology utilised for evaluating the efficiency and ergonomics of 

the dataset is discussed in chapter 2 (page 35). By monitoring the shape and 

position of the hand as it morphs through time we can begin to cla.<;sify a broad 

array of gestures and human actions. Utilising all aspects of gesture in computer 

interaction presents an opportunity to move beyond the two-dimensional plane 

of current desktop interaction towards an interaction that is multi-dimensional. 

Through the combination of image processing techniques, such as 3D shape and 

motion detection, an interface capable of recognising the pha.-,es and conditions 

of gestures has been created. Using depth disparity mapping means that distant 

metric information can be used to define virtual spaces and surfaces. This in­

formation can subsequently be used to model virtual spaces that are sensitive to 

the interrelationship and proximity of people and objects. This method of spa-
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Figure 3.2: Illustrates interactions with the gesture face layer 

tial mapping i used in the creation of the gesture face layer. Creating a virtual 

surface in this manner enable touch screen like interaction to be implemented on 

to any open space or urface. The GiMI lexicon presented in chapter 5 (page 98) 

has been designed to work in conjunction with this mode of interaction. When 

the hand or finger breaches the surface of the gesture face layer the computer 

is programmed to monitor interaction in the same way that a mouse click sym­

bolises user activity. The model of interaction that the gesture-face facilitates 

enables the combination of deictic, ergo tic and semiot ic actions to be utilised. 
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3.3 Image processing 

Haar-like features trained on 
the resulting depth map 
produced from stage (a) 

stage (b) 

3. Gesture Interface 

A pair of images captured in 
parallax from two calibrated 

cameras 

stage(a) 

Attempt to use the HaaT 
Classifier produced in stage (b) 

to recognise a hand posture 
results In error because a 

different hand shape is being 
replicated 

stage (c) 

Figure 3.3: Illustrates the computational processes u ed by th GFL to facilitate 
gesture detection 

3.3.1 Defining outlines 

The first stage in this research centred on how best to enable an interfac to opti­

cally recognise gesture. Before an object or form can be compar d and contrasted 

against a range of possibilit ies, the interface mu t have the facility to di t ingui h 

between collections of forms. The first challenge in this proc ss is to develop 
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an algorithm capable of separating the various elements of a visual scene. This 

process of distinguishing objects in an image is known as image segmentation and 

edge detection. Within computer-vision and image processing a variety of image 

segmentation methods have been developed and utilised, with varying degrees of 

success. During this investigation a range of methods have been explored, these 

include segmentation using colour, motion and depth disparities. 

3.3.2 Colour segmentation 

Colour segmentation has often been used for identifying the skin of people, in 

image analysis. This method can be useful for distinguishing a hand or a body 

part within an image. The advantage of this approach is that it makes training 

and detection quicker and simpler. However, there are factors that reduce the 

effectiveness of this method. The inherent variability of ambient light can con­

siderably alter the appearance of colours. Moreover, the origin of a light source 

is an additional consideration when using colour segmentation. The position of 

light will determine the positions of shadows, potentially altering how objects are 

perceived. In addition, there is wide variation of skin tones that exist amongst 

the global population. The solution to skin-tone and light variation would be to 

create a dedicated process for monitoring light and skin colour variation. Imple­

menting gesture recognition using colour segmentation can be effective especially 

using controlled light conditions. However, when light conditions are unknown or 

variable a greater amount of processing resources will be spent evaluating colour. 

3.3.3 Motion segmentation 

The ability to recognise motion allows us to see moving objects. Without this 

ability our perception and interaction with each other would be significantly ham­

pered. People are rarely static, even when we sit still subtle movements betray our 

presence. To develop an interface capable of recognising gesture an algorithms for 

detecting and recognising motion is required. Though our physical gestures are 

three dimensional in form they operate within the fourth time dimension. When 

waving to greet a friend we typically move an outstretched palm from side to 

side. Without time as a variable there would be little to distinguish waving from 
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a request to wait or halt. Though we use static gesture in communication, the 

meaning and underlying intent of a gesture is evaluated in relation to the vari­

able time. This corresponds to N('unu:ulll and AloiIllonos [2000] theory regarding 

visual computation of physical action. Gesture are most often dynamic in na­

ture, for example knocking on a door and clapping are dynamic. To recognise 

dynamic gestures we need to be aware of how they morph in time. Thus, time 

is a significant point of reference for determining the intent and con equences of 

a gestural action. Every gesture has a unique phase of time where it is active. 

Identifying these phases is an important element to consider when interpreting a 

gesture. Picking up a conversation in mid sentence will limit the overall compre­

hension of the discussion. This is also true with gesture recognition . As with all 

electronic input and output (I/O) communication the synchronisation of trans­

mitted and received information is critical to successful interpretation of data. 

To be able to understand the meaning and intention of an action it helps to have 

perceived the action in its entirety. Determining where an action begins and 

ends is a significant aspect of gesture recognition. Algorithms programmed to 

recognise a gesture without reference to the time will consume extra processing 

resources through attempting to predict th phase and context of that ge'ture. 

Through utilising motion detection we can begin to isolate dynamic actions and 

plot a gestures path through time. The necessity to create artificial methods of 

synchronisation to dictate the tempo of interaction diminishes as a consequence. 

The creation of an algorithm capabte of '5'jndHoni ing a computer to the variou 

phases of gesture is vital for unambiguous recognition. By using a motion detec­

tion algorithm dynamic physical actions can be detected and recognised. sing 

this approach allows the phase of a gesture to be determined by the gesture alone. 

Detecting motion in a digital image sequence is a relatively simple proces ·. Two 

images are captured at varying time intervals. The captured images are com­

pared digitally to see whether there are any disparities between each image. The 

disparities identified illustrate motion within the image scene. These di paritie 

can then be placed in separate image maps and an outline of the object in motion 

is revealed. Motion detection is a simple and effective method for distinguishing 

dynamic human actions from static environments. This makes motion detection 

a valuable technique to use in image segmentation. Using motion detection in 
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image segmentation re olves the problem originally encountered by early gesture 

recognition systems where sen itivity to the variability of light, background scenes 

and a users clothing could cause ignificant recognition problem. The use of mo­

tion detection in segmentation creates an algorithm able to recognise the active 

element within a scenc, in this case gesture. The moment a gesture becomes ac­

tive the outline and hape of that gesture can be clearly determined. An example 

of segmentation using motion detection can be seen in figure 3.4. 

Coord nato boundary map 

Figure 3.4: Image map of motion disparity map 

This method can be expanded to produce a template of human action, where 

the passagc of time can be repre ented in a single image map. Rather than 

simply analyse a single instant of motion to determine a fragment of a gesture, 

a gesture can be mapped to illu trate the course of an action from its beginning 

to it end. The image map created enables the entire phase of a gesture to be 

visually classified a.':; a ingle image template. The motion history of objects can 

be repre ented in a ingle time frame. As a result physical actions can be classified 

and interfaces can be programmed to visually recognise gesture. 

Bobick ('t al. [2001] together with \Veilllcmd ('t al. [2006] utilise similar tech­

niques for capturing and representing human action in a 2D image map. The 

resulting images can be processed using pattern recognition techniques such as 

haar-like feature detection and principal component analysis (section 3.4.1.2 page 

70). Optical interface can be trained to recognise motion histories in the same 

way that they are trained for object recognition. This ability to produce and 
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Motion history 
template 

Figure 3.5: shows an example of a motion history image map 

record motion histories means that the pha e of a gesture can be digitally anal­

ysed and a dataset of gesture can be produced. The implementation of the e 

methods has been documented in Appendix .3, for working cod example see 

page 232. 

3.4 Defining the gesture-space 

3.4.0.1 The range of gesture 

Our g stures provide us with acce. to multiple space. Reaching either up or 

down we can access objects and spaces that are proximal to us. Th am i true 

for accessing north, south, east and west spaces. Gestures allow us to project 

our intention into th fourth dimen ion tim . For exampl , bowling with topspin 

at an opponents cricket stumps or slamming a door d monstrate ge ture that 

exhibit delayed consequences. Gestures also allow us to sense and [, 1 1 ment 

of our physical environment, providing p ople with acc ss to a s nsory tactile 

space. Through physical contact our gesture introduce th physical qualities of 

objects, such as the texture of a surfac . There are aspects of ge ture that enabl 

us to survey the physical composition of object and nvironments. Through the 

application of force our ge tures are also abl to convey information about th 
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Figure 3.6: Illustrating the dimension of gesture 

physical composition, such as the weight or physical density, of objects. In this 

research a digital interface capable of translating these six aspects of gesture has 

been created. The most significant of these is equipping machines with the ability 

to interpret physical force through vision alone. 

The axis of gesture: 

• North and South 

• East and West 

• Up and Down 

• Now and Later 

• Tactile ensory feed back and Exertion of physical force 

• Static or Active 
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The individual spatial characteristics of gesture provide another tool for recog­

nising a gestures type. Maps of mutual and exclusive spaces can be created as 

a result of analysing gestures in this way. Understanding these spatial char­

acterist ics is critical to developing an opt ical system able to recognise the full 

range of human actions. As computer algorithms become capable of differentiat­

ing between distinct modes of gesture people will be able to manipulate digital 

environments as they do the 3D analogue world. 

3.4.0.2 Spatial differentiation 

The diverse gestures that we utilised in our daily interactions occur in regions 

of space t hat can be described as either mutual or exclusive. For example, most 

semiot ic gestures occur between shoulder and waist height between forty and 

twenty centimetres from the torso. Gestures that adhere to these parameters 

occupy a mutual space that is shared. An outstret ched finger on a fully extended 

arm is the furthest point an individual can reach using t he upper limbs. Conse­

quent ly, the deictic point ing gesture is an example of a gesture t hat can occupy a 

region of space that is exclusive. When performed by a typical adult, the pointing 

gesture extends between forty and fifty centimetres beyond the torso. Provided 

that every gesture is measured from the same relative posit ions, such as t he head 

or torso, the mutuality and exclusivity of a gesture can be measured . 

3.4.0.3 Depth segmentation 

Depth recognit ion is an important element of human perception . It equips people 

with the ability to perceive perspective, distances and speed . Perspective is a 

prerequisite for the visual recognition of three dimensional space and objects . 

Stereovision allows people to perceive dept h and perspect ive. Without binocular 

vision our ability to see objects in space is significant ly hampered. Binocular 

vision can be easily implemented on an interface by the use of two image sensors. 

In this study two web cameras with wide-angle lenses were used. These lenses 

were used in order that the whole upper torso of a user can be observed during 

interaction . Birchfidd et al. [1999] creates an algori thm for combining a pair 

of images, taken from parallel viewpoints, into a single binocular image map. 
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Table 3.1 demonstrates the implementation of Birchfields algorithm, using the 

opencv image-processing library. The Birchfield et a1. [1999] algorithm can also 

be used for creating motion disparity map . Except instead of comparing images 

captured at different time intervals, images taken from parallel viewpoints are 

compared. In order to obtain the best results using Birchfields algorithm the 

binocular viewpoints needs to be calibrated. Calibrating the two cameras is 

necessary if there is significant radial distortion produced by the lenses. Figure 

3.7 shows an example of a disparity map created from a pair of uncalibrated 

cameras. Despite being products of uncalibrated stereo images the disparity 

map created demonstrates how depth perception can be successfully implemented 

in computers. Metric information can be extracted from the three-dimensional 

scenes produced through stereo disparity maps. 

Figure 3.7: Image map of depth disparity from uncalibrated stereo images 

The proximity of objects can be distinguished from the shade of pixels defining 

the object. The lighter the pixels the closer the object, while the darker the pixel 

the more peripheral and distant the object. While the successful implementation 
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Table 3.1: Demonstrates the stereo disparity using Birchfidd ct a1. [1999] algo­
rithm 

II Stereo_disparity.cpp 

IplImage* srcLeft 
IplImage* srcRight 
IplImage* leftImage 
IplImage* right Image 
IplImage* depthImage 
srcLeft = cvLoadImage ("right. jpg" , 1) ; 

srcRight = cvLoadImage("left.jpg" ,1); 
leftImage = cvCreateImage(cvGetSize(srcLeft), IPL_DEPTH_8U, 1); 
rightImage = cvCreateImage(cvGetSize(srcRight), IPL_DEPTH_8U, 1); 
depthImage = cvCreateImage(cvGetSize(srcRight), IPL_DEPTH_8U, 1); 

cvCvtColor(srcLeft, leftImage, CV_BGR2GRAY); 
cvCvtColor(srcRight, rightImage, CV_BGR2GRAY); 
cvFindStereoCorrespondence( leftlmage, rightImage, 

CV_DISPARITY_BIRCHFIELD, depthImage, 50, 15, 3, 6, 8, 15 ); 

cvShoyImage ("disp" ,depthImage ); 
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of depth recognition enables the proximity of different objects to be recognised 

it also facilitates the perception of three-dimensional objects. As a consequence, 

a greater amount of detail regarding the shape and form of a gesture can be 

obtained. Such techniques have the potential to improve the accuracy of hand 

posture recognition. The effectiveness of these methods has been analysed by 

MUllolI-Salinas et al. [2008]. The methods utilised in this investigation have been 

found to be some of the most robu t. Investigating whether depth recognition 

affects the accuracy of algorithms such as peA and exemplar detection Munoz­

Salinas demonstrates that each method benefits significantly from the use of depth 

silhouettes. 

3.4.1 Statistical m odelling 

3.4.1.1 H aar-like featu res 

Utilising motion detection and depth templates a robust and efficient method of 

segmentation has been achieved. Since the hand can now be successfully dis­

tinguished from the ambient environment, the process of object recognition can 

begin. Various combinations of algorithms have been used in this study to enable 

recognition of specific gesture and postures. The preferred method is to use a 

training algorithm using haar-like feature detection in combination with principal 

component analysis and mahalanbois distancing. In the first stage of this pro­

ce s, the computer is trained to distingui h the hand in an image using haar-like 

feature detection, Viola and .JOlH'S [2001]. Haar-like features comprise a series 

of two-dimensional shapes of varying orientation and patterns subdivided into 

various black and white patterns ( see figure 3.8). Through overlaying these fea­

tures over the source image and calculating the combined pixel intensities within 

these regions the difference between the features and source can be calculated. 

A feature can be place at any location within the source image. Some features 

work better for detecting certain images, depending on the feature pattern. The 

advantage of haar-like feature is its calculation speed. However using a single 

feature will facilitate detection marginally more than fifty percent of the time, 

which is considered statistically little better than random. As a consequence of 

the low recognition accuracy multiple feature are used simultaneously in a process 
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called haar classifier cascades. 

Figure 3.8: Haar'-like features 

Statistical training using haar-like features is achieved by digitally process­

ing two separate image directories. One directory contains images that depict 

the object to be recognised against an array of diverse backgrounds. The other 

directory contains images of the backgrounds with no reference to the desired 

object. The algorithm selects the haar-like features that best reflect distinctive 

characteristics that identify the chosen object. In t his investigation haar-like fea­

tures cascade has been trained using Opencv. After training these features on a 

dataset of hand postures an xml file is produced. This file documents how each 

individual haar feature conforms to each posture. 

The feature detection file can then be incorporated into a detection algorithm 

and the presence of a hand posture can be predicted through the analysis of im­

age maps. Once the t raining process has been completed classifiers representing 

the object are produced. Classifiers created for the purpose of hand detection 

are consistently able to identify the hand. However, when using this method a 

significant amount of false positives can be observed. In addition to this prob­

lem, training computers for optical recognition using haar'-like features requires 

large datasets of images . Assembling large datasets is time consuming and can 

subsequently slow the development process. 

There are ways to reduce the time it takes to compile the t raining et. For ex­

ample generating multiple images using chroma-key [Anton-Canalis ct al. , 2005]. 

This entails superimposing a diverse range of backgrounds behind the desired 

object to create thousands of examples of the object in a varicty of environ-
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Table 3.2: shows a sample of haar-like feature cascade xml file trained to detect 
the hand 

II mono_20_hand.xml 
<feature> 

<rects> 
<-> 

8 3 12 5 -1.<1_> 
<-> 

12 7 4 5 3.<I_></rects> 
<tilted>1</tilted></feature> 

<threshold>-0.1828908026218414</threshold> 
<left_val>0.7676910758018494</left_val> 
<right_val>-0.8145673274993897</right_val><I_><I_> 

Table 3.3: shows the hand detection cascade being utilised in an algorithm (for 
full example see appendix .3 page 208 

II gesture_detect.cpp 

cascade_name = "mono_20_hand.xml"; 
cascade = (CvHaarClassifierCascade*)cvLoad(cascade_name, 0, 0, 0); 

if( cascade) 
{ CvSeq* faces = 

cvHaarDetectObjects(img, cascade, storage, 1.2, 1, 0, cvSize(24 , 20)); 

fore i = 0; i < (gesture? gesture->total : 0); i++ ) 
{ CvRect* r = (CvRect*)cvGetSeqElem( gesture, i ); 
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3. Gesture Interface 

Figure 3.9: Training interfaces using haar-like features 

ments and conditions (see figure 3.9). These methods enable the quick assembly 

of large dat asets on which haar'-like features can be trained. This is a process 

that can be easily automated. Anton-Canalis et al. [2005] also demonstrate that 

the accuracy of the training set does not diminished as a result of using this 

method . The classifiers produced using haar-like features though effective when 

used to detect a generic hand shape are not sufficient to detect subtle variation 

in a postures shape. The classifiers produced are best suited to being weak clas­

sifiers for detecting the generic hand. After identifying a hand using these weak 
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classifiers detection can be boosted using Principal Component Analysis (PCA), 

Independent Component Analysis (ICA) or Linear Discriminant Analysis (LDA). 

In this investigation PCA has successfully been utilised for boosting the statisti­

cal accuracy of gesture detection. In chapter 4 the effectiveness of this method is 

demonstrated during the compilation of psv index in the G Ef data.set. Figure 3.11 

shows a screenshot from a prototype developed during this irivestigation, which 

has been trained using haar-like features and boosted using principal component 

analysis. Research has proven that principal component analysi can significantly 

boost accuracy of classifier derived from haar-like features [Zhang ct aI. , 2004]. 

3.4.1.2 Principle component analysis 

PCA is a mathematical function that allows multi dimensional arrays, such as 

digital images, to be reduced into eigenvectors. The vectors produced can be 

used to determine similarities and variations between images. In this research 

PCA analysis has been conducted using MATLAB image processing tool kit and 

OpenCV. The application and implementation of these methods are presented in 

Appendix .3 . The step undertaken when calculating the principle components of 

data are as follows. First, we need to identify the relevant data to analyse, in the 

case of this research this data is a dataset of images. Second, we need to subtract 

the mean of the dataset from each piece of data. For example when calculating 

the PCA of an image matrix you would subtract the mean of all pixels on each row 

from each pixel value within that row. Third we need to calculate the covariance 

between each row within the matrix using the formula shown in figure 3.10. The 

aim at thi stage is to examine the relationship between the various dimensions. 

Fourth, the data derived during the calculation of our covariance matrix provides 

us with our eigenvectors and eigenvalues. An eigenvector is a vector that has 

been scale up during matrix transformation and the eigenvalue is the amount 

to which the eigenvector has been scaled. Finally, we sequentially arrange the 

data so the that eigenvectors with the highest eigellvalues form the first principle 

components of our data. Remember the main purpose of this process is simply 

to reduce data of higher dimensions into lower dimensions so that any underlying 

patterns are easier to identify, in otherwise noisy datasets. A PCA calculation 
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(

COVX'X COVx,y COVX,z ) 

c = COVy,X COVy, y COVy,z 

COVz,X COVz,y COVz,z 

Figure 3.10: formula for calculating the covariance of a matrix 

in of itself does not provide any answers it simply enables us to plot data and 

examine patterns for trends or disparit ies. 

Figure 3.11: Screenshot of symbolic gesture recognit ion 
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3.5 Discussion 

The work discussed in this chapter underpins the practical inquiry behind the 

whole of this thesis. The outcomes of this chapter have help to frame the concerns 

and issues driving this investigation into the feasibility of using unencumbered 

gesture for machine interaction. However though some aspects of the work de­

scribed might seem technical it should not distract from the creative motivation 

underlying this work. The field of image processing maybe perceived as a domain 

for computer scientist and mathematicians. However, the contributions artists 

and creative practitioners make to the broader discourse of how we think about 

and interpret the visible environment should also be considered. Furthermore, 

the approaches creative practitioners utilise when confronting obstacles in their 

practical work is also a significant factor in the way this research ha."l been ap­

proached. Through the process of documenting technical aspects of implementing 

an optical interface the creative practice of trial and error leading ultimately to­

wards discovery might not have been sufficiently illustrated. However through 

the process of this research the computer-vision and image-processing medium 

has been explored in a similar vein as a painter might organise and mix paints, 

decide the material for the canvas and select a range of paint brushes. Along 

the way traditions and conventions may be followed but only through continually 

engaging with the creative practice can insight and innovation be achieved. 

Through a process of playing with the medium of image-processing to see what 

works, this research identified significant aspects regarding the visual recognition 

of active people. For example the six axis of gesture discussed in section 3.4.0.1 

though they might be obvious represent a consideration of how people physically 

inhabit space and lead to deeper questions about what constitutes an action. Such 

consideration do not simply represent a technical inquiry into image processing. 

Such inquiries are weighted more towards a contemplation of vision, perception 

and actions. Hopefully as a result of this process other practitioners will find 

it helpful to consider the task of optical gesture recognition as being more than 

simply a technical issue. Beyond being purely a technical investigation this is an 

inquiry into the process of perceiving the world around us. 

Though some of the techniques and approaches used in this inquiry may not 
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be completely original, the reasons for there implementation was because a need 

was identified . In the case of using mahalanobis distancing to identify similarities 

in a data~et; it is well established within mathematics that this formula can be 

used in such cases. However understanding the results of a calculation is distinct 

from performing the calculations on complex data. In the course of this research 

investigation a wide range of calculations have been understood and performed. 

Though much has been learnt as a result of the many problems encountered , 

the most significant outcome of the research undertaken in this chapter is the 

design and creation of the gesture-face layer. It is an original solution to the 

problem of determining when a participant is actively engaging with an optical 

interface, which is by nature immersive. Once you are in the gaze of the cam­

era lens you become active within an augmented real data-space. Under these 

circumstances it would be useful to have a mechanism for expressing a desire to 

participate in such a space. Further to addressing this issue the gesture-face layer 

offers additional flexibility of allowing users the ability to also define the position 

and size of the interface. Any surface within perceptual range of the optical inter­

face could be defined as an input interface. Though the concept of being able to 

superimpose control functions of electronic devices on to real objects has parallel 

with Fails and J1'. [2002] LightWidget, the accompanying gesture lexicon enables 

the interface to be re-orientated in realtime. 
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Chapter 4 

Evaluating gestures 

Chapter 4.1 examines the physical preferences of gesture interface users whilst 

contrasting the performance of user interaction, this study investigates the effi­

ciencies of a set of symbolic gestures by conducting a user study. Chapter 4.2 

presents an analysis of the data compiled in this study and discusses the accu­

racy of subsequent findings. A detailed interpretation of these findings is also 

presented. 

4.1 User study to evaluate gesture efficiency (G Ef) 

The emergence of novel gesture recognition systems presents developers with the 

opportunity to redesign the human computer interface. In order to help prevent 

unsustainable paths of development where unnecessary physical and cognitive 

loads are placed upon users, this investigation into how comfortably people per­

form gestures is undertaken. By the use of a questionnaire and interview this 

study measures how comfortably and accurately a user sample replicate a set of 

symbolic hand postures. 

4.1.1 Methodology 

It could be argued that comfort is a purely subjective notion and what is con­

sidered comfortable by one individual should not be generalised across a broad 

sample. However, in order for an interface to be ergonomic and of benefit to the 
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broadest range of users, a method for generalising the idea of comfort needs to be 

defined. During the design of this user study a range of methods for testing com­

fort have been investigated. Within clinical and bio-mechanical practice the range 

of methods often used are electromyography (EMG) and Surface electromyogra­

phy (SEMG). These methods measure muscle activity by monitoring the small 

electrical charges that are released by muscles when they are active. However, 

measuring physical exertion using EMG is very invasive, as this method requires 

needle electrodes to be inserted into the muscle. As a result of this process only 

a finite number of muscles can be tested at anyone t ime. Though surface elec­

tromyography (SEMG) can be used as a less invasive alternative, SEMGs can 

only provide a limited picture about exertion experienced by the human hand. 

Neither of these methods represent a practical solution for this user study as ac­

cess to equipment and expertise in this area is very limited . Instead of collecting 

data with EMG or SEMG, which would still require anecdotal user input to qual­

ify any results , a questionnaire based data collection method has been adopted. 

This alternative questionnaires based approach has been demonstrated to be a 

viable alternative for extracting data regarding perceived physical exertion from 

test participants [Sommerich ct al. , 1996]. 

4.1.1.1 Data collection method 

During the course of this user study into gesture comfort , a questionnaire will be 

used as a method of collecting participants perceptions of exertion. In the ques­

t ionnaire participants are asked to replicate a set of hand postures as accurately 

as possible and rate each posture according to how comfortable they perceive 

them to be. After a process of analysis (see section 4. 1.4) the ease with which 

participants replicate a set of actions will be collated in a gesture efficiency dataset 

(G Ef) ( See Appendix .1. 1, pages 156) for the primary purpose of classifying how 

comfortably and efficiently people perform a set of gestures. Though this study is 

not a comprehensive study of all gesture the resulting dataset should enable ges­

ture interface researchers to identify the underlying ergonomics of a specific set of 

hand postures (See Appendix 1, pages 156). The conclusions of this study should 

also inform unencumbered gesture interface developers about the fea.'}ibili ty of 
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employing a questionnaire to assess the ergonomics of a gesture lexicon. 

4.1.1.2 Hypothesis 0 

The null hypothesis to this study states that using a questionnaire to catalogue 

and classify the amount of phy ical exertion experienced by individuals within a 

sample group will fail to find common relationships within the data, unless purely 

by chance. Subsequent outcomes of analysis could not be used to differentiate 

comfortable gestures from uncomfortable ones (See formula 4.5). 

HO: S:::; 7V 2: 2 (4.1) 

4.1.1.3 Hypothesis 1 

The alternative to the null hypothesis is that questionnaires can be effective 

methods for producing generalised models of perceived user exertion. The method 

employed is robust enough to facilitate the creation of a coherent gesture comfort 

index (See formula 4.6) . 
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Figure 4.1: Lexicon of hand posture tested during user study 

76 



4. Evaluating gestures 

4.1.2 Test conditions 

Over the course of one day students and members of staff attending Camberwell 

College of Arts were asked at random to participate in a user study examining 

gesture recognition and user comfort. When asked whether they were interested 

in participating in this study (82.6 percent) showed enthusiasm for this concept, 

few were uninterested. After consenting to take part in this study participants 

were taken to a quiet corner of the student union cafe and ask to sit in front 

of a computer terminal. They were then ask to respond to a paper based ques­

tionnaire. The questionnaire consisted of three A4 sheets of paper with images 

representing fifty-two hand postures (See Appendix .1.1). Once seated partici­

pants were then asked to replicate each hand posture in sequence, whilst facing 

a computer web camera (See figure 4.2). During the process of replicating each 

posture their image is captured via the computer web camera and stored for fu­

ture image analysis. After replicating each posture participants were asked to 

give a rating of between a and 10, regarding the amount of exertion each action 

required. Each score and remark was documented by the test supervisor to allow 

participants to focus purely on replicating each action. 

4.1.3 Participant details 

The age range of the candidate pool was between eighteen and thirty. Those 

willing to participate in this study had ages ranging from between eighteen and 

twenty-six. The gender distribution was that of eight (42.1 percent) male and 

eleven (57.8 percent) female. Two (10.5 percent) of the participants stated that 

they suffered from physical conditions that might restrict their hand movements. 

4.1.4 Procedure 

The responses of participants will be used to assess the levels of perceived physical 

exertion they experience. The total score of each posture will be then aggregated 

and the mean of the results are calculated. In order to evaluate whether the mean 

accurately represents consensus within the user sample the standard deviation is 

calculated, using a formula specific to calculating variation within a sample not 
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Figure 4.2: Participant in user study 

a population (See formula 4.3). Once the mean physical ex rtion score has been 

calculated together with its standard deviation a priori set of bench marks will 

be d fined. After the data has been compiled in this way there signifi ance will 

be evaluated using a Student T test to d termine whether such an approach is 

robust enough to be an effective predictor of exertion and comfort. In se tion 4.2 

(page 85) after the significance of the results have been calculated a posteriori 

set of conclusions will be drawn. 

n 2 2:: (Xi - x) 
i=l 

n-l 
(4.3) (7 = 

Image of participants replicating predefined actions arc captured. Silhouettes 
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representing each replicated posture are then produced (see figure 4.3). Promi­

nent features such as the index or middle fingers are then roughly aligned and the 

images are analysed using principal component analysis (peA) and mahalanobis 

distancing (See Appendix .3.2.1). 

4.1.5 Classification 

A participants assessment pitched at the lower end of the scale will constitute 

a negative appraisal of a posture, suggesting discomfort was experienced. An 

assessment pitched towards the top of the scale will constitute a positive appraisal 

of a posture, suggesting comfort was felt. An assessment of five will constitute a 

neutral assessment of a gesture and values of seven indicate the lowest positive 

assessment this study will accept as representing comfort. 

Neo 
optimal 

Beta 
optimal 

Figure 4.3: Order of perceived comfort for neo and beta-optimal postures. 

After calculating the mean and standard deviation of results collected an ini­

tial appraisal of participants PPE scores will be conducted. After this process 
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a posteriori set of conclusions will be drawn once a statistical students T test 

has been conducted. This has been done in order to test whether the use of a 

questionnaire in combination with clear direct benchmarks can be used to both 

identify user preference and determine the boundaries of user comfort. The out­

comes of the benchmarks defined below will be justified if they reflect or correlate 

with trends identified in a Students T tests. Provided there is a correlation be­

tween results this method should be used to encourage unencumbered interface 

developers to conduct similar tests when developing interface syntax or gesture 

lexicons, even in the absence of a usability specialist. 

4.1.5.1 A priori set of benchmarks 

The overall mean and standard deviation of each posture has been calculated and 

can be seen in table 4 (Appendix .1). The results derived from the application of 

these measures fall into five distinct categories. These categories are defined as 

the optimal-comfort threshold; the meta-comfort band; the nco-optimal comfort 

threshold; the beta-comfort threshold and the sub-optimal threshold. 

Five categories: 

• First Category: Optimal comfort threshold 

- Consensus two standard deviation from the mean 

- Mean comfort preference of eight or above 

• Second Category: Meta-optimal comfort threshold 

- Marginally greater than two standard deviation from the mean 

- A mean marginally less than eight 

• Third Category: Neo-optimal comfort threshold 

- Absolute and borderline consensus two standard deviation 

- A mean marginally less than eight or above 

• Fourth Category: Beta-optimal comfort threshold 
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- Absolute and borderline consensus two standard deviation 

- Mean comfort preference of between seven and eight 

• Fifth Category: Sub-optimal 

- Outside consensus threshold 

- Mean comfort preference of between one and seven 

4.1.5.2 The optimal-comfort threshold 

The first subset contained within the PPE index is the optimal-comfort threshold. 

This threshold identifies postures that can comfortably be utilised in computer in­

teraction. There are two sets of criteria that have to be fulfilled for a posture to be 

classified as optimal. First, the average assessment of a posture should be a score 

of eight or above. Second, a consensus of opinion should be reflected within the 

overall set of results. As small variations suggest consensus the optimal-comfort 

threshold only includes postures that exhibit a low level of variation across the 

sample. Hand postures calculated to have standard deviation of less than two 

represent postures that reflect consensus. The parameters of the optimal-comfort 

threshold are represented by the mean eight and above together with a standard 

deviation of two or less. In figure 4.4, the postures that adhere to these parame­

ters are located above the solid horizontal line extending from eight on the y-axis 

and to the left of the solid vertical line extending from two on the x-axis. This 

threshold has been used to identify gestures that could be appropriately utilised 

in sustainable interaction. 

4.1.5.3 The meta-comfort band 

The second subset of the PPE index is the meta-comfort band. The postures 

defined by this threshold represent gestures that fall marginally outside of the 

optimal-comfort threshold. For example, there are two postures that fall below 

the mean comfort measure eight by less than six hundreds of a decimal place. 

Furthermore, there is one posture that is less than six thousandths of a decimal 

place beyond the threshold delineating the optimal range of variation and con­

sensus. These three postures can be seen in figure 4.4, the threshold representing 
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these postures correspond to the dashed line. This threshold has been created in 

order to provide a degree of flexibility when assessing borderline gestures. 

4.1.5.4 The neo-optimal comfort threshold 

The third subset of the ppe index is the neo-optimal threshold. This subset of 

postures includes postures that fall within the optimal-comfort threshold and the 

meta-threshold band. These postures will be evaluated to see the degree of shape 

variation that exists within this set. These results are documented in the psv 

index (See Appendix .2). 

4.1.5.5 The beta-comfort threshold 

The fourth subset of the PPE index is referred to as the beta-comfort threshold. 

This threshold identifies those postures that exhibit either absolute or borderline 

consensus and a mean comfort score of between seven and eight. This threshold 

includes postures that with further testing might fulfil the criteria of the optimal­

comfort threshold; after either recompiling the dataset with alternative statistical 

models or using a sample large enough to provide generalised conclusions. As a 

consequence these postures will also be evaluated to see how much shape variation 

can be observed in the replicated postures of study participants. 

4.1.5.6 The sub-optimal threshold 

The fifth subset of postures in the PPE index characterise those that do not show 

consensus or do not have a mean that reflects a positive a,.<.;sessment of a posture. 

These postures have been deemed as either uncomfortable or inconclusive. 

4.1.6 Threshold distribution 

Of the fifty-two postures examined in this user test only nine (17.3 percent) have 

been identified as belonging to the optimal-comfort threshold (figure 4.4). Three 

postures (5.8 percent) belong to the meta-comfort band. Twelve (23 percent) 

postures fall within the nco-optimal threshold. There are eight (15.4 percent) 

postures belonging to the beta-optimal threshold and all other hand postures 
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(59.8 percent) are sub-optimal. Twenty postures (38.4percent) have been anal­

ysed and documented in the psv index . These postures include those represented 

in the neo, meta and beta-optimal comfort thresholds. 
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Figure 4.4: Graph representing the mean comfort measure and Standard devia­
tion of each hand posture 

There are two alternative representations of the same posture included in the 

GEf dataset. One representation is categorised as the Japanese manual letter U, 

posture number twenty-five in the GEf dataset sequence (See Figure 4.1, page 

76). The other posture is categorised as t he American U, posture number twelve 

in the GEf dat aset sequence. Notably, these two postures r ceived an identical 

mean comfort measure and exhibit similarly high degrees of consensus amongst 

participants assessments. The proximity of these two assessments can be seen in 

figure 4.4, the positions of these postures are indicated with two arrows. Analysis 

of the dataset shows that certain gestures are generally perceived to be more 

comfortable than others. The analysis also shows that part icipants perform some 

gestures more uniformly than others. The postures ident ified in the neo-optimal 
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and beta-optimal threshold are postures that have been identified as potentially 

the most sustainable. However, before these postures can be defined as suitable 

for use in computer interaction there are further sets of criteria that have to be 

met. 

4.1.6.1 Defining accuracy and errors 

An interfaces efficiency is generally determined by the stability of a users per­

formance. The efficiency of an interface should also be measured according to 

the range of errors encountered. In the context of this study a gestures overall 

performance will be measured in two ways. First, the level of shape variation 

observed when participants replicated each posture will be analysed. Second, the 

range of errors users encounter will be evaluated. The errors that are evaluated 

will consist of unregistered postures that have not been successfully captured ei­

ther as a result of being performed off camera or the orientation of the posture 

is inconsistent with the images represented in the questionnaire. 

4.1.6.2 Measuring uniformity of posture replication 

The first phase in this process is concerned with measuring how uniformly par­

ticipants replicate each posture. Determining which postures are predisposed to 

shape uniformity is a crucial element in developing an interface capable of sus­

taining interaction with a diverse range of people. Quantifying the proportion of 

shape uniformity intrinsic to each posture enables consistently recognisable ges­

tures and postures to be identified. Furthermore, establishing the level of shape 

uniformity will also define the likely stability of each postures performance. In 

this study posture shape uniformity has been calculated using the Matlab and 

OpenCV statistics and image libraries. Through using this software digital im­

ages can easily be converted from pixel values into simple number vectors, arrays 

and matrices. Once an image has been converted in this way a range of statistical 

processes can be deployed. In the case of this study principal component analysis 

and mahalanobis distancing were used. For an example of the algorithms needed 

when performing these operations see appendix .3.2.1 and appendix .4.3.1 on 

pages 180 and 219 , respectively. For a more detailed explanation of how PCA 
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and mahalanobis distance work see Chapter 3.4.1.2 on page 70. 

4.1.7 Accuracy of posture replication 

The second phase of evaluation defines how accurately each posture was repli­

cated by the sample. Defining the accuracy of performance is significant to un­

derstanding the general tendencies of the sample. For example, all participants 

may consistently make the same errors when replicating a posture. Alternatively, 

postures that utilise specific fingers may produce a higher percentage of errors 

than others. 

4.2 Interpretation of analysis 

The results of this analysis have been plotted on scatter graphs producing a set of 

twenty distinct cluster groups (See Appendix .2). Each cluster consists of twelve 

individual examples of each posture (see figure 4.6). An examination of these 

clusters reveals the similarities that exist between each posture. A range of dis­

tinct characteristics has been revealed using this method. Four relationships have 

been identified as being relevant to this study. First, a clusters distinctiveness 

can be ascertained. Second, similarities between clusters can be seen. Third, dis­

parities in the overall consistency of replicated postures is identifiable. Fourth, 

the overall uniformity of replicated posture is also highlighted. 

4.2.0.1 Distinctiveness of hand posture 

The most distinctive postures can be seen in regions of the scatter graph where 

there is the least density of clusters. The clusters that occupy peripheral regions of 

the scatter graph identify the shapes with characteristics that set them apart from 

other postures. The postures that are the most distinctive have been documented 

in figure 4.7. 

85 



4. Evaluating gestures 

4.2.0.2 Similarities between hand postures 

The degree of similarity that exists between postures is defined according to 

how much the clusters in the scatter graphs intersect and overlap (see figure 4.6 

and 4.8). The coordinates of postures with similar characteristics lay in closer 

proximity than those that are dissimilar. For example, in figure 4.6 the two 

clusters representing alternative examples of the Japanese manual letter U (J_U) 

can be seen to overlap and inhabit similar regions of the scatter graph. The 

Korean manual letter N (K~) does not overlap with J_U and inhabits a separate 

graph region. Through applying this method LV has been demonstrated to show 

no similarities to K~. Additionally, the naked eye shows that the American 

Manual letters A and S are almost identical, the scatter graph confirms that a 

clear resemblance exists betwL'Cn these postures. 

4.2.0.3 Uniformity of hand posture replication 

Some postures can be seen to form much more compact coherent clusters than 

others. Coherent clusters are produced when postures are replicated in a uni­

form way. The postures with the most coherent and compact clusters have been 

illustrated in figure 4.7. Hand shape uniformity can be seen to diminish when 

clusters become less coherent and more diffuse. The results show that some pos­

tures have been demonstrated to contain a wide range of shape variation when 

replicated by different individuals. The postures that form coherent clusters rep­

resent gestures with lower degrees of shape variation. These have been identified 

in this investigation as the postures most likely to be consistently replicated by 

gesture-interface users. Postures that can be replicated clearly and unambigu­

ously by a broad range of people are the most likely to facilitate an efficient form 

of interaction. 

4.2.0.4 Disparate results 

Postures that have neither a distinct shape nor have been replicated uniformly 

produce disparate and diffuse clusters. Given that the uniformity of replicated 

postures can be identified through examining the scatter graph it is understand­

able that replication errors can also be identified. For instance, point Ld is in-
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Figure 4.5: Korean manual letter N with scatter graph key 

consistent with all other members of the K_N cluster (see figure 4.6). The reason 

for this inconsistency can be seen by visually examining the postures making up 

that set (see figure 4.5). Though some of the postures sampled deviate from the 

standard postural form they have been considered in this analysis. This creates a 

broader indicator for understanding similarities between gestures. Instead of fo­

cussing on the similarities of idealised postural forms the interrelation of atypical 

forms has also been considered. Ignoring the impact of atypical gestural form will 

produce a type of interaction that is incapable of predicting when errors might 

occur during interaction. This approach produces a representative assessment of 

each hand posture by considering the diversity in human hand dexterity. The 

postures that demonstrate large degrees of shape variance when replicated by 

multiple users show little or no uniformity. These posture are ambiguous and 

show a high probability that either misrecognition or error may occur when they 

are used. 

4.2.1 Discussion 

Of the fifty-two postures the participants were asked to replicate ten were repre­

sented as left-handed postures in photographic images. The majority of partic­

ipants replicated all gestures with their dominant hand irrespective of whether 

the postures were portrayed as left or right handed. Two participants demon­

strated ambidexterity when replicating postures. Notably, these participants 

stated they suffered from minor physical conditions that restricted their hand 

movements. Despite demonstrating ambidexterity neither participant demon­

strated any level of sensitivity regarding which hand a posture had been por­

trayed to them. Though collectively participants replicated nineteen percent of 
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Figure 4.6: Scatter graph showing shape variation between replicated postures 

all postures inaccurately, these were consistently the same errors. The errors 

participants made were generally as a result of the participant using the wrong 

hand. A small percentage of all errors made were as a result of participants repli­

cating ge tures out ide of the target area, beyond the cameras viewpoint. This 

investigation has identified postures that could sustainably be used in computer 

interaction (see figure 4.3). Taken from American, Japanese, Korean and Polish 

manual alphabets these postures represent simple hand shapes that the average 

person may have used on numerous occasions. Notably, of all those tested only 

two postures elected by te t participants required either the ring or litt le fin­

gers to be extended. In both case these fingers were extended in combination 

with the middle finger . Consequently, less strain was placed on the users hand. 

S('hipber [1991] shows that the middle, index and ring fingers share tendons and 

nerve , which make the interrelation between these fingers very high. The result 

of this high level of interrelation makes it both difficult and uncomfortable for 

each finger to move independently. The findings of this study correspond to the 
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Figure 4.7: Interrelationships of postures as illustrated by the clusters in Ap­
pendix .2 

conclusions of Schiebers research. The positively assessed postures were either 

the ring or little fingers are extended also represent common gestural expressions. 

The Polish manual letter 0 is also a symbol used to express that everything is a 

ok. The second posture depicts the Spanish manual letter b also communicates a 

desire to shake hands. The test participants familiarity with these postures might 

have been influential factors in the favourable assessments regarding the physical 

exertion experienced. In addition, the fact that these postures may have wide 

use and circulation suggests that the wider population has demonstrated them 

to be sustainable. For example, a word that is difficult to pronounce is unlikely 

to find frequent usage in daily communication. 
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Figure 4.8: Shows the similarities between each GEf hand posture 

Though collectively participants replicated nineteen percent of all postures 

inaccurately, participants consistently made the same errors. Due to these reg­

istration errors the array of postures comprising each set calculated in the psv 

index has been reduced to twelve, so that all postures have the same statisti­

cal weighting. The fact that test participant seemed to be insensitive to which 

hand a posture should be represented suggests that there are issues about the 

interpretation of posture orientation. This is an issue that has consequences on 

whether gestural syntax should be independent of handedness. This cannot be 

confirmed without further testing. Future tests would have to explicitly examine 

user awareness to the orientation of a posture. The similarities in the assess­

ment of each Japanese letter ll, for both the ppe and psv index, demonstrate the 

consistency and reliability of the overall study. Test participants were not told 

about the duplicate postures. Furthermore, the two postures were not proximal 

in the image order when portrayed to test participants. The similarity between 
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Table 4.1: Scatterplot (Figure 4.8) reference table 

Symbol Hand dact GiMI name Classification 
number 

A Korean 0 aok 36 
B Polish M bendh 46 
C Japanes TO clos2 29 
D American U dib2 12 
E Japan U dib 25 
F Spanish B five 43 
G American C nwcc 42 
H Japan 0 ohh 32 
I American V peace 7 
J French N pistol 44 
K Japan SO point 30 
L Korean N pointleft 35 
M American S power 19 
N American A punch 1 
0 Japan KO R 31 
P Japan KU snake 24 
Q Polish E swan 47 
R Japanese TA thumbs 51 
S Japanese A thumside 17 
T American D up one 9 

each postures evaluation can be seen in figure 4.4 and 4.6. Though these postures 

were replicated separately there are still shown to have the most similarities. The 

amount of shape variation and cluster uniformity is shown to be almost identical. 

If these two postures were shown to exhibit significant variation then the veracity 

of the results produced in this study would be in question. However, this has 

been demonstrated to the contrary. 

4.2.2 A posteriori conclusions to PPE results 

To check the veracity of conclusions drawn from the user test a Students T test 

has been conducted. Using the Matlab T test function the mean and standard 
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deviation of all participants responses where calculated to find the t distribution 

(see formula 4.4). 
t = 7.5789 - 8 

1.8048 
y'I9 

( 4.4) 

This approach is recommended for use for a sample size below thirty, because 

in these cases the data is generally not normally distributed. An example of how 

user test results are distributed can be seen in appendix .1 page 159. Though 

the histograms depicted in appendix .1 (page 159) is close to normal they rep­

resent a skewed distribution. By applying the formula shown (4.4) a probability 

value known as a p-value can be obtained. In hypothesis testing the null thesis 

is always considered the default position. A p-value represents the statistical 

chance of obtaining a test statistic extreme to the default assumed. The null 

hypothesis is usually rejected when the p-value is less than 0.05 or 0.01. If the 

null hypothesis is ever rejected the result is considered significant. In the case of 

this investigation the null hypothesis is framed a.', follows. The null hypothesis 

in question assumes that using a questionnaire for classifying physical exertion 

within a sample group will fail to find relationships within sample data, unless 

purely by chance (See formula 4.5). The alternative being that questionnaires can 

be effective methods for producing generalised models of perceived user exertion. 

The method employed is robust enough to facilitate the creation of a coherent 

gesture comfort index (See formula 4.6). 

A null response from this test means that the study cannot reject the null hy­

pothesis. However, alternative responses will suggest that potentially significant 

conclusions can be drawn from the data. Figure 4.9 illustrates the conclusionH 

of the T test. The image represents a two-dimensional 19 by 52 matrix. Each 

row along the horizontal axis represents a different participant of the user study. 

Each column along the vertical axis represents hand postures as they are listed 

in figure 4.1. If the pixels in figure 4.9 are black this represents a null response to 

the t test. However when examining the pixels in figure 4.9 no black pixels were 

found. The conclusions of the T test suggest that it is safe to reject the null hy­

pothesis. Enabling the study to state with confidence that the user questionnaire 

applied in this study has allowed a generalised model of perceived user exertion 

to be calculated. 
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HO: S ~ 7v ~ 2 (4.5) 

HI: S> 7 & a < 2 (4.6) 

4.2.2.1 Additional support for priori findings 

When applying a similar calculation to compare the mean PPE score of each 

gesture further evidence to support the method of classification defined in section 

4.1.5 (page 79) have been found. The calculation used the same null hypothesis 

as the default position expressed by the expression 4.5. 
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Figure 4.9: Student T test examining mean responses for each gesture 

Figure 4.11 illustrates how classifications defined using a priori set of bench­

marks have been supported through the use of the T test. The image represents a 

two-dimensional 52 by 52 matrix. Each row along the horizontal axis represents a 

different hand postures (see figure 4.11). Each column along the vertical axis also 
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represents hand postures as they are listed sequence in figure 4.1. Once again If 

the pixels in figure 4.11 are black this represents a null response to the t test and 

nothing definitive can be concluded from the PPE scores. Examining figure 4.11 

it is clear to see that there is variation in the T test results. However upon further 

inspection it becomes clear that the rows and column that contain predominantly 

white pixels correlate directly with the postures defined as nea-optimal (see figure 

4.3). To examine the correlation between results examine figure 4.3. The circles 

in the top left corner of each silhouetted posture contain a number that is paired 

to the numbers represented on the x,y axis of the matrix illustrated in figure 4.11. 
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Figure 4.10: Using T test to compare the each gesture PPE score significants (xy 
axis represent hand posture see figure 4.1) 
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Figure 4.11: Using a T test to identify extremes beyond the baseline PPE mean 
(X = users, Y = GEf postures) 

Figure 4.12: Gestures with PPE scores identified as significant in a T test 
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4.2.3 A posteriori conclusions to PSV results 

When examining the potential shape variation of user responses two different sta­

tistical analysis methods were utilised. Principal component analysis was used 

for the purpose of allowing postures in the GEf dataset to be visually compared 

on a single scatterplot. This enabled this study to produced a method for looking 

at similarity between postures (see appendix .2 (see figure 4). Cluster sizes, prox­

imities and overlapping were identified by hand. Additional to this method the 

Mahalanobis distance was calculated and express as a percentage (see appendix 

.2 figure 3). The table compiled includes the mahalanobis distance results in 

addition to a PCA cluster size reference. The closer the mahalanobis distance 

is to one-hundred the greater amount of similarity has been calculated. These 

distances are easier to see when the amount of principal components are reduced 

(see 4.8 and table 9). 

4.2.4 Unresolved issues 

Despite the successes this research has not implemented a method for evaluating 

the memorability or the intuitiveness of a gesture lexicon. These are issues which 

will require further investigation at a later stage. This should not however di­

minish the fact that through this research a set of hand postures can confidently 

be defined as adhering to generalised comfort thresholds. However, the methods 

and framework outline in chapter 2 (see page 50) seem to have been justified by 

the conclusions of this user study. Figure 4.13 illustrates the current relationship 

between the principles discussed in chapter 2 and the approach to cla.'lsification 

presented in this chapter. 
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Figure 4.13: An iterative context ualisation of research guidelines 
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Chapter 5 

GiMI 

Chapter 5.1 presents the GiMI syntax model devised during this research. The 

elements and structure of this syntax are described, and in addition the benefits 

this syntax model offers are contrasted against other models. 

5.1 Gestures in Machine Interaction Syntax Model 

(GiMI) 

Once the capabilities of people have been prioritised, the need to separate a 

systems functional apparatus from a user's physical interactions becomes in­

creasingly evident. At some stage in the evolution of unencumbered interface 

development a formal distinction between the action required to mediate an in­

teraction and the ml,'Chanical system confronting the user will be needed. At such 

a stage it might be sensible to refer to the physical mechanism as the interface 

and the actions required to operate the system as the syntax. This will become 

increasingly the case when interfaces become receptive to increasingly complex 

modes of input and interaction. Emphasising these issues during interface devel­

opment may limit the cycle of obsolescence to apply only to hardware not UGI 

syntax. For the purposes of clarity in this chapter when discussing the action 

required to mediate an interaction the term syntax will be used. A gesture syn­

tax model, designed to enable robust and efficient interaction with gesture-face 

layers (GFL), is presented in this chapter. The syntax has been designed to facil-
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Figure 5.1: Illustrates the structure of GiMI syntax 

itate ergonomic interaction with gesture-recognition systems. This inve tigation 

presents an ergonomic framework for u ing deictic ergotic and emiotic gestures 

during computer interaction. Utilising these gestural impuls will enable robust 

and ver atile syntax to be developed. 

5.1.1 Extended Gesture Lexicon (EGL) 

The first class of gestures defined within the GiMI model is the extended gesture 

lexicon (EGL). The postures included in the EGL have been identified as com­

fortable postures and fulfil the requirements of both the nco and beta comfort 

thresholds d fined in chapter 4: page 74:. The po tures identified by the n 0 and 

beta thresholds represent postures that have been valuated to be phy ically us­

tainable and ergonomic (8 figure 4.3 page 79). These po ture are document d 

within the ppe index of the Gesture efficiency (GEf) datas t (s chapter 4 and 

Appendix .1). Currently there arc twenty postur that have been identifi d as 

offering optimal comfort. However, as the GEf dataset is an iterative framework 
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there is potential for the EGL to increase in size, as new postures are evaluated 

and added. 

Figure 5.2: Illustrates how PGIS postures perform within the psv index 

5.1.2 Performable Gesture Instruction Set (PGIS) 

The second class of po tures defined within the GiMI model is the Performable 

Gesture Instruction Set. These postures arc a subset of the EGL and curr ntly 

consist of s ven po tures. These postures adhere to both optimal ppe thresh­

olds and those defined as either uniform or distinct, within the potential-shape­

variation (p v) index. The e po ture arc illustrated in figure 5.1 and 5.2. These 

postures have been evaluat d in the GEf dataset to be the most likely to offer 

efficient and ergonomic interaction. 
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Table 5.1: describes the four classes constructing the GiMI syntax model 
GiMI class Description 
EGL The EGL is a subset of gestures evaluated in the GEf 

dataset. The gestures included in this class adhere to 
the optimal perceived physical exertion thresholds (see 
chapter 4). 

PGIS PGIS represents postures that have been defined as opti-
mal within the ppe and psv indexes. These postures are 
both comfortable and uniformly replicated by interface 
users. 

IGIS The IGIS class defines a simple and intuitive set of ges-
tures commonly utilised by people in daily real world 
interaction. 

MoF The MoF class will enable users to utilise dynamic ac-
tions such as movement and hand orientation during 
computer interaction. MoF utilises depth and motion 
disparity maps. 

5.1.3 Intuitive Gesture Instruction Set (IGIS) 

The third class of the GiMI model is the Intuitive Gesture Instruction Set (IGIS). 

The criterion for a postures inclusion into the IGIS is that the posture be intu­

itive and comfortable to perform. These gestures represent natural gestures that 

either have a predefined meaning or function. IGIS posture represents postures 

that should adhere to optimal ppe index thresholds, though may demonstrate 

significant variation within the psv index. The primary purpose of the IGIS is to 

facilitate intuitive interaction with computers. The postures currently included 

within the IGIS are the deictic pointing and ergotic steering gestures (see figure 

5.1 and 5.2). In figure 5.2 these posture are labelled 4 and 12, respectively. These 

postures have specifically been selected because they are both universal and intu­

itive. In addition to being intuitive they also have been evaluated to be physically 

sustainable (see Appendix .2). These postures have been included in this syntax 

model even though the deictic pointing gesture showed significant capacity for 

shape variation (see psv appendix .2), specifically when using standard 2D image 

templates. As both of these postures project forward beyond the 2D plane, cre-
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ating accurate 2D image templates is difficult. Nevertheless, by utilising depth 

silhouettes this research identifies a robust and efficient method for accurately 

recognising these postures (see chapter 3 page 53). The primary function of the 

IGIS model is to provide a simple set of hand signs that enable users to intuitively 

navigate an interface. To facilitate rapid and intuitive user interaction the lexicon 

of each IGIS class is limited to a small set of signs that work in conjunction with 

simple directional hand orientation, such as up, down, left, right and twisting 

motions. By including these gestures into the GiMI syntax framework a versatile 

model of UGI is presented. 

5.1.4 Gesture modifying function (MoF) 

The fourth class within the GiMI syntax model is a modifying function (MoF). 

In isolation the postures comprising the EGL represent static semiotic posture. 

The MoF provides the capability to extend the meaning of individual EGL pos­

tures by incorporating a set of parallel actions such as the movement, orientation 

the interrelation of hand postures. The context and meaning of EGL postures 

are modified by the accompanying MoF function. The addition of this function 

enables the syntax to grow in complexity as the proficiencies of users develop. 

5.1.5 Gestures in machine interaction (GiMI) 

Through the combination of these classes robust interaction can be implemented 

on computers. These interactions include the capability to engage in cursor con­

trol drag and drop together with steering activities. The postures comprising 

each GiMI function can be seen in figure 5.3 (page 103) and 5.5 (page 109). 

GiMI functions: 

• GiMLpl: Gesture-Face Layer 

• GiMLp_c: Point & Click 

• GiMLd_d: Drag & Drop 

• GiMI -slli: Select & SelectALL 
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• GiMLdel: Draw & Erase 

• GiMLfwd..rev Forward -~ Reverse 
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Figure 5.3: Illustrate the classes utilised in each GiMI function 

5.1.5.1 GiMI, place the Gesture-Face Layer class (GiMlpl): 

The GiMLpl class defines the location of the Gesture-Face Layer (GFL). Through 

the use of stereo disparity mapping algorithms depth metric information is ob­

tained. The resulting metric information has been used to define virtual spaces 

and surfaces. The surface created can be programmed to be sensitive to the 

proximity of objects and people. The GFL has been defined using this method, 

enabling touch screen like interaction that is virtual opposed to physical. The 

GiMLpl function utilises the Spanish manual letter M. This posture has been de­

fined as one of the most comfortable gestures to replicate. Within the psv index 

this posture also demonstrates a high level of shape uniformity, which suggests 

that a wide range of users will be able to replicate it consistently. The Spanish 
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B posture is a command used for defining the position of a Gesture-Face Layer 

(GFL). Wherever the Spanish B is replicated the computer identifies its location 

in space, using depth metric information. The proximity of the hand is calculated 

and the GFL is mapped to these specific coordinates. Once the GFL interface 

has been placed using this action other postures can be used to interact with the 

GFL. 

5.1.5.2 GiMI point and click class (GiMI pc): 

The point and click class (GiMI pc) is designed to facilitate intuitive and accurate 

GUI interaction. Using depth information the GFL is able to track the proximity 

of the hand in relation to it surface. The posture utilised within this function is 

one of the most natural and intuitive available. Once the GFL has been placed the 

deictic pointing gesture can be used to interact with the virtual surface created. 

By tracking the location of this posture the computer is able to detect when 

the finger breaches the surface of the GFL. Breach points identify instances of 

interaction in the same way that a mouse click symbolises a selection request. To 

ease the cognitive load placed upon those applying this syntax augmented visual 

feedback is presented to the interface user. In this example a cursor is used. 

In addition, to facilitate unambiguous interaction an outer-tracking-Iayer (OTL) 

is placed between the user and the GFL. The secondary layer sits five to ten 

centimetres beyond the GFL and is also defined using distance metric analysis. 

The tracking layer enables the extended finger to be tracked prior to the breach 

of the GFL. 

5.1.5.3 GiMI drag and drop class (GiMI dd): 

The GiMI dd is designed to facilitate the physical relocation of virtual objects, 

such as desktop icons. The GiMI dd extends the functionality of the GiMI pc with 

the addition of the Polish manual letter E, which is one of the most distinctive and 

consistently replicated postures. The Polish E is a posture that is distinct and 

accurately recognisable through 2D image templates. The form and shape of this 

posture corresponds to the pinch action with the thumb and middle finger meeting 

at their tips. The pinch is ergotic and enables people to pickup or squeeze objects. 
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In the GiMI dd function, the Polish E posture provides a symbolic representation 

of the ergotic pinch action. The replication of this posture instructs the computer 

to reinterpret subsequent GFL breaches. The functionality of the GFL changed 

as a consequence. Rather than just selecting regions of interest, as with the GiMI 

pc, physical contact with the GFL will facilitate the relocation of virtual objects. 

When in GiMI dd mode, the first breach identifies the location of the object of 

interest. The second GFL breach instructs where the object should be relocated. 

Once the ob)ect has been moved the GFL automatically switches back to GiMI 

pc mode. 

5.1.5.4 GiMI delete class (GiMI del): 

The GiMLdel is a gestural function designed to facilitate the deletion of computer 

data. The GiMLdel extends the functionality of the GiMLpc with the addition 

of the American manual letter K, which is also one of the most distinctive and 

uniformly replicated postures. The American manual letter K is distinct, con­

sistently reproducible and accurately recognised using 2D image templates. The 

American K is used as a symbolic representation of a pair of scissors. When 

a virtual object has been selected, using either the GiMI pc or GiMI shi class, 

mimicking the scissor action with the American K posture will initiate GiMI Sdel 

and delete the object. 

5.1.5.5 GiMI steering and control class (GiMLMst): 

The GiM! steering function is a gesture syntax model designed specifically for 

the control and navigation of robot agents. Robot agents are semi autonomous 

devices such as remote control robots or vehicles. By extracting metric informa­

tion from depth silhouettes the positions of GiMLMst postures are tracked. The 

GiMLMst function behaves like a steering wheel except that it has no physical 

steering column. To steer using GiMLMst function both hands must replicate 

the posture representing the American manual letter A. 

When both hands are positioned in parallel along a horizontal axis the GiMLMst 

function instructs the robot agent to travel in a straight line. When the left hand 

is pull down below the right the robot agent is instructed to turn left. Inversely, 
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Figure 5.4: Shows gestures used in GiMI steering model 

when the right is pull down below the left the agent is instructed right. The 

vertical distance that s parate each hand corresponds to turning angle instructed 

in the agent. 

5.1.5.6 GiMI Speed and Velocity class (GiMLFC): 

The GiMI velocity function is similar to the GiMLMst function in that it h&'I 

been designed for the control a robot agents. The GiMLFC function also relies 

on depth metric information. To control the velocity of a robot agent both hands 

need to replicate the American A. The velocity of a robot agent corresponds to 

the distance that separates both postures, which is measured along the horizontal 

line. The closer the hands the slower the agent is instructed to travel. The further 

apart the hands the faster the agent is instructed to go. 
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Table 5.2: GiMl function using either the IGIS and PGIS lexicon 

Classification Context / Prototype description 
/ Taxonomy Task 
GiMI Main set The GiMI supports simple direct navigation of an in-

terface through the use of hand shapes and orientation, 
such as up and down. . Replacing some of the function-
ality of a mouse or pen stylus with a hand tracking and 
shape detection algorithms. 

GiMLpl Placing To position and location of the Gesture-face layer is de-
Symbolic Gesture- fined using the GiMI class. 

face-layer 
(GFL) 

GiMLp_c Point and The position of a pointing gesture is mapped to the 10-
Deictic Click cation of an on-screen cursor. An outer tracking layer 

tracks the hand when it is not in contact with the 
Gesture-Face-Layer. 

GiMLshi Select and To select and highlight a passage of text from a docu-
Deictic and Highlight ment, a variation of the GiMLp_c can be used. Regions 
Beat of interest can be communicated by moving the finger 

whilst maintaining contact with the Gesture-face layer. 
This creates a selection box. 

GiMLd_d Drag and Using the middle finger and thumb to pinch a virtual 
Deictic and Drop object will initiate the drag fUIlction. An object can 
Symbolic then be moved and by moving the middle finger and 

thumb apart and pointing with the index finger, can be 
dropped into position. 

GiMLdel Delete / This function can be used to delete a passage of virtual 
Deictic and Cut objects or text. Once the object of interest has been 
Symbolic selected by the pointing action it can be deleted, using 

a combination of GiMLpc and the American manual 
letter K posture 
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5. GiMI 

Table 5.3: GiMI function using MoF 

Classification (MoF) Hand Reference Context Description 
/ Taxonomy Task 
GiMLMst Subordinate hand American A Turn Depending on 

Dominant hand American A right / which hand is in 
left the higher posi-

tion determines 
the direction of 
the GiMLMst 
function. 

GiMLFC Subordinate hand American A Speed The proximity of 
Dominant hand American A control each hand deter-

mines the speed of 
the robot agent. 
The closer the 
hands are the slow 
the agent. The 
greater the dis-
tance between each 
hand the faster the 
agent. 

108 



~ .... 
,', 
'.' 

~: .. ,' . .. ' 

5. Discussion 

Figure 5.5: Illustrate how GiMI classes interact to provide unencumbered inter­
action 

5.2 Discussion 

The motivation underlying the design and development of the GiMI lexicon is 

to demonstrate that through utilising a development framework that prioritises 

user preferences in the early stages of interface development an ergonomic gesture 

lexicon can be created. A range of methods used by usability researchers and 

engineers have been explored and a framework for evaluating the ergonomics 

of UGI has been established in tandem with the development of an interface 

prototype. An iterative framework has been developed so that the performance of 

users can be evaluated in parallel to the recognition accuracy of gesture lexicons. 

By understanding these issues the lexicon created attempts to demonstrate that 

appropriate uses of gesture which maximi e our performance with machines can 

be constructed. 
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Chapter 6 

Conclusion 

Chapter 6.1 summarises the aims and underlying motivations driving this re­

search inquiry. Chapter 6.2 summarises the journey taken during this research; 

describing the underlying motivations driving this investigation and detailing the 

challenges encountered. This section provides a context to research outcomes 

that are presented later in the chapter. Chapter 6.3 defines the outcomes of this 

research; presenting study and design contributions in the field of unencumbered 

gesture interaction. Chapter 6.4 discusses the contemporary arena of interface 

development where this research takes place, discussing the potential of unen­

cumbered gesture interaction in relation to other interface models. Chapter 6.5 

presents a critical appraisal of this investigation and discusses grounds for further 

research. 

6.1 Summarising research arguments 

This research sought to investigate whether an ergonomic model of UGI can be 

developed and implemented on consumer devices. It also investigated the types 

of barriers preventing VGI from being widely adopted. This research aimed 

to engage in the development of freehand gesture interfaces and accompanying 

syntax and provide a roadmap for developers of the field, so the development of 

un-ergonomic, inefficient interfaces could be avoided. There were two underlying 

motivations underpinning this research investigation. The first motivation was to 

define a straight forward method for developing and testing gesture lexicons ill 
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parallel. The second motivation was to design and implement a computer-vision 

interface capable of recognising a diverse form of gestural actions. A.ctions that 

include the deitic, ergotic, epistemicand semiotic forms of gesture. 

6.2 Summary of outcomes 

In pursuing the development of an ergonomic gesture interface, this research de­

velops methods for designing and optimising the performance of interface syntax. 

To achieve these ends this investigation has examined the fields of computer­

vision, gesture research and ergonomics. Through the process of implementing 

optical gesture recognition and creating efficient image-processing frameworks 

(Chapter 3, page 53 ), this research has encountered many obstacles, overcoming 

these with the discovery of robust solutions. These have included successfully 

constructing 4D image templates through the usc of motion and depth disparity 

maps and training computers to recognise gestures by using statistical algorithms 

such as haar-like feature detection, PCA and mahalanbois distancing. The system 

outlined enabled this investigation to produce an interface capable of accurately 

distinguishing gestures in changing environments and under variable light con­

ditions (Chapter 5, page 98). Through the practical implementation of these 

techniques, an optimal system configuration for recognising gesture is presented 

and advocated. Through solving these challenges a robust syntax model, which 

incorporates wide range of gestural actions has been developed. As this research 

focuses on developing an ergonomic model of freehand interaction, methods for 

evaluating interface performance and user preference was needed. In investigating 

these methods, guidelines for iteratively evaluating the performance of gesture in­

terface syntax were produced (Chapter 2, page 35). The methods produced have 

been practically applied in a series of studies that evaluates the physical exer­

tion of people (Chapter 4, page 74). By identifying the performance constraints 

of people and computers, critical elements underpinning future interaction have 

been defined. This investigation provides a framework that shows gesture in­

terface developers how to design gesture syntax for unencumbered interfaces. 

Dynamic and ergonomic syntax that facilitates interaction with mixed-reality en-
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vironments, robots and vehicles can be produced as a result of implementing 

these frameworks. 

6.3 Outcomes of research 

Through pursuing this research a range of contributions have been made. Offer­

ing empirical, theoretical, design and methodological contributions to the fields of 

interface design and ergonomics. The outcomes of this investigation contribute 

to two fields of research. First, the physical ergonomics of gesture interaction 

has been advanced through the development of a syntax evaluation framework, 

enabling greater understanding of an emerging field. Second, contributions to 

the field of interface design have been made through the development of a ges­

ture syntax model and design methodology. Consequently, a robust and effective 

optical recognition system has been defined, freeing future developers to concen­

trate solely on the creation of novel applications, instead of focussing on how 

best to configure the physical interface. Understanding the physical ergonomics 

of target users is conditional to being able to recognise the limitations of human 

actions. Therefore, assessing the physical performance and preferences of likely 

users was also essential to this research. However, to determine the performance 

of optically mediated interaction the computers capability to recognise gestures 

also had to be measured. Conducting these investigations in tandem allows the 

effectiveness of syntax to be reliably predicted. Methods for evaluating the perfor­

mance of gesture syntax have been produced as a result of this process (Chapter 

4, page 74). The outcome of this process will help ergonomic evaluators with 

limited knowledge of computer-vision and gesture research to evaluate gesture 

syntax. Additionally, this research will help gesture interface developers create 

ergonomic interfaces for users. 

112 



6. Conclusion 

6.3.1 Practical study: implementing and testing a gesture 

interface 

Specific contributions that result from the outcomes derived from this investiga­

tion are discussed in this section. Consisting of four theoretical, one methodolog­

ical and an empirical set of contributions. The section is structured as follows. 

• Theoretical 

- Comprehensive review of the field of UGI 

- Criteria to determine the success of an interface 

- Mapping the taxonomies underpinning UGI research 

- Defining physical and cognitive constraints of gesture 

• Empirical 

- Definition of user preferences and gesture efficiencies 

• Method 

- Presenting guidelines for ergonomic UGI development 

- Derived a method for creating ergonomic UGI frameworks 

6.3.1.1 Comprehensive review of the field of UGI 

A detailed review of the field of UGI from its inception to the present date has 

been undertaken in Chapter 1 (page 1 - 29). This review provides readers with a 

historical account of pioneers within the field of UGI and offers an insight into the 

type of technologies and techniques that have been utilised in the development in 

unencumbered gesture interfaces. Readers of this review will be able to consider 

both the successes and failures of previous developments, enabling them to avoid 

repeating unnecessary steps. In addition to these outcomes, this review and 

knowledge of prior research has aided this investigation in defining specific criteria 

that can determine the likely success of an interface. 
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6.3.1.2 Criteria to determine the success of an interface 

Through examining the field of UGI development it became increasingly appar­

ent that there were three clear indicators that could be used to determine the 

potential success of an interface. Firstly, the coherence of a physical interface was 

a significant factor determining its potential. A second factor helping to deter­

mine success was whether an interface provides a previously unavailable function 

or was an improvement on pre-existing functions. Thirdly, ease of use and the 

versatility of the underlying interface syntax is a factor in determining its under­

lying promise. Though individually each criterion may seem obvious, in order for 

an interface to be widely accepted by users, all three criteria had to be evident. 

Examples of where an interface has failed to fulfil each requirement have been dis­

cussed in Chapter 1 (pages 29 - 34). All of the criteria described when combined 

satisfy key goals of usability, which is to provide good utility. A coherent physical 

interface coupled with efficient syntax will likely facilitate interaction that is both 

intuitive and efficient. By following these criteria developers will create interfaces 

that are both easy to use and learn, enabling users to perform efficiently. 

6.3.1.3 Physiological and cognitive constraints 

In order for the field of UGI to develop ergonomically it is important that devel­

opers recognise the limitations of human action. After identifying the apparatus 

used during gestural activity this investigation has been able to define inher­

ent constraints of gesture. For example, this research contrasts the performance 

of writing, speaking and signed language and further demonstrates that gesture 

could speed up and enhance the way we interact with computers. However, this 

investigation also highlights the risk associated with relying solely on semiotic 

sign language (Chapter 2, pages 41 - 44). Demonstrating the benefits and risks 

associated with gesture interaction this research intends to steer developers along 

a path of ergonomic interface and syntax development. Through recognising the 

concerns uncovered in this research future UGI developers will realise the impor­

tance of creating syntax that incorporates a broadest range of gestural impulses. 

Such syntax may allow users to engage in a more intuitive mode of interaction, as 

the syntax would be more representative of natural gesture. Though this research 
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has not determined the merits of using natural gesture as opposed to artificial syn­

tax, it has demonstrated that gesture interaction is less effective when particular 

facets of gesture are used in isolation (Chapter 3, page 62 - 56). 

6.3.1.4 Defining user preferences and gesture efficiencies 

A dataset is compiled to catalogue the physical preferences of gesture interface 

users. This is conducted in parallel to monitoring the underlying performance of 

users when replicating gestures (Chapter 4, page 74 - 98). The dataset examines 

the needs of users, placing them central to the design process. The subsequent 

dataset provides benchmarks that can be used to gauge the underlying efficiencies 

of specific gestures. The dataset enables gestures to be assessed independently of 

hardware limitations. For example, gesture syntax can be developed and assessed 

independently of the construction of physical interfaces due to the availability of 

a coherent evaluation framework. Such an approach will enable developers to 

build and design interfaces around gesture syntax as opposed the making syntax 

structure conditional to the composition of hardware architecture. Empirical in­

formation detailing variations in users performance together with their physical 

preferences is documented in the Gesture-efficiency (GEf) dataset. All accompa­

nying data and analysis is presented in Appendix 1.1 and 1.2. Using the dataset 

of gesture efficiency, together with syntax assessment guidelines (Chapter 2, pages 

44 - 53), a method for optimising gesture syntax in machine interaction can be 

applied. 

6.3.1.5 Guidelines for developing an ergonomic UGI framework. 

A set of guidelines that help evaluators examine UGI syntax has been developed 

as a consequence of the practical implementation of optical gesture recognition 

and research of human physiology (Chapter 2, pages 44 - 53). The guidelines have 

been designed to make developers of unencumbered gesture interfaces more sensi­

tive to the preferences of users. These guidelines have been utilised in the course 

of this investigation through a user study, which evaluates both the performance 

and preferences of people (Chapter 4, pages 74 - 98). Through these guidelines a 
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proactive approach to inclusive design is advocated and a detailed evaluation of 

user preferences and capabilities is encouraged. The guidelines present an itera­

tive method for evaluating gesture, which enables other independent evaluators 

to develop and revise the dataset of gesture efficiency (GEf), which has been 

compiled during this investigation. 

6 .3.1.6 An ergonomic UGI development approach. 

Determining the underlying ergonomics of an interface and accompanying syntax 

was the primary pursuit of this research. In order that this could be achieved 

a method for asses ing the performance of an interface together with its users 

had to be devised. As UGI is still emerging as a field of research an archetypal 

interface model is yet to be established. As a consequence there is no standard 

method that can be utilised by usability evaluators. To determine the underlying 

ergonomics of freehand interaction this research conducted an investigation using 

the following approach. This research first sought to identify what is likely to be 

the structure and composition of future UGI, by conducting a review of the field. 

Aided by subsequent findings, which identified pioneers within the field in addi­

tion to criteria determining the success of an interface an archetypal model of UGI 

could be predicted. The model defined is similar to the VIDEOPLACE interface 

model developed by Krueger et al. [1985]. However, through the practical assess­

ment and implementation of state-of-the-art image processing algorithms this 

research is able to recommend modification to the archetypal model described, 

thus demonstrating an optimal system configuration for UCI evaluators. By de­

termining the likely configuration of a UCI framework this research has been able 

to evaluate the performance of gesture syntax (Chapter 4, pages 74 - 98). How­

ever, before a robust evaluation framework could be conducted a range of issues 

had to be addressed. To examine the underlying performance of gesture syntax it 

is essential that the criteria of the investigation be clearly defined. For example, 

when evaluating performance the effectiveness of a gesture can either be defined 

by a computer's ability to recognise the gesture or a persons ability to accurately 

perform the action. Researchers of this issue have tended to evaluate the abilities 

of computers to recognise a persons actions as opposed to evaluating a persons 
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ability to perform those actions. However, recently some researcher have realised 

that this is not an effective method of developing ergonomic interfaces (Chapter 

2, page 44). Though the importance of user performance have been accepted 

as important, research issues the intricacies of optimising syntax performance is 

not researched in sufficient detail , as there are many variables to consider when 

evaluating the performance of gesture interface syntax. Whilst both, user perfor­

mance and computer recognition accuracy need to be considered, user comfort 

needs to be measured. Stern et al. [2006] come close to developing a compre­

hensive evaluation framework. However, they admit their methods for evaluating 

user comfort could be improved. In this investigation, the parameters of this i sue 

are redefined to place greater emphasis on user preference as opposed to comfort . 

By redefining the issue in this way this research is able to confidently identify the 

types of gesture that are preferred by users. Combining this knowledge with what 

is known about human physiological constraints this research has been able to 

define an optimal gesture syntax model. In order to select the gestures that can 

most effectively be utilised there are a vari ty of issues that need consideration. 

First, in order to use multiple gestures in a single syntax each gesture needs to be 

distinguished from the other, consequent ly each gesture needs to be distinctive. 

Second, if the syntax is to be performed by multiple users the lexicon of gestures 

must demonstrate that they can uniformly be performed by a large sample, as the 

higher the shape variation exhibited during the replication of each posture the 

lower the potential for accurate recognition . Third in order t hat gesture syntax 

can be reliably performed, the gestures utilised needs to be both comfortable and 

not require high levels of exertion. As previously mentioned this third category 

was redefined to consider the preferences of users. The combination of these issues 

determines the underlying performance efficiency of gesture syntax. For exam­

ple, though a gesture may exhibit distinct characteristics such as in the semiotic 

gesture OK, where the thumb and index finger meet to create a circle leaving 

the remaining finger to point upwards; this does not mean that it will be uni­

formly replicated by a large sample. As a result the OK gesture may not an ideal 

candidate to incorporate into an ergonomic gesture syntax model. Though the 

ability to test how effectively computers can recognise gesture is very useful when 

developing gesture syntax, it is not vital as the outcomes of this research provide 
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developers and evaluators with a dataset and a development framework. Conse­

quently gesture syntax can be investigated without compiling datasets, which is 

very time consuming, if evaluators use the dataset and methodology defined in 

this thesis. Despite the successes this research has not implemented a method for 

evaluating the memorability or the intuitiveness of a gesture lexicon. These are 

issues which will require further investigation at a later stage. This should not 

however diminish the fact that through this research a set of hand postures can 

confidently be defined as adhering to generalised comfort thresholds. 

6.3.2 The syntax design: methods, outcomes and impact 

Contributions that result from the implementation of an optical gesture recogni­

tion system are discussed in this section. Consisting of two design-based and two 

methodological sets of contributions, the section is structured as follows . 

• Design-based 

- Gesture-face interface; 

- GlMl syntax; 

• Method 

- Robust optical gesture recognition system; 

- Comparative syntax evaluation; 

6.3.2.1 Gesture-race-layer 

An unencumbered gesture interface has been developed and outlined (Chapter 

3, pages 54 - 5(j). The gesture-face is a digital interface capable of modelling 

and recognising activity within the visible environment. A system computer 

functions can be snperimposed on to 3D real world in real-time. The Gesture­

Face layer is designed to allow nsers access the computers through the use of 

gesture alone. This research advocates this model as optimal for unencumbered 

gesture interaction. 
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6.3.2.2 GiMI syntax 

The syntax developed in this study has been designed to facilitate versatile and 

sustainable interaction with computers. Through this research both the Gesture 

in Machine Interaction syntax model and the Gesture-Face Layer are introduced 

as a solution to sustainable gesture interaction. The GiMI syntax includes a 

model for cursor control and interaction together with a model for remote vehicle 

steering and control (Chapter 5, pages 98 - 108). The interface syntax created 

provides a framework that allows users to interact with computers using a com­

bination of natural and artificial actions. This research presents a framework 

for developing optical gesture interface environments in which users need not re­

sort to the awkward command vocabulary of keyboard-and-mouse interaction. 

Furthermore, the syntax created enables multiple gestural impulses like semiotic, 

deictic and ergotic actions to be incorporated into the architecture of graphic user 

interaction. The interface syntax created has been iteratively evaluated using the 

GEf dataset. In Chapter 5 (page 108 - 108) the GEf is used to compare the 

performance of competing gesture syntax models. 

6.3.2.3 The potential impact of contributions 

By using state-of-the-art image processing and pattern recognition algorithms, 

such as depth, motion and shape detection, this study has been able to create 4D 

image representations of gesture. The use of these techniques has enabled the in­

vestigation to implement methods for utilising many different types of gesture in 

UGI. Consequently, this research has been able to developed syntax that utilises 

ergotic, semiotic and deictic gestures. Syntax that facilitates intuitive and versa­

tile interaction has been developed in parallel with a cohesive and stable interface. 

Though the syntax created in this study uses artificial gestures, it maintains the 

link between natural motor impulses and activity type. For example, the GiMI 

steering model utilises ergotic actions to perform an object manipulation tasks 

in contrast to using semiotic actions to represent ergotic tasks. Utilising ergotic 

actions in this way enables the link between natural gestural impulses and task 

execution to be retained. Preserving the link between instinctive action and task 

has enabled this study to produce syntax that is intuitive and versatile. 
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6.4 Ideal interface configuration 

To identify the ideal mode of machine interaction a range of interfaces with dif­

fering configurations have been explored. These include the fully unencumbered 

interface, which allows people to interact with computers using free hand ges­

tures; the semi unencumbered interface, such as the multi-touch interface; and 

conventional interfaces such as the keyboard and mouse. Differences in the user 

to interface configuration between each of these interface models have been noted. 

These differences demonstrate that two styles of user interaction - face-to-interface 

and outward-facing - exist within the broader UGI paradigm. 

6.4.0.4 Unencumbered gesture interface 

The unencumbered gesture interface model depicted in table 6.1 (see page 122) 

represents the model of interaction developed during this research investigation. 

The Gesture-Face Layer (Chapter 3, pages 71 - 56), Gestix interface [Stern ct al. , 

2006J and VIDEOPLACE [Krueger et al. , 1985] are all fully unencumbered models 

of interaction that are mediated by optical gesture recognition. These models 

represent face-to-interface interaction between people and digital interfaces. 

6.4.0.5 Semi-unencumbered 

The semi-unencumbered interface represents a mode of interaction that moves 

away from the current model of HCI, where interaction is mediated through 

peripheral devices that are most often mechanical in nature, such as the mouse 

and keyboard. Semi-unencumbered interaction is unencumbered in the sense that 

it does not require peripheral input from mechanical devices, however this model 

still requires that the user remains proximal to the physical interface. Through 

this re earch two semi-unencumbered models of gesture interaction have been 

identified. Though these devices are both semi-unencumbered there are notable 

differences in the syntax and user-to-interface configuration. For example the 

semi-unencumbered model depicted in table 6.2 (page 123) is a tactile-interface 

where the user faces the interface in a traditional face-to-interface workspace 

model. The model depicted in table 6.3 (page 123) is a wearable interface, which 
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is worn by the user. The workspace composition of this interface does not follow 

the usual model of face-to-interface interaction. Instead, this interface has an 

outward-facing composition, where both the output is projected and input is 

captured from in front of the user. 

6.4.0.6 Tactile-Interface 

The multi-touch interface developed by Han [2005b] represents a semi-unencumbered 

mode of interaction. Though like the fully unencumbered employing gestures in 

face-to-interface style interaction, this mode still requires a user to physically han­

dle the interface. As with encumbered keyboard interaction the users still need to 

be proximal to physical interfaces. Interfaces like the Apple iPhone and Microsoft 

Surface facilitate a similar model of interaction. These models of interaction are 

emerging as potential replacements to the current mode of keyboards and mice 

interaction. The success of these interfaces is due to the greater flexibility they 

can offer users and interface designers. As a result of not being constrained 

by similar physical limitations of hardware keyboards multi-touch screens enable 

greater customisation of the user interface, through the use of executable software 

keyboard applications. For example, applications can be developed to allow users 

t he ability to alter a keyboards size, posit ion and keypad layout. Such flexibil­

ity limits the potential for inefficient layouts to become embedded into popular 

usage. Furthermore, keyboard applications can be designed to aid the visually 

impaired, with the use of larger font sizes. The most significant aspect of this 

interface model is that it enables all of these parameters to be defined by the 

user. Not only does this have the potential to massively increase a users ability 

to customise their interfaces it can also reduce the economic impact of manufac­

turing physical keyboards. As a consequence of these innovation , mult i-touch 

screens will likely alter the design of future machine interfaces, part icularly those 

used on small handheld mobile devices. 
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6.4.0.7 W earable devices 

In table 6.3 an outward-facing models of gesture interaction is depicted. Wearable 

interfaces such as the gesture pendant developed by Gandy ('t a1. [2000] and the 

Sixth en e device developed by Mistry and MaC's [2009] represent a third model 

of ge ture-interaction. These devices represent outward-facing models of gesture 

interaction, as the device face outward acquiring a similar visual perspective as 

the u er. In the case of Mistry and Macs [2009] Sixthsense interface the device 

is capable of augmenting virtual object on to real space through the use of an 

optical projector. Though they may facilitate free hand interaction, wearable 

devices still represent forms of encumbered interaction, due to the interface being 

worn by the user. Con equently the space between the user and the interface is 

fixed and inflexible reflecting a degree of rigidity within the syntax of interaction. 

6.1a 

computer 
ing gesture 
interaction 

Table 6.1: VG interface 
6.1b 

Enabling iconic 
gotic interaction 

6.4.0.8 Future interfaces 

6.1c 

using 
motion, depth 
and templates 

The thr e models of ge tun' interaction discussed though similar represent dis­

tinct paths for future interface development. It is likely that each model has an 

important role to play in how people interact with the machines and environments 

of the future. Both multi-touch and wearable outward-facing interfaces arc likely 

to figure prominently in th evolution of personal mobile devices. Minor changes 

to urrent handh ld multi-touch device would allow each interface to exist side 
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interface 

6.3a 

6. Conclusion 

Table 6.2: Tactile interface 
6.2b 6.2c 

6.3b 

Enabling iconic 
gotic interaction 

Tracking u ing motion 
and blob detection 

6.3c 

Tracking using mo­
tion or colour de­
tection 

by side in a complementary manner. However, unlike mult i- touch interaction the 

outward-facing devices have limited application outside t he context of small mo­

bile devices. This limitation resul ts from t he fact that input is capt ured from the 

perspective of the user. The only position where such an interface would be able 

to recognise the gestures illustrated in t able 6.3 are from around the users neck. 

The multi-touch interface shows greater promise of versatility than the wearable 

interface when it comes to the range of potential applications it could be utilised 

with. For example, in addition to being used on mobile devices it can be used on 

desktop interfaces and any machine requiring tactile-user interaction. Due to the 

fact that it offers greater fiexiLility than the mechanical keyboard and mouse it 
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is likely to supersede these devices and usher in a new paradigm of gesture based 

interaction. The fully unencumbered interface advocated in this thesis also has 

a significant role to play in the evolution of computer interaction. As computing 

becomes ever more pervasive and entwined into daily human activities, interfaces 

will be needed to support a diverse set of activities. New interfaces capable of 

providing comfortable and efficient interaction with robots, virtual environments 

and machines will be needed as alternatives to cumbersome and unsuitable inter­

faces such as the mechanical keyboard and mouse. To enhance our interaction 

with robots it would be useful if they could respond to visual cues such as ges­

tures. To interact with and manipulate virtual objects with no physical surface 

capable of responding to touch, a method for recognising ergotic actions will be 

needed. Though currently the defacto interfaces used in HCI are the keyboard 

and computer mouse, these two devices are only able to facilitate single user in­

teraction limiting the potential for people to collaborate in GVi environments. 

Currently the potential of the multi user interface is being hindered by the na­

ture of the physical interface, as it is difficult for users to access keyboards, mice 

and joysticks simultaneously. Despite current limitations users demonstrate a 

willingness to engage in collaborative activity, through using the Internet, email 

and computer gaming. However, the entire architecture of modern computing is 

based around single user interaction. The unencumbered models of interaction 

discussed offer the potential to facilitate multiple user interaction, as users will 

no longer be restricted by the composition of the physical interface. 

6.5 Conclusion 

As computing becomes ever more entwined into daily human activities, new in­

terfaces will be needed in order to support interaction with robots, virtual envi­

ronments and real objects. The increasing viability of VGI is demonstrated in the 

emergence of commercial interfaces such as those developed by GestureTek, Xbox 

360 and Sony eyetoy. These interfaces demonstrate that VGI has the potential 

to be both commercially successful and widely adopted. However, the success 

of QWERTY and WIMP interfaces should demonstrate that once an interface is 
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widely adopted by users it has the potent ial to become embedded into subsequent 

developments . Though evidence showed t hat QWERTY might not have been the 

most efficient interface available, persuading est ablished users to ut ilise alterna­

tives, such as DVORAK, proved problematic [David, 1985; Norman and Fisher, 

1982]. Being the first typing interface to gain widespread distribut ion resulted in 

the QWERTY layout gaining dominance in the HCI paradigm, allowing word­

processing to become synonymous with the QWERTY interface in the minds of 

most computer users. As a consequence, this keyboard layout is widely manufac­

tured reflecting what David [1985] describes as path-dependences. Therefore, it 

is important that interface developers understand the potential consequences of 

introducing particular interface syntax. The evaluation framework and method 

developed through this research goes some way to help fut ure syntax developers 

recognise how gesture syntax can impact users. Prior to the recent expansion of 

the domestic and personal computer market , investment in computer technology 

has predominantly come from the advancement of telecommunication in business 

and military sectors. As a consequence, developments in software and hard­

ware have likely been driven by concerns such as price and productivity. These 

factors would have had the potential to init iate the cycle of path-dependences. 

Despite the strong evidence that demonstrated the DVORAK interface offered a 

10 percent efficiency gain [Norman and Fisher, 1982] , the costs of reequipping 

businesses might have acted as a prohibitive factor in decisions to adopt alter­

native technologies [Lirbowitz and Margolis, 1995]. Currently, the expansion in 

domestic and recreational computer usage is beginning to become a significant 

factor driving innovation. The influence of the end-user is increasing in parallel 

with the development of novel technologies. The newly emerging relationship be­

tween technology and end-user is likely to change the way that path dependences 

occur in future development cycles. The t ransition and emergence of new HCI 

paradigms are also likely to be more fluid as investment in innovation becomes 

distributed among a wider user base. One need only look at the popularity of 

Apple app-store to see how the relationship between user and technology is be­

ginning to change. Not only are users playing a greater role in determining the 

success of an interface, the pool of developers contributing to the design of current 

interface applications is also growing. The business model adopted by Apple app-
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store seems to reflect the suggestion that end-users represent much more flexible 

decision makers than businesses or industry. This is probably due to there being 

greater risks associated with bulk purchases and the higher levels of investment a 

business would be exposed to when making acquisitions. Aided by this increased 

flexibility of technological development and user adoption cycles, developers will 

be much more able to put the concerns of the end-user at the heart of interface 

developments. However, in order for the field of VGr to develop ergonomically 

and avoid the paths taken by previous interfaces clear principles and guidelines 

need to be established. Throughout this research a clear methodology has been 

demonstrated and revisions to methods and practices have been advocated. rn 

considering whether current methods and practices used by developers and eval­

uators of encumbered Her are relevant to VGr, it was found that though the 

underlying principles are relevant a range of revisions are needcd. Firstly, the 

developmcnt of a robust set of general guidelines for inspecting the efficiency of 

gestures would greatly benefit VGr developers. The creation of an open iterative 

guideline framework that allows multiple evaluators to assess each others find­

ings may produce a universal set of standards that allow VGr developers to be 

confident about how efficiently their syntax performs. Significantly, understand­

ing the biomechanical constraints of people is even more critical to VGr syntax 

development than it is to encumbered forms. As the gestures utilised during in­

teraction with encumbered interfaces are constrained by the physical mechanics 

of the interface, developers can be confident about how the syntax of an interface 

will impact users. Whereas the unencumbered gesture interface has no mech­

anism to constrain a users actions. Therefore, it is important that developers 

of syntax completely understand the strains each gesture will place on interface 

users. Finally, the unencumbered interface requires a more complex evaluation 

model as the mechanisms for controlling the interface are hidden. Consequently, 

there are additional variables to consider when examining VGr syntax, such as 

a users interpretation of the syntax and the potential for variation when specific 

gestures are replicated. Alternative approaches to gesture syntax development 

have been discussed in this investigation (see chapter 5, page 109). However, 

these approaches rely on syntax derived from 2D image templates. The inher­

ent limitation of this method means only partial recognition of human gesture is 
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possible. Such methods make little distinction between the use of semiotic and 

ergotic gestures, and generally reduce all actions, irrespective of type, into a sin­

gle image of a static posture. As semiotic gestures can convey meaning through 

hand shape alone, they can effectively be recognised using the 2D image maps. 

However, ergotic gestures cannot consistently be recognised with this method, as 

the trajectory and context behind an action is important to identifying a users 

intention. As a consequence, semiotic actions are more widely use in gesture 

syntax development. This investigation recognises that there is a clear distinc­

tion between the use of semiotic actions to convey ergotic impulses and the use 

of ergotic action to complete ergotic tasks. By utilising four-dimensional (4D) 

image templates derived from depth and motion disparities (Chapter 3, pages 

58 - 66), this study has been able to develop a reliable method for recognising 

a entire phase of a gesture. As a consequence a broader range of gestures can 

be successfully recognised and a more robust and versatile interface syntax can 

be created. In the course of this research different gesture syntax have been 

identified. These include natural gesture, signed language and syntax created 

specifically for computer interaction. The syntax of natural gesture has evolved 

together with speech to utilise similar sensorimotor apparatus. Formal signed 

languages, such as British Sign Language (BSL) and American Signed Language 

(ASL), have also evolved in parallel to speech. However, these syntax models 

have a clearly defined syntax that is illustrated in HA/TAB/SIG/DEZ stokoe 

notation model. This research has found that the physical exertion required to 

communicate using sign language would offer no extra physiological benefits to 

the user than current models of interaction, such as keyboard and mouse in­

teraction. Therefore it is important that a distinction be made between using 

established gesture lexicons - like BSL and ASL - and developing syntax that fa­

cilitates ergonomic computer interaction. To advance the ergonomic application 

of gesture in computer interaction a specialised syntax that reduces user exertion 

is required. 
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6. Conclusion 

6.5.1 Further questions and future work 

Though all of the aims and objectives of this research have successfully been ad­

dressed, there are still some significant questions that would benefit from further 

exploration. While this research produces a dataset that enables both user pref­

erence and computer recognition accuracy to be collated through a single archive 

these calculations are based upon the use of static representations of gestures and 

do not include motion history volumes (MHV), which depict the full phase of a 

gesture as a 4D template in a single image map. Future research will work to in­

corporate 4D image templates in the compilation of the GEF dataset. The use of 

static representations of gesture does not however diminish the conclusions of this 

research particularly in relation to the physical preferences of users. Furthermore 

despite the successes this research has not implemented a method for evaluating 

the memorability or the intuitiveness of a gesture lexicon. These are issues which 

will require further investigation at a later stage. This should not however dimin­

ish the fact that through this research a set of hand postures can confidently be 

defined as adhering to generalised comfort thresholds. There are three other ar­

eas identified through this research that would benefit from further examination. 

First, how will augmenting computer graphics to users physical actions affect the 

quality of users responses. Second, can the use of graphic processing units (GPU) 

improve a computers ability to learn optical information. Third, can monocular 

lenses that are widely distributed throughout the consumer market be adapted 

for stereovision. This research suggests that these issues will be important to the 

future success of unencumbered interaction. As the realism of augmented graphic 

responses to a users action is likely to be a significant factor in attracting users 

to future interfaces the speed of graphic processing may be considered crucial to 

success. A delay in rendering of virtual objects has the potential to frustrate and 

disorientate users. For instance, when using a computer mouse it is useful if the 

onscreen cursor responds in as close to real-time as possible. Limiting the potcn­

tial for a time lag between the users actions and the graphic response will enable 

users to better coordinate their actions with the graphic interface. At present, the 

increased computer-processing load required for a computer to detect a gesturc 

can produce a sufficient enough delay as to confuse users, subsequently impact-
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ing user experience. Recent developments make it possible for computer graphics 

cards to be programmed to carry a significant portion of the data processing load 

[Farrugia et al. , 2006; Viney and Green, 2007]. Such advancements are likely to 

increase the speed with which computers are able to render graphical data. Such 

developments could potentially lead to the augmented real and virtual becoming 

increasingly indistinguishable in the minds of users and architecture of comput­

ers. For example, the parallel processing of graphics and dat a will likely enable 

computers to produce increasingly responsive graphics that may allow a user to 

suspend disbelief in t he artificial nature of augmented and virtual reality. The 

specialised graphics-processing unit (GP ) will enhance a computers ability to 

simulate the outcome of events in a manner akin to how the mirror neurons oper­

ate within the sensorimotor processing apparatus of humans (Chapter 2, page 40). 

Such apparatus are not only critical to how we perceive our environment , but are 

also critical to how we learn and interpret both manual and aural languages. For 

instance, a computer equipped with a dedicated graphics-processing unit will be 

able to treat the input of a camera in the same manner as a graphics simulation. 

A computer programmer would be able to write object-orientated code that could 

treat both simulated and optical input in the same way, increasing the abilities of 

computers to learn cause and effect by running simulations based on real world op­

tical input. Though there is nothing preventing programmers using this method 

the use of graphics-processing units would encourage this as a default position. 

These developments have the potential to bring the fields of computer-vision and 

computer graphics closer together to creat e a hybrid field that focuses on optical 

cognit ion. The development of such a field is likely to increase the viability of 

UGI systems and further advance the development of artificial intelligence, as a 

consequence focussing on this topic could prove a rich source for fu t ure research. 

In this research the optimal configuration of an optical gestur interface has been 

identified as requiring a combination of motion segmentation, depth disparity im­

age maps and motion history volumes. The common approach to creating depth 

disparities is to implement stereovision and the use of two cameras that can be 

calibrated to facilitate stereopsis. The problem wit h this approach is t hat it relies 

upon the end users eit her possessing two identical cameras or a binocular cam­

era. The obvious solut ion to this problem is for the users to purchase additional 
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equipment. Alternatively, a method could be developed to enable depth metric 

information to be obtained from a single CMOS or CCD image sensor chip. As 

it is relatively easy to program computers to interpret camera output, designing 

lenses that can produce varying degrees of parallax on a single image sensor could 

be a potential solution to equipping ordinary cameras with the ability to facilitate 

four-dimensional gesture recognition on generic consumer devices. Though UCI 

is an emerging field that relies on the development of cutting edge research and 

programming, there is little reason why this model of interaction should not be 

accessible to all computer users. Provided that a formal and universal ergonomic 

gesture syntax is established, UCI has genuine potential to reduce the repetitive 

strain injuries, increase productivity and improve the ease with which interface 

users can interact with electronic devices. Furthermore as this new interface can 

be implemented on existing consumer hardware, in addition to being economi­

cally viable and ergonomic, it should prove to be a more ecologically sustainable 

model of computer interaction, as the requirement of having to use peripheral 

devices may be completely eliminated. 
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.1 Perceived physical exertion (ppe) of gestures 

The measurements currently discussed represent the perceived levels of physi­

cal comfort and exertion participants experienced when replicating the postures 

included in the GEf dataset. To determine which postures can accurately be 

defined as comfortable a typical measure of each posture must be established. 

Dividing the overall sum of participants assessments by number of people in the 

sample produces a mean evaluation of the postures. However, establishing the 

mean assessment of each posture is not sufficient to accurately determine whether 

a posture can be defined as comfortable. The variation contained within partici­

pants responses must also be ascertained prior to establishing whether the mean 

accurately reflects the attitudes of the whole sample. Identifying the level of 

consensus that is present within the sample is significant to establishing an ac­

curate measure of a postures comfort. The amount of consensus present within 

the sample has been calculated by finding the standard deviation within par­

ticipants responses. By identifying the standard deviation within the sample it 

is possible to determine how opinions are distributed. Identifying the range of 

distribution enables this investigation to determine where there might be con­

sensus and disparities in opinions. This enables the investigation to differentiate 

between conclusive results from those that are inconclusive. The results have also 

been checked to see if they adhere to the 68-95-99.7 rule, which is also known 

as the three-sigma rule. The principles governing this rule state that statisti­

cal consensus can generally be proven when all values contained in a set fall are 
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within three of the mean. This is a methodology that is utilised in the empirical 

sciences for estimating the probable accuracy of the mean result. In this inves­

tigation this methodology has been applied when evaluating participants overall 

responses. The frequency tables illustrated in figure 3.2 show the distribution of 

participants responses according to the most highly rated postures. The distri­

bution of participants responses can be seen to roughly adhere to the 65-95-99.7 

rules with almost 99.7 percent of all values falling three standard of the mean. 

The exact percentage distribution can be seen in table 3.1. Though the distribu­

tion of participants responses does not precisely adhere to the 65-95-99.7 rule the 

measurements derived can be used to identify postures that are skewed towards 

a general perception of comfort . 

. 1.1 User Study Worksheet 

The following pages contain examples of the questionnaire used in the User study 

documented in chapter 4 page 74 
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.1.1.21 Categorising results 

To accurately classify each posture the perceived physical exertion (ppe) index 

has been divided into five distinct subsets. These subsets are referred to as the 

optimal-comfort threshold; the meta-comfort band; the neo-optimal threshold; 

the beta-optimal threshold and the sub-optimal threshold. Shaded circles denote 

hand postures that adhere to the optimal-comfort threshold. Triangles identify 

postures with means that are marginally outside the optimal mean threshold. 

Blank circles identify hand postures that have a standard deviation fractionally 

beyond the optimal threshold. Blank circles and triangles represent postures 

included in the meta-optimal threshold. The hand shapes marked with a shaded 

square identify hand postures that fall within the beta-optimal threshold. The 

shaded polygons highlight two alternative representation of the same posture, 

the Japanese manual letter U. Notably, these two postures received an identical 

mean comfort measure and exhibits similarly high degrees of consensus amongst 

participants assessments. The proximity of these two assessments can be seen in 

figure 3.3, the positions of these postures are indicated with two arrows. 
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Table 4: Calculated perceived physical exertion (PPE) Mean and Standard devi­
ation 

no. Hand dact PPE Female Male PPE Female Male 
Score PPE PPE STD STD STD 

1 American A 7.2105 8.3636 5.625 2.6157 2.0136 2.6152 
2 American F 6.5263 6.9091 6 1.8964 1.6404 2.2039 
3 American X 7.0526 8 5.75 2.5706 1.6125 3.151 
4 American Y 6.1053 5.9091 6.375 2.5797 2.8091 2.3867 
5 American W 6.4211 6.4545 6.375 2.1426 2.3394 1.9955 
6 American R. 5.6842 6 5.25 2.4279 2.6077 2.252 
7 American V 7.5789 7.7273 7.375 1.8048 1.4894 2.2638 
8 American K 4.3158 4.9091 3.5 2.4279 2.6251 2 
9 American D 8 8.1818 7.75 1.8257 1.6011 2.1876 
10 American H 7.2105 7.4545 6.875 2.5944 2.6216 2.6959 
11 American G 7.1579 7.2727 7 2.6929 3.003 2.3905 
12 American U 7.3158 7.4545 7.125 1.7337 1.5725 2.031 
13 American P 5.4211 4.8182 6.25 2.6101 2.6389 2.4928 
14 American L 7.5263 7.5455 7.5 2.1952 2.3817 2.0702 
15 American N 6.6316 7.6364 5.25 2.4315 1.6293 2.7646 
16 American M 4.6842 5.7273 3.25 2.6045 2.149 2.6049 
17 Japanese A 8.1579 7.9091 8.5 1.7405 2.0715 1.1952 
18 American K2 6.3158 6.6364 5.875 1.8273 1.9117 1.7269 
19 American S 7.4737 7.5455 7.375 1.9542 2.1616 1.7678 
20 Japanese I 6.3684 6.1818 6.625 2.5213 2.6007 2.56 
21 Japanese KI 6.8421 6.8182 6.875 2.4327 2.892 1.8077 
22 Japanese SRI 6.5789 7 6 1.9809 2.1448 1.6903 
23 Japanese SU 5.8947 5.8182 6 2.2827 1.8878 2.8785 
24 J apane..,e KU 8 8.2727 7.625 1.8257 1.9022 1.7678 
25 Japanese U 7.3158 7.3636 7.25 1.5653 1.7477 1.3887 
26 Japanese E 5.8947 5.9091 5.875 1.8825 2.3856 0.99103 
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Table 5: Calculated perceived physical exertion (PPE) Mean and Standard devi­
ation cont .... 

no. Hand dact PPE Female Male PPE Female Male 
Score PPE PPE STD STD STD 

27 Japanese KE 7.3684 7 7.875 2.5649 2.9665 1.9594 
28 Japanese SE 6.1053 5.1818 7.375 2.5143 2.4008 2.1998 
29 Japanese TO 7.4737 7.3636 7.625 1.9824 2.2033 1.7678 
30 Japanese SO 8.7368 9.0909 8.25 1.6614 1.5783 1.7525 
31 Japanese KO 7.5263 7.9091 7 2.0102 1.7581 2.3299 
32 Japanese 0 8.6316 9.1818 7.875 2.0058 1.328 2.5877 
33 Korean K 4.7895 4.6364 5 2.3471 2.6181 2.0702 
34 Korean J 5.4737 5.1818 5.875 2.2698 2.6007 1.8077 
35 Korean N 7.5789 7.7273 7.375 1.9809 2.1019 1.9226 
36 Korean 0 8.2632 8.2727 8.25 1.6945 1.8488 1.5811 
37 French Q 6.8421 7.4545 6 2.2426 2.3394 1.9272 
38 French X 6.8421 7.0909 6.5 1.8032 1.9212 1.6903 
39 French T 5.9474 6.6364 5 2.527 2.6934 2.0702 
40 French E 6.2632 6.8182 5.5 2.922 3.6556 1.3093 
41 French D 6.6316 7.0909 6 2.3854 2.7732 1.6903 
42 French C 8.4211 9.1818 7.375 1.8048 1.1677 2.0659 
43 French M 9.0526 9.2727 8.75 1.2236 1.1909 1.2817 
44 French N 8.7895 8.8182 8.75 1.5484 1.7215 1.3887 
45 Polish C 6.0526 6.6364 5.25 2.2724 2.3779 1.9821 
46 Polish M 7.9474 8.5455 7.125 1.8097 1.4397 2.031 
47 Polish E 7.9474 8.0909 7.75 1.8401 1.8141 1.9821 
48 Irish N 6.3158 6.7273 5.75 1.7014 1.954 1.165 
49 Salaam 6.3158 6 6.75 3.4649 3.873 3.0119 
50 Kubera 5.9474 6.1818 5.625 2.7983 3.4005 1.8468 
51 Japanese TA 9.3158 9.1818 9.5 1.1082 1.328 0.75593 
52 Japanese TA 7.6842 7.6364 7.75 2.8295 2.5796 3.3274 

r 
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Figure 1: Illustrates threshold variance 
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Table 6: Gaussian distribut ion of PPE score 
American A American F American X 

American Y American W American R 

American V American K American D 

American H American G American U 

American P American L 

American M J apanese A American K2 
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Table 7: Gaussian distribution of PPE score 
American S Japanese I Japanese KI 

Japanese SRI Japanese SU Japanese KU 

Japanese U Japanese E Japanese KE 

Japanese SE Japanese TO Japanese SO 

Japanese KO Japanese 0 Korean K 

Korean J Korean N Korean 0 
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.2 Potential shape variation (psv) of gestures 

.2.1 Calculating shape variation 

P_O 
P_M 
l_U 
J_U 
l_TO 
S_B 
~c 
~o 
~K 
A..H 
point 
leN 
~S 

U 
l_KO 
J_KU 
P_E 
thumb 
'_A 
~D 

Cluster IIze 

very large 
large 
medium 
compact 

100 17 4.16 4.16 41.6 0 12.5 12.5 54.2 25 37.5 1!I'4.1' 16.6 8.3 SO 12.5 0 41.6 37.5 0 
16.6 100 4.16 37.5 37.5 66.6 0 62.5 16.6 4.16 20.8 0 4.16 0 4.16 58.3 4.16 SO 45.8 16.6 
4.16 41.6 100 91.6 58.3 SO 0 54.2 0 20.8 0 0 8.3 0 8.3 SO 25 SO 0 41.6 
4.16 37.5 91.6 100 54.2 62.5 0 66.6 8.3 8.3 8.3 0 8.3 0 20.8 66.6 29.2 58.3 8.3 41.6 
41.6 37.5 58.3 54.2 100 SO 12.5 54.2 54.2 58.3 12.5 0 29.2 25 SO 54.2 45.8 58.3 37.5 SO 

o 66.6 SO 62.5 50 100 0 66.6 0 0 0 0 4.16 0 4.16 66.6 0 SO 0 25 
12.5 0 0 0 12.5 0 100 0 0 0 0 0 0 0 20.8 0 0 0 0 0 
12.5 62.5 54.2 66.6 54.2 66.6 0 100 16.6 20.8 12.5 0 16.6 12.5 20.8 79.2 25 54.2 54.2 45.8 
54.2 16.6 0 8.3 54.2 0 0 16.6 100 16.6 SO 0 0 0 37.5 20.8 0 66.6 45.8 0 

25 4.16 20.8 8.3 58.3 0 0 20.8 16.6 100 16.6 0 0 0 SO 12.5 0 58.3 20.8 0 
37.5 20.8 0 8.3 12.5 0 0 12.5 SO 16.6 100 er4.1' 16.6 8.3 16.6 20.8 0 37.5 45.8 0 

!!fit. 1, 0 0 0 0 0 0 0 0 0 1!I'4.1' 100 0 !!fIt.l' 0 0 0 0 0 0 
16.6 4.16 8.3 8.3 29.2 4.16 0 16.6 0 0 16.6 0 100 79.2 0 8.3 4.16 8.3 8.3 29.2 
8.3 0 0 0 25 0 0 12.5 0 0 8.3 1!I'4.1' 79.2 100 0 4.16 0 0 4.16 20.' 
SO 4.16 8.3 20.8 SO 4.2 20.8 20.8 37.5 SO 16.6 0 0 0 100 20.8 0 41.6 20.8 0 

12.5 58.3 50 66.6 54.2 66.6 0 79.2 20.8 12.5 20.8 0 B.3 4.16 20.8 100 12.5 45.8 37.5 25 
o 4.16 25 29.2 45.8 0 0 25 0 0 0 0 4.16 0 0 12.5 100 25 0 41.6 

41.6 50 50 58.3 58.3 50 0 54.2 66.6 58.3 37.5 0 8.3 0 41.6 45.8 25 100 33.3 29.2 
37.5 45.8 0 8.3 37.5 0 0 54.2 45.8 20.8 45.8 0 8.3 4.16 20.8 37.5 0 33.3 100 0 

o 16.6 41.6 41.6 50 25 0 45.8 0 0 0 0 29.2 20.8 0 25 41.6 29.2 0 100 
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Figure 3: Shape resemblance calculated using Mahalanobis Distancinge 
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· Potential shape variation (psv) of gestures 

Table 9: PCA scatterplot (Figure 5) reference table 

Symbol Hand dad GiMI name Classification 
number 

A Korean 0 aok 36 
B Polish M bendh 46 
C Japanes TO clos2 29 
D American U dib2 12 
E Japan U dib 25 
F Spanish B five 43 
G American C nwcc 42 
H Japan 0 ohh 32 
I American V peace 7 
J French N pistol 44 
K Japan SO point 30 
L Korean N pointleft 35 
M American S power 19 
N American A punch 1 
0 Japan KO R 31 
P Japan KU snake 24 

Q Polish E swan 47 
R Japanese TA thumbs 51 
S Japanese A thumside 17 
T American D upone 9 
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· Potential shape variation (psv) of gestures 

Figure 6: Shows the similarities between each GEf hand posture 
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Appdx .3 

.3 Computation analysis code and components 

.3.1 Matlab analysing variance in perceived exertion score 

The following code is used to calculate the mean, standard deviation and Student 

T test score of user study participants . 

. 3.1.1 code 

%%%%%%%%%% 

% %Load data from XML 

usert = xmltree('PSV _PPE_UserData.xml'); 

s = convert ( usert ); 

%s.Data; 

%Patrick = [s. Data. User 1. HandPostures.ASL_A; s.Data.User1.HandPosturcs.ASL_F]; 

%Patrick = [str2num(s.Data.Userl.HandPostures.ASL.A) ; str2num(s.Data.User1.HandPostll 

Patrick = [str2num(s.Data.User1.HandPostures.ASL.A) str2num(s.Data.Uscr1.HandPostures 

Jamie = [str2num(s.Data.User2.HalldPostures.ASL_A) str2num(s.Data.User2.HandPostures.l 

.JaKe = [str2num(s.Data. User3.HandPostures.ASL.A) str2num(s.Data. User3.HalldPostures.A 
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· Computation analysis code and components 

Sinan = [str2num(s.Data.User4.HandPostures.ASL--A) str2num(s.Data.User4.HandPostures)( 

j 
Matthew = [str2num(s.Data.User5.HandPostures.ASL--A) str2num(s.Data.User5.HandPostu 

David = [str2num(s.Data. User6.HandPostures.ASL--A) str2num(s.Data. User6.HandPostures. 

Fraser = [str2num(s.Data.User7.HandPostures.ASL--A) str2num(s.Data.User7.HandPostures.l 

Thomas = [str2num(s.Data. User8.HandPostures.ASL--A) str2num(s.Data. User8.HandPosturc:: 

Scheherezade = [str2num(s.Data.User9.HandPostures.ASL--A) str2num(s.Data.User9.HandPo: 

Emma = [str2num(s.Data.UserlO.HandPostures.ASL--A) str2num(s.Data.UserlO.HandPostur, 

Rose = [str2num(s.Data.Userll.HandPostures.ASL--A) str2num(s.Data.User11.HandPostures .' 

Molly = [str2num(s.Data.Userl2.HandPostures.ASL--A) str2num(s. Data. Userl 2. HandPosture: ! 

Mytro = [str2num(s.Data.User13.HandPostures.ASL--A) str2num(s.Data.User13.HandPostUf( 

Lauren = [str2num(s.Data. User 14.HandPostures.ASL--A) str2num( s.Data. User 14.HandPostur\ 

Abigail = [str2num(s.Data. User15.HandPostures.ASL--A) str2num(s.Data. User15.HandPostlir 

Sanya = [str2num(s.Data.User16.HandPostures.ASL--A) str2num(s.Data.User16.HandPostuf(:\ 

Charlotte = [str2num(s.Data.Userl7.HandPostures.ASL--A) str2num(s.Data.User17.HandPost 

Sophie = [str2num(s.Data. Userl8.HandPostures.ASL--A) str2num(s.Data. Userl8.HandPostun 

Kate = [str2num(s.Data.Userl9.HandPostures.ASL--A) str2num(s.Data.Userl9. HandPostures, 
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· Computation analysis code and components 

%%%%%%% 
%% Initialise variables 

pixhigh = 255; 

nullg = 9; 

altg =10; 

dactNum = 19; 

gesturePPEScore = zeros(52, 19, 'double') 

mahalVal = zeros(19, 19, 'uint32') 

testNull = zeros(19, 19, 'uint32') 

testNulImage = zeros(19, 19, 'uint32') 

cutNullmage = zeros(nullg, nullg, 'uint32') 

AltNullmage = zeros(altg, altg, 'uint32') 

FinalNullmage = zeros(52, 38, 'uint32') 

splitCompareImage = zeros(52,52 , 'uint32') 

GestNull = zeros{52, 52, 'uint32') 

GestNullmage = zeros(52, 52, 'uint32') 

GestpVal = zeros(52, 52, 'double') 

GestmahalVal = zeros(52, 52, 'uint32') 

GestSingleTestNulImage = zeros(52, 52, 'uint32') 

algGestureSTD = zeros(52, 1, 'double') 

nullgGestureSTD = zeros(52, 1, 'double') 

testpVal = zeros(19, 19, 'double') 

testConfI= zeros(19, 19, 'uint32') 

femalePPEScore = zeros(52, 11, 'uint32') 

trimfemalePPEScore = zeros( 52, 8, 'uint32') 

malePPEScore = zeros(52, 8, 'uint32') 

gestureMeanScore = zeros(52, 1, 'double') 

gestureSTDScore = zeros{52, 1, 'double') 
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· Computation analysis code and components 

fgestureMeanScore = zeros(52, 1, 'double') 

mgestureSTDScore = zeros(52, 1, 'double') 

mgestureMeanScore = zeros(52, 1, 'double'} 

fgestureSTDScore = zeros(52, 1, 'double') 

% % % % % % % % Create table to display data 

altgGestureScore = zeros( 52,altg, 'double') 

nullgGestureScore = zeros( 52, nullg,'double') 

%%%%% 

% % Assign memory for arrays I matrices 

for i = 1:52, 

gesturePPEScore(i,l:end)=[Abigail(i) Charlotte(i) David(i) Emma(i) Fraser(i) JaKe(i) Jami(l 

Rose(i) Sanya(i) Scheherezade(i) Sinan{i) Sophie(i) Thomas{i)] 

femalePPEScore(i,l:end)=[Abigail(i) Charlotte(i) Emma(i) Kate(i) Lauren(i) Molly(i) Mytro 

malePPEScore(i,l:end)=[David(i) Fraser(i) JaKe(i) Jamie(i) Matthew(i) Patrick(i) Sinan{i} r 

trimfemalePPEScore(i,l:end)=[Abigail(i) Charlotte(i) Emma(i) Kate(i) Lauren(i) Molly(i) M 
fgestureSTDScore(i,l :end) = std2( femalePPEScore(i, 1 :end)) 

mgestureSTDScore(i,l :end) = std2( malePPEScore(i, 1 :end)) 

fgestureMeanScore(i,l:end) = mean(femalePPEScore(i,l:end)) 

mgestureMeanScore(i,l:end) = mean(malePPEScore(i,l:end)) 

gestureSTDScore(i, 1 :end) = std2(gesturePPEScore(i,1:end)) 

gestureMeanScore(i,l:end) = mean(gesturePPEScore(i,l:end)) 

% b = strread(num2str(gesturePPEScore(i,1:end)),'%r) 

end 

User = cat( 19, [Abigail], [Charlotte], [Emma], [Kate], [Lauren], [Molly], [Mytro], [Rose], [San 

UserNull = cat( nullg, [Emma], [Kate], [Molly], [Rose], [Sanya], [Sophie], [David], [Matthew], 

UserAlt = cat( altg, [Abigail], [Charlotte], [Lauren], [Mytro], [Scheherezade], [Fraser], [JaKe], 

[Thomas]) 

169 



· Computation analysis code and components 

%%%%% (Window) inter cutnull group ttest grid 

%% Compare each member of the (hO) user set and map into image 

for i = 1 :nullg, 

Y= UserNull(:,:,i); 

for k =1:nullg, 

X= UserNull(:,:,k); 

[h,p] = ttest2(Y, X); 

end 

if h == 1 

cutNulImage(i,k) = pixhigh; 

else 

cutNulImage(i,k) = 0; 

end 

end 

%%%%%%%%%%%%%%%%% 

%% Definitive Null calculation the mean of each posture calculated across 

%% the whole user sample 

%for k = 1:19, 

for i = 1:19, 

for j = 1:52, 

%Y = gesturcPPEScore(j,i); 

X= gesturePPEScore(j,k); 

%[h,p] = ttest2(Y, X); 

[h,p] = ttest(X); 

if h == 1 
FinaINulImage(j,i) = pixhigh; 
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· Computation analysis code and components 

else 

FinaINulImage(j,i) = OJ 

end 

end 

end 

%end 

%%%%%%%%%% (window) inter Altnull group ttest grid 

%% Compare each member of the (hI) user set and map into image 

for i = l:altg, 

Y= UserAlt(:,:,i)j 

for k =1:altg, 

X= UserAlt(:,:,k)j 

[h,p] = ttest2(Y, X)j 

end 

if h == 1 

AltNulImage(i,k) = pixhighj 

else 

AltNulImage(i,k) = OJ 

end 

end 

%%%%%%%% 

%% Find the STD of halved test sample 

for i = 1 :altg, 

for k =1:52, 
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· Computation analysis code and components 

altgGestureScore(k,i) = UserAlt(:,k,i); 

end 

end 

for i = 1 :nullg, 

for k =1:52, 

nullgGestureScore(k,i) = UserNull(: ,k,i); 

end 

end 

for k =1:52, 

algGestureSTD (k, 1 :end) = std2( altgGestureScore(k, 1 :end)); 

nullgGestureSTD(k, 1 :end) = std2( nullgGestureScore(k, 1 :end)); 

end 

%%%%%%%% (Window) Compare split set 

%% Create image map that compare the interrelation between Seperated sample 

for i = 1:52, 

for k = 1:52, 

h = ttest2(nullgGestureScore(i,:,1,end),altgGestureScore(k,:,l,end)); 

if h == 1 
splitComparelmage(i,k) = pixhigh; 

else 

splitComparelmage(i,k) = 0; 

end 

end 

end 

%%%%%%%%% 
%% Calculate the mahalanobis distance across sample and do a tteHt across 

%% whole sample 
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· Computation analysis code and components 

for i = 1:19, 

Y = User(:,:,i); 

for k = 1:19, 

x = User(:,:,k); 

nx = size(X, 1); ny = size(Y, 1); m = mean(X); C = cov(X); %mahalanobis calculation 

d = zeros(ny, 1); %mahalanobis calculation 

for j = 1 :ny %mahalanobis calculation 

%size of set in X % size of set in Y 

d(j) = (Y(j,:) - m) / C * (Y(j,:) - m)'; 
end 

[h,p] = ttest2(Y, X); 

testNull(i,k) = h; %t-test null hypothesis that there is no significant discrepencies betw('t' 

%%%%%%%%%%%% (Window) inter group ttest grid 

if h == 1 

pixhigh = 255; 

testNulImage(i,k) = pixhigh; 

else 

testNulImage(i,k) = 0; 

end 

testpVal(i,k) = p; %t-test p value 

% testConfl(i,k)= ci; % confidence interval 

mahaIVal(i,k) = d; %Calculate the mahalanobis distance between participants PPEscore 

173 



· Computation analysis code and components 

end 

end 

%Gest = gesturePPEScore(i,1:end); 

%[hges,pges]=ttest2(Gest); 

%%%%%%%%%% 

%% Create a gesture PPE score matrix 

AmericanA = cat( 19, [Abigail(1)], [Charlotte(1)]' [Emma(1)], [Kate(1)], [Lauren(1)], [Molly( 

AmericanF = cat( 19, [Abigail(2)], [Charlotte(2)]' [Emma(2)], [Kate(2)], [Laurcn(2)], [Molly(: 

AmericanX = cat( 19, [Abigail(3)], [Charlotte(3)], [Emma(3)], [Kate(3)], [Lauren(3)], [Molly(. 

AmericanY = cat( 19, [Abigail(4)], [Charlotte(4)], [Emma(4)], [Kate(4)], [Lauren(4)], [Mollye 

AmericanW = cat( 19, [Abigail(5)], [Charlotte(5)], [Emma(5)], [Kate(5)], [Laurcn(5)]' [Molly ( 

AmericanR = cat( 19, [Abigail(6)], [Charlotte(6)], [Emma(6)], [Kate(6)], [Lauren(6)]' [Molly(, 

AmericanV = cat( 19, [Abigail(7)], [Charlotte(7)], [Emma(7)], [Kate(7)], [Laurcn(7)], [Molly( 

AmericanK = cat( 19, [Abigail(8)], [Charlotte(8)], [Emma(8)], [Kate(8)], [Laurcn(8)], [Molly( 

AmericanD = cat( 19, [Abigail(9)], [Charlotte(9)], [Emma(9)], [Kate(9)], [Laurcn(9)], [Molly( 

AmericanH = cat( 19, [Abigail(lO)], [Charlotte(lO)]' [Ernma(lO)], [Kate(lO)], [Lauren(lO)], [I\ 
AmericanG = cat{ 19, [Abigail{ll)], [Charlotte{ll)]' [Emma{ll)]' [Katc{ll)]' [Lauren{ll)]' [I\ 
AmericanU = cat{ 19, [Abigail(12)]' [Charlotte(12)]' [Emma(12)]' [Kate(12)]' [Lauren(12)]' [I\ 
AmericanP = cat( 19, [Abigail(13)], [Charlotte(13)]' [Emma(13)], [Kate(13)], [Lauren(13)], [f\ 
AmericanL = cat( 19, [Abigail(14)], [Charlotte(14)]' [Emma(14)], [Kate(14)], [Laurcn(14)]' [f\; 
AmericanN = cat( 19, [Abigail(15)], [Charlotte(15)]' [Emma(15)], [Katc(15)], [Laurcn(15)], [I\ 
AmericanM = cat( 19, [Abigail(16)], [Charlottc(16)]' [Emma(16)], [Katc(16)], [Lauren(16)]' [~ 

JapaneseA = cat( 19, [Abigail(17)], [Charlotte(17)], [Emma(17)], [Kate(17)], [Luurcn(17)]' [M 
AmericanK2 = cat( 19, [Abigai1(18)], [Charlottc(18)], [Emma(18)], [Kate(18)], [Laurcn(18)], [ 

AmericanS = cat( 19, [Abigail(19)], [Charlottc(19)]' [Emma(19)], [Katc(19)], [Laurcll(19)], [N 
JapaneseI = cat( 19, [Ahigail(20)], [Charlotte(20)]' [Emma(20)], [Katc(20)], [Lauren(20)], [Me 
JapaneseKI = cat( 19, [Abigail(21)], [Chariotte(21)]' [Emma(21)], [Kate(21)]' [Laurell(21)], [~ 
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· Computation analysis code and components 

JapaneseSHI = cat( 19, [Ahigail(22)], [Charlotte(22)]' [Emma(22)], [Kate(22)]' [Lauren(22)],. 

JapaneseSU = cat( 19, [Ahigail(23)], [Charlotte(23)]' [Emma(23)], [Kate(23)]' [Lauren(23)]' ~ 
JapaneseKU = cat( 19, [Ahigail(24)], [Charlotte(24)], [Emma(24)], [Kate(24)], [Lauren(24)]' j 
JapaneseU = cat( 19, [Ahigail(25)], [Charlotte(25)]' [Emma(25)], [Kate(25)]' [Lauren(25)]' [' 

JapaneseE = cat( 19, [Ahigail(26)], [Charlotte(26)]' [Emma(26)], [Kate(26)]' [Lauren(26)], [ 

JapaneseKE = cat( 19, [Ahigail(27)], [Charlotte(27)], [Emma(27)], [Kate(27)], [Lauren(27)]' [ 

JapaneseSE = cat( 19, [Ahigail(28)], [Charlotte(28)]' [Emma(28)], [Kate(28)], [Lauren(28)]' [ 

JapaneseTO = cat( 19, [Ahigail(29)], [Charlotte(29)], [Emma(29)], [Kate(29)]' [Lauren(29)], [ 

JapaneseSO = cat( 19, [Ahigail(30)], [Charlotte(30)], [Emma(30)], [Kate(30)], [Lauren(30)], [, 

JapaneseKO = cat( 19, [Ahigail(31)], [Charlotte(31)]' [Emma(31)], [Kate(31)], [Lauren(31)], r: 
JapaneseO = cat( 19, [Ahigail(32)], [Charlotte(32)]' [Emma(32)], [Kate(32)], [Lauren(32)], [Ml 
KoreanK = cat( 19, [Ahigail(33)], [Charlotte(33)], [Emma(33)], [Kate(33)], [Lauren(33)], [Mo 

KoreanJ = cat( 19, [Ahigai1(34)], [Charlotte(34)]' [Emma(34)], [Kate(34)]' [Lauren(34)], [Mol 

KoreanN = cat( 19, [Ahigail(35)], [Charlotte(35)], [Emma(35)], [Kate(35)], [Lauren(35)], [M 

KoreanO = cat( 19, [Ahigail(36)], [Charlotte(36)], [Emma(36)], [Kate(36)], [Lauren(36)], [Me 

FrenchQ = cat( 19, [Ahigail(37)], [Charlotte(37)]' [Emma(37)], [Kate(37)], [Lauren(37)], [Mo 

FrenchX = cat( 19, [Ahigail(38)], [Charlotte(38)], [Emma(38)], [Kate(38)], [Lauren(38)], [Mol 

FrenchT = cat( 19, [Ahigail(39)], [Charlotte(39)], [Emma(39)], [Kate(39)], [Lauren(39)], [Mol 

FrenchE = cat( 19, [Ahigail(40)], [Charlotte(40)], [Emma(40)], [Kate(40)], [Lauren(40)], [Mol, 

FrenchD = cat( 19, [Ahigail(41)], [Charlotte(41)]' [Emma(41)], [Kate(41)], [Lauren(41)]' [Mol, 

FrenchC = cat( 19, [Ahigail(42)], [Charlotte(42)]' [Emma(42)], [Kate(42)], [Lauren(42)], [Mo~ 

FrenchM = cat( 19, [Ahigail(43)], [Charlotte(43)]' [Emma(43)], [Kate(43)], [Lauren(43)], [M~' 

FrenchN = cat( 19, [Ahigail(44)], [Charlotte(44)], [Emma(44)], [Kate(44)], [Lauren(44)], [Mol 

PolishC = cat( 19, [Ahigail(45)], [Charlotte(45)]' [Emma(45)], [Kate(45)], [Lauren(45)]' [Moll 

PolishM = cat( 19, [Ahigail(46)], [Charlotte(46)]' [Emma(46)], [Kate(46)]' [Lauren(46)]' [Moll 

PolishE = cat( 19, [Ahigail(47)], [Charlotte(47)]' [Emma(47)], [Kate(47)]' [Lauren(47)], [MollJ 

lrishN = cat( 19, [Ahigail(48)]' [Charlotte(48)]' [Emma(48)], [Kate(48)]' [Lauren(48)], [Mollyl' 

Salaam = cat( 19, [Ahigail(49)]' [Charlotte(49)]' [Emma(49)], [Kate(49)], [Lauren(49)], [Mol!)! 

Kuhera = cat( 19, [Ahigail(50)], [Charlotte(50)], [Emma(50)], [Kate(50)], [Lauren(50)], [Mon: 

JapaneseTA = cat( 19, [Ahigail(51)], [Charlotte(51)]' [Emma(51)], [Kate(51)], [Lauren(51)], [ 

JapaneseTArev = cat( 19, [Ahigail(52)], [Charlotte(52)]' [Emma(52)], [Kate(52)]' [Lauren(52), 

% Gest = gesturePPEScore(i,:); 
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· Computation analysis code and components 

% [hges,pges] =ttest{ Gest ); 

Gestures = cat{ 52,[AmericanA{:)], [AmericanF{:)],[AmericanX{:)], [AmericanY{:)] , [Americal 

%%%%%% 

%% Build image to compare the variance of PPE score 

for i = 1:52, 

Y = Gestures{:,:,i); 

for k = 1:52, 

x = Gestures{:,:,k); 

nx = size{X, 1); ny = size{Y, 1); m = mean{X); C = cov{X); %mahalanobis calculation 

d = zeros{ny, 1); %mahalanobis calculation 

for j = 1:ny %mahalanobis calculation 

%size of set in X % size of set in Y 

d(j) = (Y(j,:) - m) / C * (Y(j,:) - m)'; 

end 

%[h,p,ci,stats] = ttest2{Y, X,[],[]"unequal'); 

[h] = ttest2{Y, X,[],[],'unequal'); 

%testNull{i,k) = h; %t-test null hypothesis that there is no significant discrepencies betw 

% [h2,p2,ci2,stats2]=ttest{Y) 

[h2] . ttest{Y); 

if h == 1 

pixhigh = 255; 

GestNulImage{i,k) = pixhigh; 

else 
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· Computation analysis code and components 

GestNulImage(i,k) = 0; 

end 

if h2 == 1 

GestSingleTestNulImage(i,k) = pixhigh; 

else 

GestSingleTestNulImage(i,k) = 0; 

end 

% GestpVal(i,k) = p; %t-test p value 

% testConfl(i,k)= ci; % confidence interval 

% GestmahaIVal(i,k) = d; %Calculate the mahalanobis distance between participants PPE 
end 

end 

%%%%%%% 

% % Display images 

figure('name','Gesture ttest grid'); 

colormap(gray) 

image( GestN ullmage) 

figure(' name' , 'Definitive ttest grid'); 

colormap(gray) 

image(FinalN ullmage) 

figure('name','Compare split set'); 

colormap(gray) 

image(splitCompareImage) 
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· Computation analysis code and components 

figure('namc', 'Gesture Mahalanobis'); 

colormap( cool) 

image ( GestmahalVal) 

figure('name','Gesture Single ttest grid'); 

colormap(gray) 

image( GestSingleTestN ullmage) 

figure('name' ,'inter group ttest grid'); 

colormap(hot) 

image( testN ullmage) 

figure(,name','inter cutnull group ttest grid'); 

colormap(gray) 

image ( cutN ullmage) 

figure ('name' ,'inter Altnull group ttest grid'); 

colormap(gray) 

image ( AltN ullmage) 

figure(' name , , 'Mahalanobis'); 

color map ( cool) 

image ( mahalVal) 

%write the column headers first 

S3 = cat(2, gestureMeanScore , gestureSTDScore); 

S4 = cat(2, fgestureMeanScore , mgestureMeanScore); 

S5 = cat(2, fgestureSTDScore , mgestureSTDScore); 

S6 = cat(l, testNull); 

S7 = cat(l, testpVal); 

S8 = cat(l, mahaIVal); 

S9 = cat(2, altgGestureScore, nullgGestureScore); 
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· Computation analysis code and components 

SlO= cat(2, algGestureSTD, nullgGestureSTD); 

%%%%%%%%% 

%write the data directly underneath the column headers 

%% Create cSV / XSL spreadsheets 

xlswrite(,GEfPPEScoreAv.xls', 83 ); 

xlswrite(,GEfGender8coreDiff.xls', 84 ); 

xlswrite(,GEfGenderSTDDiff.xls', 85 ); 

xlswrite(,GEfUserttest.xls', 86 ); 

xlswrite('GEfUserpval.xls', S7 ); 

xlswrite(,GEfMahal.xls', 88 ); 

xlswrite('Group8plit.xls', S9 ); 

xlswrite('GroupSplitSTD.xls', 810 ); 

%h = ttest2(trimfemalePPE8core, malePPEScore); 

%xlswrite(,myDataFile.xls', gesture8TD8core,'Sheetl','A2'); 

%xlswrite(,myDataFile.xls', gestureMeanScore, 'Sheetl',' A3'); 

%%%%%%%%%%%% t(l,l:end) this command will display the array of ppe 

%%%%%%%%%%%% score the American A posture 

%%% b = strread(num2str(gesturePPE8core(i,l:end)),'%r) Convert to 

%%% float 

%% histfit(b) display normal distribution histograph 

%%%% 

%% 

.3.2 Matlab analysing Potential Shape difference using 

peA 

The following code was written in order to calculate the range of shape variance 

exhibited by a broad range of people replicating specific gestures. 8ince patterns 
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· Computation analysis code and components 

in data can be hard to find in data of high dimension PCA has been used . 

. 3.2.1 code 

function a2_currenLupdateJIlakeAILscatterplot( filelist) 

%%Plots comparative PCA values of the GEF dataset 

% 
% 
%To Execute type aLcurrenLupdate_pcallands into terminal 

% 

% Images = []; 

w=40; h=40; 

% Open input file 

fprintf(I,'Read directory name.\n'); 

numimgs = 11; 

% fid = fopen('filelist','r'); 

aok_id = fop en (,filelists / aoklilelist' , 'r'); 

bendjd = fopen(,filelists/bendhJilelist', 'r'); 

closjd = fopen (,filelists / clos2 _filelist' ,'r'); 

dibJd = fopen('filelists/dibJilclist', 'r'); 

dib2nJd = fopen(,filelists/dib2nd_filelist' ,'r'); 

fiveJd = fopen(,filelists/fivcJilelist', 'r'); 

nwccJd = fopen(,filelists/nwccJilelist', 'r'); 

ohhJd = fopen (,filelists / ohhJilelist' , 'r') ; 

peaceJd = fopen(,filelists/peaceJilelist', 'r'); 

pistoUd = fopen('filelists/pistoLfilelist' ,'r'); 

pointJd = fopen(,filelists/poinLRJilelist', 'r'); 
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· Computation analysis code and components 

pointLJd = fopen(,filelists/pointleftJilelist','r'); 

power Jd = fopen('filelists I power Jilelist' , 'r '); 

punchJd = fopen('filelists I punchJilelist', 'r'); 

rJd = fopen('filelists/rJilelist','r'); 

snake_id = fopenCfilelistsl snake.1ilelist', 'r'); 

swanJd = fopen (,filelists I swanJilelist' , 'r'); 

thumbJd = fopen(,filelists/thumbsJilelist' ,'r'); 

thumbsidJd = fopen( 'filelists I thumbside.1ilelist' , 'r'); 

uponeJd = fopen(,filelists/upone.1ilelist','r'); 

91091011111111111111111111111111111111111111111111111111111111111111111111111 
91091011111111111111111111111111111111111111111111111111111111111111111111111 
if aokJd < 0 II numimgs < 1 
error(['Cannot get list of images from file'" filelist, ""]); 

end; 

910 Get the images 

aok.Jmages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(aokJd)j 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname)j 

% Images(l:w*h,i) = reshape(Img',w*h,l); 910 Make a column vector 

aok_Images(l:w*h,i) = reshape(Img',w*h,l); 910 Make a column vector 

end; 

fclose(aokJd); % Close the filelist when done 

fprintf(l,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 
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· Computation analysis code and components 

91091011111111111111111111111111111111111111111111111111111111111111111111111 
9109101111111111111111111111111111111111111111111111111111111111111111/////// 

if bend.id < 0 II numimgs < 1 

error(['Cannot get list of images from file ,,, filelist, ""l); 

end; 

910 Get the images 

bendJ:mages = zeros(w*h,numimgs); 910 - preallocate size of the return matrix 

for i = l:numimgs 

imgname = fget1(bend.id); 

fprintf(l,'loading PGM file %s\n',imgname); 

91owritepgm(imgname); 910 Read this image as a 2D array 

910 

Img = imread(imgname); 

910 Images(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

bendJ:mages(l:w*h,i) = reshape(Img',w*h,I); 910 Make a column vector 

end; 

fclose(bend.id); 910 Close the filelist when done 

fprintf(I,'Read 910d images.\n' ,numimgs); 

910 The function returns the output arguments Images, w, and h here. 

910910//11///111/1/11//11111/1//111/11///1/11/11/1/11///11/1///11/11///11///1 

if clos.id < 0 II numimgs < 1 

error(['Cannot get list of images from file ,,, filelist, ""l); 

end; 

910 Get the images 

closJ:mages = zeros(w*h,numimgs); % - preallocate size of the return matrix 
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for i = 1 :numimgs 

imgname = fgetl(closJd); 

· Computation analysis code and components 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

closJmages(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 

fclose( closjd); % Close the filelist when done 

fprintf(l,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%1111111111111111111111111111111111111111111111111111IIIIIIIIIIIIIIIIIII 
%%1111111111111111111111111111111111111111111111111111IIIIIIIIIIIIIIIIIII 
if dibjd < 0 II numimgs < 1 

error(['Cannot get list of images from file ,,, filelist, ""]); 

end; 

% Get the images 

dibJ:mages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl( dib_id); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = irnread (irngname); 

% Images(l:w*h,i) = reshape(Irng',w*h,l); % Make a column vector 

dibJ:mages(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 

fclose(dibjd); % Close the filelist when done 
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· Computation analysis code and components 

fprintf(l,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////////////////////////////////// 
if dib2njd < 0 II numimgs < 1 
error(['Cannot get list of images from file ", filelist, ""J); 

end; 

% Get the images 

dib2n.lmages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(dib2njd); 

fprintf(l,'loading PGM file %s\n' ,imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread (imgname ); 

% Images(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

dib2nJ:mages(1:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 
fclose( di b2njd); % Close the filelist when done 

fprintf(l,'Read %d images.\n',llumimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////////////////////////////////// 
if five_id < 0 II numimgs < 1 

error(['Cannot get list of images from file'" filelist, '" 'J); 
end; 

% Get the images 

five_Images = zeros(w*h,numimgs); % - preallocate size of the return matrix 
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for i = 1 :numimgs 

imgname = fgetl(fiveJd); 

· Computation analysis code and components 

fprintf(I,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

fiveJ:mages(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 

fclose(fiveJd); % Close the filelist when done 

fprintf(l,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%1111111111111111111111111111111111111111111111111111IIIIIIIIIIIIIIIIIII 
%%1111111111111111111111111111111111111111111111111111IIIIIIIIIIIIIIIIIII 
if nwccJd < 0 II numimgs < 1 
error(['Cannot get list of images from file ,,, filelist, ""]); 

end; 

% Get the images 

nwccJ:mages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = l:numimgs 

imgname = fgetl(nwccJd); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

nwccJ:mages(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

end; 

fdose(nwccJd); % Close the filelist when done 
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· Computation analysis code and components 

fprintf(1,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////////////////////////////////// 
if ohhJd < 0 II numimgs < 1 
error(['Cannot get list of images from file'" filelist, ""]); 

end; 

% Get the images 

ohh.J:mages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 
imgname = fgetl(ohhjd); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(1:w*h,i) = reshape(Img',w*h,1); % Make a column vector 

ohh.J:mages(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 
fclose(ohhjd); % Close the filelist when done 

fprintf(1,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 
%%/////////////////////////////////////////////////////////////////////// 
if peacejd < 0 II numimgs < 1 
error(['Cannot get list of images from file ,,, filelist, ""]); 

end; 

% Get the images 

peace.J:mages = zeros(w*h,numimgs); % - preallocate size of the return matrix 
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· Computation analysis code and components 

for i = l:numimgs 

imgname = fgetl(peaceJd); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 
0% 

Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

peace_Images(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 

fclose(peaceJd); % Close the filelist when done 

fprintf(l,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////////////////////////////////// 
if pistolJd < 0 II numimgs < 1 
error(['Cannot get list of images from file '" filelist, ""]); 

end; 

% Get the images 

pistoLlmages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(pistolJd); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writcpgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,l)i % Make a column vector 

pistoLImages(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 

fdose(pistolJd); % Close the filelist when done 
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· Computation analysis code and components 

fprintf(I,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%///////////////////////11111111111111111//1/1//1/1//1111111111///////// 
if pointJd < 0 II numimgs < 1 
error(['Cannot get list of images from file'" filelist, ""]); 

end; 

% Get the images 

point-..lmages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(pointJd); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

point-Images(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

end; 

fclose(poinLid); % Close the filelist when done 

fprintf( 1, 'Read %d images. \n' ,numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////////////////////////////////// 
if pointLJd < 0 II numimgs < 1 

error(['Cannot get list of images from file'" filelh;t, ""]); 

end; 

% Get the images 

pointL-..Images = zeros(w*h,numimgs); % - preallocate sille of the return matrix 
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· Computation analysis code and components 

for i = 1 :numimgs 

imgname = fgetl(pointLJd); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

pointLJ:mages(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 

fclose(pointLJd); % Close the filelist when done 

fprintf(1,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 
%%/////////////////////////////////////////////////////////////////////// 
if power Jd < 0 II numimgs < 1 
error(['Cannot get list of images from file ,,, filelist, ""]); 

end; 

% Get the images 

power.Jmages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(powerJd); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread (imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

power.Jmages(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

end; 

fclose(powerJd); % Close the filelist when done 
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· Computation analysis code and components 

fprintf( 1, , Read %d images. \ n' , numimgs ); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////////////////////////////////// 
if punch_id < 0 II numimgs < 1 
error(['Cannot get list of images from file'" filelist, ""]); 

end; 

% Get the images 

punch~mages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(punchJd); 

fprintf(1,'loading PGM file %s\n' ,imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(1:w*h,i) = reshape(Img',w*h,1); % Make a column vector 

punch~mages(1:w*h,i) = reshape(Img',w*h,1); % Make a column vector 

end; 
fclose(punchJd); % Close the filelist when done 

fprintf(1,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 
%%/////////////////////////////////////////////////////////////////////// 
if rJd < 0 II numimgs < 1 
error(['Cannot get list of images from file ,,, filelist, ""]); 

end; 

% Get the images 
r~mages = zeros(w*h,numimgs); % - preallocate size of the return matrix 
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for i = 1 :numimgs 

imgname = fgetl(rjd); 

· Computation analysis code and components 

fprintf(1,'loading PGM file %s\n',imgname); 

%writepgm(imgnarne); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(1:w*h,i) = reshape(Img',w*h,1); % Make a column vector 

rJmages(1:w*h,i) = reshape(Img',w*h,1); % Make a column vector 

end; 

fclose(rjd); % Close the filelist when done 

fprintf(1,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%11111111111111111111111111111111111111111111111111111111111111111111111 
%%11111111111111111111111111111111111111111111111111111111111111111111111 
if snakejd < 0 II numimgs < 1 

error(['Cannot get list of images from file'" filelist, ""J); 

end; 

% Get the images 

snakeJmages = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(snake_id); 

fprintf(1,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(1:w*h,i) = reshape(lmg',w*h,1); % Make a column vector 

snakeJmages(1:w*h,i) = reshape(lmg',w*h,1); % Make a column vector 

end; 

fclose(snakejd); % Close the filelist when done 
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· Computation analysis code and components 

fprintf(l,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////111111111111111111111111111111 

if swanJ.d < 0 II numimgs < 1 

error(['Cannot get list of images from file'" filelist, ""]); 

end; 

% Get the images 

swan_Images = zeros(w*h,numimgs); % - preallocate size of the mtllrn matrix 

for i = 1 :numimgs 

imgname = fgetl(swanJ.d); 

fprintf(l,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,l); % Make a column vector 

swanJmages(l:w*h,i) = reshape(Img' ,w*h,l); % Make a column vector 

end; 

fclose(swanJ.d); % Close the filelist when done 

fprintf{l,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%/////////////////////////////////////////////////////////////////////// 
%%/////////////////////////////////////////////////////////////////////// 

if thumb_id < 0 II numimgs < 1 

error{['Cannot get list of images from file'" filelist, ""]); 

end; 
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· Computation analysis code and components 

% Get the images 

thumb_Images = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(thumbjd); 

fprintf(I,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

thumbJ:mages(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

end; 

fclose(thumbjd); % Close the filelist when done 

fprintf(I,'Read %d images.\n' ,numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%1111111111111111111111111111111111111111111111111111IIIIIIIIIIIIIIIIIII 
%%1111111111111111111111111111111111111111111111111111IIIIIIIIIIIIIIIIIII 

if thumbsidjd < 0 II numimgs < 1 

error(['Cannot get list of images from file'" filelist, ""J); 
end; 

% Get the images 

thumbsidJ:mages = zeros ( w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(thumbsidjd); 

fprintf(I,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 

thumbsidJ:mages(l:w*h,i) = reshape(Img',w*h,I); % Make a column vector 
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· Computation analysis code and components 

end; 

fclose(thumbsidJd); % Close the filelist when done 

fprintf(I,'Read %d images.\n',numimgs); 

% The function returns the output arguments Images, w, and h here. 

%%1111111111111111111111111111111111111111111111111111/1//11//11/1/////// 
%%1111111111111111111111/11/111111111111111111111/11111111/11111111111111 
if uponeJd < 0 II numimgs < 1 

error(['Cannot get list of images from file'" filelist, ""]); 

end; 

% Get the images 

upone..Images = zeros(w*h,numimgs); % - preallocate size of the return matrix 

for i = 1 :numimgs 

imgname = fgetl(uponeJd)i 

fprintf(I,'loading PGM file %s\n',imgname); 

%writepgm(imgname); % Read this image as a 2D array 

% 
Img = imread(imgname); 

% Images(l:w*h,i) = reshape(Img',w*h,l)i % Make a column vector 

uponeJ:mages(l:w*h,i) = reshape(Img',w*h,l)i % Make a column vector 

end; 

fclose(uponeJd); % Close the filelist when done 

fprintf(l, 'Read %d images. \n' ,numimgs)i 

% The function returns the output arguments Images, w, and h here. 

%%1111111111111/11/////1/1//1111///1////////////1111/////////1/////////// 
%%111111111////1111///111111111/1/11/1111111///1111//////111///////////// 
[aok_ Vecs,aok_ Vals,aok-Psi] = pc_evectors( aok_Images, 11) 

[bend_ Vecs, bend_ Vals,aok_Psi] = pc_evectors(bendJ:mages, 11) 

[clos_Vecs,clos_Vals,closJ'si] = pc_evectors( closJ:mages,ll) 
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· Computation analysis code and components 

[dib_ Vecs,dib_ Vals,dib_Psi] = pc_evectors( dib.lmages, 11) 

[dib2n_ Vecs,dib2n_ Vals,dib2n-Psi] = pc_evectors( dib2n_Images, 11) 

[five_ Vecs,five_ Vals,five_Psi] = pc_evectors( five.lmages, 11) 

[nwcc_ Vecs,nwcc_ Vals,nwcc_Psi] = pc_evectors(nwcc.lmages, 11) 

[ohh_Vecs,ohh_ Vals,ohh-Psi] = pc_evectors( ohh-I mages , 11) 

[peace_ Vecs,peace_ Vals,peace_Psi] = pc_evectors(peace.lmages, 11) 

[pistoL Vecs,pistoLVals,pistoLPsi] = pc_evectors(pistol.lmages, 11) 

[point_ Vecs,poinL Vals,poinLPsi] = pc_evectors(point-Images, 11) 

[pointL_ Vecs,pointL_ Vals,pointL-Psi] = pc_evectors(pointL-Images, 11) 

[power _ Vecs,poweL Vals,power _Psi] = pc_evectors(power -Images, 11) 

[punch_ Vecs,punch_ Vals,punch_Psi] = pc_evectors(punch.lmages, 11) 

[r_Vecs,LVals,r-Psi] = pc_evectors(r.lmages,l1) 

[snake_ Vecs,snake_ Vals,snake_Psi] = pc_evectors( snake.lmages, 11 ) 

[swan_Vecs ,swan_Vals ,swan_Psi] = pc_evectors(swan-Images,l1) 

[thumb_ Vecs, thumb_ Vals, thumb_Psi] = pc_evectors( thumb.lmages, 11) 

[thumbsid_ Vecs, thumbsid_ Vals, thumbsid_Psi] = pc_evectors( thumbsid.lmages,ll) 

[upone_ Vecs,upone_ Vals, up one_Psi] = pc_evectors( upone-Images, 11) 

910910/////////////////////////////////////////////////////////////////////// 

910 plot (aok_ Vals); 

aok_CVals = zeros(I,length(aok_Vals)); 

aok_CVals(l) = aok_Vals(I); 

for i = 2:length(aok_Vals) 910 Accumulate the eigenvalue sum 

aok_CVals(i) = aok_CVals(i-l) + aok_Vals(i); 

end; 

aok_CVals = aok_CVals / sum(aok_Vals); 

910910/////////////////////////////////////////////////////////////////////// 
%plot(bend_Vals)j 

bend_CVals = zeros(I,length(bend_Vals))j 

bend_CVals{l) = bend_Vals{l)j 

for i = 2:length(bend_Vals) 910 Accumulate the eigenvalue sum 

bend_CVals(i) = bend_CVals(i-l) + bend_Vals(i); 
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· Computation analysis code and components 

end; 

bend_CVals = bend_CVals I sum(bend_Vals); 

~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

~plot( clos_Vals); 

dos_CVals = zeros(I,length(clos_Vals))j 

dos_CVals(1) = clos_Vals(1); 

for i = 2:length(clos_Vals) % Accumulate the eigenvalue sum 

dos_CVals(i) = dos_CVals{i-1) + clos_Vals{i)j 

end; 

clos_CVals = clos_CVals I sum(clos_Vals)j 

~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII111111111111111111/ 
~plot{dib_Vals); 

dib_CVals = zeros(1,length(dib_Vals))j 

dib_CVals(1) = dib_Vals(1); 

for i = 2:length(dib_Vals) % Accumulate the eigenvalue sum 

dib_CVals(i) = dib_CVals(i-1) + dib_Vals(i); 

end; 

dib_CVals = dib_CVals I sum(dib_Vals)j 

~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

~plot{ dib2n_Vals); 

dib2n_CVals = zeros(l,length{ dib2n_Vals))j 

dib2n_CVals(1) = dib2n_Vals(1); 

for i = 2:length{ dib2n_Vals) % Accumulate the eigenvalue SUIn 

dib2n_CVals{i) = dib2n_CVals(i-1) + dib2n_Vals{i); 

end; 

dib2n_CVals = dib2n_CVals I sum{ dib2n_Vals)j 

~~IIIIIIIIIIIIII/i///IIII///i/I/IIIIII/IIIIIII/IIIIII/11/111//11/111///11 
%plot(five_Vals); 

five_CVals = zeros{1,length{five_Vals)); 

five_CVals(1) = five_Vals(1); 

for i = 2:length{five_Vals) % Accumulate the eigenvalue sum 
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· Computation analysis code and components 

fiWLCVals(i) = five_CVals(i-1) + five_Vals(i); 
end; 

five_CVals = five_CVals / sum{five_Vals); 

910910/////////////////////////////////////////////////////////////////////// 
91oplot (nwcc_ Vals ); 

nwce-CVals = zcros{l,length(nwce_Vals»; 

nwce-CVals(l) = nwcc_Vals(l); 

for i = 2:length(nwcc_Vals) % Accumulate the eigenvalue sum 

nwee-CVals(i) = nwcc_CVals{i-l) + nwcc_Vals(i); 
end; 

nwcc-CVals = nwcc_CVals / sum{nwcc_Vals); 

910910/////////////////////////////////////////////////////////////////////// 
910 plot{ohh_Vals); 

ohh_CVals = zeros{l,length(ohh_Vals»; 

ohh_CVals{l) = ohh_Vals{l); 

for i = 2:length(ohh_Vals) % Accumulate the eigenvalue sum 

ohlLCVals{i) = ohh_CVals(i-1) + ohh_Vals(i); 

end; 

ohh_CVals = ohh_CVals / sum{ohh_Vals); 

910910/////////////////////////////////////////////////////////////////////// 
% plot (peace_Vals); 

pcace_CVals = zeros{l,length(peace_Vals»; 

peace_CVals{l) = peace_Vals(1); 

for i = 2:length(peaee_Vals) % Accumulate the eigenvalue sum 

peace_CVals(i) = peacc_CVals(i-l) + peace_Vals{i); 

end; 

peace_CVals = peace_CVals / sum{peace_Vals); 

%%/////////////////////////////////////////////////////////////////////// 
%plot(pistoLVals ); 

pistoLCVals = zeros(l,length(pistoLVals»; 

pistoLCVals(l) = pistoLVals(l); 

for i = 2:length(pistoLVals) % Accumulate the eigenvalue sum 

pistoLCVals{i) = pistoLCVals{i-1) + pistoLVals(i); 
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· Computation analysis code and components 

end; 

pistoLCVals = pistoLCVals I sum(pistoLVals); 

~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
~plot (pointL_ Vals); 

pointL_CVals = zeros{l,length{pointL_Vals)); 

pointL_CVals{l) = pointL_Vals(l); 

for i = 2:length{pointL_Vals) ~ Accumulate the cigcnvalue sum 

pointL_CVals{i) = pointL_CVals{i-1) + pointL_Vals{i); 

end; 

pointL_CVals = pointL_CVals I sum(pointL_Vals); 

~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
~plot{poweLVals); 

power_CVals = zeros{l,length{poweLVals)); 

poweLCVals{l) = poweLVals{I); 

for i = 2:length(power_Vals) ~ Accumulate the eigenvalue sum 

poweLCVals{i) = power_CVals(i-l) + power_Vals(i); 

end; 

poweLCVals = poweLCVals I sum(poweLVals); 

~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
~plot{punch_Vals); 

punch_CVals = zeros{I,length(punch_Vals)); 

punch_CVals(l) = punclLVals(I); 

for i = 2:length{punch_Vals) % Accumulate the eigenvalue sum 

punch_CVals{i) = pUIlch_CVals(i-1) + punch_Vals{i); 

end; 

punch_CVals = punch_CVals I sum(puIlch_Vals); 

~~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
~plot{r_Vals); 

LCVals = zeros(I,length(LVals)); 

LCVals(l) = LVals(1); 

for i = 2:length(LVals) ~ Accumulate the eigenvalue sum 

LCVals(i) = LCVals{i-1) + LVals{i); 

end; 
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· Computation analysis code and components 

LCVals = r_CVals / sum(LVals); 

910910/////////////////////////////////////////////////////////////////////// 
910 plot{r_Vals); 

snake_CVals = zeros{l,length{snake_Vals)); 

snake_CVals(1) = sllake_Vals(l); 

for i = 2:length{snake_Vals) 910 Accumulate the eigenvalue sum 

snake_CVals{i) = snake_CVals{i-1) + snake_Vals{i); 

end; 

snake_CVals = snake_CVals / sum{snake_Vals); 

910910/////////////////////////////////////////////////////////////////////// 
910 plot{swan_Vals); 

swan_CVals = zeros{l,length{swan_Vals)); 

swan_CVals{l) = swan_Vals{l); 

for i = 2:length{swan_Vals) 910 Accumulate the eigenvalue sum 

swan_CVals{i) = swan_CVals{i-1) + swan_Vals{i); 

end; 

swan_CVals = swan_CVals / sum(swan_Vals); 

910910/////////////////////////////////////////////////////////////////////// 
910 plot{thumb_Vals); 

thumb_CVals = zeros(1,length(thumb_Vals)); 

thumb_CVals{l) = thumb_Vals(1); 

for i = 2:length(thumb_Vals) 910 Accumulate the eigenvalue sum 

thumb_CVals{i) = thumb_CVals(i-1) + thumb_Vals(i); 

end; 

thumb_CVals = thumb_CVals / sum{thumb_Vals); 

910910/////////////////////////////////////////////////////////////////////// 
91oplot ( thumbsid_ Vals); 

thumbsid_CVals = zcros{l,length(thumbsid_Vals)); 

thumbsid_CVals{l) = thumbsid_Vals(1); 

for i = 2:length{thumbsid_Vals) 910 Accumulate the eigenvalue sum 

thumbsid_CVals{i) = thumbsid_CVals{i-1) + thumbsid_Vals(i); 

end; 

thumbsid_CVals = thumbsid_CVals / sum{thumbsid_Vals); 
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· Computation analysis code and components 

91091011111111111111111111111111111111111111111111111111111111111111111111111 
91oplot( upone_Vals); 

upone_CVals = zeros(l,length(upone_Vals)); 

upone_CVals(l) = upone_Vals(l); 

for i = 2:length(upone_Vals) 910 Accumulate the eigenvalue sum 

upone_CVals(i) = upone_CVah;(i-l) + upone_Vals(i); 

end; 

upone_CVals = upone_CVals I sum(upone_Vals); 

91091011111111111111111111111111111111111111111111111111111111111111111111111 
910 plot ( CVals); 

91oylim([0 1]); 

91oProj = Vecs(:,1:1O)' * Images; 

aok = aok_Vecs(:,l:lO)' * aokJ:mages; 

bend = bend_Vecs(:,l:lO)' * bend..lmages; 

clos = clos_Vecs(:,1:1O)' * clos..lmagcs; 

dib = dib_Vecs(:,1:1O)' * dib..lmages; 

dib2n = dib2n_Vecs(:,1:1O)' * dib2n..lmages; 

five = five_Vecs(:,l:lO)' * fiveJ:mages; 

nwcc = nwcc_Vecs(:,l:lO), * nwcc..lmages; 

ohh = ohh_Vecs(:,1:1O)' * ohh..lmages; 

peace = peace_Vecs(:,1:10)' * peacc..lmages; 

pistol = pistoLVecs(:,l:lO)' * pistoLImages; 

power = poweLVecs(:,l:lO)' * poweLImages; 

point = poinLVecs(:,l:lO)' * poinLImages; 

pointL = pointL_Vecs(:,l:lO)' *pointL..lmages; 

punch = punch_Vecs(:,1:1O)' * punch..lmagcs; 

r = LVecs(:,l:lO)' *rJ:mages; 

snake = snake_Vecs(:,1:1O)' * snake_Images; 

swan = swan_Vecs(:,l:lO)' * swan_Images; 

thumb = thumb_Vecs(:,1:1O)' * thumb_Images; 

thumbsid = thumbsid_Vecs(:,1:10)' * thumbsid..lmages; 

upone = upone_Vecs(:,l:lO)' * uponeJ:mages; 
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· Computation analysis code and components 

hold on 

%plot(aok(5,:),aok(2,:),'m*') 

%plot(five( 5,:) ,five(2,:), 'm< ') 

%plot(aok(5,: ),aok(3,:), 'm A') 

%plot(aok(5,:),aok(4,:),'mv') 

%plot(five(5,: ),five{5,:), 'ms') 

plot ( aok(5,: ),aok(2,:), 'ks') 

%plot( five(5,:) ,five(2,:), 'm<') 

plot(aok(5,:),aok(3,:),'ks') 

plot(aok(5,:),aok( 4,:),'ks') 

%plot(five(5,: ),five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 
plot(bend(5,:),bend(2,:),'mv') 

%plot( five ( 5,: ),five(2,:), 'm< ') 

plot (bend( 5,:), bend(3,:), 'my') 

plot(bend(5,: ),bend( 4,:), 'my') 

%plot(five(5,:) ,five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 
plot ( clos(5,: ),clos(2,:), 'r. ') 

%plot(five(5,:) ,five(2,:), 'm<') 

plot ( clos(5,: ),clos(3,:), 'r. ') 

plot( clos(5,: ),clos( 4,:), 'r. ') 

%plot( five(5,:) ,five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 
plot ( dib(5,: ),dib{2,:), 'gx') 

%plot(five(5,: ),five(2,:), 'm < ') 

plot ( dib(5,: ),dib{3,: ),'gx') 

plot( dib{5,: ),dib( 4,:) ,'gx') 

%plot( five ( 5,: ),five(5,:), 'ms') 

910910/////////////////////////////////////////////////////////////////////// 
plot{ dib2n{5,: ),dib2n(2,: ),'b> ') 

%plot(five{ 5,: ),five(2,:) ,'m < ') 
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· Computation analysis code and components 

plot( dib2n(5,: ),dib2n(3,: ),'b>') 

plot( dib2n(5,: ),dib2n( 4,: ),'b>') 

%plot(five( 5,: ),five(5,:), 'ms') 

%plot(five( 5,: ),five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 

plot ( five ( 5,:) ,five(2,:), 'c*') 

%plot( five(5,: ),five(2,:), 'm<') 

plot (five( 5,:) ,five(3,:), 'c*') 

plot(five(5,: ),five( 4,:), 'c*') 

%plot(five( 5,:) ,five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 
plot(nwcc(5,:),nwcc(2,:), 'r*') 

%plot( five(5,:) ,five(2,:), 'm<') 

plot(nwcc(5,: ),nwcc(3,:), 'r*') 

plot(nwcc(5,: ),nwcc( 4,:), 'r*') 

%plot( five ( 5,:) ,five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 

plot( ohh(5,: ),ohh(2,:), 'b*') 

%plot(five(5,: ),five(2,:), 'm<') 

plot ( ohh( 5,:) ,ohh(3,:), 'b*') 

plot( ohh(5,: ),ohh( 4,: ),'b*') 

%plot( five ( 5,:) , five ( 5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 
plot(peace(5,:) ,peace(2,:), 'gs') 

%plot(five(5,: ),five(2,:), 'm<') 

plot(peace(5,:) ,peace(3,:) ,'gs') 

plot(peace(5,:),peace( 4,:),'gs') 

%plot( five ( 5,: ),five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 
plot(pistol(5,:) ,pistol(2,:), 'r+') 
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· Computation analysis code and components 

%plot(five(5,: ),five(2,:), 'm<') 

plot(pistol(5,:) ,pistol(3,:), 'r+') 

plot(pistol(5,: ),pistol( 4,:), 'r+') 

%plot(five( 5,:) , five ( 5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 

%%/////////////////////////////////////////////////////////////////////// 
plot(point( 5,:) ,point(2,:), 'b.') 

%plot(five( 5,:) ,five(2,:), 'm<') 

plot(point(5,:) ,point(3,:), 'b.') 
plot(point(5,:) ,point( 4,: ),'b.') 
%plot(five(5,:) ,fivc( 5,:), 'ms') 

%plot( five(5,:) , five ( 5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 

plot(pointL(5,: ),pointL(2,:), 'k*') 

%plot(five(5,:) ,five(2,:),'m <') 

plot(pointL(5,:) ,pointL(3,:), 'k*') 

plot(pointL(5,:),pointL( 4,:),'k*') 

%plot(five(5,:) , five ( 5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 
plot(power(5,: ),power(2,:), 'ms') 

%plot(five( 5,:) ,five(2,:),'m < ') 

plot(power(5,:),power(3,:),'ms') 

plot (powcr(5,: ),power( 4,: ),'ms') 

%plot(five(5,:) ,five(5,:), 'ms') 

%%/////////////////////////////////////////////////////////////////////// 

plot(punch(5,: ),punch(2,:), 'g.') 

%plot( five(5,: ),five(2,:), 'm<') 

plot(punch(5,: ),punch(3,:), 'g.') 
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· Computation analysis code and components 

plot(puneh(5,:),puneh( 4,:),'g.') 

%plot(five( 5,:) ,five(5,:), 'ms') 

%%11111/1////1////1/11////1///////////1////11/1/11/1/11/1////1/////////// 
plot(r(5,: ),r(2,:), 'es') 

%plot(five(5,:) ,five(2,:),'m <') 

plot(r(5,: ),r(3,:), 'es') 

plot(r(5,: ),r( 4,:), 'es') 

%plot(five(5,: ),five(5,:), 'ms') 

%%111///11////11///////////////1/////////1//1/1////////////111/////////// 
plot (snake( 5,:) ,snake(2,:), 'k<') 

%plot(five(5,:) ,five(2,:) ,'m <') 

plot (snake( 5,:) ,snake(3,:), 'k<') 

plot(snake(5,: ),snake( 4,:), 'k<') 

%plot( five ( 5,:) ,five ( 5,:), 'ms') 

%%/1/11//111////////////1//////1/11/1/1/11/11/1/11/1/11/1/1111//1//////1/ 
plot( swan ( 5,:) ,swan(2,:),'k.') 

%plot(five(5,: ),five(2,:), 'm<') 

plot(swan(5,:) ,swan(3,:),'k.') 

plot(swan(5,: ),swan( 4,:), 'k.') 

%plot(five(5,:) ,five(5,:), 'ms') 

%%11/11///11////1///11/11/1////1//////1//1/11/1/1//1//////111///1/1////11 
plot(thumb(5,:),thumb(2,:),'b+') 

%plot( five(5,: ),five(2,:), 'm<') 

plot(thumb(5,:),thumb(3,:),'b+') 

plot ( thumb(5,: ),thumb( 4,:), 'b+') 

%plot(five( 5,:) ,five(5,:), 'ms') 

%%/11/1//////111//1//1//1////1/1/11/1///11/1//1///////////1111//////////1 
plot(thumbsid(5,:),thumbsid(2,:),'m.') 

%plot(five(5,:) ,five(2,:), 'm<') 

plot(thumbsid(5,:),thumbsid(3,:),'m.') 

plot ( thumbsid( 5,:) ,thumbsid( 4,:), 'm.') 

%plot(five( 5,:) ,five(5,:), 'ms') 

%%/1111///1///111///1///1////1/1/11////////1/////1////////11////////1//// 
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· Computation analysis code and components 

plot( UPone(5,:), upone(2,:), 'rs') 

%plot(five(5,:) ,five(2 ,:),'m <') 

plot( Upone(5,:) ,upone(3 ,:), 'rs') 

plot(uPon (5,:),upon (4,:),'r6') 

%plot(fiv (5,:),fiv (5,:), 'ms') 

%910111111/111/111/1/1111/11/111111111111111111111111111111111111111/1111/1 

hold off 

.4 GestureFace layer code components 

.4.1 Hand recognition using Opencv library 

A simple algorithm for recognising hand gestur s has been written. Th haar 

c1assifi r ( mono-.20JIand.xml ) trained during thi research is utili ed. 

Figure 7: ontrol posture for Haar classifier mono_20J:land.xml 
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· Computation analysis code and components 

.4.1.1 code 

/* 
Control posture Haar classifier mono_2011and.xml 

*/ 

#include <stdio.h> 

#include <OpenCV /cv.h> 

#include <OpenCV /highguLh> 

/ /#include <OpenCV /cvaux.h> 

CvHaarClassifierCascade *cascade; 

CvMemStorage *storage; 

void detectHand( IplImage *img ); 

int main( int argc, char** argv ) 

{ 
CvCapture *capture; 

IplImage *frame; 

int key; 

char* filename = "/Users/lupo/Dcsktop/code_pad/opcncv-motion.Jrameworks/sketches/Ill 

/ /char* filename = "/Users/lupo/Desktop/codc_pad/opencv-motion-±'rameworks/sketches, 

cascade = ( CvHaarClassifierCascade* )cvLoad( filename, 0, 0, 0 ); 

storage = cvCreateMemStoragc( 0 ); 

/ / const char *filenameAVI=" /Users/iupo/Desktop/code_pad/opcIlcv-motion.Jrarneworks/ll 
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· Computation analysis code and components 

/ / const char *videofilename=" /Users/lupo/Desktop/code_pad/opencv-motionJ'rameworks! 

/ / capture = cvCaptureFromFile( argv[l] ); 

} 

/ /capturc = cvCreateFileCapture(filenameAVI); 

capture = cvCaptureFromCAM( 0 ); 

assert( cascade && storage && capture ); 

cv N amedWindow( "video", 1 ); 

while( key != 'q' ) { 

frame = cvQueryFrame( capture ); 

if( !frame ) { 

/ / fprintf( stderr, "Cannot query frame!\n" ); 

break; 

} 

} 

cvFlip( frame, frame, 1 ); 

frame- >origin = 0; 

detectHand( frame ); 

key = cvWaitKey( 10 ); 

cvReleascCapture( &capture ); 

cvDestroyWindow{ "video" ); 

cv ReleaseHaarClassifierCascade( &cascade ); 

cvReleaseMemStorage( &storage ); 

return 0; 
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· Computation analysis code and components 

void detectHand( IplImage *img ) 

{ 

} 

int i; 

CvSeq *faces = cvHaarDetectObjects( 

img, 

cascade, 

storage, 

1.1, 

3, 

o /*CV_HAAR.DO_CANNY_PRUNNING*/, 

cvSize( 40, 40 ) ); 

for( i = 0 ; i < ( faces? faces->total : 0 ) ; i++ ) { 

CvRect *r = ( CvRech )cvGetSeqElem( faces, i ); 

cvRectangle( img, 

} 

cvPoint( r->x, r->y ), 

cvPoint( r->x + r->width, r->y + r->height ), 

CV _RGB( 255, 0, 0 ), 1, 8, 0 ); 

cvShowlmage( "video", img ); 

.4.2 Haar Classifier for Hand recognition using Opencv 

library 

In order for the code in section .4.1.1 to function the following haar classifier( 

mono_20-Iland.xml ) trained during this research is needed . 

.4.2.1 code 
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Computation analysis code and components 

Figur ontrol postur for Baar classifi r mono_20.l1and.xml 

<?xml version= " 1.0"?> 

<op nev torag > 

< mono_20Jland typc 'd= "op nev- haar- classifier"> 

<sizc> 

20 20</sizc> 

<stag s> 

< -> 

< !-- /* 
OIltrol posturc Baal' classifier mono-20.l1and.xml 

--> 
< !-- stag 0 --> 

<trees> 

< -> 
< !-- trc' 0 --> 
<-> 
< !-- root node --> 
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· Computation analysis code and components 

<feature> 

<rects> 

<-> 
22 18 18 -1.</_> 

<-> 
8 2 6 18 3.</ _></rects> 

<tilted>O</tilted> </feature> 

<threshold>-0.5153241157531738</threshold> 

<lefLval>0.9208459854125977</lefLval> 

<righLval>-0.9449468851089478</righLval></ _></_> 

<-> 
<!-- tree 1 --> 
<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
8 3 12 5 -1. < / _> 

<-> 
12 7 4 5 3.</ _></rects> 

<tilted> 1 </tilted> </fcature> 

<threshold> - 0 .1828908026218414< / threshold> 

<lefLval>0.7676910758018494</lcfLval> 

<righLval>-0.8145673274993897</righLval></ _></_> 

<-> 
<!-- tree 2 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
4 9 2 6 -1. </ _> 
<-> 
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· Computation analysis code and components 

49132.</_> 

<-> 
5 12 1 3 2.</ _></rects> 

<tilted>O</tiltcd> </feature> 

<threshold> -3.46294 79050636292e-003< /threshold> 

<lcft_ val>O. 755 7852268218994< /lefL val> 

<right_val>-0.6670348048210144</righLval></ _></ _></trees> 

<stage_threshold> -1.0037289857864380< / stage_threshold> 

<parent>-1 </parent> 

<next>-1 </next> </_> 

<-> 
<!-- stage 1 --> 

<trees> 

<-> 
<!-- tree 0 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
1 8 18 12 -1.</_> 

<-> 
78 6 12 3.</ _></rccts> 

<tilted>O</tilted> </feature> 

<threshold>-0.3833411931991577</threshold> 

<lefLval>O.7563046216964722</lefLval> 

<righLval>-0.8750851750373840</righLval></ _></_> 

<-> 
<!-- tree 1 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 
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· Computation analysis code and components 

<-> 
4 5 4 15 -1. < / _> 

<-> 
4 10 4 5 3.</ _></rects> 

<tilted>O</tilted> </feature> 

<threshold> - 0.0478372909128666< / threshold> 

<left_val>0.6142796874046326</lefLval> 

<righLval>-0.8544300198554993</righLval></ _></ _></trees> 

<stage_threshold> -0 .2608054876327515< / stage_threshold> 

<parent>O</parent> 

<next>-I</next></ _> 

<-> 
<!-- stage 2 --> 

<trees> 

<-> 
<!-- tree 0 --> 
<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
10 1 6 15 -1.</_> 

<-> 
12 1 2 15 3.</ _></rccts> 

<tilted>O</tilted> </fcaturc> 

<threshold>-0.0461920201778412</threshold> 

<lefL val>O. 7325975894927979< /lefLval> 

<righLval>-0.8286684751510620</righLval></ -></-> 

<-> 
<!-- tree 1 --> 

<-> 
<!-- root node --> 

<feature> 
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· Computation analysis code and components 

<rects> 

<-> 
426 18 -1.</_> 

<-> 
723 18 2.</ _></rects> 

<tilted>O< / tilted> < /feature> 

<threshold>-0.0848178863525391 </threshold> 

<left_val>0.5729647874832153</lefLval> 

<righLval>-0.8650729060173035</righLval></ _></ _></trees> 

<stage_threshold> -0.2557035982608795 < / stage_threshold> 

<parent> 1 </parent> 

<next>-l </next> </_> 

<-> 
<!-- stage 3 --> 

<trees> 

<-> 
<!-- tree 0 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
5 7 3 4 -1. < / _> 
<-> 
48 3 2 2.</ _></rects> 

<tilted> 1 </tilted> </feature> 

<threshold> -0.0132555803284049< / threshold> 

<lefL val>O. 7244282960891724< /lefL val> 

<righLval>-0.7451177835464478</righLval></ -></_> 

<-> 
<!-- tree 1 --> 

<-> 
<!-- root node --> 
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· Computation analysis code and components 

<feature> 

<rects> 

<-> 
8074 -1.</_> 

<-> 
8 2 7 2 2.</ _></rects> 

<tilted>O< / tilted> < /feature> 

<threshold>-0.0155559601262212</threshold> 

<lefLval>0.6760141253471375</lefLval> 

<righLval>-0.6645848155021668</righLval></ _></_> 

<-> 
<!-- tree 2 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
10 14 1 6 -1.</_> 

<-> 
10 17 1 3 2.</ _></rects> 

<tilted>O< /tilted> < /featurc> 

<threshold> 1.4264250239648391c-005< /threshold> 

<lefLval>0.4036096036434174</lefLval> 

<righLval>-0.9664012789726257</right_val></ _></_> 

<-> 
<!-- tree 3 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
10 14 1 6 -1.</_> 

<-> 
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10 17 1 32.</_></rects> 

<tilted>O</tilted> </feature> 

<threshold> -1.4289879800344352e-005< / threshold> 

<lefL val> -1. < /left_ val> 

<right_val>0.5169605016708374</right_val></ _></ _></trees> 

<stage_threshold> -0.4891324043273926 < / stage_threshold> 

<parent> 2< / parent> 

<next>-1 </next></_> 

<-> 
<!-- stage 4 --> 

<trees> 

<-> 
<!-- tree 0 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
2 2 18 18 -1.</_> 

<-> 
886 69.</ _></rects> 

<tilted>O</tilted> </feature> 

<threshold>-0.8170905113220215</threshold> 

<lefLval>O.6477488875389099</left_val> 

<righLval>-0.8245990872383118</righLval></ _></_> 

<-> 
<!-- tree 1 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
9 6 2 14 -1. < / _> 
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<-> 
9 13 2 7 2.</ _></rects> 

<tilted>O< / tilted> < /feature> 
<threshold>-2.3942769039422274e-003</threshold> 

<lefLval>0.4633279144763947</lefLval> 

<righLval>-O.8997706174850464</righLvai></ _></_> 

<-> 
<!-- tree 2 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
91029-1.</_> 

<-> 
9 132 3 3.</ _></rects> 

<tilted>O</tilted> </fcaturc> 

<threshold>-4.3073261622339487c-005</threshold> 

<lefLval>-0.9647107720375061 </left-Yal> 

<righLval>0.3608011901378632</righLval></ _></_> 

<-> 
<!-- tree 3 --'> 

<-> 
<!-- root nodc --> 

<feature> 

<rects> 

<-> 
16 1 1 15 -1.</_> 

<-> 
16 6 1 5 3.</ _></rects> 

<tilted>O< /tilted> < /feature> 

<threshold> -0.0122408699244261 < / threshold> 

<lefLval>0.5329871177673340< /lcfLval> 

216 



· Computation analysis code and components 

<righLval>-0.6351749897003174</right_val> </_></_></trees> 

<stage_threshold> _ 0 .8305814266204834< / stage_threshold> 

<parent>3</parent> 

<next>-l </next> </_> 

<-> 
<!-- stage 5 --> 

<trees> 

<-> 
<!-- tree 0 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
7 5 3 6 -1. < /_> 
<-> 
8 5 1 63.</_></rects> 

<ti1tcd>O</tilted> </fcaturc> 

<threshold> - 0.0101621402427554< / threshold> 

<left_val>0.6818826198577881 </left_val> 

<righLval>-0.6540923118591309</righLval> </_></_> 

<-> 
<!-- tree 1 --> 

<-> 
<!-- root node --> 

<feature> 

<reds> 

<-> 
9 12 1 2 -1. < /_> 

<-> 
9 12 1 1 2.</_></rects> 

<tilted> 1 < /tilted> < /feature> 

<threshold> -6. 7364817368797958e-005</threshold> 
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<lefLval>-0.8971663117408752</left_val> 

<righLval>0.4335525035858154</righLval></ _></_> 

<-> 
<!-- tree 2 --> 

<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
211818 -1.</_> 

<-> 
8 1 6 18 3.</ _></rects> 

<tilted>O</tilted></feature> 

<threshold> -0.4840528070926666< / threshold> 

<lefLval>0.3548465967178345</lefLval> 

<right_val>-0.9229689240455627 </right_val></ _></_> 

<-> 
<!-- tree 3 --> 
<-> 
<!-- root node --> 

<feature> 

<rects> 

<-> 
10 4 4 6 -1. < / _> 
<-> 
10 4 232.</_> 

<-> 
1272 3 2.</ _></rects> 

<tilted>O</tilted> </featurc> 

<threshold> 1.0808430379256606e-003< / threshold> 

<lefLval>-0.8260114192962647</lcfLval> 

<right_val>0.3436168134212494</righLval></ _></ _></trees> 

<stage_threshold> -0.8527951240539551 < / stage_threshold> 
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<parent>4</parent> 

<next>-1 </next></ _> </stages> </mono_20--1land> 

< / opencv ..storage> 

.4.3 Mahalanobis Distancing using Opencv library 

This code can be used to calculate the covariance between multiple high or low 

dimensional vectors . 

. 4.3.1 code 

#include <iostream> 

#indude <fstream> 

#indude <cv.h> 

#indude <highgui.h> 

using namespace std; 

using namcspace cv; 

int main( int argc, char** argv ) 

{ 

double distance; 

/ / Input matrix size 

const int rows = 10; 

const int cols = 6; 

//////////////////////////////////////////////////////////// 
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// 
/ / Load images into memory 

// 
//////////////////////////////////////////////////////////// 

if (argc==I){ 

cout < < "No images to load!" < < endl; 

cin.getO; 

return 0; 

} 

int index = 0; 

int image_num = arge-l; 

Mat *img = new Mat[image_mlm]; / / allocates table on heap instead of st.ack 

//////////////////////////////////////////////////////////// 
// 

/ / Load the images from command line: 

// 
/////////////////////////////////////////////////////////111 

for (index = 0; index < imagc_num; indcx++) { 

img[index] = imread( argv[index+ 1]); 

if (limg[index].dat.a) { 

cout < < " Image data not loaded propcrly" < < endl; 

cin.getO; 

return -1; 

} 
} 

for (index = 0; index < image_num; indcx++) { 

imshow(" my Win" , img[index]); 

cout « "Image loaded" « endl; 
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waitKey(O); 

} 
cvDestroyWindow("myWin"); 

delete [] img; / / notice the [] when deleting an array. 

/ / return 0; 

Cv Arr* newpair; 

newpair = cvCreateMat(l,cols,CV_32FCl); 

cvSetReallD(newpair, 0, 95); 

cvSetRcallD(ncwpair, 1, 4); 

cvSetReallD(newpair, 2, 23); 

cvSetReallD(newpair, 3, 27); 

cvSetReallD(newpair, 4, 6); 

cvSetRcallD(newpair, 5, 5); 

/ / Input matrix 

float x[rows][cols] = {{95,4,23,27,6,5}, {91,1,20,24,5,5}, {89,1,39,43,16,16}, 

{88,3,11,21,4,4},{82,4,6,5,4,3},{90,0,21,23,5,4},{90,0,30,27,9,8}, 
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{88,1,24,26,8,7},{90,4,33,30,17,11 },{92,2,28,32,8,9}}; 

/ / Place input into CvMah* 

cout < < "\nEnter information in lOx6 matrix" < < emil; 

CvMah* input = new CvMat*[rowsI; 

for(int i=O; i<rows; i++) { 

} 

input[i] = cvCreateMat(l, cols, CV _32FCl); 

for(int j=O; j<cols; j++) { 

cvmSet(input[i], 0, j, x[iJU]); 

} 

CvMat* output = cvCreateMat(cols, wls, CV_32FCl); 

CvMah meanvec = cvCreateMat(l, cols, CV_32FCl); 

CvMah inversecovar = cvCreateMat(cols, cols, CV_32FCl); 

CvMah newoutput = cvCreateMat(cols, cols, CV_32FCl); 

/ / Calculate covariance matrix 

cout « "\nCalculate covariance matrix" « endl; 

cvCalcCovarMatrix((COIlst void **) input, rows, output, meanvec, CV_COVAR_NORMAL): 
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/ / Edit Covar values to match MATLAB & Wolframalpha 

cout « "\nPrint out edited covariance matrix" « endlj 

for(int i=Oj i<colsj i++) 

{ 

for(int j=Oj j<cols; j++) 

{ 

cvSetReal2D(newoutput, i, j, cvGetReaI2D(output,i,j) / (rows - 1)); 

cout « "Edited covariance(" «i«" ,"«j«"): "j 

printf ("%f\n", cvGetReaI2D(newoutput,i,j)); 

cout « "\t"; 

} 

cout < < endl; 

} 

/ / To invert and to apply Mahalanobis 

cvInvert( newoutput, inversecovar, CV _LU)j 

distance = cvMahalanobis( meanvec, newpair, inversecovar)j 
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printf ("Mahalanobis: %f ", distance); 

/ / Clear OpenCV datastructures 

cvReleaseMat(&output); 

cv ReleaseMat (&meanvec); 

for(int i=O; i<rows; i++) 

cvReleaseMat( &input [i]); 

delete [] input; 

return 0; 

} 

.4.4 Stereo Disparity using Opencv library 

An algorithm for combining two parallel images into a single image map capable 

of being used for determining depth . 

. 4.4.1 code 

/* 
* stereo-Inatch.cpp 

* calibration 

* 

* 
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#include <cv.h> 

#include <highguLh> 

#include <stdio.h> 

using names pace cv; 

void saveXYZ( const chan filename, const Mat& mat) 

{ 
const double max-z = 1.0e4; 

FILE* fp = fopen(filename, "wt"); 

for(int y = 0; y < mat.rows; y++) 

{ 
for(int x = 0; x < mat.cols; x++) 

{ 
Vec3f point = mat.at<Vec3f>(y, x); 

if(fab~(point[2] - max...z) < FLT _EPSILON II fabs(point[2]) > max-z) continue; 

fprintf(fp, "%f %f %f\n", point[O], point[l], point[2]); 

} 
} 
fclose( fp ); 

} 

void prinLhelpO 

{ 

} 

printf("Usage: sterec:unatcb <leftJmage> <rightJmage> [--algoritbm=bmlsgbmlhh] [--I 
" [ - - max -dispari ty= < max_dis pari ty >] [-i <intrinsic_filename>] [-e < extrinsicJilenrull(~ 

"[--no-display] [-0 <disparityJmage>] [-p <poinLcloud-file>]\n"); 

int main(int argc, char** argv) 

{ 
const char* algorithm_opt = "- -algoritbm="; 

COIlst char* maxdisp_opt = "--max-disparity="; 
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const char* blocksizc_opt = "- - blocksize="; 

const char* nodisplay _opt = "-- no-display=" ; 

if(argc < 3) 

{ 
prinLhelpO; 

return 0; 

} 
const char* imgLfilename = 0; 

const chau iIIlg2~lename = 0; 

const char* intrinsic~lenamc = 0; 

const char* extrinsic_filcname = 0; 

const char* disparity Jilcnamc = 0; 

const char* point_cloudJilcnarnc = 0; 

enum { STEREO_BM=O, STEREO_SGBM=l, STERE(LHH=2 }; 

int alg = STEREO_SGBM; 

int SADWindowSize = 0, nnmberOfDisparitics = 0; 

bool no_display = falsc; 

StereoBM bIll; 

StereoSGBM sgbm; 

for( int i = 1; i < argc; i++ ) 

{ 
if( argv[iJ [OJ != '-' ) 

{ 
if( !imgl~lename ) 

imgl~lename = argv[iJ; 

else 

img2~lename = argv[iJ; 

} 
else if( strncmp( argv[iJ, algorithlILopt, strlen( algorithlILopt)) == 0 ) 
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{ 

char* _alg = argv[i] + strlen(algorithm_opt); 

alg = strcmp(_alg, "bm") == 0 ? STEREO_BM : 

strcmp(_alg, "sgbm") == 0 ? STEREO_SGBM : 

strcmp(_alg, "hh") == 0 ? STEREOJIH : -1; 

if( alg < 0 ) 

{ 
printf("Command-line parameter error: Unknown stereo algorithm\n\n"); 

prinLhelp(); 

return -1; 

} 

} 
else if( strncmp(argv[i], maxdisp_opt, strlen(maxdisp_opt)) == 0 ) 

{ 
if( sscanf( argv[i] + strlen(maxdisp_opt), "%d", &numberOfDisparities ) != 1 II 

numberOfDisparities < 1 II numberOfDisparities % 16 != 0 ) 

{ 

} 
} 

printf("Command-line parameter error: The max disparity (--maxdisparity=< ... » llllll 

printlwlpO; 

return -1; 

else if( strncmp(argv[i], blocksize_opt, strlen(blocksize_opt)) == 0 ) 

{ 
if( sscanf( argv[i] + strlen(blocksize_opt), "%d", &SADWindowSize ) != 1 II 

SADWindowSize < 1 II SADWindowSize % 2 != 1 ) 

{ 

} 

} 

printf(" Command -line parameter error: The block size (- - blocksize=< ... » must be 1\ I 

return -1; 

else if( strcmp( argv[i], nodisplay _opt) == 0 ) 

no_display = true; 
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else if{ strcmp{argv[i], "-i" ) == 0 ) 

intrinsicJilename = argv[++i]; 

else if{ strcmp{ argv[i], "-e" ) == 0 ) 

extrinsicJilename = argv[++i]; 

else if{ strcmp{argv[i], "-0" ) == 0 ) 

disparityJilename = argv[++i]; 

else if{ strcmp{argv[i], "-p" ) == 0 ) 

point_cloudJilename = argv[++i]; 

else 

{ 
printf{"Command-line parameter error: unknown option %s\n", argv[i]); 

return -1; 

} 
} 

if{ !imgl Jilename II !img2_filcnH.me ) 

{ 
printf{" Command-line parameter error: both left and right images must be spedfied\n"); 

return -1; 

} 

if{ (intrinsicJilename != 0) A (extrinsicJilename != 0) ) 

{ 
printf{" Command-line parameter error: either hoth intrinsic and extrinsic pnranwters I11llS 

return -1; 

} 

if{ extrinsicJilename == 0 && poinLcloucUilcname ) 

{ 
printf{" Command -line parameter error: extrinsic and intrinsic parameters must be sp()cifi(~ 

return -1; 

} 
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int color...mode = alg == STEREO_BM ? 0 : -lj 

Mat imgl = imread(imgLfilename, color...mode)j 

Mat img2 = imread(img2.1ilename, color...mode)j 

Size img..size = img1.sizeO; 

Rect roil, roi2; 

Mat Qj 

if( intrinsic.1ilename ) 

{ 
/ / reading intrinsic parameters 

FileStorage fs(intrinsic.1ilename, CV J3TORAGE_READ); 

if(!fs.isOpenedO) 

{ 
printf(" Failed to open file %s \n", intrinsic.1ilename); 

return -1; 

} 

Mat MI, Dl, M2, D2j 

fs["Ml"] » MI; 

fs["Dl"] » Dlj 

fs["M2"] » M2; 

f8["D2"] » D2; 

fs.open(extrinsicJilcnamc, CV _STORAGE-READ)j 

if( !fs.isOpenedO) 

{ 
printf("Failed to open file %8\n", cxtrinsic.1ilename); 

return -1; 

} 

Mat R, T, RI, PI, R2, P2; 

fs["R"] » R; 
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fs["T"] » T; 

stereoRectify( Ml, Dl, M2, D2, img_.size, R, T, RI, R2, PI, P2, Q, -1, img .... size, &roil, &r, 

Mat mapll, map12, map2l, map22; 

initUndistortRectifyMap(Ml, Dl, Rl, PI, img~<;ize, CV _16SC2, mapll, mapI2); 

initUndistortRectifyMap(M2, D2, R2, P2, img...sizc, CV .... 16SC2, map21, map22); 

Mat imglr, img2r; 

remap(imgl, imglr, mapll, map12, INTER_LINEAR); 

remap(img2, img2r, map2l, map22, INTER .... LINEAR); 

imgl = imglr; 

img2 = img2r; 

} 

numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparitics : img~"'ize.width/8; 

bm.state->roil = roil; 

bm.state->roi2 = roi2; 

bm.state->preFilterCap = 31; 

bm.state->SADWindowSize = SADWindowSize > O? SADWilldowSize : 9; 

bm.state->minDisparity = 0; 

bm.state->numberOfDisparities = numberOfDisparitics; 

bm.state->textureThreshold = 10; 

bm.state->uniquenessRatio = 15; 

bm.state->speckleWindowSize = 100; 

bm.state->speckleRange = 32; 

bm.state->disp12MaxDiff = 1; 

sgbm.preFilterCap = 63; 

sgbm.SADWindowSize = SADWindowSize > () ? SADWindowSize : 3; 
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int en = imgl.channelsO; 

sgbm.P1 = B*cn*sgbm.SADWindowSize*sgbm.SADWindowSize; 

sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize; 

sgbm.minDisparity = 0; 

sgbm.nllmberOIDisparities = nllmberOIDisparities; 

sgbm.uniqllenessRatio = 10; 

sgbm.speckleWindowSize = bm.state- >speckleWindowSizej 

sgbm.speckleRange = bm.state- >speckleRangej 

sgbm.displ2MaxDiff = Ij 
sgbm.fullDP = rug == STEREO_HH; 

Mat disp, dispBj 

/ /Mat img1p, img2p, disppj 

/ /copyMakeBorder(imgl, img1p, 0, 0, nllmberOIDisparities, 0, IPL_BORDER-REPLICATE 

/ /eopyMakeBorder(img2, img2p, 0, 0, numberOIDisparities, 0, IPL_BORDER-REPLICATE 

int64 t = getTickCollntOj 

if( alg == STEREO-.BM ) 

bm(img1, img2, disp)j 

else 

sgbm(img1, img2, disp); 

t = getTickCountO - tj 

printf("Time elapsed: %fms\n", t*1000/getTickFrequencyO)j 

/ /disp = dispp.coIRange(numberOIDisparities, img1p.cols); 

disp.convertTo(dispB, CV _BU, 255/(numberOfDisparities*16.))j 

if{ !no_display ) 

{ 
namedWindow(" left", 1); 

imshow{"left", img1); 

namedWindow{" right", 1); 

imshow{"right", img2); 
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namedWindow("disparity", 0); 

imshow(" disparity", disp8); 

printf("press any key to continue ... "); 

illush(stdout); 

waitKeyO; 

printf(" \n"); 

if( disparity .Jilename) 

imwrite( disparity_filename, disp8); 

if(poinLclou(Lfilename) 

{ 

printf("storing the point cloud ... "); 

illush(stdout); 

Mat xyz; 

repro jectImagcTo3D ( disp, xyz, Q, true); 

saveXYZ (point _clou(Lfilenamc, xyz); 

printf(" \n"); 

} 

return 0; 

} 

.4.5 Motion History using Opencv library 

A method of segmenting human activities from complex backgrounds . 

. 4.5.1 code 

* 
* Motion tracking 

* 
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* Created by Leon Barker on 11/03/2010. 

* Copyright 2010 LAB. All rights reserved. 

* 

#ifdcf _CH_ 

#pragma package <opencv> 

#endif 

#define CV _NO_BACKWARD_COMPATIBILITY 

#ifndef _EiC 

/ / motion templates sample code 

#include <OpenCV /cv.h> 

#include <OpenCV /highgui.h> 

#include <time.h> 

#include <math.h> 

#include <ctypc.h> 

#include <stdio.h> 

#endif 

/ / various tracking parameters (in seconds) 

const double MHLDURATION = 1; 

mnst double MAX_TIME_DELTA = 0.5; 

const double MIN_TIME_DELTA = 0.05; 

const int N = 4; / / number of cyclic frame buffer used for motion detection / / (should, prol~ 

int g_thresh = 100; 

IplImage ubuf = 0;// ring image buffer 

illt last = 0; 

illt is Color = 1; 

int fps = 25; 
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/ / temporary images 

IplImage* mhi = 0; / / MHI 

IplImage* orient = 0; / / orientation 

IplImage* mask = 0; / / valid orientation mask 

IplImage* segmask = 0; / / motion scgmcntation lIlap 

IplImage* motion = 0; 

IplImage* image = 0; 

CvVideoWriter *writer = 0; / /writing video to file 

CvMemStorage* g~.,toragc = 0; 

CvMemStorage* storage = 0; / / temporary storage 

/ /Text Initiation 

/ / Text variables*************************** 
const char* text = "Right"; 

double hserue = 1.0; 

double vscale = 0.8; 

double shear = 0.2; 

int thickness2 = 1; 

int line_type = 8; 

CvPoint pt2 = cvPoint(205,195); 

CvScalar blue = CV _RG13(0,O,250); 

CvScalar white = CV_RG13(255,255,255); 

/ / Text variables*************************** 

void update-.tnhi( IplImage* hug, IplImage* dst) 

{ 
double timestamp = (double)dockO/CLOCKS_PER_SEC; / / get CUl'nmt time iu s(~('()uds 

CvSize size = cvSize(img->width,img->height); / / get curreut frame size 

int i, idxl = last, idx2; 

IplImage* silh; 

CvSeq* seq; 
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/ / allocate imagcs at the beginning or 

/ / reallocate them if the frame size is changed 

if( !mhi " mhi->width != size. width " mhi->height != size. height ) { 

if( buf == 0 ) { 

buf = (IpIImage** )malloc(N *sizeof(buf[O])); 

memset( buf, 0, N*sizoof(buf[O])); 

} 

for( i = 0; i < N; i++ ) { 

cvReleaseImagc( &buf[i] ); 

bllf[i] = cvCreateImagc( size, IPL_DEPTH_8U, 1 ); 

cvZero( buf[i] ); 

} 
cvRelcasclmage( &mhi ); 

cvReleaseImage( &oricnt ); 

cvRelca..,eImage( &segma..,k ); 

cv ReleaseImage( &mask ); 

mhi = cvCreateImage( size, IPL_DEPTH_32F, 1 ); 

cvZero( mhi ); / / clear MHI at the beginning 

orient = cvCreateImage( size, IPL_DEPTH_32F, 1 ); 

segma..,k = cvCreatcImage( size, IPL_DEPTH_32F, 1 ); 

mask = cvCreatelmage( size, IPL_DEPTH_8U, 1 ); 

} 

cvCvtColor( img, buf[la...,t], CV _BG R2G RAY ); / / convert frame to grayscale 

idx2 = (la...,t + 1) % N; / / index of (last - (N -1) )th frame 

la...,t = idx2; 

silh = buf[idx2]; 

cvAbsDiff( buf[idxl], buf[idx2], silh ); / / get difference between frames 

cvThreshold( silh, silh, g_thresh, 1, CV _THRESHJ3INARY ); / / and threshold it 

cvUpdateMotionHistory( silh, mhi, timestamp, MHLDURATION ); / / update MHI 
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/ / convert MHI to blue 8u image 

cvCvtScale( mhi, mask, 255./MHLDURATION,(MHLDURATION - timcstamp)*255.jMH 

cvZero( dst ); 

cvMerge( 0, 0, ma.'lk, 0, dst ); 

/ / calculate motion gradient orientation and valid orientation lIlH.·.;k 

cvCalcMotionGradicnt( mhi, mask, orient, MAX_TIME_DELTA, MIN_TIME_DELTA, 3 ); 

if( !storage ) 

storage = cvCreateMemStorage(O); 

else 

cvClear MemStorage( storagc ); 

/ / segment motion: get sequcnce of motion components 

/ / segmask is marked motion components map. It is not used further 

seq = cVSegmcntMotion( mhi, segmask, storage, timestamp, MAX_TIME_DELTA ); 

} 

void OILtraekhar{int){ 

} 

if( g->'ltorage == NULL) { 

g->'ltorage = evCreateMcmStorage(O); 

} else { 

cvClearMemStoragc( g->'ltorage ); 

} 
update_.IIlhi( imagc, motion ); 
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int main(int argc, char** argv) 

{ 

//******************************************** 
Cv Font font l; 

cv InitFont( &font l, CV _FONT _HERSHEY _DUPLEX,hscale,vscale,shear, thickness2,line_typ(' 

//******************************************** 

CvCapture* capture = 0; 

/ / const char *filename=" /Users/lupo/Desktop/code_pad/opencv-motion.1rameworks/wo' 

/ / const char *videofilename=" /Users/lupo/Desktop/codc_pad/opencv-motion.1ramework 

/ /capture = cvCaptureFromFile( argv[l] ); 

/ /capture = cvCreateFileCapture(filename); 

if( argc == 1 II (argc == 2 && strlen(argv[lJ) == 1 && isdigit(argv[l][OJ))){ 

/ / capture = cvCaptureFromCAM( argc == 2 ? argv[l][O] - '0' : 0 ); 

/ / capture3 = cvCaptureFromCAM(O); 

/ / capture2 = cvCapturcFromCAM(l); 

capture = cvCaptureFromCAM(O); 

}else if( argc == 2 ) 

/ / capture = cvCaptureFromFile( argv[l] ); 

fps = (int)cvGetCaptureProperty( capture, CV_CAP_PROP -FPS ); 

if( capture ) 

{ 

cvNarnedWindow( " Motion" , 1 ); 

cvCreateThackbar( " Threshold" , "Motion", &g_thresh, 255, on_trackbar ); 

image = cvQueryFrame(capture); 

/ / writer = cvCreateVideoWriter(videofilenarne,CV_FOURCC('P', '1', 'M', 'l'),fps, cvSiz( 
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· Computation analysis code and components 

while((image = cvQueryFrame(capture)) != NULLH 

if( !image ) 

break; 

if( !motion ) 

{ 
motion = cvCreatelmage( cvSize(image->width,image->height), 8, 3 ); 

cvZero( motion ); 

motioIl- >origin = image- >origiI1; 

} 

on_trackbar( 0); 

/ * cv Rectanglc( motion, 

cvPoint( 450,310 ), 

evPoint( 160, 150 ), 

CV _RGll( 0, 255, 0 ), 3, 8, 0 ); 

cvPutText(motioIl,text,pt2,&font1,white);*/ / /Gmphic overlay 

cvShowImage( "Motion", motion ); 

cvWriteFrame( writer ,motion); 

if( cvWaitKey(lO) >= 0 ) 

break; 

} 
cv Rele&"le Video Wri tcr( &wri ter); 

cvRelc&"cCapture( &captuf() ); 

cvDestroyWindow( "Motion" ); 

} 
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· Computation analysis code and components 

return 0; 

} 

#ifdef _EiC 

#endif 
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