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Abstract

We use a boosting algorithm to forecast changes in three income- and three consumption-
based inequality measures. Unlike the existing literature, which basically deals with in-
sample predictability, we analyze the role of large number of predictors in out-of-sample
prediction of inequality growth. Further, deviating from the annual data-based literature on
inequality, we study quarterly UK data covering the period from 1975Q1 to 2016Q1. We
find that the boosted forecasting models, at forecasting horizons of up to one year, have to
differing extents predictive value for changes in the six different inequality measures. Evi-
dence of predictability is stronger on balance when we use information criteria that result in
relatively parsimonious forecasting models than information criteria that are more generous
in this regard. In addition to lagged inequality measures, stock-market developments and
fiscal deficits, and to a lesser extent the real interest rate, economic policy uncertainty, and
output growth turn out to be predictors that are often selected by the algorithm.
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1 Introduction

Inequality is not only a problem in itself, but it also has negative economic, social, and health im-

plications (Chang et al., 2019). High levels of income inequality are not only linked to economic

instability, financial crisis, debt, and inflation (van Treeck, 2014; Kumhof et al., 2015; Berg &

Ostry 2011; Balcilar et al., 2018), but also to lower social mobility and lower scores in maths,

reading, and science, leading to weaker human capital development (Corak, 2016). Inequality is

also associated with increased property and violent crimes (Rufrancos et al., 2013). From the per-

spective of health, living in an unequal society causes stress and status anxiety (Layte & Whelan,

2014). In more equal societies people live longer, are less likely to be mentally ill or obese, along

with lower rates of infant mortality (Pickett & Wilkinson, 2009). In addition, inequality affects

our perception of others around us and our level of happiness (Delhey & Dragolov, 2013), with

people in more unequal societies less likely to trust each other (Gustavsson & Jordahl, 2008),

less likely to engage in social or civic participation (Uslaner & Brown, 2005), and less likely to

confess that they are happy (van Praag & Ferrer-i-Carbonell, 2009).

Given the wide-ranging negative impact of inequality, its predictability is of paramount impor-

tance for appropriate policy-making. Naturally, attempts to forecast the future path of inequality

in the United States (US) and the United Kingdom (UK) (which are examples of two countries to

have witnessed sharp increases in inequality; Mumtaz & Theophilopoulou, 2017; Chang et al.,

2018), have been gaining some momentum through the recent works of Piketty (2014), Gindel-

sky (2016), and Hood & Waters (2017) based on annual data. Gindelsky (2016) finds that while

macroeconomic indicators, human capital, and labor-force metrics often enhance forecasting

performance of models, measures of skill-biased technological change are robust predictors of

inequality trends for the US. Model selection, however, seems to be sensitive to predictor choice

and the the number of lags being considered. Hood & Waters (2017) estimate how the incomes

of different households in the UK would develop until 2021-2022, given the current tax as well

as benefit policy plans and also the macroeconomic forecasts on earnings and employment from

the Office for Budget Responsibility (OBR). They also study macroeconomic scenarios that they
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describe as more and less optimistic than the OBR’s central forecast. Based on their analyses,

Hood & Waters (2017) project an increase in income inequality over the next years (particularly

if they study income less of housing costs).

Against this backdrop, the aim of this paper is to forecast both income- and consumption-based

relative and absolute measures of inequality for the UK, using an unique data set at the (highest

possible) quarterly frequency over the period of 1975Q1 to 2016Q1, based on a wide array

of macroeconomic and financial variables. The choice of the UK as our case study is driven

by data availability of inequality at a quarterly frequency, which is important because accurate

forecasting of inequality at a higher frequency should be more relevant to policymakers than at

the lower annual frequency. Besides data-based reasons, the decision to look at the UK is based

on the massive inequality growth figures, with income (consumption) inequality growth between

1975Q1 to 2016Q1 ranging between 10% to 21% (10% to 28%), and the UK being recognized

as an outlier of extreme inequality in the European context (Dorling, 2015).

As far as the econometric approach is concerned, we use a machine-learning technique known

as boosting to forecast at a quarterly frequency, movements of three income-based and three

consumption-based inequality measures. Boosting is particularly suited to forecast movements

of inequality measures as we use several potentially important determinants of economic in-

equality. Boosting is a data-driven algorithmic machine-learning approach to the selection of

predictors for model fitting and forecasting in an environment where the number of predictors

is large relative to the number of available time-series data. Variants of boosting have been ap-

plied in recent research in economics, for example, to forecast movements of exchange rates and

commodity prices (Berge, 2013; Pierdzioch et al., 2015), to compute forecasts of recessions (Ng,

2009; Döpke et al., 2017), to model inflation expectations (Berge, 2017), and to test the rational-

ity of survey forecasts (Pierdzioch & Risse, 2018). While in-sample analyses of the trend in UK’s

inequality (based on factors such as, skill-based education and technological advances, changes

in the family structure, employment status and occupation, structural reforms in the labour mar-

ket, globalization, and increased international trade) have been previously widely undertaken

using annual data (for a detailed review, see Belfield et al., 2017), to the best of our knowledge,
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this is the first attempt of out-of-sample forecasting of inequality at a high data frequency based

on boosting. Given the fact that in-sample predictability does not guarantee out-of-sample fore-

casting gain, and the suggestion in this regard that the ultimate test of any predictive model is

its out-of-sample performance (Campbell, 2008), our analysis at a higher data frequency aims to

make a major contribution to the sparse literature on forecasting inequality.

In sum, we can outline our contributions as follows: (i) Unlike the few existing studies on fore-

casting of income inequality of the UK based on annual projections, we provide a comprehen-

sive analysis on forecasting quarterly inequality growth rate. This is important since, given the

multi-dimensional negative impact of inequality, accurate forecasting of the same at a higher

frequency should be more relevant to policymakers than at the lower annual frequency to de-

sign appropriate policies to reduce inequality and its impacts; (ii) In addition, unlike existing

papers which basically deals with in-sample determinants of inequality, we conduct real-time

out-of-sample forecasting of inequality and determine the factors responsible for driving future

inequality growth of the UK, which in turn is likely to help in better design of policies ahead of

time, i.e., before the actual realization of the growth of inequality, and; (iii) We combine informa-

tion on the various predictors used separately in the literature, and at a higher frequency, based on

recent methodological advances associated with machine-learning, in particular boosting, which

is able to use multiple predictors for model fitting and forecasting in an environment where the

number of predictors is large relative to the number of available time-series data. In other words,

differently from the existing literature, we use high-frequency data to produce accurate forecasts

of inequality growth by incorporating simultaneously large number of predictors based on inno-

vative econometric techniques, which should all play a role in better design of policies to curb

inequality growth in the UK.

We organize the remainder of this research as follows. We describe the boosting algorithm in

Section 2 and this is followed by a description of the data that we use in our empirical research

in Section 3. We summarize the results of our empirical analysis in Section 4, and conclude in

Section 5.
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2 The Boosting Algorithm

We use a L2-boosting algorithm (Friedman, 2001; Bühlmann & Yu, 2003; Bühlmann & Hothorn,

2007) to forecast annualized changes, yi,t+h, of the log of inequality measure i, where the index h

denotes the forecast horizon. In order to compute one-quarter-ahead forecasts, we set h = 1. We

compute multiperiod changes of the inequality measures as yi,t+h = (yi,t+1 + ...+ yi,t+h)/h. We

compute forecasts by means of a forecasting model of the general format yi,t+h = F(βi,h,xt,i,h)+

ui,h,t+1, where the function F(βi,h,xi,h,t) = ∑
k
j=1 β jxi,h,t, j is a so-called strong learner, βi,h, j de-

notes coefficient j, j = 1, ...,k, estimated for inequality measure i at forecast horizon h, xi,h,t, j

denote the j-th predictor, and ui,h,t+1 denotes a disturbance term. The predictors carry the index

i because we include lagged changes of an inequality measure (but not lagged changes of the

other inequality measures) in the vector of predictors. For the L2-boosting algorithm, the strong

learner is the solution to

F̂(β̂i,h,xt,i,h) = argmin
F(βi,h,xt,i,h)

E
[

1
2
(yi,t+h−F(βi,h,xt,i,h))

2
]
, (1)

where E denotes the expectations operator. Equation (1) is a function-approximation problem

that we solve by means of the L2-boosting algorithm. To this end, we initialize the vector of

coefficients β
[0]
i,h = 0 (which initializes the strong learner, F0 ), and then iterate over the following

steps:

� For(m = 1 : M){

1. We compute the negative gradient vector and estimate univariate regressions of the nega-

tive of the gradient vector on the j individual predictors. The estimates produce k weak

learners, f̂ j. As recommended by Bühlmann and Hothorn (2007), we apply boosting on

mean centered data.

2. We identify the best weak learner as the solution of the following minimization problem:

κ = argmin
j

[
∑t(ui,h,t+1− γ̂ jxi,h,t, j)

2] , where γ̂ j denote the estimated coefficients of the

univariate regressions (Step 2).

4



3. We use the best weak learner to update the vector of coefficients β̂
[m]
i,h = β̂

[m−1]
i,h + sγ̂

[κ,m]
i,h ,

where s is the learning rate (a smaller s produces more iterations) and γ̂
[κ,m]
i,h contains as

the only non-zero element the coefficient estimated for κ . Updating the coefficients is

equivalent to updating the strong learner: F̂m+1 = F̂m + s f̂m,κ . We use the updated strong

learner to compute a new gradient vector and new weak learners.

}�

We terminate the boosting algorithm either if it reaches the maximum number of iterations, m =

M, or in iteration m∗<M if an information criterion, IC(m∗), is minimized. To find the minimum

of the information criterion, we run the algorithm mbreak times. We terminate the algorithm if

m∗ = argmin
m

IC(m) satisfies m∗ ≤ 0.75×mbreak. Otherwise, we set mbreak = mbreak + 10, and

then check again whether m∗ ≤ 0.75×mbreak (for a similar approach, see Mayr et al., 2012).

We study four different information criteria. The first one is the Akaike information Criterion,

AICtrace (Hurvich et al., 1998, Bühlmann, 2006), which is defined as follows:

AICtrace(m, i,h) = ln(σ̂2
i,h,m)+

1+d f (m)/Tt

1− (d f (m)+2)/Tt
, (2)

where σ̂2
i,h,m denotes the residual variance of the boosted forecasting model for inequality mea-

sure i at forecast horizon h in iteration m, and Tt denotes the number of observations avail-

able in period of time t. The degrees of freedom are defined as d f (m) = trace(Bm), where

the matrix Bm is updated according to the recursion Bm = Bm−1 +Hκ(I−Bm−1), where Hκ =

xκ,i,h,t(xκ,i,h,t)
ᵀ/||xκ,i,h,t ||2, I denotes a suitable identity matrix, ||.|| denotes the Euclidian norm,

xκ,i,h,t denotes the vector of observations on the κ-th predictor for inequality measure i at fore-

cast horizon h available in period of time t (that is, the weak learner selected in iteration m, see

Bühlmann, 2006; Bühlmann & Hothorn, 2007).

The second information criterion is the generalized Minimum Description Length (gMDL, Hansen

& Yu, 2001; Bühlmann & Hothorn, 2007):

gMDLtrace(m, i,h) = ln(S)+(d f (m)/Tt) ln(Z), (3)
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where S =
Tt σ̂

2
i,h,m

Tt−d f (m) , and Z =
∑

t
j=1 y2

j−Tt σ̂
2
i,h,m

d f (m)S .

The third and fourth information criteria produce relatively parsimonious forecasting models. To

this end, we use the number of selected predictors (the “active set”) to define d f (m) (see, Hastie

2007). Accordingly, we use two information criteria, AICactset(m, i,h) and gMDLactset(m, i,h),

for which the active set defines the degrees of freedom.

Finally, we use the active set of predictors included in the optimal iteration, m∗, to re-estimate

the forecasting model on the original data by the ordinary-least squares technique. We use the

estimate to produce summary statistics (like the adjusted coefficient of determination) for the

forecasting model, and to compute an out-of-sample forecasts of changes in the inequality mea-

sure being studied.

3 Data

We analyze quarterly data that range from March (Q1) 1975 to March (Q1) 2016. The seasonally-

adjusted inequality data is for income equivalized by dividing by the square root of the number of

people in a household and total consumption per capita of a household. We consider three mea-

sures of inequality: the Gini coefficient, the standard deviation (of the data in natural logs), and

the difference between the 90th and 10th percentile (with the data in natural logs). The inequality

measures are computed using survey data on income and consumption from the family expen-

diture survey (FES)1. Mumtaz & Theophilopoulou (2017) provide an extensive documentation

of the construction of the data and the survey. Note that, these authors remove any households

reporting zero or negative income, when constructing the income-based measures of inequal-

ity.2. At this, it is important to highlight that studies like that of Foster (1996) and van de Ven

(2011) point out issues of representation problems associated with the survey. In particular, the

1The data is downloadable from:https://discover.ukdataservice.ac.uk/series/?sn=200016 and
https://discover.ukdataservice.ac.uk/series/?sn=2000028.

2We would like to thank Professor Haroon Mumtaz for kindly sharing the inequality data with us.
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FES, on one hand, tends to over represent mortgage holders, people living in the countryside,

older households, and, on the other hand, people living in council flats, institutions (retirement

homes, military), no fixed address holders, ethnic minorities, self employed, manual workers,

and younger households are under represented (Dayal et al., 2000; Mumtaz & Theophilopoulou,

2017). Clearly then there is bias and underreporting of top earners when using survey data,

compared to when administrative data is used.

It should be noted that while the surveys are recorded at an annual frequency, Mumtaz & Theophilopoulou

(2017), following Cloyne & Surico (2017) and Cloyne et al. (2019), assign households to dif-

ferent quarters within a year based on the date of the survey interviews, which, in turn, allows

them to calculate the measures of inequality at a quarterly frequency.3 We abbreviate the three

income-based inequality measures as YI1, YI2, and YI3, while the three consumption-based

inequality measures are denoted as CI1, CI2, and CI3.

− Please include Figure 1 about here. −

Figure 1 plots the inequality measures. Eyeballing the figure shows that the inequality measures

exhibit a discernible trend increase until around the early 1990s. Thereafter, the consumption-

based inequality measures, and to a lesser extent the income-based inequality measures, show a

tendency to decrease again. Standard unit-root tests (not reported, but available upon request)

provided strong evidence that the inequality measures are nonstationary, while their first differ-

ences are stationary. For this reason, we forecast changes in the inequality measures. Forecasting

changes in the inequality measures is also interesting from the perspective of political economics

given that policy makers are likely to be interested in the upticks and downticks of inequality at

the forecasting horizons that we study in our research. Clearly, in the long run, policy makers are

3It is important to point out that, as survey respondents are asked about consumption and income over a period
preceding the interview, the time-series corresponding to each interview is indeed meaningful. To elaborate, the
consumption of household X in the second-quarter differs from household Y in the third-quarter not only due to
differences in X and Y , but also because Y is asked about variables like wages up to the third-quarter, while X is
asked about the same up to the second-quarter.
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interested in trends in inequality, but at short-term forecast horizons (with the time interval to the

next election getting shorter) changes in inequality are often the subject of controversial debates

in the policy arena.

As far as the predictors are concerned, besides lagged inequality measures, we rely on the recent

literature to motivate the choice of predictors at the quarterly frequency. For instance, Mumtaz

& Theophilopoulou (2017) indicate the role of real Gross Domestic Product (GDP), monetary

policy (real interest rate, RIR, i.e., nominal three-month Treasury bill rate less the Consumer

Price Index, CPI, based inflation rate), and real effective exchange rate (EER) to be important

predictors. As an alternative measure of economic activity, we also consider the unemployment

rate (UR). The importance of fiscal policy over and above the monetary stance, as captured by

the budget-deficit as percentage of GDP (BUD), has been emphasized by Coibon et al. (2017).

We also used decomposed version of the fiscal policy variable by looking at direct (TAX) and

indirect (ITAX) taxes, and social benefits (BEN) and public investment (GINV) spendings, with

all these disaggregated revenues and expenditures expressed as percentage of the GDP. Asset

price (financial market) movements as captured by real stock price (RSP) and real house price

(RHP), both of which are computed by deflating the nominal prices with the CPI, have been

shown to play a role in driving inequality, as discussed in detail by de Haan & Sturm (2017).

Further, uncertainty related to policy decisions, as captured by the news-based economic policy

uncertainty (EPU) of Baker et al. (2016),4 has been shown to be driver of inequality by Balcilar

et al. (2019). In addition to policy-related uncertainty, we also use realized volatility (as captured

by the sum of daily squared stock log-returns (RV), following Andersen & Bollerslev (1998), as

a measure of general economic and financial market uncertainty (Gupta et al., 2018). Besides

domestic variables, the role of financial stress in the United States (FSI), has also been pointed

out to be important by Mumtaz & Theodoridis (2017). The data on output, unemployment rate,

interest rate, and CPI are derived from the Main Economic Indicators (MEI) of the Organisation

for Economic Co-operation and Development (OECD), while data on housing prices is derived

4The data is available for download from: http://www.policyuncertainty.com/uk_historical.html
till 2008, and from http://www.policyuncertainty.com/europe_monthly.html thereafter.
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from the Housing Prices Database of the OECD. The fiscal policy variables are obtained from the

public finance and fiscal policy segment of the Economic Outlook databased of the OECD. The

real effective exchange rate is sourced from the Effective Exchange Rates Database of the Bank

of International Settlements (BIS). Stock market data (both at quarterly and daily frequencies)

comes from Datastream. The financial stress data for the United States is based on the research

by Püttmann (2018)5. Even though other financial stress data is available for the United States

from the various Federal Reserves, the length of the data coverage of this index motivates us to

prefer this measure over the other alternatives. Barring all the fiscal-policy variables, real interest

rate, unemployment rate, RV, EPU and FSI (with the latter two being in their natural logarithmic

form) all variables are in their respective growth rates (log-returns) to ensure mean-reversion.

Table A1 at the end of the paper (Appendix) summarizes the variables we use in our empirical

analysis, along with their source and the transformations used. Note that our forecasting exercise

is not based on real-time data, with the data-vintage being that of 2016Q1 to correspond to the

end-date of the inequality measures.

4 Empirical Analysis

4.1 Calibration Issues

We compute out-of-sample forecasts for three different forecast horizons by recursively re-

estimating the forecasting model. We present results for one-quarter-ahead forecasts (h = 1),

and in In Section 4.4 also for two-quarters ahead and one-year ahead forecasts (h = 2,4).6 In

order to account for the possibility that the boosting algorithm may include different predictors

5Further details regarding the data and the data itself for download can be found at: http://www.
policyuncertainty.com/financial_stress.html.

6As for the timing of events, our forecasting approach is based on the assumption that a forecaster who (i)
estimates at the beginning of period t +2 a model that predicts period-t +1 inequality (in case of h = 1) using data
on inequality and the other predictors from period t or earlier, and, (ii) uses this model at the end of period t +2 to
form a forecast of period-t +2 inequality using period-t +1 (or earlier) data on inequality and the other predictors.
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in the forecasting model in different periods of time, we use a recursively expanding estimation

window to implement the L2-boosting algorithm. The first estimation window uses the first 10

years of data to train the algorithm, but we also report results for a longer training period. We set

the maximum number of iterations to M=250, but the algorithm typically stops much earlier. As

for the learning rate, we set s = 0.25. As an extension, we also report results for a smaller learn-

ing rate and a larger maximum number of iterations (Section 4.4). Choosing a smaller value for

the learning rate leads to more iterations. We use the R programming environment for statistical

computing for our empirical analysis (R Development Core Team, 2017). Finally, we account

for publication lags to avoid a look-ahead bias. Specifically, we assume a publication lag of

one quarter for the financial-market-based predictors, and two quarters for real GDP growth, the

unemployment rate, and the government-related predictors. We also include lagged predictors

(dated t, t−1, t−2, and t−3) to account for the possibility that lags contain information useful

for predicting changes in the inequality measures. Accounting for all data transformations, we

estimate the boosting algorithm on data starting in 1976(Q3). In total, the boosting algorithm

can include up to 60 predictors (including all lags) in the boosted forecasting models.

4.2 Properties of the Boosted Forecasting Models

Table 1 summarizes key in-sample properties of the boosted forecasting models. The forecasting

horizon is one quarter. Panel A shows the average number of iterations for the four informa-

tion criteria. The two information criteria that use the active set produce fewer iterations than the

other two information criteria. For example, the mean number of iterations for the trace-based in-

formation criteria is approximately 101 and 77 for income-based inequality measure DYI1, while

the mean number of iterations for the other two information criteria is only about 15 iterations.

− Please include Table 1 about here. −

The larger number of iterations that we observe for the trace-based information criteria results

on average in boosted forecasting models that include more predictors than under the active-set
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information criteria, as shown in Panel B. For the consumption-based inequality measures, the

boosting algorithm includes on average fewer predictors in the forecasting models than for the

income-based inequality measures. Moreover, as one would have expected, the larger number

of predictors under the trace-based information criteria results on average in a larger in-sample

adjusted R2 than under the more restrictive information criteria, as plotted in Panel C. The av-

erage in-sample adjusted R2 is largest (about 0.58) for the income-based inequality measure

DYI3 for the two trace-based information criteria, and lowest (about 0.25 to 0.26) in case of the

consumption-based inequality measure DCI1 for the two active-set-based information criteria

− Please include Figure 2 about here. −

Figure 2 plots for the gMDL-based information criteria the evolution of the in-sample estimation

error defined in terms of the square root of the estimated variance of the disturbance term of the

boosted forecasting models. The estimation error is larger for the DYI3 and DCI3 inequality

measures than for the other four inequality measures. The estimation error is relatively stable

over time and shows no abrupt large and disruptive changes. Hence, while the dimension of

boosted forecasting models as measured in terms of the number of predictors as well as the

composition of the vector of selected predictors change over time, structural breaks in the process

generating the inequality measures do not beleaguer the forecasting models. The in-sample

estimation error is on average somewhat larger for the active-set-based information criteria than

for the trace-based information criteria.

4.3 Importance of Predictors

Table 2 reports results for predictor inclusion in the boosted forecasting models, and Table 3

informs about the relative importance of the predictors. The forecasting horizon is one quarter.

Predictor inclusion is a metric of absolute predictor importance. Predictor inclusion is defined

as the number of times a predictor (including all its lags) is included in the boosted forecasting

models divided by the total number of estimated forecasting models (times the number of lags
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of the predictors). Relative importance, in turn, is defined as the number of times a predictor (in-

cluding all its lags) is included in the boosted forecasting models divided by the total number of

predictors included in the boosted forecasting models, computed across all recursive estimation

windows and predictors. Hence, the numbers in the rows of Table 3 sum up to 100%. Panels

A−C report the results for the income-based inequality measures, and Panels D−F summarize

the results for the consumption-based inequality measures.

− Please include Table 2 and 3 about here. −

Several results emerge. The lagged changes in the inequality measures are always among the

top predictors in terms of predictor inclusion and relative importance. While the inclusion of the

lagged changes in the inequality measures in the boosted forecasting models is larger under the

trace-based information criteria, their relative importance is larger when we study the active-set-

based information criteria rather than for the trace-based information criteria. This result is not

surprising given the well-known persistence of inequality (Arestis et al., 2011), and is in line with

the earlier observations for the UK by Gindelsky (2016). For the first income-based inequality

measure, DYI1, two other important predictors are returns of real stock prices and fiscal policy,

as measured in terms of the budget deficit. Returns of real stock prices, the budget deficit, and the

real interest rate are also important for the second and third income-based inequality measures.

In addition, we find that returns of real stock prices are important for the consumption-based

inequality measures, especially under the trace-based information criteria. The budget deficit

is also among the important predictors (for the second consumption-based inequality measure

in particular), but in Table 2 only when we consider the trace-based information criteria. For

all inequality measures, economic policy uncertainty mainly plays a role when we consider the

trace-based information criteria. Similarly, output growth is relatively more important when we

use the trace-based information criteria to compute the boosted forecasting models. While the

role of the stock market has been emphasized by Haan and Sturm (2017) as within-sample pre-

dictors of inequality in general, Gindelsky (2016), and Hood & Waters (2017) did not emphasize

on the equity market in their forecasting analysis of the UK. Though our findings of the impor-
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tance of the fiscal policy variable and economic growth is somewhat in line with Hood & Waters

(2017). Finally, the real interest rate plays a role in terms of absolute and relative importance

for the inequality measures DIY2, DIY3, and DIC3, which in turn supports the important role of

monetary policy in affecting inequality, as suggested in Coibion et al. (2017) and, in particular

for the U.K., by Mumtaz & Theophilopoulou (2017), based on within-sample analyses. How-

ever, the importance of monetary policy decisions does not appear in the out-of-sample analyses

of Gindelsky (2016), and Hood & Waters (2017). Further, unlike existing studies on inequality

projections of the UK, we show that not only does policy decision matter, but more importantly,

uncertainty around policymaking is also very important for predicting the future path of inequal-

ity. This final result clearly hints at suggestion of transparency in policy decisions, and reduction

of uncertainty is required to enhance investment (as theoretically discussed in Bernanke (1983),

Dixit & Pindyck (1994), and recently by Bloom (2009)), and hence reduce inequality growth in

the UK.

4.4 Out-of-Sample Forecasting

Intuitively, a forecasting model that includes several predictors and that, thereby, produces a

larger in-sample adjusted R2 and a smaller in-sample estimation error is more likely to overfit

the data and, according to the standard bias-variance trade-off (see, for example, Hastie et al.,

2009), to produce less favourable out-of-sample results than a more parsimonious forecasting

model. The results on the out-of-sample performance of the boosted forecasting models that we

summarize in Table 4 confirm this intuition. The forecasting horizon is one quarter. We mea-

sure out-of-sample performance in terms of the root-mean-squared forecasting error (RMSFE)

and the out-of-sample R2 proposed by Campbell & Thompson (2008). For implementing the

out-of-sample R2, we use the recursively computed historical mean of changes in the inequality

measures as a benchmark forecast. A positive out-of-sample R2 shows that the boosted forecast-

ing models perform better than the benchmark forecast.

− Please include Table 4 about here. −
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In terms of the RMSFE, the boosted forecasting models perform best for the DYI2 and DCI2

inequality measures, followed by the DYI1 and DC1 measures (Panel A). Results further show

that the RMSFE is smaller when we study an active-set-based information criterion than for

the corresponding trace-based information criterion. Hence, the more restrictive information

criteria, which result in relatively parsimonious forecasting models, produce in general more

accurate out-of-sample forecasts (in terms of the RMSFE statistic) than the relatively generous

(in terms of the number of predictors) information criteria.

The results for the out-of-sample R2 confirm this result (Panel B). For a given inequality mea-

sure, the out-of-sample R2 is larger for the active-set-based information criterion then for the

corresponding trace-based information criterion. This result, however, does not rule out that a

trace-based information criterion yields a better out-of-sample R2 than an active-set-based in-

formation criterion. For example, the out-of-sample R2 is somewhat larger for gMDLtrace than

for AICactiveset information criterian when we consider the DCI2 inequality measure. Again, the

boosted forecasting models perform best (relatively to the historical-mean benchmark) for the

DIC2 consumption-based inequality measure (with the exception of the AICtrace information cri-

terion). The boosted forecasting models also perform well for the DYI2 and DYI3 income-based

inequality measures when we consider the active-set-based information criteria. The boosted

forecasting models realize the worst forecasting performance in terms of the out-of-sample R2

for the DYI1 inequality measures, where the out-of-sample R2 takes on negative values for all

information criteria.

In addition, we estimate Fair-Shiller regressions (Fair & Shiller, 1990) to analyze the predictive

value of the forecasts implied by the boosted forecasting models relative to the forecasts implied

by the recursively computed historical mean of the dependent variable. Specifically, we estimate

regression equations of the format yi,t+h = α +β1ŷboost
i,t+h +β2ŷm

i,t+h + ui,t+h, where a hat denotes

a forecast, u denotes the disturbance terms, and the index m denotes the recursively computed

historical-mean benchmark forecasts. If the forecasts implied by the boosted forecasting models

contain information over and above the information that the benchmark forecasts contain, then

the coefficient β1 should be significantly different from zero, while the coefficient β2 should be

14



zero. If, in contrast, the predictive value of the boosted forecasts is completely encapsulated in the

benchmark forecasts and the latter contains additional information, then the coefficient β1 should

be zero while the coefficient β2 should be significantly different from zero. If the boosted model

and the benchmark forecasts contain exactly the same information then both coefficients, β1 and

β2, are not separately identified. If the forecasts of both models do not have predictive value,

then both coefficients should be zero. Finally, both coefficients should be significantly different

from zero if the forecasts implied by the boosted forecasting model and the benchmark forecasts

contain independent information. Our interest is primarily in the significance of the coefficient

β1, and so we shall only report results for this coefficient. We use Newey-West standard errors

to compute robust standard errors. Panel C of Table 4 reports the p-values of the coefficient β1.

We reject the null hypothesis that this coefficient is zero for all inequality measures.7

− Please include Table 5 about here. −

While the L2-boosting algorithm is not tailored to forecast binary-coded dependent variables (in

contrast to specialized boosting algorithms like logit boost, see Freund & Schapire, 1997; Fried-

man, 2001; Bühlmann & Yu, 2003), an alternative way to assess the out-of-sample performance

of the boosted forecasting models is to study their directional accuracy. We use the Pesaran &

Timmermann (1992) to test the directional accuracy of forecasts. Table 5 summarizes the results

(Panel A). The forecasting horizon is one quarter. The results of the Pesaran-Timmermann test

show that the boosted forecasting models perform well in terms of directional accuracy. With

few exceptions, we can reject the null hypothesis of no predictive directional accuracy. The

corresponding sucess rates (Panel B) vary from a mimimum of approximately 0.52 (trace-based

information criteria) to a maximum of about 0.62 (active-set-based information criteria) for the

DY1 inequality measure. The sucess rates are largest across information criteria for the DIY2,

7Results of Fair-Shiller regressions estimated on two-quarter-ahead and four-quarter-ahead forecasts also show
that model that the boosting algorithm builds from the lagged inequality measures along with the various economic
predictors contains significant additional incremental predictive value relative to the simple benchmark model. Re-
sults are not reported, but available from the authors upon request.
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DIY3, and DIC2 inequality measures, a result that is consistent with the results of the Pesaran-

Timmermann test.

− Please include Table 6 about here. −

Next, we study the Diebold & Mariano (1995) test to compare forecast accuracy. As in the case

of the out-of-sample R2, we consider the recursively computed historical mean of changes in the

inequality measures as a benchmark forecast. We report results that we derive using the modi-

fied Diebold-Mariano test proposed by Harvey et al. (1997), where we report the p-values for

both tests computed using the R package “forecast” (Hyndman, 2017; Hyndman & Khandakar,

2008). We report results for two forecast horizons (one quarter and four quarters), two alternative

loss functions (squared-error loss and absolute-error loss), and two learning rates (s = 0.25 and

s = 0.1).8 Again, the forecasts that we compute using the active-set-based information criteria

that give rise to relatively parsimonious forecasting models perform better than the trace-based

information criteria. For one-quarter ahead forecasts, the tests yield several significant results for

DYI3 and DCI2. For four-quarter ahead forecasts, in turn, we observe significant test results for

all three income-based inequality measures under both squared-error loss and absolute-error loss

(again for the active-set-based information criteria). Assuming a smaller learning rate strength-

ens the significance of the test results under the AICactiveset and gMDLactiveset information cri-

teria. More precisely, the test results are significant for the DIY3, DCI1, and DCI2 inequality

measures under squared-error loss, and for the DIY2 (for the AICactiveset information criterion),

DIY3, DCI1 (for the gMDLactiveset information criterion), and DCI2 inequality measures under

absolute-error loss.9

8We set M = 500 for the smaller learning rate. A smaller learning rate makes computations slower, but typically
increases accuracy (see, for example, Friedman, 2001).

9Based on the suggestion of an anonymous referee, we re-conducted the analysis reported in Panels E and F of 6
with a random-walk, i.e., constant-mean model as a benchmark, and found qualitatively similar results. The analysis
has been suppressed to save space, but complete details are available upon request from the authors.
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5 Concluding Remarks

The dynamics of economic inequality has been at the center of many controversial policy de-

bates in recent years. Our contribution to these debates is that we have used a relatively simple

boosting algorithm to inspect which macroeconomic and financial variables along with lagged

inequality measures help to forecast the dynamics of six different income- and consumption-

based inequality measures of the UK at forecasting horizons of up to one year. The uniqueness

of our analysis is that unlike existing studies, which forecast inequality at an annual frequency,

we do so at a higher (quarterly) frequency based on a data set covering the period from 1975Q1

to 2016Q1. This is important, since given the wide-ranging negative impact of inequality, its

predictability at higher frequency should be important for appropriate and timely policy-making

than when inequality forecasts are available only at an annual (or even lower) frequency. Results

show that, especially when we consider information criteria that give rise to relatively parsimo-

nious forecasting models, the forecasts implied by the boosted forecasting models have predictive

value (though the trace-based information criteria also work well in some of our forecasting ex-

ercises), where the strength of the evidence of predictability varies across inequality measures.

We also have documented evidence of directional accuracy. Among the predictors that stand out

in terms of absolute and/or relative importance are, in addition to lagged inequality measures,

stock-market developments and fiscal deficits and, to a lesser extent, economic policy uncer-

tainty, output growth, and the real interest rate.

From a policy perspective, our results thus highlight the importance of both monetary and fiscal

policy variables in affecting the future path of inequality growth. Hence, the policymakers have

an important role in reducing inequality by undertaking distributional measures, which in turn

would also reduce the persistence in the process of inequality. Given that these policies are

also likely to affect economic growth, inequality will also be affected indirectly via these policy

decisions, given the role of economic growth in forecasting inequality growth obtained by our

analysis. In addition, policymakers would also need to be transparent in their decision making,

and reduce policy uncertainty to have positive impact on the reduction of inequality. Finally, our

17



results are in line with the existing literature of stock market development enhancing inequality,

and in this regard, the general prescription is that investment in equity market should be made as

inclusive as possible for the entire population, which can however, only happen in the long-run

as the redistributive policies reduce the disparity across income levels.

As part of future research, given the importance of forecasting inequality at a higher frequency,

and also simultaneously realizing the need to model variables such as human-capital attainment

and labor-force structure variables, which are only available at annual frequency, it would be in-

teresting to apply the reverse unrestricted mixed data sampling (RU-MIDAS) model of Foroni et

al. (2018) to gain further insights into the dynamics and the predictability of economic inequality.
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Figure 1: Inequality Measures
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Note: YI denotes the three income-based inequality measures. CI denotes the three consumption-bassed inequality measures. For details on the
data, see Section 3.
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Figure 2: Evolution of the In-Sample Estimation Error
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Note: The in-sample estimation error is defined in terms of the square root of the estimated variance of the disturbance term as computed
by estimating by the ordinary-least-squares technique the boosted models using using the predictors selected by the boosting algorithm. A
recursively expanding estimation window is used. Training period: 10 years. Forecast horizon: one quarter.
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Table 1: Properties of the Boosted Forecasting Models
Panel A: Number of iterations

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 100.9825 96.7281 86.8509 64.1667 61.9035 50.7982
AIC active set 15.3070 16.4123 25.5702 8.1316 7.6140 11.0877
gMDL trace 76.5000 57.0439 66.5965 56.5965 40.4211 47.2895
gMDL active set 15.5439 15.5088 17.4211 8.2719 6.9649 12.1053

Panel B: Number of predictors

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 20.2456 19.7719 19.3947 14.9649 15.4737 15.9123
AIC active set 5.2982 5.8246 7.7807 2.4386 2.6667 4.5526
gMDL trace 17.3070 14.7105 16.1491 13.6316 12.4825 15.1667
gMDL active set 5.3772 5.4825 5.8070 2.4123 2.3158 4.9649

Panel C: In-sample R2

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.4942 0.5138 0.5894 0.3875 0.4199 0.3655
AIC active set 0.3861 0.4126 0.5113 0.2565 0.2939 0.2754
gMDL trace 0.4806 0.4906 0.5808 0.3867 0.4128 0.3661
gMDL active set 0.3885 0.4075 0.4853 0.2623 0.2896 0.2825

Note: Number of iterations is the average number of iterations it takes to minimize an information criterion. Number of predictors is the
average number of predictors included in the boosted forecsating models. In-sample R2 is the average adjusted coefficient of determination. A
recursively expanding estimation window is used to compute the boosted forecasting models. Training period: 10 years. Forecast horizon: one
quarter. Learning rate: s = 0.25.
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Table 2: Inclusion of Predictors in the Boosted Forecasting Models
Panel A: DYI1

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GINV UR

AIC trace 74.34 43.86 52.19 62.72 32.46 11.40 43.64 26.75 69.52 34.65 32.24 3.51 12.06 6.80 0.00
AIC active set 48.46 0.66 11.84 26.32 0.00 0.00 6.58 6.14 32.46 0.00 0.00 0.00 0.00 0.00 0.00
gMDL trace 70.39 38.38 48.46 57.89 21.71 7.46 39.25 23.46 60.75 28.73 23.25 1.97 7.24 3.73 0.00
gMDL active set 48.46 0.88 12.28 26.54 0.00 0.00 6.58 6.58 33.11 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: DYI2

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 78.29 23.68 48.25 54.61 49.12 13.60 33.11 26.97 71.27 33.77 25.44 1.75 20.18 14.25 0.00
AIC active set 43.86 0.44 6.14 28.07 21.27 0.00 0.22 2.41 42.32 0.88 0.00 0.00 0.00 0.00 0.00
gMDL trace 66.89 14.69 41.01 50.66 44.96 3.95 17.76 23.25 64.91 16.67 8.11 0.44 10.75 3.73 0.00
gMDL active set 42.32 0.44 5.48 27.85 16.67 0.00 0.22 1.32 41.89 0.88 0.00 0.00 0.00 0.00 0.00

Panel C: DYI3

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 85.75 33.11 38.16 85.09 48.90 25.88 11.84 30.04 83.77 11.40 11.40 7.68 5.04 6.58 0.22
AIC active set 66.01 1.32 11.62 37.28 21.05 1.97 0.00 7.24 47.59 0.22 0.00 0.00 0.00 0.22 0.00
gMDL trace 82.24 22.37 30.70 73.25 45.83 20.39 5.92 25.00 82.68 5.04 3.29 2.41 1.97 2.41 0.22
gMDL active set 58.77 0.44 5.70 32.46 8.55 1.54 0.00 1.54 36.18 0.00 0.00 0.00 0.00 0.00 0.00

Panel D: DCI1

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 68.42 26.32 34.21 70.83 9.21 3.07 16.89 42.11 46.05 10.53 13.60 9.65 4.17 8.11 10.96
AIC active set 42.11 1.32 3.51 5.04 0.00 0.00 2.41 1.32 3.07 0.44 0.44 0.00 0.00 0.88 0.44
gMDL trace 65.79 23.46 33.33 62.06 6.58 3.07 14.69 39.91 43.20 8.33 11.18 6.80 4.17 7.89 10.31
gMDL active set 42.11 2.63 3.51 5.26 0.00 0.22 1.75 2.19 1.32 0.00 0.44 0.00 0.00 0.44 0.44

Panel E: DCI2

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 75.66 25.44 50.66 57.02 13.82 2.63 11.62 27.41 62.06 10.96 11.62 4.39 8.11 8.99 16.45
AIC active set 41.67 0.66 0.22 1.54 0.44 0.00 2.85 1.75 14.47 1.32 0.00 0.00 0.66 0.22 0.88
gMDL trace 74.56 17.98 39.91 42.54 8.99 1.10 8.11 22.15 51.10 10.09 6.58 0.44 6.58 7.24 14.69
gMDL active set 39.25 1.10 0.44 1.10 0.22 0.00 0.88 1.97 10.09 1.10 0.00 0.00 1.54 0.00 0.22

Panel F: DCI3

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 76.10 25.88 52.85 47.59 39.47 14.25 6.36 20.61 59.43 14.47 16.45 5.04 5.04 0.44 13.82
AIC active set 55.04 1.75 2.19 15.13 10.09 0.00 0.00 7.24 9.87 3.73 0.00 0.00 0.00 0.00 8.77
gMDL trace 75.66 24.78 49.56 47.59 33.99 12.72 6.36 18.20 59.43 14.47 14.25 4.39 3.95 0.00 13.82
gMDL active set 54.17 2.85 4.39 15.35 12.28 0.22 0.00 9.21 14.25 3.73 0.00 0.00 0.66 0.00 7.02

Note: Predictor inclusion is defined as the number of times a predictor (including all its lags) is included in the boosted forecasting models
divided by the maximum times a predictor can be included in the boosted forecasting models. Predictor inclusion is expressed in percent.
Predictor inclusion is computed across all forecasting periods. A recursively expanding estimation window is used to compute the boosted
forecasting models. Training period: 10 years. Forecast horizon: one quarter. Learning rate: s = 0.25.
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Table 3: Relative Importance of Predictors
Panel A: DYI1

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GINV UR

AIC trace 14.69 8.67 10.31 12.39 6.41 2.25 8.62 5.29 13.73 6.85 6.37 0.69 2.38 1.34 0.00
AIC active set 36.59 0.50 8.94 19.87 0.00 0.00 4.97 4.64 24.50 0.00 0.00 0.00 0.00 0.00 0.00
gMDL trace 16.27 8.87 11.20 13.38 5.02 1.72 9.07 5.42 14.04 6.64 5.37 0.46 1.67 0.86 0.00
gMDL active set 36.05 0.65 9.14 19.74 0.00 0.00 4.89 4.89 24.63 0.00 0.00 0.00 0.00 0.00 0.00

Panel B: DYI2

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 15.84 4.79 9.76 11.05 9.94 2.75 6.70 5.46 14.42 6.83 5.15 0.35 4.08 2.88 0.00
AIC active set 30.12 0.30 4.22 19.28 14.61 0.00 0.15 1.66 29.07 0.60 0.00 0.00 0.00 0.00 0.00
gMDL trace 18.19 4.00 11.15 13.77 12.22 1.07 4.83 6.32 17.65 4.53 2.21 0.12 2.92 1.01 0.00
gMDL active set 30.88 0.32 4.00 20.32 12.16 0.00 0.16 0.96 30.56 0.64 0.00 0.00 0.00 0.00 0.00

Panel C: DYI3

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 17.68 6.83 7.87 17.55 10.09 5.34 2.44 6.20 17.28 2.35 2.35 1.58 1.04 1.36 0.05
AIC active set 33.93 0.68 5.98 19.17 10.82 1.01 0.00 3.72 24.46 0.11 0.00 0.00 0.00 0.11 0.00
gMDL trace 20.37 5.54 7.60 18.14 11.35 5.05 1.47 6.19 20.48 1.25 0.81 0.60 0.49 0.60 0.05
gMDL active set 40.48 0.30 3.93 22.36 5.89 1.06 0.00 1.06 24.92 0.00 0.00 0.00 0.00 0.00 0.00

Panel D: DCI1

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 18.29 7.03 9.14 18.93 2.46 0.82 4.51 11.25 12.31 2.81 3.63 2.58 1.11 2.17 2.93
AIC active set 69.06 2.16 5.76 8.27 0.00 0.00 3.96 2.16 5.04 0.72 0.72 0.00 0.00 1.44 0.72
gMDL trace 19.31 6.89 9.78 18.21 1.93 0.90 4.31 11.71 12.68 2.45 3.28 1.99 1.22 2.32 3.02
gMDL active set 69.82 4.36 5.82 8.73 0.00 0.36 2.91 3.64 2.18 0.00 0.73 0.00 0.00 0.73 0.73

Panel E: DCI2

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 19.56 6.58 13.10 14.74 3.57 0.68 3.00 7.09 16.04 2.83 3.00 1.13 2.10 2.32 4.25
AIC active set 62.50 0.99 0.33 2.30 0.66 0.00 4.28 2.63 21.71 1.97 0.00 0.00 0.99 0.33 1.32
gMDL trace 23.89 5.76 12.79 13.63 2.88 0.35 2.60 7.10 16.37 3.23 2.11 0.14 2.11 2.32 4.71
gMDL active set 67.80 1.89 0.76 1.89 0.38 0.00 1.52 3.41 17.42 1.89 0.00 0.00 2.65 0.00 0.38

Panel F: DCI3

Criterion DYI1 RHP GDP RSP RIR EER RV EPU BUD FSI TAX ITAX BEN GNV UR

AIC trace 19.13 6.50 13.29 11.96 9.92 3.58 1.60 5.18 14.94 3.64 4.13 1.27 1.27 0.11 3.47
AIC active set 48.36 1.54 1.93 13.29 8.86 0.00 0.00 6.36 8.67 3.28 0.00 0.00 0.00 0.00 7.71
gMDL trace 19.95 6.54 13.07 12.55 8.96 3.35 1.68 4.80 15.67 3.82 3.76 1.16 1.04 0.00 3.64
gMDL active set 43.64 2.30 3.53 12.37 9.89 0.18 0.00 7.42 11.48 3.00 0.00 0.00 0.53 0.00 5.65

Note: Relative importance is defined as the number of times a predictor (including all its lags) is included in the boosted forecasting models
divided by the total number of predictors included in the boosted forecasting models. Relative importance is expressed in percent. Relative
importance is computed across all forecasting periods. A recursively expanding estimation window is used to compute the boosted forecasting
models. Training period: 10 years. Forecast horizon: one quarter. Learning rate: s = 0.25.
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Table 4: Out-of-Sample Performance of the Boosted Forecasting Models
Panel A: Root-mean-squared forecasting error

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 13.5949 8.0121 23.9157 14.1719 9.7574 17.5791
AIC active set 12.9137 7.3146 22.0480 10.7621 7.2680 17.2595
gMDL trace 13.7459 7.9818 22.9855 13.7843 7.2598 17.6378
gMDL active set 12.8182 7.4450 21.7861 10.9554 7.1086 17.4575

Panel B: Out-of-sample R2

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace -0.1494 -0.0658 0.0146 -0.6891 -0.5051 0.0217
AIC active set -0.0371 0.1117 0.1625 0.0259 0.1649 0.0570
gMDL trace -0.1751 -0.0577 0.0898 -0.5979 0.1668 0.0152
gMDL active set -0.0218 0.0798 0.1823 -0.0094 0.2012 0.0352

Panel C: Fair-Shiller regressions

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.0014 0.0006 0.0001◦ 0.0584 0.1000 0.0001◦

AIC active set 0.0001 0.0001◦ 0.0001◦ 0.0001◦ 0.0001◦ 0.0001◦

gMDL trace 0.0032 0.0002 0.0001◦ 0.0684 0.0001◦ 0.0001◦

gMDL active set 0.0000 0.0002 0.0001◦ 0.0001 0.0001◦ 0.0001◦

Note: The RMSE is computed as RMSE = [(1/T )(yi,t+h− ŷboost
i,t+h)

2]0.5, where yi,t+h denotes the actual data and T denotes the number of out-of-
sample forecasting periods. The out-of-sample R2 is computed using the recursively estimated historical mean, ŷm

i,t+h, of the dependent variable
as a benchmark as follows: R2 = 1− [∑T (yi,t+h− ŷboost

i,t+h)
2]/[∑T (yi,t+h− ŷm

i,t+h)
2], where the summation is over the out-of-sample forecasting

periods. The p-values of the coefficient β1 in the Fair-Shiller regression, yi,t+h = α +β1ŷboost
i,t+h +β2ŷm

i,t+h + ui,t+h, are computed using Newey-
West standard errors. Training period: 10 years. Forecast horizon: one quarter. Learning rate for the boosted model: s = 0.25. A ◦ denotes a
p-value samller than 0.0001.
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Table 5: Directional Accuracy of Out-of-Sample Forecasts
Panel A: Pesaran-Timmermann test

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 2.6406 2.3550 2.4886 1.4955 2.3364 2.1434
AIC active set 0.8523 2.3550 2.6777 1.8675 2.5044 1.5024
gMDL trace 2.5933 2.0682 2.2653 1.8748 2.7464 2.3549
gMDL active set 0.8523 2.3550 2.2812 1.6671 2.6263 1.8875

Panel B: Sucess rates

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.6228 0.6053 0.6140 0.5702 0.6053 0.5965
AIC active set 0.5263 0.6053 0.6228 0.5877 0.6053 0.5614
gMDL trace 0.6140 0.5877 0.6053 0.5877 0.6228 0.6053
gMDL active set 0.5263 0.6053 0.6053 0.5789 0.6140 0.5789

Note: Directional accuracy is analyzed by means of the Pesaran-Timmermann test. The null hypothesis is that the forecasts have no predictive
value with regard to the direction of change of the inequality measures. The Pesaran-Timmermann test has a standard normal distribution (the 10%
and 5% one-sided critical values are 1.64 and 1.95). In order to set up the test, a contingency table with the marginal events yi,t+h > 0, ŷboost

i,t+h < 0,
yi,t+h ≥ 0, and ŷboost

i,t+h ≥ 0 is constructed. The events in category i j of this contingency table have frequency P̂i j = Ti j/T . The estimated frequencies
of the marginal events are given by P̂0 j = T0 j/T and P̂i0 = Ti0/T , where T0 j (Ti0) denotes the sum of the rows (columns). Using the notation also

used by Pesaran and Timmermann (1992), the following quantities are defined: P = (P11,P12,P21,P22) and V =
(

∂ f (P)
∂P

)′
(Ψ−PP′)

(
∂ f (P)

∂P

)
,

with ∂ f (P)
∂Pi j

= 1−Pi0−P0i for i = j, and ∂ f (P)
∂Pi j

=−Pi0−P0 j otherwise, where Ψ = diagonal matrix with the elements of P on its diagonal. The

Pesaran-Timmermann test is computed as
√

nV−1/2S→ N(0,1), where S = ∑
2
i=1 P̂ii− P̂i0P̂0i and V and S are evaluated at P = P̂. In order to test

the null hypothesis, positive values of the test (correctly predicted direction of change) are of interest. The success rate is computed be defining
x1 = ∑T [1(yi,t+h > 0)× (1ŷboost

i,t+h > 0)] and x2 = ∑T [1(yi,t+h < 0)× (1ŷboost
i,t+h < 0)], and then computing success rate = (x1 + x2)/T , where 1

denotes the indicator function and the summation is over the out-of-sample forecasting periods, T . A recursively expanding estimation window
is used to compute the boosted forecasting models. Training period: 10 years. Forecast horizon: one quarter. Learning rate: s = 0.25. Success
rates: correct directional forecasts divided by the total number of forecasts.
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Table 6: Diebold-Mariano Tests
Panel A: One-quarter ahead (squared-error loss)

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.7818 0.6361 0.4596 0.8618 0.7665 0.4261
AIC active set 0.6086 0.2292 0.0880 0.3896 0.0580 0.2527
gMDL trace 0.8111 0.6253 0.2498 0.8285 0.0932 0.4492
gMDL active set 0.5634 0.3028 0.0643 0.5363 0.0319 0.3408

Panel B: One-quarter ahead (absolute-error loss)

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.5750 0.5247 0.5586 0.8546 0.5618 0.6624
AIC active set 0.7115 0.1825 0.1883 0.4018 0.0772 0.6803
gMDL trace 0.5950 0.4922 0.3745 0.7864 0.1554 0.6533
gMDL active set 0.6675 0.2118 0.1586 0.3911 0.0303 0.6713

Panel C: Four-quarters ahead (squared-error loss)

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.1452 0.9721 0.5633 0.6894 0.7675 0.8954
AIC active set 0.0000 0.0058 0.1059 0.5216 0.6540 0.4263
gMDL trace 0.1859 0.9200 0.5266 0.6558 0.6557 0.8832
gMDL active set 0.0001 0.0105 0.0674 0.4247 0.6370 0.4022

Panel D: Four-quarters ahead (absolute-error loss)

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.1459 0.9658 0.3525 0.8348 0.6895 0.6970
AIC active set 0.0005 0.0105 0.0241 0.6091 0.5021 0.3069
gMDL trace 0.1484 0.8480 0.3146 0.8144 0.5817 0.7149
gMDL active set 0.0005 0.0147 0.0071 0.5071 0.4611 0.2536

Panel E: One-quarter ahead (squared-error loss, smaller learning rate)

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.8761 0.6762 0.3983 0.8197 0.7475 0.5777
AIC active set 0.3834 0.1461 0.0712 0.0758 0.0265 0.1379
gMDL trace 0.8293 0.5898 0.3288 0.8207 0.1527 0.5582
gMDL active set 0.3880 0.1852 0.0337 0.0667 0.0242 0.1323

Panel F: One-quarter ahead (absolute-error loss, smaller learning rate)

Criterion DYI1 DYI2 DYI3 DCI1 DCI2 DCI3

AIC trace 0.7622 0.6155 0.5806 0.7803 0.4640 0.7842
AIC active set 0.4897 0.0907 0.0464 0.1046 0.0367 0.3354
gMDL trace 0.6779 0.4472 0.4849 0.7545 0.1303 0.7543
gMDL active set 0.4838 0.1406 0.0272 0.0757 0.0263 0.2837

Note: p-values of the Diebold-Mariano test. A recursively expanding estimation window is used to compute the boosted forecasting models.
Training period: 10 years. Learning rate (Panels A to D): s = 0.25. Learning rate (Panels E and F): s = 0.1. The recursively computed historical
mean is the benchmark forecast. In order to set up the Diebold-Mariano test, the forecast errors for the boosted forecasts, f eboost

i,t+h = yi,t+h− ŷboost
i,t+h ,

and the recursively-estimated-mean forecasts, f em
i,t+h = yi,t+h− ŷm

i,t+h, are computed. The loss differential is computed as di,t+h = | f em
i,t+h|

p−
| f eboost

i,t+h |
p, where p = 1 for absolute loss and p = 2 for squared-error loss. The Diebold-mariano test is computed as kDM, where k = Harvey-

Leybourne-Newbold adjustment factor, DM = d̄/(Ω̂(d̄)0.5), where d̄ = average loss differential, and Ω̂(d̄) = estimate of the variance of d̄.
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