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Abstract

This paper takes a novel approach for forecasting the risk of disease emer-

gence by combining risk management, signal processing and econometrics to

develop a new forecasting approach. We propose quantifying risk using the

Value at Risk criterion and then propose a two staged model based on Mul-

tivariate Singular Spectrum Analysis and Quantile Regression (MSSA-QR

model). The proposed risk measure (PLVaR) and forecasting model (MASS-

QR) is used to forecast the worst cases of waterborne disease outbreaks in 22

European and North American countries based on socio-economic and envi-

ronmental indicators. The results show that the proposed method perfectly

forecasts the worst case scenario for less common waterborne diseases whilst

the forecasting of more common diseases requires more socio-economic and

environmental indicators.

Keywords: Value at Risk; Disease; Outbreaks; Forecasting; Quantile

Regression; Multivariate Singular Spectrum Analysis.

1. Introduction1

The accurate forecasting of disease outbreaks continue to challenge re-2

searchers, governments and policy makers (Graham et al. , 2018; Metcalf3

and Lessler , 2018). The task itself is challenging as an outbreak is a result4
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of interactions between pathogens/parasites, hosts and other environmental5

variables (Alizon et al. , 2013; Griffiths et al. , 2011).6

Accordingly, in the recent past, researchers have adopted a variety of tools7

from different parts of science to forecast disease outbreaks. For instance,8

Lowe et al. (2017) used precipitation, minimum temperature, and El Niño9

index forecasts to predict the dengue incidence in Ecuador. Their results10

show that using climatological forecasts could improve the accuracy of dengue11

outbreak forecast. Han and Drake (2016) proposed using statistical machine12

learning methods to forecast the outbreaks of a disease. They argued that13

applying machine learning methods to existing big data on environmental,14

epidemiological and molecular systems could help public health authorities15

to predict the flow or risks of disease emergence (including outbreak risks).16

Liao et al. (2017) used a Bayesian Belief Network (BBN) to predict the risk17

of further outbreaks. They suggest that the BBN technique can be used for18

early warnings of infectious diseases.19

Although many of the methods considered in disease outbreak risk fore-20

casting proved to be accurate and effective, most of the research forecasts the21

number of cases/incidence, ratios or the probability of occurrence as outbreak22

risks. On the other hand, in risk management, one is usually interested in23

worst case scenarios. For instance, in financial risk analysis, instead of fore-24

casting the average value of an asset, it is common to forecast the value which25

is the lowest with 95% confidence. Such values are referred to as Value at26

Risk (Davino et al., 2014) and shows the value of the asset in in extremely27

negative conditions (the probability of extreme events taking place is 5%).28

In this paper, we are concerned with forecasting the worst case scenarios29

for disease outbreaks. Relying on financial risk analysis, a new risk measure30

is proposed to present the worst case scenario. More specifically, a model31

based on the Multivariate Singular Spectrum Analysis (Sanei and Hassani,32

2015) and the Quantile Regression (Koenker , 2005) is developed to forecast33

the disease outbreak worst case scenario. The proposed method is used to34

forecast annual outbreaks of 13 waterborne disease in 22 European and North35

American countries between 2011 and 2015. The data from 10 socio-economic36

and environmental indicators between 1998 and 2010 is used to estimate the37

coefficients of the model (train the model). Results show that with relatively38

small number of indicators and training data, the proposed model has the39

2



ability to forecast the worst cases of outbreaks for less common waterborne40

diseases. For more common waterborne disease like Diarrhoea, Pertussis and41

Malaria, however, more indicators are needed.42

The remainder of the paper is organised as follows. The proposed forecast-43

ing method is presented in Section 2. Section 3 gives a complete description44

of the waterborne disease dataset and indicators used to forecast the disease45

outbreaks. The results from the forecasting exercise for waterborne disease46

outbreaks are presented in Section 3. Finally, Section 4 concludes the paper.47

2. Methodology48

2.1. Value at Risk and Population Loss Value at Risk49

The Value at Risk (VaR) (Leavens , 1945) is one of the common risk50

measures in financial risk analysis. The VaR measure shows the minimum51

value of an asset (or its return) with 1−α confidence level, i.e. the probability52

that the value of an asset goes under the VaR is α. In other words, the VaR53

shows the scenario which with confidence level 1 − α worst that that won’t54

happen (the risk that cases worst than VaR happens in reality is α). Since in55

investment problems, the worst cases are always the lower values (e.g. lower56

returns, price, or income) the VaR in risk level α (confidence level 1− α) is57

defined as follows:58

V aRα(Y ) = inf{y ∈ R : FY (y) = α}

where Y is the value (return, price, ...) of the financial asset. The V aRα is59

the αth quantile of the value distribution (FY (y)), It shows the value of an60

asset in risk situations which means with 1 − α confidence the V aRα is the61

worst case scenario (for more details on VaR see McNeil et al., 2005).62

Adopting the VaR concept from finance, we define the Population Loss63

Value at Risk (PLVaR), as the worst case scenario in disease outbreak with64

risk level α:65

PLV aRα(Y ) = inf{y ∈ R : FY (y) = 1− α}, (1)

where Y is the number (or ratio) of losses in disease outbreak. Unlike66

V aRα(Y ), the PLV aRα(Y ) is the (1 − α)th quantile of the Y , since the67

worst case in disease outbreak is the case with largest number (ratio) of68
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losses. In this manner, the PLV aRα shows the worst case scenario in disease69

outbreak, with 1− α confidence level.70

The PLV aR can be used as a risk measure in disease control and out-71

break prevention planes. The PLV aR has the ability to forecast the disease72

outbreaks along with the size of the break out. Non-zero Values of PLV aR73

show the outbreak situations, while the larger values show the estimate the74

larger outbreaks. For instance, the PLV aR0.01 = 0 means in 0.99 confidence75

level, there is not a disease outbreak (in other words, it means the chance of76

disease outbreak is under 1%). Using PLV aR as a risk measure, one may77

forecast the future values of PLV aRα in order to forecast the size of the78

future outbreaks.79

2.2. Multivariate Singular Spectrum Analysis80

The Horizontal MSSA Recurrent (HMSSA-R) forecasting algorithm uses81

following steps to forecast multivariate time series. Those interested in an82

in-depth explanation of the theory underlying MSSA are directed to Sanei83

and Hassani (2015). In presenting this algorithm we mainly follow and rely84

on the notations in Sanei and Hassani (2015).85

2.2.1. HMSSA-R Optimal Forecasting Algorithm86

1. Consider M time series with identical series lengths of Ni, such that87

Y
(i)
Ni

= (y
(i)
1 , . . . , y

(i)
Ni

) (i = 1, . . . ,M).88

2. For forecasting exercises we would split each time series into three parts89

leaving 2
3

rd
for model training and testing, and 1

3

rd
for validation.90

3. Beginning with a fixed value of L = 2 (2 ≤ L ≤ N
2

) and in the pro-91

cess, evaluating all possible values of L for YNi , using the training data92

construct the trajectory matrix X(i) = [X
(i)
1 , . . . , X

(i)
K ] = (xmn)L,Kim,n=1 for93

each single series Y
(i)
Ni

(i = 1, . . . ,M) separately.94

4. Then, construct the block trajectory matrix XH as follows:95

XH =
[
X(1) : X(2) : · · · : X(M)

]
.

5. Let vector UHj = (u1j, . . . , uLj)
T , with length L, be the jth eigenvector96

of XHX
T
H which represents the SVD.97
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6. Evaluate all possible combinations of r (1 ≤ r ≤ L − 1) step by step98

for the selected L and construct X̂H =
∑r

i=1 UHiU
T
Hi
XH as the recon-99

structed matrix obtained using r eigentriples:100

XH =
[
X̂(1) : X̂(2) : · · · : X̂(M)

]
.

7. Consider matrix X̃(i) = HX̂(i) (i = 1, . . . ,M) as the result of the101

Hankelization procedure of the matrix X̂(i) obtained from the previous102

step for each possible combination of SSA choices.103

8. Let UO
Hj

denote the vector of the first L−1 coordinates of the eigenvec-104

tors UHj , and πHj indicate the last coordinate of the eigenvectors UHj105

(j = 1, . . . , r).106

9. Define υ2 =
r∑
j=1

π2
Hj

.107

10. Denote the linear coefficients vector R as follows:108

R =
1

1− υ2
r∑
j=1

πHjU
O
Hj. (2)

11. If υ2 < 1, then the h-step ahead HMSSA forecasts exist and is calcu-109

lated by the following formula:110

[
ŷ
(1)
j1
, . . . , ŷ

(M)
jM

]T
=


[
ỹ
(1)
j1
, . . . , ỹ

(M)
jM

]
, ji = 1, . . . , Ni,

RTZh, ji = Ni + 1, . . . , Ni + h,

(3)

where, Zh =
[
Z

(1)
h , . . . , Z

(M)
h

]T
and Z

(i)
h =

[
ŷ
(i)
Ni−L+h+1, . . . , ŷ

(i)
Ni+h−1

]
111

(i = 1, . . . ,M).112

12. Seek the combination of L and r which minimises a loss function, L113

and thus represents the optimal HMSSA-R choices for decomposing114

and reconstructing in a multivariate framework.115

13. Finally use the selected optimal L to decompose the series comprising116

of the validation set, and then select r singular values for reconstructing117

the less noisy time series, and use this newly reconstructed series for118

forecasting the remaining 1
3

rd
observations (or the test set as relevant119

to this study).120
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2.3. Quantile Regression121

The Quantile Regression (QR) models the τth quantile of the response122

variable using a regression line:123

Qτ = β0,τ +

p∑
i=1

βi,τxi + ετ ,

where x1 . . . , xp are independent variables and Qτ is the τth quantile of re-124

sponse variable y with cumulative distribution function FY (.):125

Qτ = inf{y ∈ R : FY (y) = τ}, 0 < τ < 1.

The coefficients of the model can be estimated by minimizing the loss function126

Lτ (e) =
(
τ − I(e<0)

)
e where I(e<0) is the Indicator function (for more details127

on QR see Davino et al., 2014):128

I(e<0) =

{
1 ife < 0

0 otherwise

The QR model is a simple tool for risk analysis. For instance, one may129

use the QR model to estimate the VaR (or PLVaR) for response variable130

y based on given situation (indicators) x1, . . . , xp. On the other hand, one131

may use the QR model to control the worst case scenario using the control132

variables x1, . . . , xp.133

2.4. MSSA-QR model for PLVaR forecasting134

In order to forecast the PLVaR, we propose a two stage model. At the135

first stage, we use MSSA to forecast the indicators in the model. The second136

stage, uses forecasted values of indicators, to estimate the outbreak risk. It137

should be noted that in first stage, not all the variables need to be forecasted138

using MSSA. The future values of some indicators are already forecasted139

(for instance the population structure and population growth rates for dif-140

ferent countries are forecasted using Birth/Death models and are available141

from http://www.un.org/en/development/desa/population/). Further-142

more, some of the indicators are related to governments policies and can be143

forecasted based on governments announced policies. The MSSA-QR model144

for PLVaR h step ahead forecasting follows these steps:145

First Stage: Forecasting the indicators146
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1. Use data available from the past (t = 1, . . . , N) for M countries/regions147

and the birth/death models to calculate h step ahead forecast for pop-148

ulation indicators (e.g. population structure, growth etc.).149

2. Assess the government’s announced policies and use data available from150

the past (t = 1, . . . , N) to forecast the indicators related to govern-151

ment’s policies (like infrastructural developments) for the desired time152

horizon.153

3. Use the HMSSA-R algorithm and calculate the h step ahead forecasts154

for the rest of the indicators, based on historical data (each indicator is155

a M -variate time series where M is the number of countries/regions).156

Second Stage: Forecasting the PLVaR for a given risk level α157

1. Use the data available in time period t = 1, . . . , N and countries/regions158

i = 1, . . . ,M to fit the QR model as:159

PLV aRα(Yt,i) = Q1−α = β0,1−α +

p∑
j=1

βj,1−αxj,t,i + ε1−α,t,i,

where Yt,i is the number (or ratio) of deaths caused by disease outbreak160

at time t and country/region i. The xj,t,i is the jth indicator observed161

value at time t and country/region i. The εα,t,i is the innovation term162

with mean zero and constant variance σ2
α.163

2. Use the fitted QR model and forecasted values of indicators (from the164

First Stage) to forecast future PLVaRs:165

̂PLV aRα(Yt+k,i) = β̂0,1−α +

p∑
j=1

β̂j,1−αx̂j,t+k,i, k = 1, . . . , h

2.5. Model accuracy measures166

Root mean squared error: The common accuracy measure in time167

series forecasting models, is the Root Mean Square Error (RMSE). For M -168

variate time series the RMSE is formulated as follows:169

RMSE =

√√√√ M∑
i=1

N∑
t=1

(yt,i − ŷt,i)2,

where ŷt,i is the forecasted value of time series.170
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Exceedance rate: Suppose Q̂τ is the estimated value of τth quantile171

based on observations y1, . . . , yN . The exceedance rate of Q̂τ is the relative172

frequency of the observations greater than Q̂τ (Y ). If the estimation of τ173

quantile is accurate, the exceedance rate should be close to 1 − τ . In risk174

assessment applications, the exceedance rate is used to evaluate the accuracy175

of estimated VaR. If the exceedance rate is less than 1−τ the estimated VaR176

will present the worst case scenario accurately.177

In this research, the exceedance rate is used to investigate the accuracy178

of QR in PLVaR forecasting (with risk level α).179

ERα =
1

N

M∑
i=1

N∑
t=1

I
(yt,i> ̂PLV aRα(Yt,i))

,

where I(.) is Indicator function. Exceedance rate lower than α means the risk180

of using ̂PLV aRα(Yt,i) as the worst case scenario is less than α.181

3. Data Description and Results182

In order to forecast the waterborne and disease outbreak risk, we use the183

input dataset, published by World Health Organization (WHO) and used to184

calculate the 2000-2016 Disease burden and mortality estimates. The dataset185

contains the annual number of deaths cussed by 13 waterborne diseases be-186

tween 1998 and 2016, for 22 European and North American countries (WHO,187

2018)1. The annual number of deaths per million, cussed by each disease, is188

a measure of disease outbreak for that disease.189

Table 1 shows the list of waterborne disease considered in this study whilst190

Table 2 shows the list of countries involved. The PLV aRα is considered191

as the (1 − α)th quantile of the annual number of deaths per million. The192

PLV aR is forecasted using water related environmental and socio-economic193

indicators. The description of the indicators are as follows:194

• FSS: This indicator is based on an assessment of the percentage of fish195

stocks caught within a countrys Exclusive Economic Zone (EEZ) that196

are overexploited or collapsed(Wendling et al., 2018; YCELP, 2018).197

1The dataset is available from World Health Organization (http://www.who.int/

healthinfo/global_burden_disease/estimates/en/). The original dataset contains

47 countries from Europe and North America. The countries with no records of water- or

disease-related environmental indicators, in that period, are dropped from this study.
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Table 1: Waterborne diseases in this study.

1 Chlamydia 8 Dengue

2 Diarrhoeal Diseases 9 Japanese Encephalitis

3 Pertussis 10 Trachoma

4 Poliomyelitis 11 Ascariasis

5 Malaria 12 Trichuriasis

6 Schistosomiasis 13 Hookworm Disease

7 Onchocerciasis

Table 2: List of countries in this study.

1 Canada 9 Guatemala 17 Puerto Rico

2 Croatia 10 Iceland 18 Republic of Moldova

3 Denmark 11 Ireland 19 Sweden

4 Estonia 12 Italy 20 Switzerland

5 Finland 13 Latvia 21 United Kingdom

6 France 14 Netherlands 22 United States of America

7 Germany 15 Panama

8 Greece 16 Poland
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• FPRO: Fisheries production (Total) (tonnes)2(FAO, 2018)198

• FWP: Freshwater KBAs completely covered by protected areas (SDG199

15.1.2) (Percentage)(BirdLife Internationa, 2018)200

• POP14: Child population 0-14 (% of total) (% of population)(UNPD,201

2018)202

• POP65: Elderly population 65 and above (% of total) (% of popula-203

tion)(UNPD, 2018)204

• POPG: Population growth (Percentage)(UNPD, 2018)205

• IS R: Access to improved sanitation: rural (% of rural population)206

(UNMDG, 2018)207

• IS U: Access to improved sanitation: urban (% of urban population)208

(UNMDG, 2018)209

• IWS R: Access to improved water sources: rural (% of rural popula-210

tion) (UNMDG, 2018)211

• IWS U: Access to improved water sources: urban (% of urban popu-212

lation) (UNMDG, 2018)213

The FSS, FPRO and FWP indicators, are the environmental indicators214

related to the freshwater disease risk. For instance, the countries with larger215

FSS (and relatively lower FPRO) has a higher risk of freshwater disease216

(Peeler and Feist , 2011). Indicators POP14, POP65 and POPG, indicate217

the structure of the population. These indicators are included in the study218

due to the fact that on one hand, child and elderly populations are more219

vulnerable in disease outbreaks. On the other hand, the larger child popu-220

lation increase the risk of break out since they usually are cureless while the221

elderly population are more cautious and usually more experienced. Indica-222

tors IS R, IS U, IWS R and IWS U are related to government policies and223

infrastructural developments related to clean water resources.224

2The rest is downloaded from http://environmentlive.unep.org/downloader
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Figure 1: MSSA-QR model for waterborne disease PLVaR forecasting

The PLV aR is forecasted using the MSSA-QR model for confidence levels225

0.9, 0.95 and 0.99 (risk levels α = 0.1, 0.05, 0.01). Figure 1 shows the diagram226

of the model.227

228

In the first stage, MSSA is applied to FSS, FPRO and FWP as environ-229

mental indicators. The number of components in MSSA is selected based on230

minimum in-sample RMSE, using the data available before 2011. Since we do231

not have access to government policies on water and sanitation resources (i.e.232

IS R, IS U, IWS R and IWS U) in all of these 22 countries, MSSA is used to233
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Table 3: Out-of-sample RMSE produced by HMSSA-R, the number of components and

window length in MSSA.

RMSE

Indicator 2011 2012 2013 2014 2015 r† L‡

FSS 11.9396 16.1707 16.3747 16.587 .a 2 31

FPRO 1.69E+05 1.78E+05 1.57E+05 1.92E+05 1.58E+05 1 10

FWP 11.1997 13.5262 19.1778 21.2637 23.5379 1 10

IS R 2.0862 2.5818 3.0744 3.505 3.5473 1 7

IS U 0.5605 0.5576 0.56 0.5676 0.9434 1 7

IWS R 2.0018 2.3421 2.6736 2.9148 2.9185 1 11

IWS U 0.6103 0.6915 0.787 0.8225 0.8248 1 11

.† Number of components selected based on minimum in-sample RMSE

.‡ Window length selected based on minimum in-sample RMSE

.a The RMSE is not calculated since the 2015 observation is not

available for any of the countries.

forecast these indicators too. The out-of-sample RMSE is calculated based234

on the forecasts for 2011 to 2015. Table 3 shows the out-of-sample RMSE235

for each year and indicator. As mentioned before, the POP14, POP65 and236

POPG indicator forecasts are available based on Berth/Death models from237

http://www.un.org/en/development/desa/population/.238

In the second stage, the data from 1998 to 2010 are used to estimate the239

QR model coefficients in each confidence level. Table 4 shows the exceedance240

rate (ERα) in each disease and confidence level for the estimated PLVaR. The241

out-of-sample ERα for forecasted PLVaR (from 2011 to 2015) are given in242

Tables 5 and 6.243

According to the Table 4, the in-sample ERα is less than the risk level244

for most diseases. In more common diseases, (i.e. Diarrhoea, Pertussis and245

Malaria), however, the ERα is slightly larger than the risk level. We record246

similar results during the out-of-sample forecasting exercise. Tables 5 and 6247

show that in all time horizons (from 2011 to 2015), for less common diseases,248

the ERα does not exceed the risk level.249
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Table 4: In-sample Exceedance rate (ERα) for estimated PLVaR based on 1998-2010 data.

Confidence Level† Confidence Level†

Disease 0.9 0.95 0.99 Disease 0.9 0.95 0.99

Chlamydia 0.0185 0.0185 0.0074 Dengue 0.0296 0.0185 0.0000

Diarrhoeal 0.1148 0.0704 0.0074 Japanese 0.0185 0.0185 0.0037

Diseases Encephalitis

Pertussis 0.1000 0.0556 0.0333 Trachoma 0.0185 0.0185 0.0037

Poliomyelitis 0.0741 0.0667 0.0000 Ascariasis 0.0333 0.0222 0.0148

Malaria 0.0807 0.0526 0.0246 Trichuriasis 0.0037 0.0037 0.0037

Schistosomiasis 0.0741 0.0519 0.0185 Hookworm 0.0222 0.0148 0.0000

Onchocerciasis 0.0037 0.0037 0.0037

.† Confidence Level is 1 - α where α is risk level.

Overall, according to these results, it is evident that the MSSA-QR model250

and the forecasted PLVaR values can be used as useful measures for fore-251

casting the worst case scenario in waterborne disease control and prevention.252

The model is not without its weaknesses, as we notice that it struggles at253

forecasting the more common disease like Diarrhoea, Pertussis and Malaria.254

However, we believe the performance for these diseases could be improved255

using more indicators. This is because the more common diseases are usually256

affected by more socioeconomic and environmental variables. For instance,257

the climatological and economic-development variables could affect the risk258

of a Malaria outbreak.259

4. Conclusion260

In this paper, a new model for forecasting the disease outbreak risk is261

proposed. In order to quantify the risk, we adopt a risk measure from finan-262

cial risk analysis and develop the Population Loss Value at Risk (PLVaR)263

as a measure of disease outbreak risk. The larger values of PLVaR show264

the bigger risk of disease outbreak. The PLVaR is forecasted using a two265

stage model based on Multivariate Singular Spectrum Analysis and Quantile266

Regression (MSSA-QR model). The proposed risk measure (PLVaR) and267
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Table 5: Out-of-sample Exceedance rate (ERα) for estimated PLVaR.

Confidance ERα

Disease Level† 2011 2012 2013 2014 2015

0.9 0.0000 0.0000 0.0000 0.0000 0.0000

Chlamydia 0.95 0.0000 0.0000 0.0000 0.0000 0.0000

0.99 0.0000 0.0000 0.0000 0.0000 0.0000

Diarrhoeal 0.9 0.4091 0.3636 0.3636 0.2857 0.3684

Diseases 0.95 0.3182 0.3182 0.2727 0.2857 0.2632

0.99 0.2727 0.2273 0.2273 0.1905 0.2105

0.9 0.1364 0.1818 0.2727 0.2857 0.2105

Pertussis 0.95 0.1364 0.1364 0.1818 0.2381 0.1053

0.99 0.0909 0.1364 0.1364 0.1905 0.1053

0.9 0.0455 0.0909 0.0909 0.0476 0.1053

Poliomyelitis 0.95 0.0000 0.0455 0.0455 0.0000 0.1053

0.99 0.0000 0.0455 0.0455 0.0000 0.0000

0.9 0.0455 0.1364 0.0455 0.0476 0.1053

Malaria 0.95 0.1364 0.1364 0.1818 0.1905 0.2632

0.99 0.0909 0.0909 0.0455 0.0000 0.1053

0.9 0.0000 0.1364 0.0000 0.0476 0.0000

Schistosomiasis 0.95 0.0000 0.1364 0.0000 0.0476 0.0000

0.99 0.0000 0.0000 0.0000 0.0000 0.0000

0.9 0.0000 0.0455 0.0455 0.0000 0.0000

Onchocerciasis 0.95 0.0000 0.0455 0.0455 0.0000 0.0000

0.99 0.0000 0.0455 0.0455 0.0000 0.0000

.† Confidence Level is 1 - α where α is risk level.
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Table 6: Out-of-sample Exceedance rate (ERα) for estimated PLVaR.

Confidance ERα

Disease Level† 2011 2012 2013 2014 2015

0.9 0.0455 0.0455 0.1364 0.1429 0.1053

Dengue 0.95 0.0455 0.0455 0.0909 0.0952 0.0526

0.99 0.0000 0.0000 0.0000 0.0000 0.0000

Japanese 0.9 0.0000 0.0455 0.0000 0.0476 0.0000

Encephalitis 0.95 0.0000 0.0455 0.0000 0.0476 0.0000

0.99 0.0000 0.0455 0.0000 0.0000 0.0000

0.9 0.0000 0.0000 0.0000 0.0000 0.0526

Trachoma 0.95 0.0000 0.0000 0.0000 0.0000 0.0526

0.99 0.0000 0.0000 0.0000 0.0000 0.0526

0.9 0.0000 0.0909 0.0000 0.0000 0.0000

Ascariasis 0.95 0.0000 0.0909 0.0000 0.0000 0.0000

0.99 0.0000 0.0000 0.0000 0.0000 0.0000

0.9 0.0455 0.0000 0.0000 0.0000 0.0000

Trichuriasis 0.95 0.0455 0.0000 0.0000 0.0000 0.0000

0.99 0.0455 0.0000 0.0000 0.0000 0.0000

0.9 0.0455 0.0000 0.0000 0.0476 0.0526

Hookworm 0.95 0.0455 0.0000 0.0000 0.0476 0.0526

0.99 0.0000 0.0000 0.0000 0.0000 0.0526

.† Confidence Level is 1 - α where α is risk level.
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forecasting model (MASS-QR) is used to forecast the worst cases of water-268

borne disease outbreaks in 22 European and North American countries based269

on socio-economic and environmental indicators. The results show that the270

proposed method perfectly forecasts the worst case scenario for less com-271

mon waterborne diseases. According to our findings, the forecasting of more272

common diseases needs more socio-economic and environmental indicators.273
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policy makers and health institutions to control and prevent the outbreaks.276
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risk analysis using other risk analysis tools in finance. For instance, us-279

ing PLVaR, one may adopt the copula method to investigate the relations280

between different outbreaks. Moreover, more research is required into devel-281

oping and evaluating the accuracy of the proposed PLVar, MSSA-QR model282
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