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Abstract

Singular Spectrum Analysis (SSA) is an increasingly popular time series filtering and
forecasting technique. Owing to its widespread applications in a variety of fields, there
is a growing interest towards improving its forecasting capabilities. As such, this paper
takes into consideration the Recurrent forecasting approach in SSA (SSA-R) and presents
a new mechanism for improving the accuracy of forecasts attainable via this method. The
proposed Recurrent SSA-R approach is referred to as Weighted SSA-R (W:SSA-R), and we
propose using a weighting algorithm for weighting the coefficients of the Linear Recurrent
Relation (LRR). The performance of forecasts from the W:SSA-R approach are compared
with forecasts from the established SSA-R approach. We exploit real data and various
simulated time series for the comparison, so as to provide the reader with more conclusive
findings. Our results confirm that the W:SSA-R approach can provide comparatively
more accurate forecasts and is indeed a viable solution for improving forecasts by SSA.
Keywords: Time Series; Forecasting; Singular Spectrum Analysis; Recurrent forecasting.

1 Introduction

Recently, the Singular Spectrum Analysis (SSA) technique has gained considerable popularity
as a powerful and effective time series filtering and forecasting tool. This popularity stems
through its widespread and lucrative applications in a variety fields such as finance, economics,
medicine, meteorology and genetics. As a result, there are continuous attempts at developing
the underlying theory of SSA and improving its forecasting methods. Whilst the review of all
applications of SSA are beyond the scope of this paper, those interested are referred to [1–15].
Nowadays, there is a bulk of research on SSA to develop its theory and applications and few
such examples can be found in [16–22]. A detailed account of the theory and applications of
SSA can be found in [23–25].

The SSA technique has two forecasting variations known as Recurrent and Vector forecast-
ing which are referred to as SSA-R and SSA-V, respectively. Improving the performance of
these forecasting methods constitutes an indispensable part of SSA development. For exam-
ple, by drawing upon the general similarity between genetics Colonial Theory (CT), a nature
inspired algorithm, and SSA; the performance of forecasting in subspace-based methods have
been improved in [26] using CT. The SSA-V approach in particular has been widely adopted in
applications as it has been declared in [23] that SSA-V is more robust than SSA-R when faced
with time series which have unit root problems. Moreover, the SSA-V approach has shown
better performance in the presence of outliers [27]. Recently, a comprehensive investigation
was conducted in [28] to compare the forecasting capabilities of SSA-R and SSA-V forecasting
algorithms via a simulation study and an application to 100 real data sets with varying struc-
tures from different fields. Statistically reliable results in [28] indicate that on average, SSA-V
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forecasts are better in comparison to SSA-R as reported in [23, 29]. However, it is noteworthy
that sample sizes and forecasting horizons were found to have an influence on which algorithm
is more appropriate for forecasting with SSA.

Given that SSA-V outperforms SSA-R in most cases, there has been some interest in im-
proving the forecasting capability of SSA-R. For example, in [30] the SSA-R algorithm has
been promoted through generating the coefficients of the Linear Recurrent Relations (LRR)
by filtered time series. In addition, a new parsimonious recurrent forecasting model has been
proposed in [31]. Recently, a novel signal extraction approach for filtering and forecasting noisy
exponential series has been introduced in [32]. Accordingly, this paper seeks to contribute
further to the growing interest in improving SSA-R forecasts. However, in contrast to the
aforementioned papers, here we seek to improve upon the forecasting capability of the SSA-R
technique and develop a novel recurrent forecasting algorithm which can provide comparatively
more accurate forecasts. In the novel approach, which we refer to as Weighted SSA-R, the
coefficients of the LRR are weighed via a weighting algorithm. The performance of the new re-
current forecasting algorithm is evaluated and compared with the established SSA-R algorithm
by utilizing various real and simulated time series. We obtain promising results which confirms
that exploiting the Weighted SSA-R approach can lead to more accurate forecasts.

The remainder of this paper is organized as follows. Section 2 presents a review of SSA and
the recurrent forecasting algorithm. The novel Weighted SSA-R forecasting approach is pro-
posed in Section 3 and Section 4 is dedicated towards comparing the performance of Weighted
SSA-R with the established SSA-R approach via a simulation study and an application to real
time series data. The conclusions are presented in Section 5.

2 Singular Spectrum Analysis

The SSA method consists of two complementary stages: Decomposition and Reconstruction.
Each of these stages includes two separate steps. At the first stage, the series is decomposed
into several components in order to enable signal extraction and noise reduction. At the second
stage, a less noisy series is reconstructed to be used to forecast new data points. More detailed
information on the theory of basic SSA can be found in [23]. The basic SSA procedure is
concisely presented below and in doing so we mainly follow [25,38].

Stage 1: Decomposition (Embedding & Singular Value Decomposition)

In the embedding step, the multi-dimensional series X1, . . . , XK are built based on the original
one dimensional time series YN = {y1, . . . , yN}, where Xi = (yi, . . . , yi+L−1)

T ∈ RL and K =
N − L + 1. The vectors Xi are called L-lagged vectors. The Window Length L is the single
choice of this step and is an integer such that 2 ≤ L ≤ N/2. The output of the embedding step
is the trajectory matrix X = [X1 : · · · : XK ], which is also a Hankel matrix.

In the Singular Value Decomposition (SVD) step, the trajectory matrix X is decomposed as
a sum of rank-one elementary matrices. The eigenvalues of XXT are denoted by λ1, . . . , λL in
decreasing order of magnitude (λ1 ≥ · · · ≥ λL ≥ 0) and by U1, . . . , UL, the eigenvectors of the
matrix XXT corresponding to these eigenvalues. If d = max{i, such thatλi > 0} = rank(X)
then the SVD of the trajectory matrix can be written as X = X1 + · · · + Xd, where Xi =√
λiUiVi

T and Vi = XTUi/
√
λi (i = 1, . . . , d). The collection (

√
λi, Ui, Vi) is called ith eigentriple

of SVD.
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Stage 2: Reconstruction (Grouping & Diagonal Averaging)

The grouping step splits the elementary matrices Xi into several groups and sums the matrices
within each group. If a group of indices i1, . . . , ip is denoted by I = {i1, . . . , ip} then the matrix
XI corresponding to the group I is defined as XI = Xi1 + · · · + Xip . Having the SVD of X,
the split of the set of indices {1, . . . , d} into the disjoint subsets I1, . . . , Im corresponds to the
following representation:

X = XI1 + · · ·+ XIm . (1)

Diagonal averaging is a process which transforms each matrix XIj of the grouped decompo-
sition (1) into a Hankel matrix so that these can subsequently be converted into a time series,
which is an additive component of the initial series YN . Assume that zij stands for an element
of a matrix Z, then the k -th term of the resulting series is obtained by averaging zij over all i, j
such that i + j = k + 2. This procedure is also known as Hankelization of the matrix Z. The
output of the Hankelization of a matrix Z is the Hankel matrix HZ, which is the trajectory
matrix corresponding to the series obtained as a result of diagonal averaging. In its turn, the
Hankel matrix HZ uniquely defines the series by relating the value in the anti-diagonals to the
values in the series. By applying the Hankelization procedure to all matrix components of (1),

this expansion is obtained: X = X̃I1 + · · · + X̃Im , where X̃Ij = HXIj , j = 1, . . . ,m. This is
equivalent to the decomposition of the initial series YN = {y1, . . . , yN} into a sum of m series:

yt =
∑m

k=1 ỹ
(k)
t (t = 1, . . . , N), where Ỹ

(k)
N = {ỹ(k)1 , . . . , ỹ

(k)
N } corresponds to the matrix X̃Ik .

The SSA technique has the capability of generating forecasts using the filtered time series
following the decomposition and reconstruction stages which are crucial for signal extraction
and noise filtering. In what follows, the SSA-R forecasting method is discussed at length.

2.1 Recurrent SSA Forecasting (SSA-R)

The main assumption to perform SSA forecasting is that the time series satisfies a Linear
Recurrent Relation (LRR). The time series YN = {y1, . . . , yN} satisfies an LRR of order d if
there exist the coefficients a1, . . . , ad such that:

yi+d =
d∑

k=1

akyi+d−k, 1 ≤ i ≤ N − d, ad 6= 0, d < N.

The coefficients a1, . . . , ad are called LRR-coefficients. The class of time series governed by
LRRs which is rather wide and important for practical applications, contains the series that
are linear combinations of products of exponential, polynomial and harmonic series [24].

Let I be the chosen set of eigentriples attained at the grouping step of SSA. For example in
trend forecasting, I is the trend group and in harmonic components forecasting, I corresponds
to harmonic groups. To obtain forecasts of reconstructed series (signal forecasting), the first r
eigentriples can be selected.

Let Ui ∈ RL, i ∈ I be the corresponding eigenvectors of chosen eigentriples, Ui ∈ RL−1 be
the vector consisting of the first L−1 components of the vector Ui, πi be the last component of
the vector Ui, v

2 =
∑

i∈I π
2
i , and ỸN = {ỹ1, . . . , ỹN} be the time series reconstructed by set I.

Denote by L ⊂ RL the linear space spanned by the vectors Ui, i ∈ I; i.e., L = span(Ui, i ∈ I).
Note that the set {Ui, i ∈ I} forms an orthonormal basis in L. It is assumed that eL /∈ L,
where eL = (0, 0, . . . , 1)T ∈ RL; in other term, L is not a vertical space. Since eL /∈ L, v2 < 1.
It can be proved that the last component zL of any vector Z = (z1, . . . , zL)T ∈ L is a linear
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combination of the first components z1, . . . , zL−1, i.e., zL = a1zL−1 + · · · + aL−1z1, (see [24])
where the vector R = (aL−1, . . . , a1)

T is defined as:

R =
1

1− v2
∑
i∈I

πiUi. (2)

The SSA-R forecasting algorithm can then be summarized as follows.

1. The time series ZN+h = {z1, . . . , zN+h} is defined by

zi =

{
ỹi for i = 1, . . . , N∑L−1

j=1 ajzi−j for i = N + 1, . . . , N + h
(3)

2. The numbers zN+1, . . . , zN+h are the h step-ahead recurrent forecasts.

It is clear that SSA-R forecasting is performed by the direct use of the LRR with coefficients
{aj, j = 1, . . . , L− 1} as defined in (2).

Next, we introduce the newly proposed SSA-R forecasting algorithm.

3 Weighted SSA-R Forecasting Algorithm

It is well known that in real applications, the time series YN = {y1, . . . , yN} are not noise-
free. Consequently, as shown in [30], the LRR-coefficients are contaminated with noise. It
is noteworthy that these coefficients play a fundamental role in SSA-R forecasting as seen in
(3), and using inadequate coefficients results in low accuracy predictions. As such, we seek to
reduce the effect of noise level by weighting the LRR-coefficients in an appropriate manner.
This simple, yet lucrative idea leads us to a new SSA-R forecasting algorithm whereby its
LRR-coefficients are computed as follows:

R(h)
w = wh(aL−1, . . . , a1)

T =
wh

1− v2
∑
i∈I

πiUi, (4)

where wh is the weight at forecast horizon h, defined as:

wh =
yN+h

zN+h

. (5)

Having the weighted LRR-coefficients from (4), the weighted SSA-R forecasting algorithm
can be proposed as follows.

1. The time series ZN+h = {z1, . . . , zN+h} is defined by

zi =

{
ỹi for i = 1, . . . , N∑L−1

j=1 wi−Najzi−j for i = N + 1, . . . , N + h
(6)

2. The numbers zN+1, . . . , zN+h are the h step-ahead weighted SSA-R forecasts.

Evidently, the weight wh defined in (5) can only be used when yN+h and zN+h are known.
However, in reality, yN+h and zN+h are not available because it is assumed that the observed
time series YN = {y1, . . . , yN} has only N available data. To resolve this issue, we propose the
following weighting scheme.
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1. Split the time series YN = {y1, . . . , yN} into two parts. Use the first 2
3
rd observations to

construct many different training sets, each one containing one more observation than the
previous one. Apply the remaining 1

3
rd of observations to build corresponding test sets,

each one containing one fewer observation than the previous one (see Figure 1).

2. First, use the observations of the ith training set at times 1, 2, . . . ,M + i− 1 to forecast
the observation yM+h+i−1 in the ith test set, where M is the minimum size of the training

set. Then, compute w
(i)
h =

yM+h+i−1

zM+h+i−1
(see Figure 2).

3. Repeat the Step 2 for i = 1, 2, . . . , N −M − h+ 1.

4. Compute the weight wh as wh = median
1≤i≤N−M−h+1

{w(i)
h }.

The reason for applying median instead of mean in Step 4 of the above weighting algorithm
is that the median is robust against outlier weights which may be obtained via Step 2.

It is noteworthy that the proposed weight in (5) is closely related to the relative error. If the

relative forecasting error at horizon h is denoted by rh then, rh =
yN+h − zN+h

yN+h

= 1− zN+h

yN+h

=

1 − 1

wh

. Hence, it can be concluded that wh = 1
1−rh

and weighted LRR-coefficients in (4) can

be computed as follows:

R(h)
w =

1

1− rh
(aL−1, . . . , a1)

T =
1

(1− rh)(1− v2)
∑
i∈I

πiUi, (7)

Time● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 1: Training (black) and test (red) sets for N = 15,M = 10.

Time● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 2: Computing the weights based on two-step forecasts for N = 15,M = 10. The black
points are training sets, the red points are test sets and other points are ignored.
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4 Empirical Results

In this section, the performance of SSA-R and Weighted SSA-R forecasting algorithms are
evaluated by applying them to simulated time series and real data. The time series YN =
{y1, . . . , yN} is divided into two parts to build training and test sets as explained in Step 1 of
weighting algorithm in Section 3. The training sets are used to produce SSA forecasts. The
accuracy of forecasting results are measured using the widely used metric, Root Mean Squared
Error (RMSE). The following RMSE ratio is used to compare the SSA-R and newly proposed
Weighted SSA-R forecasting algorithms:

RRMSEh =
RMSEh(weighted SSA-R)

RMSEh(SSA-R)
=

(∑N−h
t=m (yt+h − ŷt+h|t)

2
)1/2

(∑N−h
t=m (yt+h − ˆ̂yt+h|t)2

)1/2 , (8)

where, M is the minimum length of training sets, N is the length of the time series YN , h is
the length of the forecast horizon, ŷt+h|t and ˆ̂yt+h|t are the h step-ahead forecasts obtained from
Weighted SSA-R and SSA-R, respectively. If the RRMSEh < 1 then it can be concluded that
the Weighted SSA-R forecast outperforms SSA-R forecasts at horizon h. Alternatively, when
RRMSEh > 1, it would indicate that the performance of SSA-R forecasting is better than that
of the Weighted SSA-R forecasting approach. In order to enable better comparison, a dashed
horizontal line y = 1 is added to all RRMSE figures.

4.1 Simulation Study

In the following two simulated series, 100 data points are generated and normally distributed
noise is added to each point of the series. The minimum length of training sets is set to 67,
i.e., M = 67. The number of eigentriples for reconstruction and forecasting (r) was selected
according to the rank of the corresponding trajectory matrix. The simulation was repeated
1000 times and mean of RMSEs were calculated to compute RRMSEh as defined in (8). In
order to assess the impact of noise levels on forecasting results, various signal to noise ratios
(SNR) were employed as SNR = 0.25, 0.5, 0.75, 1, 5, 10.

Example 4.1. Consider the Exponential series:

yt = exp(0.01t) + εt, t = 1, 2, . . . , 100,

where εt is the normally distributed noise series with zero mean. The first eigentriple was
selected for reconstruction and forecasting (r = 1). Figure 3 shows the RRMSE of 1, 3, 6, and
12 steps-ahead forecast horizons for Exponential series. At each of forecast horizons h, different
values of SNR’s have been used. As can be seen in this figure, for all forecast horizons, the
Weighted SSA-R forecasting method always outperforms SSA-R, especially for greater values
of window length (L). It can also be seen that RRMSEs are very close together for various
SNR’s.
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Figure 3: RRMSE for Exponential series.

Example 4.2. As a second example, consider the Sine series:

yt = sin(πt/3) + εt, t = 1, 2, . . . , 100,

where εt is the normally distributed noise series with zero mean. The first two eigentriples were
selected for reconstruction and forecasting (r = 2). Figure 4 shows the RRMSE of 1, 3, 6, and
12 steps-ahead forecast horizons for the Sine series. Similar to Example 4.1, different values of
SNR’s have been used for each h and it can be concluded from this figure that for all forecast
horizons, the Weighted SSA-R forecasting method always outperforms SSA-R forecasts. As
can be seen in the RRMSE figure for this simulated series, unlike the simulated Exponential
series, there are some differences between RRMSEs for various SNR’s at lower values of window
length (L).
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Figure 4: RRMSE for Sine series.

4.2 Real Data

Here, let us compare the efficiency of SSA-R and Weighted SSA-R forecasting algorithms using
real data. Figures 5-7 show the time series plots of these data sets. These datasets were com-
piled through the INSEE (Institute National de la Statistique et des Etudes Economiques) for
France, from Statistisches Bundesamt, Wesbaden for Germany, and from the Office for National
Statistics (ONS) for the UK. It includes eight major components of real industrial production
in France, Germany, and the UK. The series are seasonally unadjusted monthly indices for
real output in Electricity/Gas, Chemicals, Fabricated Metals, Vehicles, Food Products, Basic
Metals, Electrical Machinery and Machinery.

These same series were previously used in [39–41] and are considered to be important as
they account for more than 50% of the total industrial production in each country. Those
interested a summary of the data are referred to [39] instead of replicating this information
here. In brief, the time series plots for these data clearly illustrate how they capture the effects
of seasonality, non-stationarity and structural breaks, which adds further value to its choice as
the real world examples in this study.

Tables 1–3 report the out-of-sample forecasting RRMSE’s. Note that to help with replica-
tion, we also report the SSA choices used to generate each forecast within these same tables. We
begin our analysis by considering the forecasts for industrial production in France as reported
in Table 1. In this case, we notice the W:SSA-R model outperforms SSA-R across all horizons
for all data. However, it is clear that for some series (e.g. Chemicals), the average accuracy
gains reported by the W:SSA-R model is lower than for certain other series (e.g. Machinery).

Likewise, Table 2 reports the out-of-sample forecasts for industrial production in UK. Once
again, for the three series reported here, we find the W:SSA-R model outperforming SSA-R.

In Table 3, the forecasting results for Germany are made available. Here too, we find
the newly proposed W:SSA-R model outperforming the SSA-R model in terms of accuracy of
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forecasts across all horizons.
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Figure 5: Time series plot of France industrial production data.
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Figure 6: Time series plot of UK industrial production data.
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Figure 7: Time series plot of Germany industrial production data.

5 Conclusion

In this paper, we proposed a new forecasting algorithm for univariate time series by improving
the capability of the recurrent forecasting approach within the SSA framework. In the pro-
posed technique named Weighted SSA-R, the LRR coefficients were weighed via the weighting
algorithm to obtain better forecasts.

The performance of the Weighted SSA-R algorithm was compared with the established
SSA-R method with respect to the RMSE criteria using both simulated and real world data.
The simulation in particular considered the impact of varying signal to noise ratios on the
performance of the proposed algorithm. The simulation study indicated the superiority of the
Weighted SSA-R forecasts in comparison to SSA-R forecasts across all horizons and for both
exponential and sine series. Following the positive results from the simulation study, it was
imperative to ascertain the performance of the proposed algorithm when faced with real data.

It is important to note that all real data sets considered in this study were previously adopted
in other studies (as noted previously), thus validating its consideration here. Moreover, they
related to annual, quarterly, monthly and daily frequencies, thereby providing the reader with a
more comprehensive outlook on the performance of the proposed algorithm. The application to
real data gave an indication of the algorithms sensitiveness to frequencies, forecasting horizons
and choice of Window Length.

However, in general we found substantial evidence which supports the viability of the
Weighted SSA-R algorithm. The findings of this paper opens up several research avenues re-
lating to the improvement of the Weighted SSA-R algorithm further and calls for an increased
application and comparison of the Weighted SSA-R algorithm not only with SSA-R forecast,
but also with forecasts from SSA-V and other popular univariate forecasting models such as
ARIMA, Holt-Winters, Exponential Smoothing and Neural Networks (to name a few).

10



h RRMSE (L, r)

Vehicles

1 0.92 (13,9) 0.98 (21,14) 0.94 (50,14) 0.96 (73,21) 0.96 (90,22)
3 0.90 (13,9) 0.96 (20,14) 0.96 (34,18) 0.95 (73,14) 0.92 (85,14)
6 0.85 (15,8) 0.81 (21,8) 0.90 (29,12) 0.96 (80,14) 0.94 (96,14)
12 0.86 (13,9) 0.80 (21,6) 0.70 (32,4) 0.98 (44,13) 0.92 (87,14)

Machinery

1 0.98 (23,14) 0.98 (34,16) 0.97 (47,16) 0.98 (81,18) 0.96 (92,20)
3 0.97 (23,14) 0.98 (33,16) 0.96 (40,15) 0.97 (50,16) 0.97 (85,18)
6 0.98 (20,3) 0.92 (35,3) 0.95 (55,15) 0.93 (76,16) 0.94 (85,16)
12 0.95 (23,3) 0.87 (35,3) 0.82 (46,2) 0.80 (68,3) 0.81 (78,2)

Chemicals

1 0.98 (35,18) 0.98 (61,18) 0.99 (68,22) 0.99 (84,23) 0.99 (95,24)
3 0.98 (34,5) 0.97 (46,4) 0.97 (65,3) 0.97 (81,8) 0.96 (96,8)
6 0.97 (35,5) 0.96 (50,4) 0.96 (65,3) 0.97 (80,8) 0.96 (93,8)
12 0.97 (43,5) 0.96 (57,3) 0.97 (66,3) 0.97 (81,8) 0.95 (95,8)

Basic Metals

1 0.97 (13,11) 0.98 (22,16) 0.97 (35,17) 0.96 (47,17) 0.97 (62,17)
3 0.98 (9,7) 0.98 (20,15) 0.98 (33,14) 0.95 (47,16) 0.96 (59,17)
6 0.95 (13,8) 0.93 (21,8) 0.90 (37,8) 0.93 (47,16) 0.93 (52,17)
12 0.91 (20,6) 0.84 (34,5) 0.78 (42,5) 0.85 (55,8) 0.86 (91,8)

Electrical and
1 0.98 (23,14) 0.97 (58,20) 0.98 (70,21) 0.98 (81,21) 0.94 (88,22)

Electronic
3 0.98 (17,14) 0.97 (42,25) 0.95 (60,20) 0.95 (82,22) 0.96 (90,25)
6 0.98 (18,5) 0.94 (27,5) 0.97 (38,5) 0.95 (67,17) 0.91 (83,5)
12 0.94 (22,4) 0.94 (35,5) 0.82 (48,2) 0.91 (70,5) 0.81 (92,5)

Electricity and Gas

1 0.95 (14,6) 0.88 (26,6) 0.86 (33,8) 0.97 (39,9) 0.97 (52,14)
3 0.95 (11,5) 0.87 (25,6) 0.84 (31,6) 0.97 (40,9) 0.98 (52,10)
6 0.95 (10,7) 0.92 (20,6) 0.86 (28,6) 0.90 (37,9) 0.97 (49,10)
12 0.90 (14,5) 0.83 (26,6) 0.88 (37,9) 0.98 (50,10) 0.97 (61,10)

Fabricated Metal

1 0.98 (13,11) 0.98 (53,20) 0.98 (62,22) 0.98 (77,23) 0.98 (92,24)
3 0.97 (13,11) 0.97 (28,12) 0.97 (52,20) 0.98 (60,23) 0.97 (80,17)
6 0.96 (13,11) 0.97 (29,12) 0.89 (40,12) 0.97 (58,16) 0.97 (75,16)
12 0.87 (33,5) 0.78 (42,5) 0.87 (62,7) 0.87 (87,7) 0.91 (95,7)

Table 1: Out-of-sample RRMSE for France industrial production.

h RRMSE (L, r)

Electricity and Gas

1 0.97 (13,6) 0.90 (26,7) 0.97 (44,9) 0.98 (52,8) 0.98 (61,8)
3 0.87 (15,3) 0.81 (22,3) 0.95 (30,5) 0.95 (41,8) 0.94 (50,8)
6 0.87 (15,3) 0.80 (25,8) 0.95 (30,9) 0.92 (43,9) 0.92 (50,8)
12 0.78 (15,3) 0.72 (25,4) 0.92 (38,12) 0.93 (45,5) 0.95 (56,11)

Chemicals

1 0.95 (12,6) 0.98 (18,3) 0.96 (46,5) 0.98 (55,9) 0.94 (64,8)
3 0.96 (10,1) 0.98 (18,7) 0.96 (37,15) 0.93 (47,18) 0.84 (56,8)
6 0.94 (9,1) 0.95 (15,2) 0.91 (35,21) 0.79 (44,8) 0.82 (64,21)
12 0.91 (11,1) 0.84 (22,1) 0.75 (35,1) 0.88 (42,9) 0.81 (60,21)

Fabricated Metal

1 0.98 (8,6) 0.97 (12,8) 0.99 (22,15) 0.99 (47,21) 0.98 (61,22)
3 0.98 (10,1) 0.99 (14,13) 0.98 (29,21) 0.98 (36,16) 0.97 (61,22)
6 0.98 (14,6) 0.97 (29,21) 0.89 (38,1) 0.80 (53,1) 0.72 (64,1)
12 0.96 (25,1) 0.90 (37,1) 0.86 (45,1) 0.78 (54,1) 0.71 (64,1)

Table 2: RRMSE for real data of UK.

11



h RRMSE (L, r)

Electricity and Gas

1 0.98 (11,3) 0.98 (42,13) 0.96 (57,14) 0.96 (74,15) 0.90 (92,16)
3 0.96 (11,3) 0.82 (27,3) 0.96 (61,5) 0.89 (78,8) 0.88 (90,16)
6 0.95 (10,4) 0.89 (21,3) 0.79 (30,3) 0.98 (52,4) 0.86 (92,11)
12 0.94 (11,3) 0.80 (25,3) 0.87 (74,11) 0.78 (82,10) 0.91 (91,5)

Food Products

1 0.90 (15,8) 0.98 (25,11) 0.96 (35,13) 0.97 (46,14) 0.97 (59,15)
3 0.90 (13,8) 0.96 (26,11) 0.96 (33,13) 0.97 (42,14) 0.96 (61,15)
6 0.88 (15,8) 0.94 (30,10) 0.94 (47,14) 0.94 (60,15) 0.95 (91,25)
12 0.80 (14,9) 0.87 (33,13) 0.77 (50,10) 0.76 (61,10) 0.87 (92,9)

Chemicals

1 0.99 (12,4) 0.99 (30,18) 0.98 (60,24) 0.98 (73,24) 0.97 (85,17)
3 0.96 (14,11) 0.98 (32,4) 0.88 (61,1) 0.84 (75,1) 0.84 (84,1)
6 0.97 (16,1) 0.97 (32,1) 0.91 (50,1) 0.82 (73,1) 0.82 (91,1)
12 0.95 (13,1) 0.95 (25,1) 0.93 (34,1) 0.84 (50,1) 0.76 (87,1)

Machinery

1 0.98 (36,18) 0.99 (62,24) 0.98 (71,18) 0.97 (82,18) 0.98 (90,18)
3 0.99 (18,11) 0.97 (36,18) 0.96 (57,19) 0.98 (70,18) 0.98 (83,21)
6 0.99 (19,18) 0.97 (38,18) 0.98 (44,18) 0.97 (71,18) 0.98 (78,18)
12 0.85 (20,18) 0.88 (38,18) 0.94 (43,18) 0.88 (71,18) 0.98 (81,3)

Vehicles

1 0.99 (14,12) 0.99 (23,15) 0.97 (52,21) 0.97 (77,21) 0.99 (84,14)
3 0.99 (15,12) 0.98 (22,21) 0.98 (53,13) 0.96 (69,11) 0.96 (78,21)
6 0.99 (13,6) 0.98 (24,21) 0.99 (37,5) 0.96 (65,1) 0.91 (91,1)
12 0.98 (19,3) 0.98 (33,5) 0.96 (61,1) 0.91 (76,1) 0.89 (90,1)

Table 3: RRMSE for real data of Germany.

References

[1] Aydin, S., Saraoglu, H. M., and Kara, S. (2011). Singular Spectrum Analysis of Sleep EEG
in Insomnia, Journal of Medical Systems, 35(4), 457–461.

[2] Muruganatham, B., Sanjith, M. A., Krishnakumar, B., and Satya Murty, S. A. V. (2013).
Roller element bearing fault diagnosis using singular spectrum analysis, Mechanical Systems
and Signal Processing, 35(1-2), 150–166.

[3] Chen, Q., Dam, T. V., Sneeuw, N., Collilieux, X., Weigelt, M., and Rebischung, P. (2013).
Singular spectrum analysis for modeling seasonal signals from GPS time series, Journal of
Geodynamics, 72, 25–35.

[4] Hou, Z., Wen, G., Tang, P., and Cheng, G. (2014). Periodicity of Carbon Element Distri-
bution Along Casting Direction in Continuous-Casting Billet by Using Singular Spectrum
Analysis, Metallurgical and Materials Transactions B, 45 (5), 1817–1826.

[5] Liu, K., Law, S. S., Xia, Y., and Zhu, X. Q. (2014). Singular spectrum analysis for enhancing
the sensitivity in structural damage detection, Journal of Sound and Vibration, 333 (2), 392–
417.

[6] Bail, K. L., Gipson, J. M., and MacMillan, D. S. (2014). Quantifying the Correlation Be-
tween the MEI and LOD Variations by Decomposing LOD with Singular Spectrum Analysis,
Earth on the Edge: Science for a Sustainable Planet International Association of Geodesy
Symposia, 139, 473–477.

12



[7] Chao, H-S., and Loh, C-H. (2014). Application of singular spectrum analysis to struc-
tural monitoring and damage diagnosis of bridges, Structure and Infrastructure Engineering:
Maintenance, Management, Life-Cycle Design and Performance, 10 (6), 708–727.

[8] Hassani, H., Webster, A., Silva, E. S. and Heravi, S. (2015). Forecasting U.S. Tourist arrivals
using optimal Singular Spectrum Analysis, Tourism Management, 46, 322–335.

[9] Silva, E. S. and Hassani, H. (2015). On the use of singular spectrum analysis for forecasting
U.S. trade before, during and after the 2008 recession, International Economics, 141, 34–49.

[10] Ghodsi, Z., Silva, E. S. and Hassani, H. (2015). Bicoid Signal Extraction with a Selec-
tion of Parametric and Nonparametric Signal Processing Techniques, Genomics Proteomics
Bioinformatics, 13(3), 183—191.

[11] Mahmoudvand, R. and Rodrigues, P. C. (2016). Missing value imputation in time se-
ries using singular spectrum analysis, International Journal of Energy and Statistics, 4(1),
1650005.

[12] Carvalho, M. and Rua, A. (2017). Real-time nowcasting the US output gap: Singular
spectrum analysis at work, International Journal of Forecasting, 33(1), 185-198.

[13] Hassani, H., Silva, E. S. and Ghodsi, Z. (2017). Optimizing bicoid signal extraction, Math-
ematical Biosciences, 294, 46–56.

[14] Silva, E. S., Ghodsi, Z., Ghodsi, M., Heravi, S. and Hassani, H. (2017). Cross country
relations in European tourist arrivals, Annals of Tourism Research, 63, 151–168.

[15] Silva, E. S., Hassani, H., Heravi, S., and Huang, X. (2019). Forecasting tourism demand
with denoised neural networks, Annals of Tourism Research, 74, 134–154.

[16] Hassani, H. (2010). Singular Spectrum Analysis Based on the Minimum Variance Estima-
tor, Nonlinear Analysis: Real World Applications, 11, 2065–2077.

[17] Hassani, H., Xu, Z. and Zhigljavsky, A. (2011). Singular spectrum analysis based on the
perturbation theory, Nonlinear Analysis: Real World Applications, 12, 2752–2766.

[18] Wang, R., Ma, H. G., Liu, G. Q. and Zuo, D. G. (2015). Selection of window length for
singular spectrum analysis, Journal of the Franklin Institute, 352, 1541–1560.

[19] Alharbi, N. and Hassani, H. (2016). A new Approach for Selecting the Number of the
Eigen Values in Singular Spectrum Analysis, Journal of the Franklin Institute, 353, 1–16.

[20] Kalantari, M., Yarmohammadi, M. and Hassani, H. (2016). Singular Spectrum Analysis
Based on L1-norm, Fluctuation and Noise Letters, 15(1), 1650009.

[21] Papailias, F. and Thomakos, D. (2017). EXSSA: SSA-based reconstruction of time series
via exponential smoothing of covariance eigenvalues, International Journal of Forecasting,
33(1), 214–229.

[22] Rodrigues, P. C., Tuy, P. D. S. E., and Mahmoudvand, R. (2018). Randomized singular
spectrum analysis for long time series, Journal of Statistical Computation and Simulation,
DOI: 10.1080/00949655.2018.1462810.

13



[23] Golyandina, N., Nekrutkin, V. and Zhigljavsky, A. (2001). Analysis of Time Series Struc-
ture: SSA and Related Techniques, Chapman & Hall/CRC.

[24] Golyandina, N. and Zhigljavsky, A. (2013). Singular Spectrum Analysis for Time Series,
Springer Briefs in Statistics, Springer.

[25] Sanei, S. and Hassani, H. (2016). Singular Spectrum Analysis of Biomedical Signals, Taylor
& Francis/CRC.

[26] Hassani, H., Ghodsi, Z., Silva, E. S. and Heravi, S. (2016). From nature to maths: Im-
proving forecasting performance in subspace-based methods using genetics Colonial Theory,
Digital Signal Processing, 51, 101–109.

[27] Hassani, H., Mahmoudvand, R., Omer, H. N. and Silva, E. S. (2014). A Preliminary
Investigation into the Effect of Outlier(s) on Singular Spectrum Analysis, Fluctuation and
Noise Letters, 13(14), 1450029.

[28] Ghodsi, M., Hassani, H., Rahmania, D., and Silva, E. S. (2018). Vector and recurrent
singular spectrum analysis: which is better at forecasting?, Journal of Applied Statistics,
45(10), 1872–1899.

[29] Pepelyshev, A., Comparison of recurrent and vector forecasting. UK-China workshop on
Singular Spectrum Analysis and its Applications, Cardiff, September 20, 2010. Available at
http://ssa.cf.ac.uk/pepelyshev/pepelyshev-ssa-forecast.pdf.

[30] Hassani, H., Kalantari, M. and Yarmohammadi, M. (2017). An improved SSA forecasting
result based on a filtered recurrent forecasting algorithm, C.R. Acad. Sci. Paris, Ser.I, 355,
1026–1036.

[31] Mahmoudvand, R. and Rodrigues, P. C. (2017). A new parsimonious recur-
rent forecasting model in singular spectrum analysis, Journal of Forecasting, 1–10.
https://doi.org/10.1002/for.2484.

[32] Hassani, H. and Kalantari, M. (2018). A novel signal extraction approach for filtering and
forecasting noisy exponential series, C.R. Acad. Sci. Paris, Ser.I, 356, 563–570.

[33] Hyndman, R. (2018). Australian annual exports of goods and services in cur-
rent prices: 1950-1990, Available from Time Series Data Library (TSDL) Web site:
https://datamarket.com/data/list/?q=cat:ehl provider:tsdl.

[34] Hyndman, R. (2018). Quarterly gross fixed capital expenditure of Aus-
tralia: 1959-1995, Available from Time Series Data Library (TSDL) Web site:
https://datamarket.com/data/list/?q=cat:ehl provider:tsdl.

[35] Cryer, J. D. and Chan, K. S. (2008). Time Series Analysis: With Applications in R, Second
ed., Springer.

[36] Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-
Wild, M., Petropoulos, F., Razbash, S., Wang, E. and Yasmeen, F. (2018). fore-
cast: Forecasting functions for time series and linear models, R package version 8.4,
http://pkg.robjhyndman.com/forecast.

14



[37] Hydman, R. and Khandakar, Y. (2008). Automatic Time Series Forecasting: The forecast
Package for R, Journal of Statistical Software, 27 (3), 1–22.

[38] Hassani, H. (2007). Singular Spectrum Analysis: Methodology and Comparison, Journal
of Data Science, 5(2), 239–257.

[39] Silva, E. S., Hassani, H., and Heravi, S. (2018). Modeling European industrial production
with multivariate singular spectrum analysis: A cross-industry analysis, Journal of Forecast-
ing, 37(3), 371–384.

[40] Hassani, H., Heravi, H., and Zhigljavsky, A. (2009). Forecasting European industrial pro-
duction with singular spectrum analysis, International Journal of Forecasting,, 25(1), 103–
118.

[41] Heravi, S., Osborn, D. R., and Birchenhall, C. R. (2004). Linear versus neural network
forecasts for European industrial production series, International Journal of Forecasting,,
20(3), 435–446.

15


