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Abstract: Classifying brain activities based on electroencephalogram (EEG) signals is one of the important
applications of time series discriminant analysis for diagnosing brain disorders. In this paper, we introduce
a new method based on the Singular Spectrum Analysis (SSA) technique for classifying brain activity
based on EEG signals via an application into a benchmark dataset for epileptic study with five categories,
consisting of 100 EEG recordings per category. The results from the SSA based approach are compared
with those from discrete wavelet transform before proposing a hybrid SSA and principal component
analysis based approach for improving accuracy levels further.

Keywords: EEG; singular spectrum analysis; time series discriminant analysis; kernel; principal
component analysis

1. Introduction

Discriminating electroencephalogram, EEG, signals are of great interest in both biology and
statistics [1–4]. Identifying a discrimination (classification) rule to classify different sets of EEG
recordings can provide a tool to classify brain activities as well as diagnose brain diseases. In statistics,
the problem is related to time series discriminant analysis and has been tackled with different
approaches [5]. The basic idea in time series discrimination is to use a similarity measure and build
a classification rule. Optimality approaches use difference or divergence measures to maximize the
difference between the probability distributions or spectral densities corresponding to groups of time
series. These approaches consider certain assumptions (model formulation and/or distribution) to
make a discrimination function. For instance, [6–8] used differences between spectral densities to
discriminate stationary time series. While applying these approaches is straightforward, in time series
with time-varying dynamics they do not provide good accuracy [5]. Shumway [9] and Sakiyama and
Taniguchi [10] used time varying spectra and the Kullback-Leibler divergence measure to discriminate
locally stationary time series (Time series with a slowly time-varying structure are called locally
stationary because the small parts of the series show a stationary structure; see [11] and [12] for more
details.). Huang et al. [13] used the smooth localized complex exponential model to discriminate
non-stationary time series. These techniques have strong theoretical foundations and can be applied
in non-stationary time series. However, they are generally too complicated and have their own
restrictions [14]. For instance, in methods based on time-varying spectra, the appropriate choice of
bandwidth and window length or some parametric model for spectral densities are required [5].
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Another class of techniques extract some features from each time series so discrimination can
be carried out by classifying the features instead of the time series. Feature extraction techniques
are mostly heuristic, that is, in each problem the researcher finds the quantities which best visualize
the difference between time series groups. Maharaj and Alonso [15], Fryzlewicz and Ombao [16],
Maharaj and Alonso [17] and Yeganegi et al. [14] used different features based on wavelet transform to
discriminate time series models. Wavelet transform provides a simple and effective solution to many
time series discrimination problems. However, the choice of base function (mother wavelet) could
affect the resulting features and consequently the discrimination error rate.

Classifying brain activities based on EEG signals is one of the important applications of time
series discriminant analysis for diagnosing brain disorders such as epilepsy. Andrzejak et al. [1]
introduced a benchmark dataset for epileptic study. The dataset contains five categories of EEG
recordings. Each category consists of 100 EEG recordings from participants. EEG signals have been
recorded from brain activities for 23.6 s (4096 observations). Category A contains EEG recordings from
healthy subjects while their eyes are open. The second category, category B, contains EEG recordings
from healthy subjects with their eyes closed. Categories C and D represent the EEG recordings from
epileptic patients. Category D contains EEG signals recorded from the seizure generating area and
category C contains signals recorded from the opposite hemisphere of the brain. The last category,
category E, consists of EEG signal recordings during seizure activity [1].

Figure 1 shows a typical EEG signal from each category. There are different approaches in
the literature for discriminating between these five classes. Nigam and Graupe [18] used a large
memory storage and retrieval (LAMSTAR) neural network for classification between category A
and E. Kannathal et al. [19] tackled the same problem using four entropy measures and an adaptive
neuro-fuzzy system. Guleret et al. [20] used Lyapunov exponents and a recurrent neural network to
classify category A, D and E patterns. Maharaj and Alonso [15] used maximum overlap discrete wavelet
transform to discriminate between the five categories. Their use of wavelets for feature extraction
has become the primary method underlying the majority of subsequent research. Ubeyli [21] used
features extracted from a discrete wavelet transform and a mixture of expert classifiers to discriminate
category A, D and E patterns. Ghosh-Dastidar et al. [22] extracted EEG features using the mixed-band
wavelet-chaos methodology, and applied principal component analysis (PCA) and a cosine radial basis
function neural network to classify categories A, C and D. Orhan et al. [23] used features extracted
from discrete wavelet transform sub-bands (six sub-bands) and applied k-means clustering and a
multilayer perceptron neural network to classify different patterns from category E. Wang et al. [24]
used the same approach, although they applied a preprocessing step for selecting the best base in the
wavelet transform. Guo et al. [25] used a genetic programming scheme to improve the feature database
and applied a k-nearest neighbor analysis to discriminate between categories A, D and E. This research
also extracted features from a discrete wavelet transform. Bajaj et al. [26] used time-frequency images
of EEG signals and a variety of classifiers to discriminate between category E and other categories’
patterns. All previous research, except that of [15], focuses on discrimination between two or three
categories at a time (mostly discrimination between epileptic and healthy categories). This research
follows the work of [15] and focuses on the five categories problem. The discrimination results
(misclassification and accuracy) of [15] are given in Table 1.
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Table 1. Classification results for five patterns based on discrete wavelet transform (DWT) (multi-block
approach with four blocks) [15].

Predicted Category→
Real Category ↓ A B C D E

A 91 4 1 0 4
B 8 90 0 0 2
C 2 1 86 11 0
D 1 0 13 86 0
E 0 1 0 1 98

The majority of previous research studies extracted the signal’s features from wavelet transform
or dynamic Fourier transform of the signal. The theory behind extracting features from wavelet and
Fourier transforms comes from the fact that different brain activities produce signals with different
frequencies over time.
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Figure 1. Typical electroencephalogram(EEG) signals: (a) EEG recording from healthy subject
with eyes open, (b) EEG recording from healthy subject with eyes closed, (c) EEG recording from
non-epileptogenic area of epileptic subject, (d) EEG recording from epileptogenic area of epileptic
subject, (e) EEG recording from seizure activity.

In this paper, we consider introducing a new method based on the singular spectrum analysis (SSA)
technique for classifying brain activity based on EEG signals. The proposed method is applied to the
Andrzejak et al. dataset [1] to discriminate between five categories. The SSA technique is a nonparametric
filtering technique [27–29] with varying applications in forecasting [30,31] signal extraction [32,33] and
denoising [34,35]. Given its nonparametric nature, the SSA technique is not restricted by the parametric
assumptions of normality, linearity or stationarity [36], which enables the modeling of data without the
need for transformations. At the outset, we find it pertinent to point out some additional features of SSA in
relation to classical time series analysis techniques and the second machine age. Firstly, the SSA technique
has some similarities with the popular autoregressive integrated moving average (ARIMA) technique,
as explained in detail in [37] and [38]. Secondly, the emergence of big data has transformed machine
learning and deep learning into increasingly popular data analysis techniques. However, as explained
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in [39] and [40], the increasing signal-to-noise ratios in big data can make it difficult for machine and deep
learning techniques to capture the underlying signal. The filtering capabilities within the SSA technique
can be extremely useful under such scenarios to enable machine learning and deep learning techniques to
fit better on big data.

The remainder of the paper is organized as follows: Section two introduces the SSA technique;
Section 3 presents a statistical summary of the data used in this study; the SSA based discrimination
method is introduced in Section 4; Section 5 reports the SSA based extractions; and the paper ends
with some conclusions in Section 6.

2. Singular Spectrum Analysis

The SSA technique has its roots in the work by [27,28]. In what follows, we present a concise
summary of the SSA process, and in doing so we mainly follow [36] and [29].

The entire SSA process is dependent upon the selection of window length L and the number of
eigenvalues r. A concise discussion around the selection of L is presented in the following section.
Figure 2 presents a graphical representation of the SSA process, which includes two stages known as
decomposition and reconstruction, each with two steps of their own. Consider a one-dimensional time
series YN of length N. In the decomposition stage, L, an integer such that 2 ≤ L ≤ N − 1 is utilized
within the embedding step to transfer the one-dimensional time series YN into a multidimensional
series X1, . . . , XK with vectors

Xi = [yi, yi+1, yi+2, . . . , yi+L−1]
T, (1)

where i = 1, 2, . . . , K, T denotes transposition and K = N − L + 1. The output from this embedding
step is the trajectory matrix X, which is a Hankel matrix.
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The singular value decomposition (SVD) step is purely concerned with the extraction of singular
values from the trajectory matrix X. Interestingly, these singular values (eigenvalues) capture all
information contained within YN . Taking XXT provides us with positive eigenvalues λ1, . . . , λL in
decreasing order of magnitude. Then, the SVD of X can be written as

X = X1 + . . . + XL, (3)

where Xi =
√

λiUiVi
T (i = 1, . . . , d). Thereafter, the grouping step consists of splitting the elementary

matrices into several groups and summing the matrices within each group. Let I =
{

i1, . . . , ip
}

denote
a group of indices i1, . . . , ip. Then the matrix XI corresponding to the group I can be defined as
XI = Xi1 + · · ·+ Xip . The split of the set of indices J = 1, . . . , d into the disjoint subsets I1, . . . , Im

corresponds to the representation X = XI1 + · · ·+ XIm . The procedure of choosing the sets I1, . . . , Im is
called theeigentriple grouping. For a given group I, the contribution of the component XI is measured

by the share of the corresponding eigenvalues: ∑i∈I λi/
d
∑

i=1
λi. Finally, in the diagonal averaging step,

we transform each matrix I into a time series, which is an additive component of the initial series
YN . For example, suppose zij stands for an element of a matrix Z, then the k-th term of the resulting
series is obtained by averaging zij over all i, j, such that i + j = k + 2. This procedure is also known as
Hankelization of the matrix Z. The output of the Hankelization of matrix Z is the Hankel matrixHZ,
which is the trajectory matrix corresponding to the series obtained as aresult of diagonal averaging.

As the gist of this research is focused around the decomposition and signal extraction capabilities
of SSA, as opposed to its forecasting capabilities, we do not go in to a discussion of the forecasting
phases. Those interested are referred to [36].

3. Features Extracted Based on SSA

As a usual technique in feature extraction, one may use a filter to decompose the original
signal into its components. Then, characteristics of components which show the most difference
between categories will be extracted as statistical features. For instance, let us consider the SSA based
decomposition of a typical EEG recording (as shown in Figure 1). Here, we use SSA with L = 20 to
decompose each recording. Figures 3 and 4 show first five components in each case.
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According to Figures 3 and 4, most differences between the five recordings are related to the amplitude
and dispersion of their components. This behavior motivates the use of eigenvalues, variances and
minimum and maximum values of components, as features to discriminate between categories.

Accordingly, we consider box plots for the logarithm of the above mentioned values in Figure 5.
It can be seen from left to right (from category A to category E) that the logarithm of eigenvalues and
variances grow larger (relatively). This shows a clear difference between the logarithm of eigenvalues
and variances corresponding to categories.
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It should be noted that these results are based on SSA with L = 20. Although our results can
show the difference between these signals, the window length should be chosen carefully. On one
hand, a larger window length gives smoother components [36], which may remove the difference
between variances. On the other hand, a smaller window length would not lead to a sound separation
of noise from signal. There are several approaches for choosing the best L. For example, in [41]
and [42], the authors suggested that L is chosen to be equal to the correlation length when the sample
autocorrelation function crosses the confidence interval of 95%. [43] consider the selection of L based
on the separability between signal and noise, whilst [44] introduced the minimization of a loss function
as a means of determining the best L for forecasting purposes. More recently, [45] further investigated
the signal extraction problem and constructed a minimum description length criterion that can be
employed to identify the dimension (rank) of the signal component. In contrast to the popular binary
approach for eigenvalue selection in SSA, [46] introduced a new approach based on Colonial Theory,
which appreciates that for more complex time series, a binary approach to reconstruction would not
suffice. Ghodsi et al. [47] considered an extensive study of the characteristics underlying 100 real
data sets and its influence on the selection of SSA choices when decomposition and reconstruction are
based on the [44] algorithm. They found the distribution of data, stationarity, frequencies and series
length to be factors enabling differentiation between the best SSA forecasting approaches. Given the
importance of the window length to the overall SSA process, we conduct a robustness analysis aimed
at determining the effect of window length on eigenvalues. For this purpose, the average eigenvalues
are calculated for different window lengths. Figure 6 shows the logarithm of the average eigenvalues
corresponding to EEG patterns A and E for different window lengths.
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According to Figure 6, for all window lengths, the first two components show most differences
between the two patterns. Furthermore, as seen here, a larger window length does not lead to a major
difference between the first two components. As such, when L = 3, SSA removes the noise from two
first components and reveals differences between categories.

Given the results discussed above, the following features are then extracted based on SSA with L =
3, to discriminate between five categories, i.e., the logarithm of the first two eigenvalues, the logarithm
of the first two variances, the logarithm of the maximum value of the first two components and the
logarithm of the absolute minimum value of the first two components.

It is noteworthy that all programming and computations were completed in R package [48].
The average time for each EEG feature extraction was 0.035 s, whilst the average time for training the
kernel classifier to estimate the category of one EEG recording was 21.74 s.

4. Discrimination between EEG Recordings Based on SSA

The EEG recording discrimination follows these steps:

(1) Use the SSA with window length L = 3 and r = 2 (without integration) to decompose each EEG
recording to two components.

(2) Extract the six features as follows:
Logarithm of the variance of each two components, logarithm of the eigenvalues corresponding

to two components, logarithm of maximum value of two components, logarithm of minimum value of
two components (The SSA analysis and original feature extraction can be implemented using package
“Rssa” in R [48]). The features extracted from five categories of EEG recording are shown in Figure 7.

(3) Use PCA and calculate the six principal components of the features extracted in step 2 (These
are the features we use for discrimination).
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(4) Estimate the six variate probability density functions for each category (say f1(x), . . . , f5(x),
where x = [x1, . . . , x6]

′) using the kernel method [49] (Since some of the features are not well separated,
a nonparametric (kernel) classifier is used to classify the features):

f̂i(x) =
1

ndet(H)

ni

∑
j=1

c
[
1− u′u

]
Iu′u<1

where H is bandwidth matrix, c is the some normalizing constant, ui
j = H−1

(
x− xi

j

)
and xi

j are the jth
features’ vector (corresponding to the jth observation) in the ith category.

In this research the estimation is based on Epanechnikov kernel function, since it gave the better
results in this dataset, and the bandwidth is selected using the plug-in bandwidth selection method [50]
(The “ks” package in R is used for bandwidth selection and kernel density estimation).

(5) As the discrimination rule, a new set of features (say x1, . . . , x6) is allocated to the ith category
if arg max

i=1, ..., 5

{
f̂i(x)

}
.
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Logarithm of the variance of each two components, logarithm of the eigenvalues corresponding 

to two components, logarithm of maximum value of two components, logarithm of minimum value 
of two components (The SSA analysis and original feature extraction can be implemented using 
package “Rssa” in R [48]). The features extracted from five categories of EEG recording are shown in 
Figure 7. 
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the jth features’ vector (corresponding to the jth observation) in the ith category. 
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5. Results

The results of discrimination (number of misclassifications) between patterns A, B, C, D and E
(before applying PCA) are given in Table 2. According to these results, using features extracted from
SSA and the kernel classifier, there are only 3 misclassifications, which makes the total error rate 0. 6%
(99.4% accuracy).

Table 2. Classification results for five patterns based on SSA, before applying principal components
analysis (PCA). The diagonal numbers show the number of correct classifications in each category.

Predicted Category→
Real Category↓ A B C D E

A 100 0 0 0 0
B 0 100 0 0 0
C 0 0 100 0 0
D 2 0 1 97 0
E 0 0 0 0 100
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To further improve the performance of the proposed method, one may use principal components
analysis (PCA) to reduce the dependence between features. Figures 8 and 9 show the first and last
three principal components of features. It is evident that most categories are well separated. Using all
six components of PCA gives 100% accuracy. Applying PCA will increase the computational cost of
recognition by O(n2) (Applying PCA, in estimating the category of the given observation, the original
vector of features will be multiplied with an n by n coefficient matrix) where n is the number of features).
Since the proposed procedure involves only six features, the additional computational cost of recognition
regarding applying PCA is relatively low. On the other hand, before applying PCA, the procedure classifies
some of the recordings from epileptogenic area of epileptic subject as healthy EEG recordings.

The accuracy of the presented procedure in discriminating observations out of the training
dataset is investigated using the leave-one-out method. Table 3 shows the leave-one-out accuracy
and misclassification results for discriminating between five categories using six components (from
PCA) and the kernel classifier. According to the results, the leave-one-out misclassification rate after
applying PCA is 2.8%, which gives a total accuracy of 97.2%.
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Table 3. Leave-one-out classification results for five patterns based on SSA and PCA. The diagonal
numbers show the number of correct classifications in each category.

Predicted Category→
Real Category ↓ A B C D E

A 91 9 0 0 0
B 5 95 0 0 0
C 0 0 100 0 0
D 0 0 0 100 0
E 0 0 0 0 100

Maharaj and Alonso [15] used discrete wavelet transform(DWT) to discriminate between these
patterns. The best accuracy achieved using DWT is reported in Table 1. According to Table 1,
discrimination using DWT and a kernel classifier has a 90.2% total accuracy. The comparison of SSA
and DWT to extract EEG features clearly indicates the superiority of the SSA-based extractions, which
are far more accurate than DWT-based extractions.

6. Conclusions

This paper begins with the aim of introducing a new and more effective approach for
discriminating EEG signals. Accordingly, we propose the use of the nonparametric singular spectrum
analysis technique as a viable tool and evaluate its performance at discriminating EEG signals using
the [1] benchmark data set for epileptic study. We find promising results which show that highly
accurate feature extractions are possible via SSA and a kernel classifier. Motivated by this, we innovate
further by incorporating PCA within the proposed classification model to make additional gains in
classification accuracy.

As a result, we have succeeded in presenting several contributions. Firstly, previous researchers
working on this same data set (see Introduction) have relied upon the wavelet transform and the
Fourier transform for feature extraction. In contrast, we have succeeded in proposing and introducing
a successful SSA and kernel-based approach for discriminating between EEG signals.

Secondly, it is important to note that the primary challenge in this dataset is our attempt to classify
all five categories. For instance, categories A and B are very similar, as both are EEG recordings of
healthy subjects, with their eyes are open and closed, respectively. Moreover, categories C and D are
also similar, since both are EEG recordings from epileptic patients, taken from the epileptic parts of the
brain and the other from the normal parts of the brain, when they are not under attack. In contrast,
the last category is completely different as it is recorded during an epileptic attack. Interestingly, most
of the previous research focused on discrimination between categories A and E, or C and E, or D and
E, or A and D, or A and C categories in pairs. Whilst [15] considered discriminating all categories at
the same time, their findings were not satisfactory and thus forced them to switch to categories A and
E, which represents the simplest case for discriminating between EEG recordings. The fact that our
findings, using the spectral method of SSA, produced betters results by discriminating between all five
categories at the same time is extremely important and useful in practice.

Thirdly, the initial results were extremely positive, as the SSA combined with a kernel classifier
reported a 99.4% accuracy rate. We also show that incorporating PCA within the proposed
methodology can further improve the classification accuracy, up to 100% (97.2% for out-of-sample
classification). These results are far better than the accuracy rate reported in [15], where DWT was
used to discriminate between EEG signals. Whilst historically the DWT technique was popular
for discriminating between EEG signals, the findings here not only question its applicability in
future, but also clearly demonstrate that the SSA and kernel-based approach for classification has
comparatively better features and accuracy rates.
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Finally, this paper also opens several research avenues related to EEG discrimination and
(DWT) provides researchers and practitioners with a new tool for consideration as a solution to
other classification problems within the medical industry. For example, since our algorithm selects
SSA choices (window length and number of eigenvalues) to gain the maximum difference between
categories, it has the potential to be exploited for automatic discrimination between EEG recordings.
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