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Abstract 

The work presented here describes the wetting and transfer characteristics of ceramic 

anilox rolls, used to meter ink flow on a flexographic printing press. The effect of the 

type of laser used to make engraved cells on the anilox was examined. Cells engraved 

by a conventional carbon dioxide (C02) laser, a modified C02 laser and a neodymium 

doped yttrium aluminium garnet (nd:YAG) laser were studied. Printing was carried 

out on a commercial OMA T wide web flexographic printing press and a laboratory 

scale RK press. The ink transfer from the cells was measured, along with the 

wettability, surface energy, geometry and interior surface roughness of the cells. 

The wetting characteristics of the anilox rolls were extensively studied using contact 

angles measurements. Two instruments were used to make the measurements and 

both equilibrium and advancing contact angles were measured. The contact angle data 

was used in conjunction with the Wenzel, Shuttleworth and Bailey, and Cassie and 

Baxter theories to understand the effect of the highly structured roughness produced 

by the engraving process, on the wettability of the anilox rolls. 

The findings of this work were that the laser type used to make the engraving changed 

the wettability of the anilox surface. Surface energy calculations revealed that the 

change was due to the polarity of the roll surface, which made the roll less receptive 

to wetting by polar liquids. The nd:YAG laser was found to produce cells that were 

less receptive to polar liquids than the C02 lasers. 



Analysis of the contact angle data showed that the magnitude of the observed 

advancing contact angles was in agreement with the theory of Shuttleworth and 

Bailey, that the gradient of the roughness, which in this case was the slope of the cell 

walls, dictated the resistance to wetting by polar and non polar liquids. When the 

liquids were allowed to reach thermodynamic eqUilibrium, wetting by polar liquids 

was found to be consistent with the theory of Cassie and Baxter, that pockets of 

liquid/air interfaces were formed in the bottoms of the cells, producing a composite 

surface under the test liquid of solid/liquid and air/liquid areas. This produced the 

increase in observed contact angles with polar liquids on the engraved areas. The 

well-known Wenzel equation was found not to be applicable to the anilox surface 

wetting with any test liquid. 

Printing was carried out with a standard UV curable flexographic ink. Ink transfer was 

observed to be affected by ceJl geometry. Equilibrium contact angle measurements 

were not directly related to ink transfer. However, it was the finding of this 

investigation that the relationship between advancing contact angles and ink transfer 

was likely and warrants further study. 



Aims 

The primary aim of this investigation is to assess some of the parameters that affect 

the amount of ink transferred from the anilox roll in a flexographic printing press. The 

variables identified for investigation are the surface chemistry of the anilox roll, both 

before and after engraving has taken place, the geometry of the engraved cells, the 

interior roughness of the cells and the receptiveness of the anilox to wetting. with high 

purity test liquids and with real flexographic inks. 

A commercial OMA T wide web flexographic printing press and a laboratory RK 

press have been employed to produce prints from which ink transfer measurements 

were made. Surface chemistry and wettability information were obtained by 

measurement of contact angles on the anilox roll surface. 

It is hoped that knowledge gained from this project will lead to improvements in the 

design of anilox rolls to achieve more control and consistency of ink transfer. 

Information on the surface chemistry of the anilox may also help ink formulators 

tailor the properties of the ink to further improve transfer. 



1. Flexographic printing 

1.1 Introduction 

Modem flexography has evolved from the now obsolete process known as aniline 

printing, which used aniline dyes and rubber plates in a method much like an 

automated rubber stamp. Aniline printing produced low quality prints suitable for 

printing simple designs on the sides of cardboard boxes. The process was cost 

effective and capable of producing prints on low-grade materials, features that 

modem flexography has retained. There were several key factors in the 

transformation from aniline printing to flexography. Pigments replaced aniline dyes 

and the ink formulation became more sophisticated. A metering roll (anilox) was 

introduced to control the flow of ink to the plate, and plates made of special 

polymers were introduced which made the production of finer image dots possible. 

These changes made it possible to accurately control the amount and position of the 

printed ink and vastly improved the quality of the process. 1 

Nowadays flexography, or flexo, is a versatile printing technique using flexible 

printing plates to produce quality prints on a wide range of substrates. It is still the 

dominant process for printing onto rough substrates such as uncoated paper and 

board. The improvements in print quality have dramatically increased the use of 

flexo to print on high quality substrates such as coated papers and boards and self­

adhesive labels, speciality substrates such as aluminium foil, copper foil, metalised 

films, tissue and napkins, sausage casing, and filmic materials, such as acetate, 

nylon, polypropylenes, polyethylenes and poJyvinyJchlorides (PVC). 2.3 



The ability of tlexo to print onto just about anything is one of many advantages that 

it has over other traditional printing processes such as offset lithography, letterpress 

and gravure. The other major advantages that tlexo can offer are the comparatively 

low cost of producing high quality work, and of purchasing and setting up the 

presses.· Flexo also boasts shorter turnaround times for print orders due to reduced 

handling and in-line finishing capabilities, good opacity and film thickness with low 

viscosity fast drying inks, relatively high press speeds, excellent solid coverage and 

good quality halftones with digitally produced plates. 2 

Summary of the flexo market 

€ million lOgO 2004 2000 
Total 04,863.5 106,443.5 120,733.7 
US & Canada 42.708.3 48.003. 1 57. 196.9 
Western Europe 25.087.6 27.39 1.7 31.436.9 
Asia & Middle East 16.267.9 19.306.7 25.577.3 

2.593.8 2.836.8 3.404.0 

5.490.6 6. 443.7 9.410.0 

2.7 15.3 2.461.4 2.708.6 

Market sectors 
Corru2dted 43.09 1.0 47.066.2 55.79 1.3 

Flexible eack~ in2 16.684.5 19.984.5 26.67 1.7 
labels 9.136.9 1/.299 .0 14. 129.5 
Cartons 10.486.8 11 .238.4 13.7 22. 1 
Envelopes 5.174.1 5.650.4 6.329.8 
S nitaryl kitchemvare 3.438.0 3.776.3 4.495.2 
Bags & sacks 3.452.3 3.1 53.2 4.392.6 
Ne-.· spapers 89 1.6 967.0 1.040.1 
Other 2.508.2 2}08.6 3.16 1. 5 

5 Llrc . Pira In tern 0 rionof Ltd 

Table 1. 1. The value of the fl exographic printing market in 1999,2004 and projected 

to 2009.4 
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Pira International valued the world tlexo printing and converting market at 106.4 

billion euros in 2004 and predicted that it would grow by 21.9% to 129.7 billion 

euros in 2009.4 Table 1.1 shows how the value of the tlexo markets have increased 

from 1999 to 2004 and shows the projected market values in 2009. The market 

values are split both geographically and by market sectors. The popularity of tlexo 

varies significantly around the world. Flexographic printing accounts for 75% of the 

total US packaging industry.5 In some American markets such as paper packaging, 

tlexo has saturated the market leaving little room for further growth. In other areas 

growth is small but sustained. 6 

In the European packaging market, tlexo faces stiff competition from offset 

lithography, gravure and from the relatively new digital printing processes. Figure 

1.1 shows the division of the European packaging market in 2002. Flexo has the 

largest market share with 39%, but its share has not increased significantly over the 

last three years.5 

34% 

• Offset 0 Rotogravure Flexo 0 Letterpress, screen and digital 

Figure 1.1 The makeup ofthe European packaging market in 2002.7 
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Like every sector of manufacturing and service industry, the flexo market was 

affected by the downturn in the US and global economies at the beginning of the new 

mmennium. However, unlike many other areas of the printing industry the market 

for flexo continued to grow and indeed whilst growth was smalJ, flexo outperformed 

its rivals. 8 This was attributed in part to the tendency of run lengths to become 

shorter as the economy slows down, giving flexo more of an advantage as it is 

comparatively a more economic process for shorter runs. 

The improvements made in the quality of flexo have brought it into competition with 

the traditional quality printing techniques, grawre and offset, and also the new 

techniques of inline ink jet and other digital printing processes. Several years ago, 

flexo could offer large cost benefits over the these processes but in recent years 

digital processes have become more economicaJly viable 9 and gravure cylinders in 

particular have become much less expensive. Therefore, flexo must work harder to 

maintain its growing market share. S Criticisms of high quality flexo printing relate to 

consistency, 1 and the cost and speed of producing high quality plates,S and it is in 

these areas that improvements can be made. Printing consistency is achieved by 

controlling the flow of ink through the process; there is therefore a need to study the 

mechanisms of ink transfer, as a greater understanding of the movement of ink is 

needed in order to optimise process control. This thesis is therefore dedicated to 

furthering our understanding of ink transfer. 

4 



1.2 The flexographic printing press 

A simple diagram of a flexographic printing press is shown in Figure 1.2. 

Plate cylinder Impression cylinder 

Substrate 

Figure 1.2. The component rolls of a flexographic press. 

The ink is transferred to the ani/ox roll , either by a fountain roll (usually a rubber 

roll), or directly from an ink chamber as shown in Figure 1.1. Cells are engraved 

into the ani lox surface and are filled with ink. Excess ink is removed from the 

surface of the anilox roll by a doctor blade before the ani/ox makes contact with the 

printing plate. The anilox roll therefore controls the amount of ink reaching the 

plate. The image is created from the raised areas of the plate (represented in the 

Figure 1.1 as a broken curve around the plate cylinder). Ink is applied to the plate 
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by a "kiss impression" by the anilox, i.e. the anilox touches the raised dots on the 

plate with minimal pressure to avoid compressing the dots or inking the non-image 

recesses. The plate transfers the ink from the image area to the substrate, which is 

fed through the nip between the plate cylinder and the impression cylinder. 

Each component of the flexo press has an important role in controlling the amount of 

ink that passes through the press. These components will now be discussed in detail, 

along with their relevance to the ink transfer process. 

1.3 The anilox roll 

The anilox roll has been termed the heart of the flexographic printing process 10 as 

the precise metering of the ink onto the printing plate by the anilox was at the centre 

of the transformation from aniline printing to modem flexography. It is essential for 

the anilox to take up the ink easily without capturing air in the engraved cells, then to 

release the ink as efficiently and as completely as possible. This reduces the risk of 

ink drying and plugging-up of the cells, as well as improving the efficiency of the 

process. 

Anilox rolls were traditionally manufactured by mechanically engraving a copper 

plated steel roll and then plating it with chromium. When in good condition, this type 

of roll provided good ink transfer to the plate. However, its durability was very poor 

and inconsistencies in the amount of ink transferred as the anilox wore down created 

problems. 1 
t The introduction of harder, more durable ceramic coatings has 
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revolutionised anilox production. Initially, ceramic was used to coat a mechanically 

engraved anilox but this process was difficult to control and ceramic build-up in the 

cells was a problem. Modern ceramic aniloxes have the ceramic coating applied to 

the roll in a plasma spray, 12 which are then engraved by a laserP This type of anilox 

is now the industry standard for most applications. 14 

1.3.1 Ceramic coating 

The stainless steel roll core is sprayed with a dense metallic bond coat to provide a 

key for the ceramic top layer, as well as to protect the roll core. 12.15 The metals used 

are normally nickel alloys such as NiCr and NiAl. Atmospheric plasma spraying 

(APS) is initially carried out with a coarse powder to produce a well-adhered coating 

followed by spraying with a fine powder to increase the density of the coating. A 

chromium oxide ceramic top coat is sprayed by the APS technique to a thickness of 

0.26 mm. 15 The top coat may contain small quantities of titanium oxide, added to 

lower the melting point of the powder, and silicon oxide, which acts as a glass former 

and reduces the final porosity of the ceramic.12 The final coating has a hardness of 

1200 to 1400 Vickers. ls The Vickers is a unit relating to the indentation made by a 

square based diamond pyramid under a specified load. This is the usual method for 

describing the hardness of an anilox but does not directly convert to an SI unit. 16, 17 

However, for comparison with more recognisable units, 1300 Vickers is 

approximately equivalent to 72-74 on the Rockwell C scale.1l The ceramic coating 

has a porosity between 1 % and 3%.15 The hardness and the porosity of the ceramic 

coatings vary between manufacturers. In some cases, an epoxy sealer is applied to 
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the ceramic topcoat to decrease the porosity to a desirable level of around 1 %.18 

Other manufacturers, for example APEX-Europe 19 and The Harper Corporation of 

America, 20 claim to have produced high quality ceramic coatings with a porosity of 

less than 1% where no sealer is needed. Another manufacturer, Praxair Surface 

Technologies, applies a hydrophobic "Rainbow" coating 21 post engraving, which 

lowers the surface energy of the cell interior to improve ink release. Once the 

ceramic coating has been applied, the roll is ground and polished until it has a 

mirror-like finish; then engraving with a laser can take place. 

1.3.2 Laser engraving 

The use of a laser to etch the cells has several advantages over traditional mechanical 

engraving. Firstly, since a percentage of the ceramic is vaporised by the laser instead 

of being pushed aside, the land areas between the cells are significantly reduced. This 

enables a higher cell frequency to be created on the roll, which produces a more 

consistent ink film as there are thinner walls between the cells. 22 Additionally, the 

computer controlled laser can be more accurately targeted than a mechanical 

engraving tool. Laser engraved ceJls can also be made to have a variety of shapes 

whereas mechanically engraved cells usually are pyramid shaped due to the shape of 

the standard tool. These laser engraved cell patterns result in more cells being packed 

into a given area. Laser engraved ceramic anilox rolls are also much more durable 

than mechanically engraved chrome coated copper rolls, and although they are more 

expensive, each roll is estimated to last from 4 to 6 times as long. II 
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Originally, carbon dioxide (C02) lasers were used to engrave the ceramic layer. 

Recently, YAG solid-state lasers were introduced to produce engravings and the two 

different laser types produce cells that are very different. 23, 24 Photographs showing 

the differences in appearance of the cells produced by the different lasers are shown 

in Figures 1.3 and 1.4. 

Carbon dioxide lasers were originally used in pulsed mode to produce individual 

cells, each pulse producing a round indentation whilst vaporising a small amount of 

the ceramic and recasting the remainder as the cell wall. 24 As the cell profile comes 

from the recast ceramic being pushed aside by the laser, the cell is bowl shaped. (As 

shown in Figure 1.3 and Figure 1.7 right). A later development was the continuous 

wave or CW C02 laser. 25 CW CO2 lasers produce a continuous beam of radiation 

that is chopped into discrete pulses by means of a shutter. This technique improves 

the accuracy of the engraving and allows for finer screen counts to be achieved than 

with pulsed CO2 as the pulses can be focused onto a smaller area. Neither type of 

C02 laser is, however, suitable for producing very small cells. This is because the 

wavelength of the laser is relatively large at 10.6 J.Un, 26 and cannot be focused into 

very a small spot. The minimum cell opening that it can be produced with a C02 

laser is about 20 .... m, which translates to a line count of around 400 lines/em. 26 
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Figure 1.3. A photograph of an anilox roll engraved by a C02 laser at x 1000 

magnification. (Provided by The Harper corporation of America). 

Figure 104. A photograph of an ani lox engraved by a Y AG laser at x I 000 

magnification. (provided by The Harper corporation of America). 
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In order to produce smaller cells, the wavelength of the laser had to be changed. The 

nd: Y AG laser is a solid state laser which takes its name from the components of the 

solid from which the Jaser beam is generated. Neodymium atoms are doped into a 

crystal of yttrium, aluminium and the mineral composition garnet; its output 

wavelength is only 1.06 J.Ull 26. At this wavelength, more of the laser energy is 

absorbed into the ceramic and the cell is created by ablation rather than melting and 

recasting. A picture of cells produced by an nd:YAG laser (tenned a YAG 

engraving) is shown in Figure 1.4. 

The Y AG laser produces little to no recast and as a result the cells formed have 

smoother interior surfaces with a slightly different cell profile. The smaller 

wavelength allows the laser to be focused onto a very small area and cells can be 

engraved at very high line counts. Commercially available Y AG engravings can 

have line counts as high as 700 lines per centimetre, 27 whilst engravings of 1000 

lines per centimetre are technically possible. 19 The power output of a YAG laser is 

much lower than that of a CO2 laser. 28 Therefore, it is sometimes necessary to hit 

each cell a number of times to remove enough ceramic to achieve optimum depth 

and shape. Increasing the number of times each cell is hit also improves consistency 

between cells. 28.29 There is a trade off between the improvement made with each hit 

and the cost of the additional laser use. The multi-hit technique is also used with CO2 

lasers to improve the cell shape and consistency. 

Anilox rolls engraved by Y A G lasers became commercialJy available in 1997, 24 and 

were initially very popular in the late 1990's. 24,28,30 However, problems were soon 

identified with poor ink transfer, susceptibility to scoring 28 and shorter lifetime 

11 



compared to anilox engraved by C~ lasers. 31 The problems were attributed to the 

lack of recast ceramic in the cell wall. 28. 31 Recast ceramic was considered 

undesirable as it causes inconsistencies in the shape and size of cells and creates 

shape peaks, which wear the doctor blades as the excess ink is scraped from the 

anilox surface. 26 However, the recast ceramic is harder and denser than the 

unablated ceramic 28 and without it YAG engraved anilox rolls were less durable. 

Recent advances in anilox technology have increased the length of the pulse of the 

YAG laser so that it melts and recasts a controlled portion of the ceramic in the same 

way that the C02 laser does. This is done as part of a multi hit system so that 

sufficient ceramic is removed to provide the desired cell volume and then recast is 

created to strengthen the cell walls. This type of YAG engraved anilox is known as 

3rd generation Y AG or thermal YAG. 32,33 

Although YAG laser technology is not new, it only began to be applied to anilox 

technology in the late 1990's, making it a relatively new innovation to the printer. 

Therefore" comparisons of the surface characteristics of the YAG and the COl 

engraved ceramics are still of interest to the industry. 

1.3.3 Cell profile and characteristics 

The different methods of engraving ceramic anilox rolls produce cells with very 

different profiles and surface characteristics. Traditional mechanically engraved 

cells, were pyramid shaped due to the shape of the tool used to make them. These 

ceJls were arranged at an angle of 45° as shown in Figure 1.5. When laser engraving 
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was first carried out on ceramic ani lox, engravings were made at 45° to mimic the 

familiar characteristics of the mechanically engraved cells. 28 In the early 1990' s 

however, research into the effectiveness of the angle of engraving showed that 

engraving the cells in a 60° hexagonal close packing arrangement produced 

engravings with more cells fitted into a given area, and therefore produced anilox 

rolls with a greater ink carrying capacity. An example of the patterns produced by 

engraving at 45° and 60° is shown in Figure 1.5. 

Figure 1.5. The engraving patterns of cells made at 45° and 60° angles. (Pictures 

provided by the Harper Corporation of America) 

Unlike mechanical engraving where the shape of the cell takes the shape of the tool 

used to make the engraving, the shape of a laser engraved cell is produced by the 

number of neighbouring cells packed around it. The laser ablates a hole that forms a 

geometric shape dependent on the number of holes that surround it and contribute to 

its wall area. If the laser ablates cells at an angle of 45° each cell shares its wall area 

with 4 other cells. The effect of this is to make the cells diamond shaped. If on the 

other hand the laser ablates cells at a 60° angle, each cell has 6 cells sharing its wall 

area. The cells therefore take on a hexagonal shape. The profile of the cell is also 
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effected by the number of surrounding cells. A cell produced by a 60° engraving is 

approximately bowl shaped. However, cells produced by a 45° engraving are closer 

to the shape of a square based pyramid. An impression of the difference between the 

cell profiles of the 2 types of engraving is shown in Figure 1.6. 

45° engraving 
pyramid shaped cell 

60° engraving 
bowl shaped cell 

Figure 1.6. Simplified profiles of cells made with engraving at 45° and 60° angles. 

The difference in the shape of the profile of the cells has consequences when the 

effect of wear on the cell volume is considered. The percentage of the overall volume 

of the cell at the very top is greater for a pyramid than a bowl. Therefore a slight 

decrease in cell wall height caused by wearing impacts more on the 45° degree 

engraving, as the cell volume decreases by a significantly greater amount. There is 

therefore a greater change in the transfer characteristics of a roll engraved with a 45° 

pattern as the anilox wears down. Anilox formed with cells having a 60° engraving 

pattern therefore have a longer useful life. 

The profile and surface of the cell is also a characteristic of the laser used in 

engraving. As previously mentioned, C02 lasers produce recast which is pushed 

aside to form the cell wall which results in a bowl like shape. Y AG lasers on the 

other hand have little to no recast and as a result the cells have a different profile. 

14 



The cells can be made deeper without any increase in opening and the cell walls are 

steeper, resulting in a shape which is more test tube like in appearance. Figure 1.7 

shows the different cell profiles produced by the two lasers. 

Test tube shaped profile 
of a VAG engraving 

Bowl shaped profile of 
a CO2 engraving 

Figure 1.7. Typical cell profiles produced by YAG and C02 lasers. 

The profile of the cell influences its ability to take up and release ink. For CO2 

engravings, the cell depth to opening relationship where the cell depth is in the order 

of 23% to 33% of the cell width, is generally accepted as the right balance to 

transfer as great a portion of the cell volume as possible. 15, 23 Shallower cells 

provide insufficient volume, whilst deeper cells do not empty sufficiently and 

plugging occurs. For Y AG engravings, this relationship does not apply as the 

vertical walls allow the cell to empty to a greater depth. The Harper Corporation 

quote that comparable ink print densities can be achieved using a 1400 lines per inch 

(550 lines per centimetre) Y AG roll and a 800 lines per inch (315 lines per 

centimetre) CO2 roll. 24 As the rules of thumb applied to the ink transfer from CO2 

cells do not work for Y AG, the transfer characteristics of Y AG engravings are still a 

subject for investigation. 
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1.3.4 Methods of cell measurement 

Measurement of the cell profiles and volumes is not easy given the microscopic 

dimensions of the cells. An unpublished report by seA Packaging 34 demonstrated 

that manufacturers specifications could at best be regarded as a guide to the cell 

volume and profile of their rolls. None of the current methods of assessing cell 

volume provide an absolute volume. However, the best method, both of measuring 

the volume and profile of a cell may be by white light interferometry. 35,36 This 

interferometer is a highly developed instrument which uses an interferometric 

microscope in conjunction with computer software to scan, record and analyse the 

surface of the anilox to a resolution of less than 10 nanometers. Interferometry is 

quoted as being up to 15 times more accurate than manual methods and over 5 times 

faster. 35 The main problem with determining the absolute volume of a cell is 

deciding where the top of the cell is, as the cell wall heights can be irregular. The 

interferometer calculates a mean height by looking at the variation in cell wall. 

Whilst this is still an approximation, it is far more accurate than any other method. 

There are alternative methods of measuring cell volumes including the casting of the 

cells. This involves filling the cells with a liquid, which then solidifies and is 

removed from the cells, followed by optical assessment of the casts to determine the 

volume. This technique can also be used to assess damage and plugging. Another 

method is the drawing of a known quantity of ink across the roll surface with a blade, 

estimating the volume by the distance that the ink can be drawn across the surface of 

the roll i.e. a known volume of ink could be drawn further across the surface of a roll 

with shallow cells than that of a roll with deep cells. Both of these methods are 
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highly dependent on the skill of the human operative and are therefore less repeatable 

and accurate. These techniques are however popular as they are substantially cheaper 

to perform than interferometry. 

1.3.5 Inking 8nd doctoring of the 8nilox 

The fountain roll is the original design used to carry ink from an ink reservoir to the 

anilox. These rolls are usually made of rubber and can vary from 50 to 75 durometer 

hardness on the Shore A scale 38 for solvent inks and can be as hard as 90 durometer 

for use with water-based inks. 39 A hard roll will transfer less ink than a softer roll so 

it is important to chose the correct fountain roll to suit the anilox to which the ink is 

being transferred. The hardness of the fountain roll can also be adjusted to control 

ink transfer and print quality. The pressure in the nip between the fountain roll and 

anilox is also important in aiding efficient transfer to the anilox. Insufficient pressure 

does not force enough ink into the cells. On the other hand, if too much pressure is 

applied the rubber surface of the fountain roll is damaged by the rough edges of the 

anilox cells. Fountain roll systems were better suited to a chrome anilox as the 

wiping action of the rubber against the chrome provided a self-cleaning action for the 

anilox. 40 In most modem flexo presses, the fountain roll and ink reservoir have been 

replaced by chambered doctor blade as shown in Figure 1.1. 

In a chambered doctor blade system, the doctor blade is incorporated with the ink 

reservoir in a chamber. 41 The ink is held in contact with the anilox, contained 

between two doctor blades and the chamber is sealed at each end. The advantages of 
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a chambered doctor blade system are that the ink can be pressurised inside the 

chamber, which assists the filling of the anilox cells. The ink is enclosed in the 

chamber, reducing the evaporation of solvents, and ink splattering. However, there 

are problems with leakage from the ends of the chambers, 42 and the presence of two 

blades in contact with the anilox increases anilox wear and blade consumption. 

Excess ink is scraped away from the surface of the anilox by a reverse angled doctor 

blade to ensure only the ink in the cell recesses reaches the printing plate. Doctor 

blades are usually made of carbon steel, however stainless steel is generally used for 

water-based inks. Where minimising blade wear is critical, a plastic material such as 

high-density polyethylene or a ceramic with a hardness less that of the chromium 

oxide coating of the anilox are used. 43 The angle of the blade is important, as it is 

desirable to remove the ink from the ron surface as efficiently as possible whilst 

minimising wear to the blade and anilox. The best angle for doctoring is accepted to 

be 30° to the tangent point of the roll. 23 The blade is at a reverse angle to the 

direction of rotation of the anilox as this minimises the extent of the lifting of the 

blade from the anilox surface caused by build up of ink underneath the blade. 

1.3.6 Ink transfer from tbe anilox 

In order to achieve a high quality print, it is necessary to transfer the correct amount 

of ink from the anilox to the plate. Too much ink would lead to dot gain, the 

undesirable increase in size of a printed dot, and results in a dirty looking print. 

However, too little ink leads to patchy solids and missing highlight dots. To improve 
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the fine detail in a print, the dots on flexo printing plates have decreased in size. 

Quality printing went from a standard of 24 lines per centimetre to 60 lines per 

centimetre and beyond in order to match the dot size produced by offset printing.44 

The size of the anilox cells had to also decrease to prevent dots dipping into the 

anilox cells. In the early days of flexographic printing, an anilox line screen count of 

three times that of the plate was considered acceptable, but as the push to achieve 

better and better quality from flexo went on it became five then seven times in order 

to produce a cleaner print. 44 When packing so many cells onto an area of anilox, 

delivering a sufficiently high volume of ink to maintain colour strength becomes an 

issue. Increasing the depth of the cells beyond the accepted 33% depth to opening 

relationship has been shown to increase solid densities. 45 

The amount of ink reaching the plate is dependent on the volume of ink delivered by 

the anilox. The frequency and the volume of the engraved cells determine the 

holding capacity of the roll, however the amount of ink transferred to the plate is 

approximately 40% of the cell's volume. 46 Clearly, there are other variables that 

affect the transfer of ink from the anilox to the plate. The surface energy and 

roughness of the anilox roll, the viscosity and surface tension of the ink and method 

of doctoring may all influence ink release from the anilox. However, to what extent 

each of these affects ink transfer is a question for investigation. 

A study has been done by the DFTA Technology-Centre in Germany into the ink 

transfer of the anilox roll. 47 Factors examined included the geometry and surface of 

the cell, the angle at which the cells were engraved. cell aperture, and the influence 

of roll wear. YAG engravings were not included due to the date at which the study 
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was made (1995). The study reports that in order to control ink transfer from the 

anilox to the plate the process needs to be closely monitored with respect to the 

screen count, cell structure, anilox surface and ceramic coating. The study goes on to 

suggest points of importance when choosing an anilox. The size of the cell opening is 

concluded to be the most important factor in the release characteristics of the anilox. 

Surface roughness of the anilox, the plate and the rheology of the ink were also 

identified as important factors. 

1.4 Flexograpbic printing plates 

Another important development in the evolution of high quality flexography was the 

introduction of the photopolymer printing plate, which for. most applications has 

replaced the traditional rubber stereo. Benefits of photopo)ymer plates include 

predictability of plate thickness and size, ease of processing and mounting, and 

improved reproducibility to the flexo process. 49 There are two types of 

photopolymer plates; liquid photopolymer plates and solid-sheet photopo)ymer 

plates. Solid-sheet plates are currently the most popular form of flexo plate, 

accounting for approximately 85% of the market. 48 Over the last couple of years 

however, rubber plates have increased in popularity due to the introduction of laser 

engraving techniques that can create the image on a rubber plates or rubber coated 

cylinders without the need for negatives. 

Plates are selected for a particular job with the following properties in mind; 

stiffiless, hardness, abrasion and tear resistance, storage stability, resistance to 
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chemicals such as the ink solvents and ozone and the cure rate and the moulding 

shrinkage of the material. 48 The merits of each type of printing plate are discussed 

below. 

1.4.1 Solid-sheet photopolymer plates 

The solid-sheet photopolymer plate consists of a number of layers, each made of a 

different material and playing a different part in the function of the plate. Figure 1.8 

shows a simple diagram of the structure of a solid-sheet photopolymer plate. 

The top layer is a protective coversheet, typically made of polyester or polystyrene 

with a thickness of 30 -50 microns. This layer is removed before curing of the plate 

takes place. Underneath this layer is a top release protective film that is washed out 

using a suitable solvent during the developing process. Typical materials used for 

this layer are vinyl acetate or polyamide copolymers and the film has a thickness of 

approximately 5 microns. 48 

The top layers protect the curable layer, which forms the image section of the plate. 

This layer consists of a photosensitive elastomeric blend of chemicals containing a 

thermoplastic elastomeric block copolymer, usually a styrenelbutadiene copolymer, 

an ethylenically unsaturated acrylate compound such as ethylene glycol diacrylate, 

and polymerisation initiators examples of which are some aromatic ketones. The 

polymerisable layer typically ranges in thickness from 0.127 millimetres to a 

maximum of 6.35 millirnetres. 48 
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Figure 1.8. General structure of the solid-sheet photopolymer plate. 48 

The polymerisable layer is fixed to a supporting layer, termed the substrate, by a thin 

adhesive layer. This substrate layer could be made from a metal plate such as tin, 

aluminium or steel, or from polymeric material such as polyesters or polyamides. 

The substrate layer has a thickness in the range of 0.025 millimetres to 0.5 

millimetres. 48 

There are several stages in forming the image on the plate. The first step is usually a 

back exposure through the substrate side of the plate. Next, the protective cover is 

removed and a negative of the desired image is placed over the plate. The plate is 

then exposed to light and heat in what is termed a relief exposure. Areas 

corresponding to the clear areas of the negative are exposed and become 

polymerised. The remaining unpolymerised areas of the plate are washed out with a 

suitable solvent or combination of solvents. The plate is then dried to remove 

absorbed solvents, which swell the plate, and allowed to stabilise. This process takes 

up to 10 hours. 48 
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The generation of organic solvent waste in this process is an environmental concern. 

There are photopolymer formulations that wash out in aqueous solutions, termed 

water-wash plates. These plates have the advantage that they do not need to be 

allowed to stabilise, therefore production of the plate takes around an hour compared 

with around 10 hours for a solvent-wash plate. 48 Water-wash plates also have a more 

hydrophilic surface and it has been suggested that this improves ink transfer for some 

jobs, notably line work. 48 

Recently, systems have been developed for the production of the image without the 

need for a negative. Computer to plate (CTP) technology employs an opaque black 

topcoat tenned the laser ablation mask system or LAMS. so This layer is ablated by a 

computer-controlled laser to produce the image. Both C~ and Y AG lasers can be 

used for this purpose. This method of image production is capable of producing very 

small precisely controlled image dots with very steep shoulders. The quality of the 

images produced by LAMS CTP technology is superior to other methods, 

particularly for extremely small text or tine highlight work.so The high cost of the 

equipment and plate materials needed for LAMS CTP remains its principle 

disadvantage and restricts the use of this technology.48.so 

1.4.2 Liquid photopolymer plates 

This type of plate material, as its name suggests, is a yellow polymeric liquid with 

the consistency of honey at room temperature. 48 It is not hazardous to handle and is 

stable unless exposed to UV light or heat. The Jiquid's composition includes 
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propylene oligomers, polyesters polyurethanes, acrylates and photoinitiators. The 

substrate backing for the plate is a biaxially oriented sheet, which is coated on one 

side to promote bonding to liquid photopolymer. 

The negative is coated with a uniform film of liquid photopolymer and at the same 

time the substrate is applied to the surface of the liquid. The plate is then back 

exposed through the substrate to produce a layer of hardened polymer to adhere to 

the substrate. The plate is then given relief exposure to form the image areas. The 

uncured photopolymer is then removed and the plate is given a post exposure dose of 

UV radiation to further promote photopolymerisation and photocross-linking. 

Liquid photopolymer plates are most commonly used with corrugated substrates or 

with newspaper printing as the resolutions desired for these jobs are often lower than 

for other applications. The development of the capped-plate technique has however 

substantially improved the quality of liquid photopolymer plates. The capped-plate 

technique uses two layers of different photopolymer. One to form the dots and one to 

make up the base of the photopolymer layer. The properties of these two 

photopolymers can be adjusted to make the dots harder, decreasing dot gain, and to 

create less distortion when the plate is fixed around the cylinder. 48 

1.4.3 Rubber plates 

Traditionally, rubber plates known as stereos were made from natural rubber. 

Nowadays, a range of rubber compounds including Buna N (nitrile) rubbers, butyl 
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rubbers and neoprene rubbers are used. These compounds are also modified by the 

addition of compounds such as carbon black, zinc oxide, barites, clay or plasticising 

oils, the uses of which include improving the flexibility of the rubber and acting as 

reinforcing fillers. 48 

Traditionally, rubber plates are manufactured by a moulding method. First an 

engraving is made by exposing a metal plate through a negative of the image 

required, and processing it in an acid bath. The metal engraved plate, termed the 

original, is then used to make a master mould by making an impression of it using a 

heat setting matrix material, held under pressure against the original and heated. This 

master mould is filled with rubber under pressure and heated to create a rubber 

plate. 51 The plate must be ground on the reverse to the desired thickness. This is an 

expensive and time consuming process and reproducibility between plates is not 

good. 

Rubber as a plate material has found a new use in the creation of design rolls. 52 With 

a design roll, the entire cylinder functions as a printing plate. A design roll is a 

cylinder that has been coated with rubber. The image is then engraved onto the 

cylinder using a computer-guided laser. After engraving, the waste material can be 

rinsed away with water. The design roll is then ready for immediate use if required. 

The obvious advantage of design rolls is that the design can be continuous making it 

naturally suited for printing designs on walJpaper or gift wrap, where breaks in the 

pattern are undesirable. Computer gUided laser engraving can also be used to produce 

images on rubber plates. 
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1.4.4 Mounting tapes 

The plate is fixed to the plate cylinder by means of sticky tapes known as mounting 

tapes. These tapes, usually made of foam, come in a large range of thickness, 

hardness and tackiness. The thickness is chosen in accordance with the plate 

thickness to fit the undercut of the printing cylinder. The hardness is selected in 

accordance with both the plate and the nature of the job to be printed. 

Since the early 1990's, there has been a move towards the use of thinner plates 

(2. 84mm-0. 76mm) by the industry in general, 49 although label printers have been 

using thin plates for many years. Thin plates have many advantages. There is less 

polymer to be exposed, reducing exposure and washout times; less swelling occurs 

therefore images are sharper. Thin plates distort less under pressure therefore the 

quality of the final print is higher. The combination of thin plate and a compressible 

mounting tape is preferable to a conventional thick plate, the compressible tape takes 

up the excess pressure and less distortion of the plate dots takes place. 

1.4.5 The influence of the plate on print quality 

The compressible nature of the flexographic printing plate leads to characteristic 

defects in the print quality. As pressure is applied to halftone image, the raised dot is 

compressed downwards and spreads sideways. The resulting dot area in contact with 

the substrate is therefore increased. In addition, further spreading of the dot occurs 

due to the ink's low viscosity. To compensate for this dot gain, the size of the dot 
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formed on the plate is made deliberately smaller than the required image dot. There 

are however practical limitations to the minimum size of the dot that can be formed 

on the plate. If the dots are smaller than the width of the anilox cells, dipping occurs 

and ink is transferred from the sides of the dot as well as the top. Small dots are also 

fragile and tend to bend under pressure. 

The compressibility of the plate also causes problems when printing solids. If 

excessive pressure is applied to the plate the raised image area is squashed and a halo 

effect is produced around the image by ink being squeezed out from between the 

plate and substrate. However, if insufficient pressure is applied contact between the 

solid image area and the substrate is not always complete and small unprinted spots 

appear in the printed image. 

The influence of the physical and chemical properties of the printing plate on the 

amount of ink transferred and the print quality has been studied by the DFT A. 53 The 

variables studied were surface coating and composition, shore hardness, plate 

thickness, depth of image relief, the use of a compressible backing tape and differing 

methods of printing plate production. Conclusions were reached as to the effect of 

varying these properties on amount of ink transferred, the quality of printed solids 

and the amount of deformation of printed halftone dots. Increased pressure at the 

plate/impression cylinder nip in combination with a soft plate was found to produce 

good solids. When the image contained a combination of solid and line work, a 

compressible mounting tape was recommended. For halftone dots, the plate surface 

coating and composition, shore hardness, mounting material and adhesive technology 

were cited as the main influences on print quality. The study recommended hard 
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plates for fine detail work, as they are less compressible and therefore produce dots 

exhibiting less dot gain. The method of plate manufacture was also found to be 

important when considering dot deformation, as maintaining the steepness of the 

sides of the raised dot at as near to 90 as possible is critical in restricting the pick up 

of ink to just the face of the dot. If the sides or shoulders of the dot are inked, as the 

plate is compressed against the substrate this ink is also transferred in addition to the 

ink on the dot face and the printed dot gains area. 

1.5 Flexographic inks 

The original Aniline printing process took its name from its first ink formulations, 

simple solutions of aniline dyes in methylated spirits. Just like the process name, the 

inks used in modem flexography have changed beyond recognition. Flexographic 

inks are liquid inks with surface tensions ranging between 28 and 32 mJm-2
• ss There 

are three distinct ink classifications according to the solvent system on which they 

are based: solvent-based, water-based and UV curable. The choice of solvent system 

is governed by a number of factors including the choice of plate (different plate 

materials have different solvent sensitivities) and roll sensitivities, resin and colorant 

choice, adhesion to the substrate and of a suitable toxicity level to be appropriate for 

the end use of the printed article. 
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1.5.1 Solvent-based inks 

Solvent-based inks are the traditional type of flexographic ink. They are still popular 

despite increased pressure from environmentalists to cut the use of VOC's (Volatile 

Organic Compounds), as they usually have good technical properties. For example 

high gloss, low viscosity, good resolubility, high speed of drying, good flexibility 

and good adhesion properties. A typical solvent-based ink contains a binder system, 

a solvent system, a pigment or blend of pigments and a selection of additives. S6 

Commonly used solvents are alcohols, esters, glycols and ketones, some examples of 

which are ethanol, isopropanol, methoxy/ethoxy propanol, ethane-l,2-diol and ethyl 

ethanoate. S4 It is usual for the solvent system to contain a blend of a number of 

different solvents. The more aggressive solvents historically used in gravure, for 

example toluene and xylene, cannot be used as they attack the rubber fountain roll (if 

appJicable) and the printing plates. 57 Controlling the evaporation of the solvents 

during printing is critical in maintaining constant ink properties. The viscosity of 

solvent-based inks must be closely monitored and additional solvent added in 

accordance with the ink manufacturers instructions, to maintain the recommended 

viscosity and solvent composition. 

The most common resin used in solvent-based ink formulations is nitrocellulose. 54 It 

is cheap, readily available, has a very low odour, is resistant to heat and exhibits 

good solvent release and pigment wetting properties. It is compatible with a wide 

range of substrates and is often used combined with other resins and plasticisers. 

Nitrocellulose is sensitive to water contamination, which may lead to blushing of the 
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print during drying. Other resins used are shellac, ethyl cellulose, CAP (cellulose 

acetate propionate), polyamide, polyurethane, ketone resins and a number of 

acrylates and methacrylates. In solvent-based inks, the binder is dissolved in the 

solvent. This solution becomes the carrier for the pigment, which is not dissolved, 

but is dispersed by the resin. 56 The choice of binders and solvent determine the 

drying rate of the ink. The ink dries by evaporation of the solvent when the binder is 

thrown out of solution and adheres to the substrate holding the pigment and additives 

contained within it at the substrate surface. In the case of some plastics, the solvent 

also slightly dissolves the surface of the substrate, which enhances adhesion of the 

ink. S6 

I.S.2 Water-based inks 

To cut back on the use of volatile organic compounds or VOC's, inks have been 

formulated with water as the primary solvent. The use of water in an ink however 

presents a number of problems. The choice of resins and pigments available to the 

formulator is restricted as few resins are miscible with water and water exhibits poor 

pigment wetting. The high surface tension of water, (72.8 mNm"l) compared with 

(22.0 mNm·1
) for ethanol, results in slower absorption into absorbent substrates and 

poor wetting of non-absorbent substrates. Therefore, surfactants must be added to 

the ink to reduce the surface tension. 

Water-based inks also contain a small amount of solvent, usually an alcohol. The 

addition of solvent is useful as it acts as an anti foam and a levelling agent, however 
, 
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its main purpose is to speed up the drying rate of the ink. The ink must not have a 

solvent content above 5% in order to be classed as water-based. 58 Getting the ink to 

dry at a suitable rate can be difficult. Fast drying on the substrate is very desirable; 

however, if the ink dries too quickly it will plug the anilox or dry on the plate. There 

are problems associated with water-based inks, as the solvent has no recovery value 

so there is no incentive to process the waste ink and dumping is becoming 

increasingly expensive. Water-based inks have a tendency to foam on the press and 

the addition of an antifoaming agent is essential. There is also a less obvious problem 

with the production of micro-foams, tiny bubbles that are often invisible in the ink. 58 

Micro-foams can be difficult to remove, and manifest as an increase in viscosity 

coupled with a decrease in print density. 

The resins used in water-based systems are commonly carboxylated acrylics, which, 

whilst insoluble in water, are dissolved by the addition of alkali (ammonia or an 

amine). Acrylic resins are often supplied as resin-in-water emulsions that form 

solutions when alkali is added to produce the correct pH. The pigment is combined 

with the resin in one of three ways; as a dry powder with the use of milling action to 

form the dispersion, as a paste with mixing or as a press cake. which is combined 

with the resin by milling or power mixing. Pigments for use in water-based ink 

formulations must be stable to alkali. Acrylic copolymer emulsions can be pigmented 

without alkali giving ink with improved drying time and harder, more water resistant 

ink films, but this formulation is less stable on the press. Inks that are a mixture of 

dissolved resin and emulsion have been developed in an attempt to achieve the most 

desirable properties of the two systems. The ratio of the two systems can be adjusted 

dependent on the properties desired. 58 
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Water-based inks have the most problems when used for printing onto filmic 

substrates, and foils. These substrates typically have low surface energies (discussed 

further in Section 1.6 and Chapter 2) and for adequate wetting of the substrate to take 

place the surface tension of the ink should be no higher than the surface energy of the 

film. 58 Even with the addition of surfactants and organic solvents the surface 

tensions of water-based inks are higher than those of solvent-based inks. 55 The 

substrates can be treated to increase their surface energy and promote wetting and 

adhesion, (as discussed further in section 1.6.3) as indeed they are for use with 

solvent-based inks. This can however result in poor water resistance of the printed 

ink film. 

New resin systems are being developed in an attempt to overcome some of the 

problems experienced when printing on film and foils. 58 Alkyd-acrylic hybrids, 

cross-linking acrylics, epoxy acrylics and urethane acrylic hybrids are all being 

investigated in an attempt to produce a water-based ink with better adhesion to filmic 

substrates, improved hardness and water resistance. The cross-linking inks claim to 

outperform solvent inks once cured. The disadvantage of cross-linking inks is that 

they are usually two pack systems, that is, they consist of two separate components 

which must be stored apart and only mixed just prior to printing. New systems have 

been developed where curing does not take place until all the water has evaporated 

from the ink, leading to a press stable ink with excellent dry performance 

properties. 58 
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1.5.3 Energy curable inks 

Energy curable inks are totally different from the other classes of ink in that they are 

set by a chemical reaction rather than drying by solvent evaporation. As they contain 

no volatile components they are sometimes referred to as 100% solid inks. There are 

two mechanisms by which the curing can be initiated, by UV radiation in 

combination with photo initiator species in the inks or by the use of an electron beam. 

The use of UV curable flexo inks is widespread, however electron beam curable or 

EB inks are relatively uncommon as the electron beam units are much more 

expensive than UV lamps. New systems which allow the EB inks to be printed wet 

on wet with a single electron beam unit at the end of the print stations may increase 

the popularity ofEB curable inks.59 

UV curable inks can cure by two mechanisms; free radical and cationic curing; both 

mechanisms are initiated by UV radiation however the photoinitiator species and 

reaction chemistry are very different. 

Free radical curing is initiated by UV radiation splitting of photo initiators present in 

the ink system to produce free radicals. There are two classes of photoinitiator, type I 

or cleavage and type II or abstraction initiators. 60 The cleavage initiators form 

radicals by cleaving in two without the need for interaction with other species. 

Cleavage initiators are responsible for curing the bulk of the film. A common 

example of a cleavage initiator is Irgacure 369, which is an aminoacetophenone. The 

abstraction photoinitiators, the most common of which is benzophenone, work in 

conjunction with a synergist, which is usually a tertiary amine, from which a 
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hydrogen atom is abstracted to initiate the reaction. This type of initiation is mainly 

responsible for curing the surface of the ink film. The abstraction initiator becomes 

excited by UV photons but only remains in its excited state for a short period of time. 

There is a danger that it will interact with atmospheric oxygen in this time. This is 

termed oxygen inhibition. The amine synergist helps to minimise oxygen inhibition 

by preferentially reacting with the excited photoinitiator. For this to be effective, the 

synergist needs to be present at relatively high levels, (at above 5%.) 60 

A typical free radical ink formulation contains pigment, two or more photo initiators, 

additives and a mixture of acrylate oHgomers and monomers, which are cured to 

solidify the ink film. Examples of these oJigomers are epoxy acrylate, polyester 

acrylate and polyurethane acrylate. 61 These oligomers undergo free radical 

polymerisation to form a solid film. As with every free radical reaction, the radicals 

produced by the photo initiator could recombine and terminate the reaction instead of 

reacting with the acrylates to propagate the reaction. Therefore, the UV radiation 

must be supplied until the film is fully cured. This is usually a very quick process, 

however even in a film that appears fully cured there are always small amounts of 

unreacted monomers and oligomers. The uncured material can be skin irritants and 

usually have a slight smell. The smaller components of the inks, i.e., monomers, 

photo initiators and some additives such as silicones are well known for their 

potential to migrate through the cured ink films. 60 This makes the use of free radical 

UV inks less popular for some applications, for example food packaging. 

As the free radical reaction involves the cross-linking of small molecules into a 

polymer film, the size of the film shrinks on curing. This can be a problem when 
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trying to achieve adhesion to filmic substrates as there is very little roughness to 

produce a mechanical key and ink can pull away from the film surface on curing. 

Typical values for the shrinkage of a free radical ink film are between 8% and 

20%. 61 The amount of shrinkage can be controlled by the functionality of the 

monomers and oligomers used. The more reactive sites on the molecules, the higher 

the amount of shrinkage, using lower reactivity monomers and oligomers generally 

slows down the cure rate of the ink and reduces the cross link density of the cured 

film. The addition of a resin that does not have any acrylate functionality is another 

way that shrinkage is controlled. 

In cationic curing, the reaction proceeds via a carbocation R3C+, This species goes on 

to promote ring-opening reactions with epoxides and oxetanes and attacks electron 

rich sites such as the double bonds of vinyl and propenyl ethers. 60 Once generated, 

the cation catalyses the reaction to completion leaving no uncured polymer. The 

curing reaction is slower than that of the free radical mechanism and can lead to 

problems if the film is not given sufficient time to cure between print stations. The 

curing reaction is not affected by atmospheric oxygen but is sensitive to water in any 

form and a humid environment can prevent the reaction curing to completion. 61 The 

cation is an acidic ion and as such will react with any pigments with basic 

functionality. The choice of pigment that can be used is greatly restricted. The cured 

ink film is non-toxic and without odour, making it extremely suitable for printing 

food packaging. As epoxide and oxetanes curing are ring opening reactions the 

shrinkage of a cationic ink film is much less than that of a free radical ink. Typical 

values for shrinkage are less than 5%. 61 Cationic UV inks are much more expensive 

than free radical UV inks, therefore cationic UV tends to be used where free radical 
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inks are not suitable. 

UV inks have many advantages over traditional inks. Because UV exposure is 

required for curing, they will not dry on the press and therefore have a much longer 

press life, there is no solvent evaporation to worry about so the viscosity remains 

constant. UV inks can exhibit good adhesion to filmic materials and the prints 

display brighter colours and sharper images as they are cured immediately and do not 

get a chance to diffuse into the substrate. They are however more expensive than 

solvent or water-based inks. UV inks have taken over from water-based inks to 

dominate the narrow web section of the flexographic printing market, accounting for 

an 85% share in 2003 .61 The cost of the larger curing systems limits the use of UV 

inks in medium and wide web presses. 

UV inks require a UV radiation source to initiate the curing reaction. Medium. 

pressure mercury lamps are commonly used, 60. 62, 63 and photo initiators are selected 

that respond to the wavelengths peaks generated by this type of lamp. Different 

colours absorb different parts of the UV spectrum. Black pigments in particular 

present problems as they absorb UV radiation at the same wavelengths as some of 

the photo in itiators. Care must be taken to select a photoinitiator/oligomers 

combination that will cure adequately, The ability of a pigment to absorb UV 

radiation has a detrimental effect on the cure rate of the ink. Short wavelength UV 

radiation below 280nm is responsible for surface cure of the ink film with the depth 

of cure coming from UV radiation with a wavelength of around 36Snm. 62 The 

shorter wavelengths of UV radiation are most susceptible to absorption by dirt on the 
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lamp or reflectors. As this dirt can be invisible to the eye the problem is first noticed 

as a loss of surface cure. The use of a spectroradiometer is recommended to measure 

lamp performance to avoid this and other problems. Production of ozone is a 

problem associated with UV curing systems. This takes place due to the interaction 

of the UV radiation of wavelengths below 230nm, with atmospheric oxygen. This is 

particularly a problem whilst lamps are warming up to operating conditions. Ozone 

extraction units are fitted to presses to combat this problem but when the presence of 

ozone is particularly undesirable, ozone-free lamps, which are lamps that cut otT the 

emission of UV radiation with wavelengths below 230nm, can be used. 63 The use of 

ozone-free lamps however, has a detrimental etTect on the cure time of the ink. 

Radiation curing of flexographic inks can also take place by electron beam (EB) 

curing. 60, 63 With this method a photo initiator within the ink is not required as the 

electron beam generated by the curing unit induces the reaction by ionising the 

molecules and generating radical cations. These species can then fall apart to produce 

the radicals that initiate the radical polymerisation. The curing of EB inks is not 

effected by the pigment choice therefore the formulation of EB curable inks allows 

for much more flexibility. EB curing is inhibited by oxygen for the same reasons as 

the free radical UV inks but in this case synergists cannot be used to reduce the 

problem. Therefore the printed ink film has to be covered by a blanket of nitrogen at 

the curing point to eliminate oxygen from the substrate surface. As press speeds 

increase maintaining this nitrogen blanket becomes more problematic. 
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1.6 Substrates 

The flexo process is by its very nature versatile in terms of the number of substrates 

it can be used to print onto. As the printing plate is flexible it is forgiving towards 

rougher, lower quality substrates as the plate distorts to cover small surface 

irregularities, making the process suitable for printing onto lower grade papers and 

newspapers. Flexo is also highly suited to printing on filmic substrates, and over a 

thousand grades of filmic substrates are currently available to the flexo printer. 64 

Whilst there is much debate over the importance of the surface energy of the anilox 

or plate when considering ink transfer characteristics, (discussed further in Section 

1.7) 55, 65, 67, 68 it is widely accepted that the surface energy of the substrate is very 

important. Surface energy is a physical property of a surface and is analogous to the 

surface tension of a liquid. Surface energy is measured in millijoules per metre 

squared (mJm,2), units which are numerically equivalent to dynes per centimetre, the 

cgs unit predominantly used in printing industry literature. 

The lower the surface energy of a surface the harder it is to wet. To spontaneously 

wet a surface, the wetting liquid must have a surface tension lower than the surface 

energy of that surface. The surface energy of the substrate therefore needs to be 

higher than surface tension of ink for efficient transfer to take place. 55, 68 Average 

values for the surface tension of flexo inks are quoted as 28-29 mNm'l for solvent 

based systems and 30-32 mNm'l for water based inks, 55 however it can vary 

considerably with formulation. Measuring the surface tension of an ink does not fall 
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within the ink manufacturers formulation or quality control checks. 69 Table 1.2 

shows the critical surface energies of a number of common substrates. 

Material 
lmJm:%l 
Polytetrafluoroethy lene 

Critical Surface Energy 

Polychlorotrifluoroethylene 
Polyethylene 
Polypropylene 
Polystyrene 
Poly(vinyl chloride) (rigid) 
Poly(vinyJ chloride) (flexible) 
Poly(vinyl fluoride) 
Poly(vinylidene chloride) 
Poly(vinylidene fluoride) 
Polyacrylamide 
Polyacrylate (acrylic film) 
Poly(methyl methacrylate) 
Poly(ethylene terephthalate) (polyester film) 
Poly(6-aminocoproie acid) 
Poly(ll-aminoundecarioc acid) 
Poly(hexametbylene adipamide) 
80:20 Poly (tetrafluoroethylene-co-chlorotrifluoroethylene) 
60:40 Poly (tetrafluoroethylene-co-chlorotrifluoroethylene) 
50:50 Poly (tetrafluoroethylene-co-ethylene) 
94:6 Poly (tetrafluoroethylene-co-hexafluoropoprylene) 
92:8 Poly (tetrafluoroethylene-co-hexafluoropoprylene) 
86: 14 Poly (tetrafluoroethylene-co-hexafluoropoprylene) 
84: 16 Poly (tetrafluoroethylene-co-hexafluoropoprylene) 
77:23 Poly (tetrafluoroethylene-co-hexafluoropoprylene) 
CeJJulose (regenerated) 
Poly(dimethyl siloxane) 
Copper (dry) 
Aluminium 
Iron (dry) 
Glass, soda lime (dry) 
Silica (fused) 
Titanium dioxide (anatase) 
Ferrie oxide 
Tin oxide 

18.5 
31 
31 
31 
33-35 
39 
33-38 
28 
40 
25 
35-40 
35 
33-44 
43 
42 
33 
46 
20 
24 
26-27 
19 
18.3 
18.2 
18 
17.8 
44 
24 
44 
45 
46 
47 
78 
91 
107 
111 

Table 1.2. Surface energies of some common substrates in mJm-2
• 64 
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As can be seen from Table 1.2, some of the substrates used in flexographic printing 

have surface energies lower than the inks used to print onto them. In order for 

wetting and adhesion of the inks to take place on these substrates it is necessary to 

raise the surface energy of the substrate. This can be done by a method known as 

corona treatment. This process makes use of corona discharge, discharge without an 

electrical arc, generated between electrically insulated electrodes with a high voltage 

passing between them. 70 This discharge ionises the surface of the substrate, raising 

its surface energy and making it more receptive to the ink. This effect can be 

extremely short-lived, dependent on the substrate treated. Therefore the corona 

treatment is often carried out in-line just before the ink station. Corona treatment 

can adversely affect the water resistance of the print, as the ionised surface is very 

hydrophilic. If the ionised surface is more receptive to water than the ink, water can 

preferentially displace the ink at the interface. 

The surface energy of paper, although dependent on the type of paper and coating, is 

usually higher than the surface tension of standard flexo inks. Therefore modification 

of the surface energy is not necessary to produce wetting and ink adhesion. The 

surface energy of paper was however manipUlated in a study to determine its 

influence on ink transfer. 68 The findings were that the influences of surface chemical 

factors on solids printed with water-based inks were small, and that the effect on a 

printed halftone was more significant. However the study found that press speed, 

surface roughness and printing pressure played a greater role in the printing 

properties. The study highHghted the range of chemical properties already present in 

different grades of paper. 
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1.7 Ink transfer and the significance of surface energy 

Over the last ten years several attempts have been made to study the flexographic 

printing process and quantify the variables that affect ink transfer and print quality. 

Central to many of these studies is the validity of a theory that was first put forward 

by Frank pick at the Flexographic Technical Association annual forum in 1978. He 

theorized that in a nip formed by rolls of two different materials, the higher volume 

of ink would follow the roll with the higher surface energy. 6S Therefore, for 

maximum ink transfer through the aniloxlplate nip and the plate/substrate nip the 

surface energy of the anilox should be low, and the surface energy of the plate should 

be higher than that of the anilox but lower than the surface energy of the substrate. If 

a fountain roll is used to ink the anilox, its surface energy should be lower than that 

of the anilox. To allow the ink to wet each component its surface tension should be 

lower than the lowest surface energy of the components (i.e. the anilox or fountain 

roll) 

Examples have been given of surface energy sequences for the ink, fountain roll, 

anilox, photopolymer plate and substrate with chrome and ceramic anilox. 5S It is 

suggested that the surface energy of ceramic anilox fall into the range of 39 - 42 

mJm-2
, higher than the surface energy of chrome anilox, quoted at 34 mJm-2 and 

higher than the surface energy quoted as a typical value for a photopolymer plate of 

37 mJm-2
• The high surface energy of ceramic anilox is claimed to cause 

inconsistent inking of the plate. 
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Quinn 65 quoted typical surface energy values for photopolymer plates as between 30 

- 45 mJm-2 and varied the surface energy of his test plates from 18 mJm-2 to 58 mJm-

2. He found that the surface energy of the plate did not affect the amount of ink 

transferred, but his study, on a proofing machine, differed from actual printing 

situations in a number of ways. Firstly he separated the ink transfer stages 

considering firstly the aniloxlplate nip and then in a separate experiment, the 

plate/substrate nip. The plate was not attached to a cylinder but mounted on a flat 

sled that passed sequentially through the two nips. The plate was therefore inked 

only once before the measurements were made. Significantly the anilox used was 

made from steel and therefore had a much higher surface energy than either chrome 

or ceramic aniJox. The type of steel is not specified but in order to resist corrosion 

from the inks it is likely to have been stainless steel, which can have surface energies 

in the range of 700 to 1000 mJm-2• The changes in the surface energy of the printing 

plates from 18 to 58 mJm-2 would therefore have little significance in relation to the 

overall surface energy difference between the steel anilox and the plate. The study 

only measured the affect of changing the surface energy of the plate on the amount of 

ink transferred at each nip. No assessment of the impact of changing surface energy 

on print quality or dot gain was attempted. 

The study did however measure the ink transferred from a plate of lower surface 

energy than the substrate onto which it was printing. The plate was then treated to 

raise its surface energy leaving other variables such as hardness and roughness 

unchanged. No difference in the percentage of the ink transferred to the substrate was 

observed when the surface energy of the plate was raised above that of the substrate. 

The constant percentage transfer of 50% was also unaffected by printing speed and 
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pressure, variables that were found to be significant by the DFTA S3 where 

experiments took place using flexographic printing presses. 

Another paper was published by the same research group, using the same flexo 

simulator.66 In this investigation the anilox were ceramic coated and laser engraved 

with a carbon dioxide laser. The effect of cell count and engraving pattern were 

studied. The plate surface energy was varied from 18 mJm-2 to 34 mJm -2 and was 

found not to effect ink transfer or print quality. The surface energy of the ceramic 

anilox was not investigated, however it was likely to exceed the surface energy of the 

plate in all cases. 

Lindholm carried out another study that looked at the effect of surface energy on ink 

transfer. 67 This work was done on a flexographic printing press, and used two 

anilox. One with a line count of 200 lines per centimetre and a cell volume of 9.09 

cubic centimetres per square metre, and a banded anilox with a line count of 80 lines 

per centimetre with volumes of8, 10 and 12 cubic centimetres per square metre. The 

paper does not make clear what material the anilox was made from nor how it was 

engraved. The printing was done as a continuous process, i.e. the plate was 

constantly re-inked and printed from. The amount of ink transferred from the anilox 

to the plate was assumed to be the same as the amount transferred from the plate to 

the substrate, the reasoning for this being that ink does not either build up or decrease 

on the plate. However, Quinn et al 6S found that by examining the two nips separately 

different percentages of ink were transferred in each case, 40% from the anilox to the 

plate and 50% from the plate to the substrate. 
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The six plates used in the study all picked up different amounts of ink from the 

anilox. This led Lindholm to conclude that the plate is responsible for the amount of 

ink transferred from the anilox. However if this were true the printer would only 

need one anilox and could vary the amount of ink required for different jobs by 

changing the plate. This is clearly not the case and the effects of varying the anilox 

volume in this study are not presented. Lindholm also varied the surface energy of 

the printing plates and saw no correlation between surface energy and volume of ink 

transferred. The other variables included in this study were the inks used and the 

speed of the press. Lindholm found that the choice of ink affected ink transfer. 

However the property of the ink studied, viscosity, as measured by the time the ink 

takes to flow through a Zahn cup, did not provide enough information to explain the 

influence of the ink on the percentage transfer. Lindholm observed that press speed 

had no affect on solid densities in fuJI tone areas. 

The specific case of UV ink transfer has been studied by the NPIRI 71 in 1996 and 

Fouche and Blayo 72 in 2001. The NPIRI looked at a range of UV inks of constant 

pigment concentration, the viscosities of which were varied by the 

monomer/oligomer content. They unsurprisingly found that very thick inks produced 

poor solid print densities, but the relationship they found between viscosity and print 

density was not always linear. In the case of the finest anilox line count (700 lines 

per inch or 27.5 lines per mm) there was a maximum print density at 2951 centipoise, 

the midrange in this study. The study looked at a range of anilox volumes at each 

line screen and concluded that the depth to opening ratio was significant. Rather than 

an optimum ratio the results suggest that there is a maximum depth after which no 

increase in print density is seen. The range of depth to opening combinations used 
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was from 18% to 48%, which is slightly larger than the recommended range of 23%-

33%. 23 The line count and cell dimensions of the anilox used are specified but, the 

method of engraving, the engraving angle and the material that the anilox is made 

from are not specified. The study concluded that solid print density increased with 

decreasing ink viscosity, with decreased anilox line count and increased cell volume. 

The effect of ink viscosity on dot gain was also studied. In general dot gain was seen 

to decrease with decreased ink viscosity but the results were variable between anilox 

rolls, the highest line count anilox produced no change in dot gain when the ink 

viscosity was varied. 

Fouche and Blayo looked at the printing of solids with free radical UV inks and used 

the Walker-Fetsko equation along with the extended splitting term proposed by Zang 

to model the transfer of ink from the plate to the substrate. The Walker Fetsko 

equation in the form used by Fouche and Blayo is shown as Equation l.1.n 

y = (l-e(.kx~·{b(l-e(·xIb»(l-f)+fx} 

where: 

y = The amount of ink transferred to the paper. (g/m2) 

x = The amount of ink available on the plate. (g/m2) 

(1.1) 

k = The paper smoothness parameter.{this depends on the roughness of the paper and 

the ability of the ink to cover the paper surface) (m2/g) 

b = The immobilization parameter (the fraction of ink immobilized within the paper 

mass.) (g/m2
) 
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f = The splitting coefficient. (A dimensionless constant, which represents the 

fraction of free ink transferred to the paper.) 

The amount of ink on the plate and the amount transferred to the paper were 

measured by weighing the printing carriage before and after printing. As the paper 

properties and printing conditions were constant the smoothness parameter k was 

fixed for this study. 

The study uses the Zang modification of the splitting coefficient to model a 

dependency of the splitting coefficient on the amount of ink available on the plate. 

This is shown as Equation 1.2.72 

F = foe + (fo· foo) • e{-cf..,x) (1.2) 

Where: 

F = Zang's splitting coefficient 

foo = the splitting coefficient at high ink amounts 

c = a constant (Zang fixed this at 2, however Fouche and Blayo have varied it.) 

fo = the splitting coefficient of the free-ink film when the amount of in on the plate 

tends to O. (if the two rolls at the nip are turning at similar speeds this can be 

assumed equal to 0.5, i.e. a 50150 split.) 
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The substrate used was paperboard. A range of UV inks with differing viscosities 

and surface tensions was used. They measured the surface energy of the plate, 

substrate, and the cured ink film. The surface energy difference at the plate paper nip 

was not varied and there was an increase in surface energy from the plate to the 

paper. The effects of ink film thickness on the final properties of the print were 

recorded. The Walker-Fetsko equation with the Zang modification was found to give 

good correlation to the ink transfer from the plate to the paper. The ink transfer from 

the anilox to the plate was not investigated. The prints were made on two laboratory­

proofing machines, only one of which was fitted with an anilox roll, the other being 

inked directly from a rubber roll. The anilox rolls used were ceramic and ranged 

from 87 to 187 lines per centimetre. No details of engraving were given but for this 

range of large cells the method was most likely to have been by a C02 laser. 

The other conclusions from this work were that two trends could be seen depending 

on inking levels. At high ink levels no significant change was seen in print density or 

gloss with changing press speed. At low ink levels print speed was observed to affect 

these properties. The study cited viscoelastic properties of the ink as the reason for 

this and highlighted the need for further work. 

The studies into the affect of surface energy on ink transfer have concentrated on the 

plate as the main variable. The anilox has been varied to hold and in theory dispense 

a greater volume of ink but the surface energy of the anilox has not been varied or 

measured to determine the difference between the surface energies of the anilox and 

plate. This is probably due to the complex issues involved in making surface energy 

measurements on an anilox roll. As will be discussed in Chapter 2 surface energy 
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measurements are relatively easy to make on flat smooth samples. However, making 

surface energy measurements on highly textured cylindrical surfaces such as an 

anilox presents a challenge. If a greater understanding into the wetting and release 

properties of the anilox and its roll in the amount of ink transferred is to be achieved 

surface studies of the anilox roll are essential. 

The ink transfer studies made by Quinn, Lavelle, Lindholm and the NPIRI took place 

before laser engraving of anilox by Y AG laser became commonplace. There was in 

effect only one way of engraving a ceramic anilox and its properties were fixed by 

the depth to opening constraints of the C02 laser engraving process. The introduction 

of the VAG laser to anilox engraving has introduced new variables for the anilox in 

terms of increased cell depths and differing cell shapes, some information has been 

published on the effect of the VAG engravings on ink release but most of the 

information originates from the anilox or laser manufacturers. The effect of the 

VAG laser engraving process on the surface properties of the anilox is unknown. 

The aim of the study by the author is to characterise the wetting and transfer 

properties of the anilox roll. This will be done by making detailed surface chemical 

measurements (as discussed in Chapter 2) and by measuring the ink transfer from the 

anilox, both on a wide web flexo press and on a lab scale press. Banded aniloxes 

engraved with both C02 and Y AG bands will be studied. The effect of the type of 

laser used to make the engraving on the surface chemistry of the roll will be 

investigated along with the ink release properties. 
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2. Surface chemistry 

As discussed in Section 1.7, the behaviour of ink in contact with an anilox, printing 

plate or a substrate is influenced by the physical and chemical properties of the ink 

and the surface with which it is in contact. In order to understand, model or predict 

the movement of the ink to and from the component surfaces of a flexo press, it is 

necessaty to understand the surface interactions at a solid/liquid/vapour interface. In 

particular, issues that are relevant to the wetting and dewetting of the anilox roll will 

be reviewed. 

2.1 The contact angle 

Information about a surface can be obtained by observing the contact angle made by 

a drop of pure liquid at rest on the sample surface, or in reverse, information about a 

liquid can be deduced from observing the contact angle made on a solid of known 

properties. A contact angle is defined as "the angle between the tangent to the 

liquid-vapour interface and the tangent to the solid interface." 73 Two examples of 

contact angles are shown in Figure 2.1. When a contact angle is less than 90°, it is 

said to be wetting the surface. When the contact angle is greater than 90°, it is 

described as non-wetting. 
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partial wetting partial non-wetting 

Figure 2.1. An illustration of wetting and non-wetting contact angles. 

Contact angles may be static, where a known volume is applied to the surface and 

observed at rest, or dynamic, where liquid is first added and then removed from the 

drop causing the contact line to advance across the sample surface and then to recede 

back again. As a contact angle is advanced, the angle reaches a maximum. This 

angle is termed the advancing contact angle Sa. Similarly, as a contact angle recedes, 

a minimum contact angle is reached which is termed a receding contact angle Sr. The 

diagram showing advancing and receding contact angles is shown in Figure 2.2. 

For an ideal material, the curves produced by recording advancing and receding 

contact angle data would overlap. However, in practice this rarely happens. 

Advancing contact angles are usually larger than receding angles and a hysteresis 

loop is usually observed. Static, advancing and receding contact angles made by a 

particular liquid on a specific solid surface will have different values; the advancing 

angle is normally larger than the static angle which in turn is larger than the receding 

angle. Therefore, it is important to make it clear when quoting contact angle values 

which type of contact angle has been measured. 
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,J; liquid flow 

Advancing contact angle 

t liquid flow 

Receding contact angle 

Figure 2.2. An illustration of advancing and receding contact angles. 

Hysteresis can be defined as the difference between the advancing and receding 

angles, i.e. ~S = Sa - Sr .74 As the advancing angle is normally larger than the 

receding angle, hysteresis is usually positive. Exceptions to this can occur in cases 

when the liquid interacts with the surface and is able to change the properties of the 

surface. 76 For example, a small amount of Ca ++ ions present in water will affect the 

pH and polarity of negatively charged phospholipid surfaces. This significantly 

increases the hydrophobicity of the surface and therefore increases the receding 

contact angle, making the receding angle larger than the advancing angle 

51 



Contact angle hysteresis due to chemical interactions between the wetting liquid and 

the surface can be eliminated by careful selection of the wetting liquid. However, it 

is much more difficult to eliminate hysteresis caused by the sticking of the contact 

line. The contact line is the line around the edge of the liquid drop that marks the 

boundary between the solid, the liquid and the surrounding vapour or gas (also called 

the triple line). The contact line moves across the surface as the drop spreads. 

Irregularities in the surface such as surface heterogeneity and roughness require more 

energy to move the contact line across and as more liquid is added, cause its 

progress to slow or stick. If the contact line does not move, the expansion of the drop 

increases or advances the contact angle as shown in Figure 2.3. The reverse is true 

when the liquid is removed from the surface, as the contact line sticks the removal of 

liquid from the drop reduced the contact angle and a receding angle is observed. 

Figure 2.3. The sticking of the contact line causes the contact angle to change as the 

volume of the drop increases. 

At a microscopic scale, the curvature of the liquid surface close to the contact line 

can deviate from that of the bulk drop. This can be due to molecular interactions such 

as van der Waals forces or polar interactions, or due to irregularities or deformations 

at the solid surface. 76 
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2.1.1 Young's equation 

Attempts to describe the interaction between a solid phase, a liquid phase and a 

vapour phase at an interface began as early as the 19th century. Thomas Young 

proposed an equation to relate the interfacial tensions at a solid/liquid/vapour 

interface to the contact angle made by a drop of the liquid in equilibrium with a flat, 

smooth, homogeneous solid surface.77
, 78 

A diagram of the triple phase system that is related to the contact angle by Young's 

equation is shown in Figure 2.4. and Equation Young postulated that for a flat, 

smooth and chemically homogeneous surface the bulk interfacial tensions of the 

interfaces could be related to the contact angle without any knowledge of the 

complex interactions taking place in the core region around the contact line. 

1Sl 

Figure 2.4. A diagram of a liquid drop with a contact angle e and interfacial tensions 

YSL Ysv and YLV. 

Young's equation YLV cos9 = Ysv - YSL (2.1) 

YSL is the interfacial tension at the solid/liquid interface, YLV is the interfacial tension 

at the liquid/vapour interface, and Ysv is the interfacial tension at the solid/vapour 

interface. 9 is the equilibrium contact angle between the liquid and solid. At the 
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contact line, the force due to the interfacial tension 'Ysv is opposed by 'YSL and the 

component of'YLv acting along the interface, which is 'YSL cosa. As the contact line is 

in equilibrium, the net sum of the forces is zero or 'Ysv - 'YSL - 'YLV cosa = O. This is 

a simple rearrangement of the more familiar form of Young's equation shown in 2.1. 

The terms YLV • the interfacial tension at the solid/liquid interface, is the surface 

tension of the liquid in equilibrium with its saturated vapour. It is normally equal to 

YL the surface tension of the liquid. These terms are sometimes replaced by the term 

OS L, the surface free energy of the liquid. The latter term, although conceptually 

different to the surface tension is numerically equal. 79 

The terms 'Ysv relates to the interfacial tension of the solid/vapour interface. It is 

however not the same as 'Ys, the surface tension of the solid, as the freezing process 

does not usually allow the surface to be in equilibrium with the vapour. A way to 

express the term is as the interfacial energy of the solid surface in equilibrium with 

the vapour of the contact angle liquid, or Ossv. The term Ossv can be separated into 

Os s. the surface energy of the solid in the absence of vapour and II, the spreading 

pressure of the adsorbed vapour. This spreading pressure is however generally 

negligible on low energy surfaces, (generally accepted to be surfaces with surface 

energy values of less than 100 mJm-2 76) and the term Ossv and Oss become 

equivalent. 79 

Young's equation can be expressed using these terms as 
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(2.2) 

The Young equation assumes that the triple phase system is in thermodynamic 

equilibrium and that the solid surface is smooth, homogeneous, isotropic and non 

deformable. Its application therefore to real surfaces is still a cause of controversy 

and whilst the equation is very useful its limitations always have to be considered. 78 

One consequence of these assumptions is that the equilibrium contact angle that is 

related to the interfacial tensions by the Young equation is not necessarily the contact 

angle that is observable with standard optical techniques. The observable contact 

angle, which is also termed the phenomenological or macroscopic contact angle, 

9m, 78 is dependent not only on the combination of interfacial tensions at the triple 

phase point, but also on the physical and chemical features of the solid, i.e. 

roughness and chemical heterogeneity. It is 9m rather than ge that gives information 

about properties of the solid surface such as wettability adhesion and spreading 

parameters. 

The equilibrium contact angle ge, which is unique to the combinations of interfacial 

tensions at the triple phase line for a smooth, homogeneous surface has already been 

introduced. There is, however, another type of equilibrium contact angle, 9ES which 

is the contact angle at which the system is in such a state that its free energy is 

minimised, irrespective of whether the system is rough or smooth, chemically 

homogeneous or heterogeneous. The Wenzel contact angle 9w (Section 2.1.2) and the 

Cassie contact angle 9c (Section 2.1.3) are both examples of system equilibrium 

contact angles. 78 
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2.1.2 The Wenzel equation 

In 1936, Wenzel put forward an equation to relate the macroscopic contact angle Om 

to the equilibrium contact angle ~s for a rough surface.80
•

81 His argument was 

essentially that if the surface of the solid is rough the liquid drop coming into contact 

with it will interact with a much larger area of the solid for a given drop diameter 

than with a smooth surface. Wenzel introduced a roughness factor r, where r is equal 

to the actual surface area divided by the geometric surface area. The value of r is 

therefore always greater than 1. He proposed the following relationship between Om 

and Ow the Wenzel contact angle, which is the equilibrium angle Ehls for a rough but 

homogeneous solid. The Wenzel equation was given a more rigorous mathematical 

derivation by Shuttleworth and Bailey in 1948 82 and again by Good in 1952. 83 

The Wenzel equation cos Om = r cosOw (2.3) 

The Wenzel equation predicts that jf a droplet in contact with a smooth surface has a 

contact angle of less than 90° roughening the surface will lower the observed 

macroscopic contact angle Om. If however a droplet in contact with a smooth surface 

has a contact angle of more than 90°, roughening the surface will raise the observed 

macroscopic contact angle Om. 

The big problem with the Wenzel equation is that it is only seen to agree with 

experimental findings on very artificial roughness models. It has been shown that the 

Wenzel equation gives the correct results on saw tooth surfaces when the drop size is 

infinitely large in relation to the roughness. 84 As well as the case of a droplet 
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spreading radially on radial grooves with some geometric restrictions. 8S The 

common feature of these models is that the contact line can move reversibly, 

theoretically eliminating hysteresis. 

2.1.3 The Cassie and Baxter equation 

Cassie and Baxter considered the system of a heterogeneous solid surface made up of 

domains with different surface tensions. 86, 87, 88 An example of such a surface could 

be a polycrystalline material whose surface exposes a number of crystal planes, or a 

surface on which patches of a monomolecular film have been adsorbed. 78 Cassie and 

Baxter proposed that the contact angle on such a surface would be related to the 

equilibrium contact angles of each domain in proportion to their makeup of the 

overall surface. The Cassie and Baxter equation for two domains is shown below. 

The equation is not however restricted to two domains and additional terms could be 

added to incorporate more complex systems. 

The Cassie and Baxter equation (2.4) 

Where 9c is the Cassie contact angle, ge l and ge2 are the equilibrium contact angles 

for domains 1 and 2 and a\ and a2 are the fractional surface areas of the two domains 

such that a\+a2 = 1. 

The Cassie contact angle is an equilibrium contact angJe BES for a heterogeneous but 

smooth system. As with the Wenzel equation, there are problems applying the Cassie 
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and Baxter equation experimentally to real surfaces, however this has been attributed 

to the existence of a large number of metastable contact angles on composite 

surfaces 78 and the Cassie and Baxter equation has been reported to agree with 

experimental findings.75, 81, 89 

The Cassie and Baxter equation has been criticised for failing to consider the 

geometric detail of the domains.74
,85 Models specific to certain artificial domain such 

as vertical and horizontal grooves,18 concentric rings and circle segments,90 have 

been studied, and the geometries have been related to the number of metastable 

contact angles and the amount of hysteresis. 

The Cassie and Baxter equation has also been used to describe a surface such as a 

mesh or woven material where the surface contains gaps or pockets of air, 86 or to 

porous or very rough surfaces.74 The incomplete penetration into the surface creates a 

composite surface of wetted and non-wetted material. The two phases become 

solid/liquid and solid/air interfaces and the equation reduces to 

(2.5) 

where ft and f2 are the fractions of solid/liquid and solid/air interfaces, respectively 

2.1.4 The Shuttleworth and Bailey equations 

Shuttleworth and Bailey 82 were the first to consider the mechanisms by which a 
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liquid may spread across an idealised rough surface. They used a "saw tooth" or 

parallel groove model and considered spreading in two dimensions, parallel and 

perpendicular to the grooves. They showed mathematically that to exhibit minimum 

surface energy, a droplet must take the shape of a spherical cap. They also 

considered the capillary forces acting on the drop along the grooves and their effect 

on the shape of the contact line. Although they didn't use the terms, they drew a 

distinction between macroscopic and microscopic contact angles. 

The two dimensional model was expanded to fit two simplified 3D systems. The 

systems that were considered were, a plane covered by an array of square based hills, 

and its opposite, a plane covered by an array of square hollows. The latter is of 

particular interest to this work as a flat plane with an array of hollows could be used 

to approximate the surface shape of an anilox roll. Shuttleworth and Bailey proposed 

that spreading across such a surface would follow the same mechanism as the 

spreading perpendicular to 2D grooves. The angle of contact would be greater or less 

according to whether the liquid was advancing or receding. The hysteresis would be 

largest when the ridges between the hollows are steep and the widths of the hollows 

are large compared to their depth. Shuttleworth and Bailey proposed two equations 

to describe the effect of the grooves on the contact angle as the contact line is 

advanced or receded. 

The Shuttleworth and Bailey equations for advancing and receding angles are shown 

as Equations 2.6 and 2.7, respectively. 

Sa = Se + 0 m for advancing angles (2.6) 
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Or = Oe - 0' m for receding angles (2.7) 

Where 9a and Or are the observed advancing or receding contact angles on the rough 

. surface. ge is theoretical equilibrium contact angle on a smooth surface. 0 m and 0' m 

are equal to tanh-I( [dh/dR] ) which is the angle of maximum slope of the roughness 

in direction of the contact line movement. 

The use of the Shuttleworth and Bailey equations to quantify the effect of roughness 

predicts that roughness will increase the advancing contact angle and reduce the 

receding contact angle. Put another way, the larger the maximum slope of the 

roughness the greater the contact angle hysteresis. This was supported by 

experimental work by Bartell and Shepherd in 1953 91 on a paraffin substrate, 

engraved to produce pyramid shaped roughness where the slope of the roughness 

could be easily measured. 

It is important to note that these equations relate the change in contact angle to the 

maximum slope of the roughness only. The magnitude or height of the roughness 

does not effect the calculations, nor does differences in surface area. This is 

demonstrated by Figure 2.5. 
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Figure 2.5. Effect of roughness profile on the Shuttleworth and Bailey calculations. 

Roughness profiles A, Band C have the same slope in the horizontal direction. 

Profiles A and B have the same surface area however profile C has a larger surface 

area for the given length. According to the Shuttleworth and Bailey equation, for a 

drop advancing from left to right the increase in the advancing contact angle across 

all three bands should be the same. This contradicts the Wenzel hypothesis that the 

change in contact angle due to roughness is related to the contact area underneath the 

drop. 

Bartell and Shepherd addressed this problem experimentally with their 

paraffin/glycerol system. 92 They created a local patch of roughness on which they 

measured advancing angles. They then advanced the drop to make it larger than the 

area of roughness so that the contact line was on the smooth surface but the contact 

area encompassed the roughness. They observed the contact angle to decrease to 

match that of a drop of the same volume on the completely smooth paraffin surface. 
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2.1.5 Uses of the Wenzel, Cassie and Baxter and Shuttleworth and BaiJey 

equations 

The equations of Wenzel, Shuttleworth and Bailey and Cassis and Baxter were 

studied from a thermodynamic perspective by Johnson and Dettre in 1964. 93 They 

concluded that surface roughness gives rise to a number of metastable states and that 

each state is separated from adjacent states by an energy barrier. It was shown for the 

first time that the Wenzel and Cassis equations give the state corresponding to the 

lowest free energy of their respective systems, and also that the energy barrier is at 

its highest around the phenomenological contact angle, and zero for the maximum 

and minimum geometrically possible combinations of contact angle and slope. It was 

also hypothesised that these maximum and minimum combinations, taken by 

Shuttleworth and Bailey to be the advancing and receding contact angles are not 

likely to occur due to thermodynamic constraints. 

They also proposed that contact angle hysteresis on roughness could be qualitatively 

explained by assuming advancing and receding contact angles are a balance between 

the macroscopic vibrational energy of the drop and the height of the energy barrier . 

. Hysteresis becomes greater when the vibrational energy becomes small or the energy 

barriers become large. 

The applicability of the Wenzel, Cassie and Baxter, and Shuttleworth and Bailey's 

equations to specific geometries of roughness was first investigated theoretically in 

1977 by Huh and Mason. 85 This work was followed up by an experimental study in 

1980, 95 whereby they concluded that the Wenzel equation accurately described the 
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change in contact angle on spreading over rough surfaces in which the contact line 

could move evenly and reversibly. Examples of such surfaces were radial grooves 

and hexagonally packed spheres. The Shuttleworth and Bailey equation predicted the 

spreading on spiral grooves and bead blasted surfaces that were seen to approximate 

the spiral groove configuration, unless the contact angle was very low, in which case 

capillary action along the grooves was observed. 

The paper suggested that most other surfaces would exhibit a combination of the 

spreading mechanisms and that the contact angle observed would fall between the 

values predicted by the Wenzel and Shuttleworth and Bailey equations. The 

exceptions being highly orientated roughness, which would distort the contact line 

along the angle of orientation. Therefore the contact angle would be dependent on 

viewing angle and defining a single Sa would be meaningless. In addition, for deep 

grooves or pores, or when Se is very large the system would be a composite of wetted 

and unwetted surface, which could be described by the Cassie and Baxter equation in 

the form as shown in Equation 2.5. 

2.1.6 Research into the effect of surface roughness on the contact angle 

Research into the effects of surface roughness on the contact angle is ongoing and no 

universal theory on the treatment of roughness has been put forward. The debate into 

the usefulness of the Wenzel equation is still active with Bracke De Bisschop and 

Joos. 96 and Wolanski and Marmur 84 examining its mathematical basis. The Wenzel 

equation is still being used to describe wetting under specific experimental 
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conditions. 97,98 

There are three papers that seem particularly relevant when considering the wetting 

of an engraved anilox. The first paper considered the effect of the introduction of 

small holes on wettability of stainless steel by ethylene glycol. 99 The holes were 

approximately 300J.lm in diameter which is roughly 10 times larger than an average 

anilox cell and tubular in shape. The presence of these holes was seen to increase the 

contact angle from ge = 60.2° +1- 1.6° to 9a =106.7° +1- 3.6°, which was reported to 

be consistent with the Cassie equation for rough surfaces. (Equation 2.5) 

The other papers of interest were on the wettability of surfaces modified with C~ 

Y AG, excimer and high-power diode lasers. Two substrates were considered; a 

Ah03/Si~ based ceramic 100 and mild steel. 101 Laser modification of the ceramic 

was found to lower the contact angle observed with a number of test liquids. Laser 

modification of the mild steel surface with a Y AG laser was reported to lower the 

observed contact angle. However, modification with a C02 laser increased the 

observed contact angle. The study cited a measured change in surface roughness as 

the primary reason for the effect on the contact angle. Where a decrease in contact 

angle took place, the laser was seen to have produced a smoother surface. In the case 

of the C02 laser, modification of mild steel where the contact angle increased the 

laser treatment roughened the surface. The contact angles on the unmodified surfaces 

were below 90° for most of the samples, therefore the decrease in contact angle with 

decreasing surface roughness is in opposition with Wenzel's equation. 
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2.1.7 The effect 01 drop size and line tension on the contact angle 

In 1979, Good and Koo documented a relationship between the size ofa drop and the 

contact angle that it forms on a solid surface.I02 They concluded that the macroscopic 

contact angle was a function of the drop size, only when the radius of the drop is of 

the order of magnitude of the local contortions at the triple phase line. In other 

words if the drop is small in relation to local changes in the contact line around the 

perimeter of the drop. These changes in the contact line are attributed to surface 

roughness and chemical heterogeneity. 

The influence of the surface roughness and heterogeneity at the contact line on the 

macroscopic contact angle is complex and has been studied by several groups. 103, 104, 

lOS, 106 The influence of the interface at the contact line on the macroscopic contact 

angle has been quantified in the form ofa line tension term, which modifies Young's 

equation as shown by Equation 2.8. 106 

The modified Young equation "ILV cosee = "ISL - "Isv - (J 1<:gs (2.8) 

Where (J is the line tension at the triple phase line and Kgs is local curvature of the 

three-phase line in the plane of the solid surface. If the solid surface is horizontal, 

flat, smooth, homogenous, and rigid and the base of the drop is perfectly circular 

then 1Cgs is equal to the llR where R is the radius of the drop. When R becomes very 

large, the term aIR tends towards zero and the original form of Young's equation is 

obtained. 106 Treatments of this equation to account for model roughness and 

heterogeneity of surfaces have been presented lOS, 106 However, expansion of this 
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work to real surfaces is very complex and requires intimate details of the surface at 

the contact line. 

2.2 Contact angle measurement 

Two techniques can be used to measure contact angles on solid surfaces. The contact 

angle can be optically measured by the observation of a Sessile drop in contact with 

the surface under analysis, or calculated from the forces acting on a plate partly 

submerged in a test liquid 

2.2.1 The Sessile drop method 

This technique determines the contact angle of a droplet by direct observational 

measurement. The drop can be deposited onto the surface, suspended from the 

surface, injected through the surface or by means of a captive bubble held between a 

syringe and the surface. In the last two examples, additional liquid can be added to 

the drop and then removed to create advancing and receding contact angles. 

Measurement of the contact angles can be done by the use of a goniometer, an 

instrument through which the drop can be viewed against a fixed scale (resembling a 

protractor). The use of the goniometer technique involves manual selection of the 

contact angle, therefore, it is susceptible to operator error and repeatability between 

different operators is poor. 
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For this reason, automatic measuring systems are generally used. An image of the 

droplet is captured and analysed by computer. A circle segment is mathematically 

fitted to the droplet, and its tangent at the point of intersection with the test surface is 

calculated. There are many methods that the computer can use to select a circle 

which is a close match to the droplet, each with an associated error, and it can be 

difficult to tell from the user interface which method is being used. Common 

methods include matching the droplet's height and width, using a polynomial fit and 

the axisymmetric drop shape analysis technique (ADSA). 107,108 

The ADSA technique has been developed by Neumann and co-workers 108 and 

currently provides the most accurate method of contact angle measurement. In 

addition to sessile drops analysis it can be used to measure surface and interfacial 

tensions of pendent drops. There are two ADSA methods for the measurement of 

contact angles. ADSA-P is the most commonly used and analyses the profile of the 

drop. An image of the drop is captured and a curve is fitted using a combination of 

non-linear least squares fit and the Newton-Raphson method.108 The best-fitted 

theoretical curve is then fitted to experimental profiles to obtain the contact angle and 

liquid/vapour surface tension. 108 Apart from the digital image of the drop, the only 

other input required is the density difference between the drop and the surrounding 

fluid phase.107 In addition to the contact angle the technique can give as outputs the 

interfacial tension, and the base radius, volume and surface area of the drop. Contact 

angle measurements with ADSA-P are possible with an accuracy of +/- 0.20. 108 

ADSA-D derives contact angle information by measuring the drop diameter. An 

image of the drop taken from above is analysed, this method is used to analyse drops 
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with very low contact angle (less that 20°) that are difficult to measure with AOSA-P 

or goniometry. The input parameters are the contact diameter, the surface tension of 

the liquid and the volume of the drop. For contact angles greater than 90° where the 

contact diameter cannot be observed from above an alternative method based on the 

maximum diameter of the drop is employed. The highest achievable accuracy 

obtainable with ADSA-O on a smooth homogenous surface is around +/-0.30. 108 

The ADSA-D technique is also very useful for obtaining an average contact angle on 

a rough or heterogeneous surface on which an axisymmetric drop cannot be formed. 

By averaging the contact diameter, an average contact angle is obtained for the 

surface. Although anilox rolls are expected to be very rough, the roughness due to 

the cell structure is highly symmetrical; therefore, the formation of axisymmetric 

drops should not be a problem. 

A schematic of the instrument setup for and ADSA-P and ADSA-D is shown in 

Figure 2.6. 

(AOSA·O) 
MicrOOlCOjl8/CCD camera 

~tr~ ~rtace 
Syringe 

(AOSA.f') 
Microscope/Ceo ctmerll 

Figure 2.6. A schematic diagram of the apparatus used for the ADSA technique. 11 0 
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When ADSA-P is employed, the liquid drop can be dispensed from above, however 

ADSA-D requires the camera to be mounted above the drop. The drop is injected 

through the sample surface from underneath. This restricts the used of ADSA-D to 

samples that have been constructed or modified to include a hole for the syringe. 

2.2.2 The Wilhelmy plate method 

The Wilhelmy plate method is a method for measuring advancing and receding 

contact angles only. The surface to be measured must be in the form of a thin plate. 

The sample is attached to a fine balance, it is dipped into, and then withdrawn, from 

the test liquid. The maximum size of the plate is dependent on the maximum weight 

that the balance can handle and the dimensions of the vessel holding the test liquid. 

Typically, instruments can hold samples having a maximum weight of approximately 

200g.112 Maximum diameters for the liquid vessels are around lOOmm. \10 The 

samples must have uniform surface properties on all faces. The samples to be 

examined by contact angle analysis in this work are anilox ro]]s. Due to their size and 

shape, they are unsuitable for analysis by the Wilhelmy plate method so the sessile 

drop technique has to be used. The Wilhelmy plate method is however useful for 

determining the surface tension of test liquids by the use of a plate of known surface 

energy such as a glass slide or a high purity polymer sheet. 

The force that the liquid is exerting on the plate is measured. This is the wetting force 

(F). The contact angle is related to the wetting force by Equation 2.9. III 
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y = F / P cosS (2.9) 

y is the surface tension of the liquid (mJm- l
) and P is the perimeter of the wetted 

plate. A diagram of the Wilhelmy plate instrument is shown in figure 2.7. 

Plate attatched 
to micro balance 

1 
Plate 

Advancing 
contact ongllil 

Plate attatched 
to micro balance 

i 
Plate 

Receding 
contact anglCl 

Figure 2.7. A diagram showing the basic equipment used in the Wilhelmy plate 

method. 

The plate is fixed to a sensitive balance, which records the wetting force as a 

function of time. The liquid level is cycled up and down and the force recorded is 

used in conjunction with Equation 2.9 to produce the advancing and receding angles. 

Equilibrium contact angles cannot be measured with this technique. 
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2.2.3 Contact angle measurements on paper 

Contact angle measurements on paper are particularly complex as the liquid 

penetrated the pores in the paper as it spreads out onto the surface. The contact angle 

and drop size are time dependent and the rate at which they change is very much 

dependent on the properties of the paper. The interactions of a test liquid on a paper 

surface can be separated into wetting, absorption and adsorption. If the drop volume 

remains constant and the contact angle is decreasing, the mechanism at work is 

wetting. If the drop volume and contact angle are falling but the drop diameter is 

constant then the drop is being absorbed whilst if the contact angle and drop volume 

are falling and the drop diameter is increasing the liquid is adsorbing onto the paper 

surface. 112 

Different types of surface treatments affect the stability of the contact angle with 

time. On sized papers, absorption is the likely mechanism and the rate of change of 

the contact angle can be expected to increase with time. On hard sized papers, little 

change in contact angle may occur and with laminated or polymer-coated papers, the 

contact angle can be stable with time. In contrast, with sorbent paper the change in 

contact angle with time may be very rapid. 112 

TAPPI methods T 485 113 and T 558 pm-95 112 deal with the surface wettability of 

paper. Method T 485 measures the contact angle at 5 seconds and 60 seconds after 

the drop is brought into contact with the paper. This method can be used with a 

simple goniometer and works weB for some papers, but it can be too slow when 

adsorption into the paper sample is rapid. Method T 558 pm-95 is an automated 
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method that can measure the dynamic changes in the contact angle 20 to 40 

microseconds after the drop is applied. This method uses an instrument of the type 

shown in Figure 2.6 and specifies two procedures to measure fast and slow changes 

in the contact angle with time. In order to determine which procedure is applicable, a 

drop is suspended from a delivery system and brought gently into contact with the 

paper surface. If the drop immediately detaches, the contact angle can be expected to 

change quickly and many measurements over a short time are needed. If the drop 

remains suspended between the paper and the delivery system, the change in contact 

angle (if any) will be slow and measurements can be taken at greater time intervals 

over a longer time frame. 

2.3 Surface energy 

Every solid surface has an associated energy termed the specific surface excess free 

energy. (Referred to from now on as surface energy for simplicity) It is a physical 

property of the surface and is similar to the surface tension of a liquid. It is defined as 

''the reversible work done in creating unit area of fresh, flat, free surface." 79 The 

S.1. unit of surface energy is mJ.m-2, in older literature, and more traditional 

industries such as printing, dynes.cm-2 are used. These units are fortunately 

numerically equivalent. Surface energy is denoted by the symbol GS
, Surface energy 

is a thermodynamic term, which is used as a measure of the wettabiIity of a solid 

surface. 

The surface tension of a liquid is a product of intermolecular forces acting at the 
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surface of a liquid to form something analogous to a skin. The surface tension of a 

liquid is defined as "The force per unit length acting to one side of an imaginary line 

drawn in the plane of the surface." 79 It's S.I. unit is mN.m,1 (with dynes.cm,1 used in 

older literature). Surface tension is given the symbol y. 

Although less commonly used, solids also have surface tensions and liquids have 

surface energies. Surface energy and surface tension are related by Equation 2.10. 114 

y = OS + A (OCl/oAh. p (2.10) 

where A is the area of the surface and the term (OGs/oAh. p is the rate of change of 

surface energy per unit area with area (at constant pressure and temperature). 

Therefore, if OS does not change as area increases this term is zero and the surface 

energy OS is equal to the surface tension y. In a single component liquid, the local 

environment of the surface atoms does not change as the area of the surface is 

increased and the surface tension and surface area are equivalent. However, in a 

mUlti-component liquid changing the surface area can change the concentration of 

solute at the surface. Changing the surface area of a solid can involve plastic 

deformation of the surface, changes to the orientation of the surface molecules and 

changes to the local interactions at the solid surface. as is thus affected by surface 

area and does not equal y. 114 Care should therefore be taken when using the terms 

surface energy and surface tension in connection with solids or multi-component 

liquids to avoid confusion, particularly as the terms are often used interchangeably in 

literature. 73.77. 78 The surface tension of a solid is difficult to accurately measure and 
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is of little of use, as it cannot be used with Young's equation to calculate interfacial 

tensions or to predict wetting. 1 14 

Values for the surface energy of a solid and the surface tension of a liquid can be 

used as a guide to predict wetting. If the surface energy of a given surface is greater 

or equal to the surface tension of a low viscosity liquid, spontaneous wetting would 

be expected. The contribution to the surface free energy, made by the adsorption of 

vapour onto the solid surface, can be separated from that of the solid, and is often 

disregarded for low surface energy materials, as any reduction surface energy (and 

therefore increase in contact angle) is small, as little vapour is adsorbed. 79 

2.3.1 The work of adhesion W.d and spreading coefficient Sc 

The work of adhesion (Wad) is a term that can be related to the surface energies at a 

solid/liquid/vapour interface by the Dupre equation. The work of adhesion defined 

as "The reversible work done in separation of a unit area of solid/liquid interface." 79 

Wad is related to the surface energy components by the Dupre equation lIS 

Dupre equation (2.11) 

Where GSs is the surface energy of the solid, OSL is the surface energy of the liquid 

(or the surface tension) and OSSL is the interfacial energy of the solid/liquid interface. 

The work of adhesion is directly related to the strength of the adhesive bond at the 
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interface. The larger the value of the work of adhesion the more force needed to 

cleanly separate the two phases. 

A related quantity to the work of adhesion is the spreading coefficient Sc. liS 

(2.12) 

The spreading coefficient can be positive or negative and is not limited in magnitude. 

A stable contact angle is however only formed when SJGs 
L, sometimes referred to as 

the reduced spreading coefficient, has a value between minus two and zero. If the 

reduced spreading coefficient has a value greater than zero spontaneous wetting 

occurs. A value is below minus two would indicate complete reticulation of the 

liquid from the surface. 

2.3.2 The Young-Dupre equation 

The Dupre equation (Equation 2.10) and Young's equation (Equation 2.1) can be 

combined to give Equation 2.13, the Young-Dupre equation. 

The Young- Dupre equation (2.13) 

The contact angle is now related directly to the surface energy (or surface tension) of 

the liquid, and the work of adhesion. The Young-Dupre equation is true for low 
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energy surfaces that do not exhibit contact angle hysteresis, however, as has been 

previously discussed all real surfaces exhibit some degree of contact angle hysteresis. 

2.3.3 Fowkes theory of fractional polarity 

The surface free energy of the solid can be further separated into components 

corresponding to the contributions to the surface free energy from polar interactions, 

dispersion interactions and hydrogen bonding, using Fowkes theory of fractional 

polarity. 79 

(2.14) 

OdS is the surface energy contribution from dispersion interactions. Gpg is the surface 

energy contribution from polar interactions and Ohs is the surface energy 

contribution from hydrogen bonding. As hydrogen bonding is technically a polar 

interaction, it is usual to combine the terms OhS and OPs together as QPs for 

simplicity. 

Fowkes proposed a geometric mean approximation to describe the dispersive forces 

acting between a non-polar liquid such as a saturated hydrocarbon, and a solid 

surface. He proposed that the work of adhesion in a purely dispersive solidlliquid 

system would be given by Equation 2.15 

(2.15) 
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2.3.4 The Owens-Wendt geometric mean approximation 

Owens and Wendt extended the geometric mean approximation to estimate the polar 

and dispersive force interactions at work in a system. The work of adhesion then 

becomes 

(2.16) 

This equation can be combined with Equation 2.12 to produce Equation 2.17 

(2.17) 

Fowkes proposed that as a saturated hydrocarbon liquid would have no polar 

contributions to the surface free energy i.e. GP s would be zero. Therefore the term 

2(GPSGPL)O.5 would also be zero and GSL would equal OdL• 

(2.18) 

If the contact angle B and surface tension is known for the non-polar liquid, OdS can 

be calculated. Once OdS is known, the contact angle obtained by a polar liquid with 

known values of OSL , OdL and GPL can be used in equation 2.18 to obtain Ods. The 

total surface energy of the surface can be found by recombining the component 

surface energies QPs and OdS to give ass 

The most common pair of Jiquids selected for determination of the surface energy by 
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the geometric mean method are water and diiodomethane. Diiodomethane is 

commonly used as it has a polar component small enough to be regarded as zero. 79 It 

has a relatively high surface tension of 50.76 mNm· l
, which is large enough to give 

finite contact angles on a wide range of surfaces. Water is again used for its high 

surface tension. Its highly polar nature makes it suitable for the calculation of the 

polar coordinate once the dispersive term has been determined. Its advantages over 

other polar liquids are that it is not hazardous to work with and that it is easily 

obtained. Pure water has a surface tension of 72.8 mNm·1 of which 51.0 mNm·1 can 

be regarded as due to polar interactions, with the remaining 21.8 mJm·2 being due to 

dispersive forces. 79 

The use of the geometric mean has been widely criticised, as it is believed to over 

overestimate the polar interactions. Other equations have been put forward, however 

due to its simplicity this equation is still a widely used method of extracting surface 

energy information from contact angle data. The geometric mean approximation does 

not work well for materials with extremely high or low surface energies. The 

Harmonic mean equation 116 proposed by Wu is a well known equation for extremely 

low surface energy materials such as some polymers. Schultz equation is 

recommended for samples with high surface energies i.e. with surface energies of 

over 80 mNm·1 79 
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2.3.5 Acid-base interactions 

The Owens-Wendt geometric mean treatment of polar interactions assumed the polar 

interaction between two dissimilar materials could be deduced from the polar 

interaction acting internally within each material. However, this is not always the 

case. For example ethers, esters and tertiary amines, which have only a small amount 

of internal polarity, can produce strong interactions with dissimilar surfaces. 117 

Fowkes put forward an alternative expression for the fractional polarities of the 

surface energy components in terms of Lewis acid theory. 118, \19 The original 

treatment of polar and dispersive interactions classifies dispersive interactions as due 

to London (dispersion) forces, forces due to the induction of temporary dipoles 

formed by the oscillation of electron clouds and includes the other dipole 

interactions, Keesom forces (dipole/dipole) an~ Debye forces (dipole/induced dipole) 

as polar interactions. Acid-base theory includes all forces due to dipoles in the 

dispersive component and Lewis acid-base interactions of electron donors and 

acceptors to explain the polar interactions. 

(2.19) 

Where OSLW is the component of the surface energy made up from the Lifshitz-van 

der Waals interactions, Le. the combination of all the electromagnetic interactions. 

olB is the component of the surface energy that is due to acid-base interactions. In 

order to obtain a value for the surface energy using acid base theory it is necessary to 

use three test liquids for which values for O+, 0" and OLW, the acid, base and 
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Lifshitz-van der Waals components, are known. The surface energy is calculated 

from following set of equations. 120 

(2.20) 

(2.21) 

(2.22) 

It is recommended that two out of the three test liquids used with these equations are 

polar in nature. Formamide or glycerol can be used in conjunction with water and 

diiodomethane, a pair that are often used with the geometric mean approximation. 

The acid-base theory can also be used to separate the work of adhesion into 

dispersive and acid-base components. III 

(2.23) 

The dispersive and acid-base contribution to the work of adhesion can be expressed 

in terms of the Lifshitz-van der Waals and acid -base components of the surface 

energy 

(2.24) 
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(2.25) 

The Lifshitz-van der Waals and acid-base components of the surface tension of 

several common liquids have been determined and are shown in Table 2.1. (These 

can be considered numerically equivalent to the surface energy components of the 

liquids) 

"fL
W "fLAB + "fL-"fL "fL 

Water(W) 72.8 21.8 S1.0 25.5 25.S 

Glycerol (GI) 64 34 30 3.92 57.4 

Ethylene Glycol (EG) 48 29 19 1.92 47 

Formamide (Fo) 58 39 19 2.28 39.6 

Dimethyl sulfoxide (DMSO) 44 36 8 O.S 32 

a-Bromonaphthalene (ABN) 44.4 43.5 =0 

Diiodomethane (DIM) 50.8 50.8 =0 

Table 2.1. The Lifshitz-van der Waals and acid-base components of the surface 

tension of several commonly used liquids. (in mJ/m2) 122 

If contact angles made by three of these liquids on a test surface are known and the 

three liquids are suitably dissimilar in nature, these values can be used with 

Equations 2.20-2.22 to calculate the acid, base and Lifshitz-van der Waals 

components of the surface energy of a solid surface. When the surface acid-base and 

Lifshitz-van der Waals components are known the surface tension component values 
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of a single liquid can be used with and Equations 2.24-2.25 the Lifshitz-van der 

Waals and acid base components of the work of adhesion. 

2.4 The application of surface chemistry knowledge to the 

flexographic printing process 

Spracha reviewed the interfacial aspects of printing in 2002. 124 He summarised the 

theories of surface energy calculation, the work of adhesion and acid-base 

interactions and gave examples of how they are relevant to printing. He cites the 

need to measure the surface tension of printing inks in order to produce inks with 

good substrate wetting and to control spreading. He also stated that the surface 

energy of the substrates (particularly polymer films) is critical in obtaining substrate 

wetting, controlling ink spreading and obtaining adequate adhesion. Although the 

review covers flexography and states the need to control the surface energy of the 

plate and substrate, the surface energy of the anilox is not considered. 

As discussed in Section 1.7 of Chapter 1 several studies have been made into the 

importance of the surface energy of the plate and of the surface interactions between 

the ink and substrate, to the wetting and ink transfer. A parallel study on the wetting 

and transfer properties of anilox rolls is however still required. The inking and 

release character of the anilox roll is proposed to be a combination of its physical and 

surface chemical character. The macroscopic topography of the anilox is varied 

routinely in terms of cell size and profile but the microscopic surface topography and 

surface chemistry are intrinsic properties that are dependent on the ceramic from 
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which it is made and the laser which creates the cells. One of the reasons that the 

surface chemistry of the anilox has not as yet been studied is the difficulty in making 

and interpreting contact angle measurements on a surface which is far removed from 

the ideal, flat, smooth surfaces on which the theories of wetting and surface energy 

are developed for. 

This work is dedicated to applying the theories of wetting, contact angle 

interpretation and surface energy to the anilox roll in order to obtain information 

about surface interactions between the anilox and ink. This will then be related to ink 

transfer. The work also encompasses the production of a method to obtain surface 

chemical information from an anilox roll. 
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3. Analysis of anilox Harper 1 

The Harper Corporation of America provided an anilox, which will be referred to as 

Harper 1. It was made specifically for the test and comprised of three bands, the first 

engraved by a continuous wave C~ laser, the second engraved by a YAG laser and 

a polished unengraved band. The engraved cells were manufactured to have as near 

equal cell depth as the engraving processes would permit. Table 3.1 shows the 

specifications of the two engraved bands. 

PRo n.ntJer d fires QI\dtJre QI~ Qlq:xrilJ IalfWdh 
bn:I fS'an (arflnf) ~ ~ ~ 

~ Zf) 4.03 107 38.0 4.0 

YPG 472 3.63 106 19.1 2.1 

Table 3.1. Specifications of the banded anilox Harper 1. 

3.1 Contact angles analysis on banded anUox Harper 1 with the 

MAMS instrument 

In this investigation, contact angle analysis was carried out using a made-in-house 

instrument caJled the Micro-Absorbency Measurement System or MAMS at Pira 

International. The MAMS instrument consists of a CCD CCIR mono camera 

connected to a computer via a frame grabber card. The image was recorded as an .avi 

video file. The baseline of the drop was selected manually and a curve fitted to the 
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captured image by analysis of the height and width of the drop. Training was given 

in the standard method was for contact angle analysis on paper. 124 

Contact angle measurements on ani lox Harper I were made using the MAMS 

instrument. Several changes had to be made to the standard method and the 

equipment in order to make it suitable for taking these measurements. The ani lox 

was too large to be placed on the sample platform so the platform was removed and 

the apparatus rebuilt. As the anilox does not absorb the test liquid as paper does, the 

length of time over which the drop was photographed could be reduced. Due to the 

irregular nature of the surface, more measurements were required to ensure that a 

representative result was obtained. The drop size used also had to be reassessed. 

(Discussed further in Section 3.1.1.) 

A 

Side view 

A = white screen 
B = test ani lox 
C = pipette 

A 

c 

o 

Front view 

D = droplet 
E = flexible light 
F = camera 

Figure 3. t. Diagram of the MAMS instrument set up to accommodate anilox Harper 

1. 
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The camera was removed from its mount and placed on an adjustable platform. The 

platform was then positioned so that the camera was at the correct height to view a 

drop sitting on the zenith. A spirit level was used to ensure that the anilox roll and 

camera were level in all directions. A pipette was clamped above the zenith of the 

roll with the tip at a distance of20 mm from the roll. 

Testing took place in the Pira pressroom. The pressroom has a controlled temperature 

of 23°C +/. 1 ° and a controlled humidity of 50% +/- 1%. A polar liquid and a non­

polar liquid were selected to allow surface energy information to be obtained using 

the geometric mean approximation. The non-polar liquid selected was 

diiodomethane, whilst the polar liquid was water. Frames of the droplet were 

captured twice a second over a 10 second period and the results averaged. Unless 

otherwise stated, 20 measurements were taken on each band of the anilox. 

3.1.1 Contact angle measurement using a polar liquid (water) 

The drop volumes used in the standard MAMS methods for observation of water 

droplets on paper substrates is 25 Ill, however, literature values for the ideal drop 

volume for contact angle analysis are around 1 J.LI. 125, 126 As the substrate in this 

case was very different from paper and was curved, a range of drop volumes was 

tested. In addition to a 20111 drop, a drop of 40111 was used to make the drop size 

larger in relation to the surface roughness. A drop of Sill was used to minimise the 

amount of curvature at the point of contact. Attempts to use a drop with a volume of 

less than SJ.11 were unsuccessful, as the magnification of the camera was insufficient 
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to produce a large enough image for the software to accurately process. In addition, 

the dispensing force of the lower volume pipette was insufficient to produce a free 

falling spherical drop. Because of time constraints, only 15 measurements on each 

band were made with the 40f.l1 drops, as it was harder to get a stable drop on the roll 

surface with this volume. Table 3.2 shows a summary of the data. The data is 

presented in full in Section A3-1 of the appendix. 

40",. water 20plwater 5",. water 
drop drop drop 

Polished band mean 48° 53° 56° 

standard 3° 2° 2° deviation 

CO2 band mean 59° 66° 64° 

standard 
4° 2Q 2° deviation 

YAG band mean 71° 78° 76° 

standard 
3° 3° 3° deviation 

Table 3.2. The contact angles observed on three bands of anilox Harper 1 by the 

MAMS instrument. 

There is clearly a pattern across the bands that holds true for all of the drop volumes. 

The contact angles on the polished unengraved band are smaller than those on the 

engraved bands, therefore the engraving process makes the surface harder to wet. 

There is a difference in wettablilty between the engraved bands, the C02 band being 

easier to wet than the YAG band. These trends are more clearly illustrated by the 

results from the 20J,l1 and 5J,l1 droplets than from the 40J,l1 droplets. 
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If the data is considered by band and not by drop volume it becomes clear that whilst 

the results obtained with 20fll and Sfll drops are similar; the results obtained with a 

drop size of 40fll are lower. This is consistent with the observation that a 40fll drop 

observed on the surface of the roll had a flat top. The MAMS software measures the 

height and width of the drop and fits a circle segment. )fthe drop is not spherical and 

instead is flat at the top (on the right of Figure 3.2), the height is lower than 

anticipated. When the software tries to fit a segment to the measured height and 

width, a contact angle smaller than that of the observed drop is measured. 

Ie produol.'d 1:1)' cun c fit 

Spherical drop non·sp erica l drop 

Figure 3.2. An example of a source of error in fitting a curve to a non-spherical 

drop. 

There was also a problem with distortion of the drop around the curvature of the roll. 

This was more of a problem with the larger drops. The larger drops were also more 

difficult to centre at the zenith of the roll and had a greater tendency to run. 

Therefore, the Sfll drop was selected as the most appropriate drop size for future 

tests. 
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It was noted that the drop volumes calculated by the MAMS software from the 

measured heights and widths varied from the dispensed volume. Plots of contact 

angle against drop volumes were made for each band to determine if there was any 

relationship between large deviations in the calculated drop volume and large 

deviations from the mean contact angle value. No correlation could be found 

between deviation from dispensed drop volume and deviation from the mean contact 

angle for any band. 

3.1.2 Contact angle measurement using a non-polar liquid (diiodomethane) 

Table 3.3 shows the results obtained when contact angles were measured on each of 

the three bands on Harper 1 with diiodomethane. A single drop volume, 5).11, was 

used in this experiment as larger volumes spread too much and did not fit on the 

screen when photographed, whilst smaller volumes could not be used as the droplet 

heights became too small for the image analysis to accurately fit a curve. The 

complete set of data for these measurements is shown in Section A3-2 of the 

appendix. 
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5J11 
dllodomethane 

Polished band mean 20° 

standard 2° 
deviation 

CO2 band mean 19° 

standard 2° deviation 

YAG band mean 15° 

standard 3° deviation 

Table 3.3. Results obtained on anilox Harper I with Sill diiodomethane drops with 

the MAMS instrument. 

Table 3.3 shows that the trend in wettablilty observed with water drops was not seen 

with diiodomethane drops. The contact angles observed on the polished and C02 

bands are very similar with the Y AG band being slightly lower. There is no 

statistically significant difference between the three bands. Therefore, the surface 

changes due to the engraving process do not measurably affect the wetting of the 

anilox with diiodomethane. 

3.2 Contact angles analysis on banded anilox Harper 1 with the 

FT A instrument 

Later on in this investigation, the FTA-200 instrument became available for use. As 

discussed in Chapter 2 it was a much newer instrument than MAMS and had an 

automated dispensation system for the test liquids and more advanced curve-fitting 
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software. The experiment was repeated on the FT A instrument. The FT A required 

less modification to accommodate the aniJox than the MAMS instrument, as it had a 

removable sample stage that could be replaced by the anilox. Comparable drop 

volumes were achieved by pumping out 5J.Ll of water, which remained suspended 

from the dispensing needle. The drop was then lightly touched off onto the roll 

surface by moving the pump assembly. The surface tension of diiodomethane was 

too low to anow a 5",1 drop to be easily detached from the dispensing needle. The 

drop size was increased to 7",1 for this experiment. Atmospheric conditions were 

monitored and were 25°C +/- 2° with a relative humidity of 55% +/- 2%. 

A summary of the results is shown in Table 3.4. The complete set of results is 

included in the Section A3-3 of the appendix. 

5 III 7111 
water diiodomethane 
FTA FTA 

Polished 
band 

mean 75· 42· 

standard 
3° 2° deviation 

CO,band mean 84· 46· 

standard 
2° 2° deviation 

VAG band mean 100· 43· 

standard 2° 2° deviation 

Table 3.4. Results obtained on anilox Harper 1 with 5",1 water drops with the FTA 

Instrument. 

91 



The trend in wettability of the bands remained the same as previously seen, but the 

contact angles produced by the FT A instrument were much larger than those 

observed with the MAMS instrument. The increases in contact angle are reasonably 

consistent for both of the liquids tested. 

The difference in reported contact angles is too large to be a difference in data 

interpretation by the systems. Visual inspection of the drops produced by each of the 

dispensing systems confinned that the test liquid spread out further when manually 

dispensed with a pipette as with the MAMS set up than by the FT A computer 

controlled pump. The test liquid, when pipetted is propelled towards the surface, 

causing the drop to spread out on impact, whilst when the drop was touched off or 

dispensed onto the surface there was no force applied to artificially boost the 

spreading. The difference in observed contact angle between the two instruments was 

therefore attributed to the different method of introducing the drop onto the sample 

surface. 

3.3 Measurement of advan~ing and receding contact angles using the 

FTA instrument 

The FT A instrument has an automated dispensing system which aHows the test liquid 

to be pumped onto the aniJox surface and then pumped back into the syringe. It was 

therefore theoretically possible to measure the advancing and receding contact 

angles. In practice, obtaining measurements was extremely difficult, as the liquid did 

not advance symmetrically around the dispensing needle. Once movement of the 

contact line occurred in a particular direction the liquid advance in that direction 
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only. Measurements could only be used if the contact line advanced at 900 to the 

direction of observation i.e. along the zenith; otherwise, a distorted result was 

obtained. If the contact line moved in a direction other than along the zenith, the 

drop had a tendency to roll down the side of the aniJox and out of view. 

Advancing and receding contact angle measurement was thus a lengthy and 

frustrating exercise. Only five results were obtained for each band. The resuJts were 

however very interesting. 

The advancing contact angles data for water drops is shown in Table 3.5. The values 

obtained for advancing angles are very similar to those obtained as static contact 

angles. This could mean two things, that there is no observable hysteresis or that the 

drop advanced as it found its equilibrium position. 

Advancing contact angles 

Run number Polished CO2 VAG 

1 77° 88° 96° 

2 74° 92° 88° 

3 72° 85° 99° 

4 77° 85° 95° 

5 75° 87° 1000 

Mean 75° 87° 96° 

Standard deviation 2° 3° 5° 

Table 3.5. Advancing contact angles made by water on the bands of Harper 1. 
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As discussed in the previous chapter, all real surfaces exhibit a degree of hysteresis 

and that a major cause of hysteresis is surface roughness. It would therefore not be 

expected that the surface of an anilox, especially an engraved area, should exhibit no 

hysteresis. In addition, if the contact line could move reversibly across the surface 

the receding contact angle would also have the same value as the advancing angle. 

When attempts were made to measure the receding angle it became apparent that 

there was a great deal of hysteresis taking place. Figure 3.3 shows the change in 

contact angle as the water drop in contact with the C~ band was reduced in volume 

over a period of twelve seconds. X charts the movement of the contact line with 

decreasing drop volume. For ten seconds the drop width does not significantly 

change, indicating that the contact line is not yet receding. At eleven seconds, the 

contact line begins to recede and the contact angle (shown by the blue o's) drops 

sharply below 20°. After 12 seconds, most of the liquid had been sucked back into 

the syringe and the drop disconnected from the needle tip. Measurements were made 

until five usable results were obtained. The contact angle in all cases was less then 

20°. Attempts to adjust the pump rate and drop volume to extend the period in which 

the contact line receded before the drop detached from the needle were unsuccessful. 

A value for the contact angle of less than 20° was therefore recorded. 

The same problem was observed with both the polished and the Y AG bands. The 

amount of hysteresis was not measurably less for the polished unengraved band 

despite its relatively smooth surface, again values for the receding contact angle of 

less then 20° were recorded. 
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Figure 3.3 . A plot of contact angle against drop base diameter with reducing drop 

volume. 

It was concluded that the contact angles made by water on the FT A were advancing 

contact angles. Even though the drop had been touched off from the needle to the 

surface with the lightest possible pressure the drop had advanced whilst spreading 

into a stable position. 

The advancing contact angles observed with diiodomethane were larger than the 

static angles. Again, it was only possible to obtain five measurements due to practical 

complications. It is not possible to conclude from this experiment that the values 
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obtained as static contact angles were not at all increased by advancement past the 

natural equilibrium contact angle, however the drops were clearly not advanced to 

the maximum advancing contact angle to the extent that the water drop were. 

Advancing contact angles 

RUn number Polished CO2 VAG 

1 42° 51° 47° 

2 49° 54° 51° 

3 47° 48° 54° 

4 45° 52° 52° 

5 46° 50° 51° 

Mean 46° 51° 51° 

Standard deviation 3° 2° 3° 

Table 3.6. Advancing contact angles made by diiodomethane on anilox Harper 1. 

The advanced drop of diiodomethane was very unstable on the zenith of the roll and 

was prone to flowing down the sides. Attempts to measure receding contact angles 

were unsuccessful, as the drop could not be kept on the zenith long enough for liquid 

to be slowly sucked back into the syringe. 

3.4 Calculation of surface energies from Harper 1 data 

Despite the reported inaccuracies with the contact angle measurements, the contact 

angle data obtained on the three bands of Harper I were used to estimate the surface 
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energies of the bands. Surface energies were calculated from the average static 

contact angle values using the Owens-Wendt geometric mean method (Section 2.3.5) 

using data from the MAMS and the FTA instruments. The results are summarised in 

tables 3.7 and 3.8 for the two instruments respectively. 

As discussed in Chapter 2, there are known inaccuracies with the geometric mean 

approximation, however due to its simplicity it is still extremely widely used outside 

the specialist field of surface science and surface energies reported in printing 

literature, if calculated from contact angle measurements, are almost certainly 

calculated by this method. 

Surface energy 
40~ water drop ~waterdrop ~waterdrop 

mJm-2 mJm-2 mJm-2 

Polished band dispersive component 48 48 48 

polar component 16 13 12 

totalaurface energy 64 61 60 

CO2 band dispersive component 48 48 48 

polar component 10 8 8 

tatalaurface energy 58 56 56 

YAGband dispersive component 49 49 49 

polar component 5 2 3 

totaIaurface energy 54 52 52 

Table 3.7. Surface energies calculated from the mean contact angle data from the 

MAMS instrument. 

The error in each of the calculations, found by using the maximum and minimum 

contact angles to create the largest variation, was +/- 1 mJm-2, the error associated 
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with the total surface energy therefore was 2 mJm-2
• The relatively large differences 

in the contact angle produced by using different drop volumes translates into 

differences in surface energy that are not statistically significant. This demonstrates 

that surface energy measurements alone are not a very sensitive indication of the 

wetting behaviour of the solid. 

As expected, the higher contact angles reported by the FT A system translate into 

lower contact angles. The surface energies calculated from the FT A data are closer to 

the literature value of 40 dynes for engraved ceramic ss (equal to 40 mJm-2
) and 50 

dynes for unengraved ceramic, however these values are quoted without reference as 

to how they were obtained and must be regarded with suspicion. 

Average Standard 
surface energy deviation 

mJm-2 mJm-2 

Polished band dispersive component 39 1 

polar component 6 1 

total surface energy 46 2 

CO2 band dispersive component 38 1 

polar component 3 1 

total surface energy 41 2 

VAG band dispersive component 37 1 

polar component 0 0 

total.urface energy 37 1 

Table 3.8. Surface energies calculated from the mean contact angle data from the 

FT A instrument. 

98 



The polar component of the surface energy of the Y AG band was very small. The 

calculated value was 5xlO-2 mJm-2 which when rounded off to zero decimal places 

resulted in a value of zero appearing in the table. 

The higher the surface energy of a solid, the easier it is to wet. Therefore, the 

findings of this experiment were that the polished ceramic band was the easiest band 

to wet, followed by the C02 band then the Y AG band. The difference in total surface 

energy between the bands is very small due to its domination by the dispersive 

component. The significant difference in the wettability of the bands is not apparent 

from the surface energy values of the bands. The percentage of the total surface 

energy made up from dispersive and polar interactions are shown in Figure 3.4. 

There was a statistically significant difference between the contact angles made by 

water on the bands of the anilox. When the surface energy is calculated the polar 

component of the surface energy, which is the component that is based on the contact 

angle of the water, is very small in comparison to the dispersive component of 

surface energy. This is calculated from the contact angles made by diiodomethane, 

with which there was no significant difference between the bands. The significant 

difference in polar wetting between the bands is masked by the dispersive 

component. 
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Figure 3.4. The polar and dispersive make up of the total surface energies. 

The instrument used to make the measurement is again seen to affect the magnitude 

of the results however the trend remains constant for both instruments. The change in 

surface energy between the bands is because of a change in polar interactions. 

3.5 Measurement of the acid-base surface interactions 

The difference in wetting character is seen only in the polar component of the surface 

energy. As discussed in the previous chapter, the Owens-Wendt geometric mean 

approximation has now been superseded by the acid-base theory which classified the 

polar energy of the surface into Lewis acid and basic components. 
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By obtaining contact angle information with a third liquid, formamide, information 

about the acid-base interactions of the surfaces can be found. The results of the 

contact angle measurements made with formamide are shown in Section A3-4 of the 

Appendix. 

Contact angle 
with Formamlde 

Polished band mean 43· 

standard 1° 
deviation 

CO2 band mean 60° 

standard 2· 
deviation 

YAG band mean 64· 

standard 
2° deviation 

Table 3.9. Contact angles observed with formamide drops on the bands of Harper 1. 

The calculation of the acid and base components is mathematically complex. The 

FTA software has an algorithm that calculates the dispersive, polar, and acid-base 

components of the surface energy when the contact angles of three suitable liquids 

are entered. 
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Polished band CO2 band VAG band 

Total surface energy 43.92 38.6 37.72 

Dispersive component 38.59 37.01 38.07 

Polar component 5.32 1.593 -0.3456 

Acid component 1.785 0.1718 0.3436 

Base component 3.977 3.695 -0.089 

Table 3.10. The component surface energies (in mJm-2) as calculated by the FTA 

software using the acid-base equations. 

The difference is in the basic component of the surface energy, which is relatively 

high for the polished band, reduces on the COz band and disappears on the YAG 

band. This indicates a loss of basic character on the surface as a result of the 

engraving process. The dominant component of surface energy on the polished and 

C02 bands is the basic component. On the YAG band the acidic component becomes 

higher. The acidic component is also much smaller on the engraved bands 

3.6 Contact angles made using standard flexo inks 

The polar contribution to the surface energy is of particular significance when 

considering the wetting and de-wetting of a surface by water-based or UV ink. 

Water-based inks use surfactants to reduce the surface tension and to improve 

wetting. Whilst small amounts of surfactant are used in UV inks to improve substrate 

wetting. maintaining good overprintability is an issue. As the diluent of a UV ink is 
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incorporated into the film the ability to use this to control the wetting properties the 

ink is limited as the monomer or monomers in a formulation are chosen to control 

many properties of the ink. 

To get an idea of how such inks would wet the anilox a standard "off the shelf' ink 

of each type was tested. The UV ink tested was Arena process cyan supplied by 

Coates Lorrelleux, the water-based ink was Gemcol process cyan supplied by Sun 

Chemical Swale. The inks were too viscous to be dispensed with a pipette; therefore, 

the contact angle measurement was carried out on the FT A alone. The 

measurements were made under the same atmospheric conditions as before. The UV 

ink tested was extremely thixotropic. The ink was worked up to reduce its viscosity 

and collected in a syringe, however it thickened again very quickly and some of the 

droplets dispensed had a lumpy appearance. These drops were not measured as the 

increased viscosity of the ink prevented the ink forming a sessile drop. The effect of 

the ink rheology on the contact angle is shown in Figure 3.5. 

Drop fonned by the UV ink 
2 minutes after shear thinning 

-
~ 

.. ..... 
---

Drop fonned by the UV ink 
immediately after shear thinning 

Figure 3.5. The affect of ink rheology on the production of a measurable contact 

angle. 
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Five measurements were made with the UV ink on each band. The results are shown 

in Section A3-5 of the appendix and are summarized in Table 3.11. 

UVlnk 

Polished 
band 

mean 32° 

standard 
3° deviation 

CO2 band mean 46° 

standard 
3° deviation 

VAG band mean 42° 

standard 
3° deviation 

Table 3.11 Contact angles made by a UV ink on the bands of anilox Harper I. 

The water-based ink also provided some dispensing problems, as it was too thick for 

the automated system to dispense, however the syringe was compressed by hand and 

it was possible to obtain six results for each band. The complete results are shown in 

the Section A3-S of the appendix and summarised in Table 3.12. 

Although there is a clear difference between the contact angles on the engraved and 

unengraved bands there is no significant difference between contact angles made by 

the UV ink on the two engraved bands. Only five measurements were used to 

produce the results. It is possible that with more time a difference between the bands 

could be identified. It is more probable that the UV ink is predominantly basic in 

character. The acidic component of the surface energy remains relatively constant 
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between the engraved bands. The UV inks contain an amine synergist, which may 

give the ink an overall basic character. 

Water-based 
Ink 

Polished 
band 

mean 53° 

standard 2° 
deviation 

COzband mean 66° 

standard 2° 
deviation 

YAG band mean 73° 

standard 1° 
deviation 

Table 3.12. Contact angles made by a water-based ink on the bands of anilox 

Harper 1. 

By contrast, it would appear that the water-based ink has an acidic character. 

Although only six measurements on each band were possible, the results from the 

water-based ink indicated that the wettability follows the same trend as observed 

with water as the test liquid. The contact angle made by the water-based ink is 

affected by the changing basic nature of the bands. As the water-based ink wets the 

two engraved bands differently, the ink release from the two engraved bands could 

also be different. 
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3.7 The effect of cleaning anilox Harper 1 with a specialist product 

Later in this investigation, it became apparent that contact angle measurements using 

inks had resulted in plugging of the anilox cells. The anilox was routinely cleaned 

with solvents (propanol and acetone) and rinsed with deionised water between 

measurements. When the plugging was identified, the anilox was cleaned with a 

specialist cleaner to remove the dried ink. The contact angles of the three bands 

were measured and a change was found to have occurred in the wetting of the Y AG 

band. The repeated measurements are shown in full in Section A3-6 of the appendix. 

Table 3.13 shows the original mean contact angles and the mean contact angles 

recorded after cleaning has taken place 

Original Post-clean Original Post-clean 
water water dllodomethane dilodomethane 

Polished 
mean 75· 72· .n° 42· 

band 
standard 

3" 3" 2· 1" 
deviation 

CO2 band mean 84· 84· 45· 43· 

standard 2" 3" 2· 2" deviation 

YAG band mean 100· 78· 43· 43" 

standard 
2" 2" 2· 2" 

deviation 

Table 3.13. The contact angles on the three bands of Harper 1 before and after 

cleaning. 

The change to the surface of the Harper 1 was only observed with the YAG band 

when water was used as the test liquid. It was proposed that surfactant from the 
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cleaning solution had penetrated the Y AG band and made the surface more 

hydrophilic and that the C02 was less porous to the solution due to the higher 

proportion of recast ceramic that forms the walls. It was also noted that the post­

clean contact angle on the Y AG band was similar to the contact angle observed on 

the Y AG band using the MAMS instrument. It is hypothesised that the surfactant 

made it possible for the water to overcome the barriers to the movement of the 

contact line and reach thermodynamic equilibrium. This effect was not seen with 

diiodomethane. 

3.8 Summary of results from anilox Harper 1 

The conclusions drawn from the analysis of anilox Harper 1 are: 

1. There is a change in the wettability of the anilox roll that is due to the 

presence of engraved cells. 

2. There is a difference in wetting character of the C02 and Y AG bands. 

3. The values of contact angles are strongly affected by the instrument used to 

obtain the measurements, specifically the system for bringing the drop in 

contact with the test surface. The difference is due to unintentional 

advancement of the contact angle. 
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4 The Owens-Wendt geometric mean approximation indicates that the change 

in the wettability across the bands is due to a change in the polar nature of the 

roll surface. The engravings are less polar than the polished unengraved 

surface, and the C02 engraving having more surface polarity than the YAG 

engraving. 

5 The surface energies calculated from the FT A data faU within the expected 

range (from the limited information obtained from the literature). However, 

the contact angles measured with the FT A were not equilibrium angles. The 

surface energies calculated from the MAMS data are a more accurate 

measurement of the surface energies of the bands on anilox Harper 1. 

6 The acid base theory of wetting indicates that the change in surface energy is 

mainly due to the reduction of the basic nature of the surface. The engravings 

are less basic than the polished unengraved surface, and the C02 engraving 

have more basic character that the Y AG engraving. The engraved bands also 

have less acidic character than the polished band. There was no significant 

difference between the acidic components of the engraved bands. 

7 A standard water-based ink showed the same wetting trends as water, wetting 

the polished band better than the C02 band and the C02 band better than the 

YAG band. 
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8 A standard UV ink wet the polished band better than the engraved bands but 

produced no difference between the engraved bands. This suggests that the 

UV ink is basic in nature. 

9 Cleaning the anilox with a specialist cleaning product improved the 

wettability of the Y AG band with polar liquids but did not affect the wetting 

of the YAG band with diiodomethane. There was no change in the wettability 

of the C02 or polished un engraved bands with either liquid. 

There was a clear difference in the wettability of the unengraved polished, the C02 

laser engraved and the Y AG laser engraved bands. This is believed to be due to a 

combination of physical and chemical differences made to the ceramic by the 

engraving laser. The degree of influence that the cell geometries have on the wetting 

of the engraved bands is at this stage still unclear. Anilox Harper I was designed to 

have cells with the same cell depth and volume. They had very different cell 

dimensions, the YAG band having twice as many cells per centimetre as the C02 

band. In the next phase of work an anilox with bands having constant cell opening 

but variable cell depths was tested in order to remove the cell depth and size of cell 

opening as variables from the factors influencing wetting of the engraved bands. 
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4. Analysis of anilox roll Pira 1 

Pira International provided an anilox for analysis that could be used on their wide 

web flexo press. The company that manufactured this anilox was not known 

therefore it was termed Pira 1. Pira 1 has engravings made by a C02 laser in a 450 

pattern. The bands of cells have the same size cell opening but different depths and 

volumes. Four bands were studied: three bands engraved with a C02 laser having a 

constant line screen but varying in volume, and a polished, unengraved band. The 

line screen was 149 lines per em (380 lines per inch). The measured circumference of 

this roll was found to be 353 mm. The diameter was calculated to be 112 mm. Anitox 

Pira I was significantly larger than anilox Harper I, which had a circumference of 

20 I mm and a diameter of 64mm. The specifications of the engravings on anilox Pira 

1 are detailed in Table 4.1. They were provided by David Atkinson of Pira 

International from his records and were experimentally verified using a hand 

microscope and an ink drawdown tool. 

Anllox band Line screen Cell volume 
(lines per em) (em3/m2

) 

Polished band N/A NlA 

CO2 band 1 149 3.3 

CO2 band 2 149 3.8 

CO2 band 3 149 4.4 

Table 4.1. Specifications of the banded anilox Pira 1. 
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4.1 Analysis of anilox Pira 1 

The anilox was too heavy to transport conveniently, so all surface analysis had to 

take place in the pressroom at Pira International. It was therefore only possible to 

perform contact angle analysis using the MAMS instrument. Atmospheric 

conditions in the pressroom were controlled. The temperature was maintained at 

23°C with a tolerance of 2°C. The relative humidity was controlled at 50010 with a 

tolerance of2%. 

4.1.1 Contact angle analysis of banded anilox Pira 1 using the MAMS 

instrument 

Contact angle analysis was carried out as described for anilox Harper 1. The test 

liquids used were reagent grade water and diiodomethane. A drop size of 5 

microlitres was used for all measurements. The data is produced in full in Section 

A4·1 of the appendix and is summarised in table 4.2. Twenty measurements were 

taken on the polished band, and bands 1 and 2. Measurements on band 3 were made 

at a later date with ten measurements of each liquid. 
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5J.l1 5J.l1 
water diiodomethane 

Polished band mean 50° 14· 

standard 3° 1° deviation 

band 1 mean 52° 17° 

standard 3° 3° deviation 

band 2 mean 52° 15° 

standard 
3° 2° deviation 

band 3 mean 52° 12° 

standard 2° 1° 
deviation 

Table 4.2. The results of contact analysis on three bands of anilox Pira 1. 

There was no difference between the wettability of the two engraved bands despite 

the difference in cell volume and depth. Also the difference in wettability between 

the engraved bands and the polished band was not statistically significant. There was 

more variation recorded in the contact angles made by diiodomethane. This was 

attributed to the low angles measured being close to the limit at which the MAMS 

instrument could accurately measure. (Reported by Pira International as being 

100 124) 

The inability of the contact angle measurement to pick up the differences between 

the three engraved bands was unexpected. The contact angle technique is very 

sensitive to changes in surface roughness. Oliver, Huh and Mason 95 reported that 

steps of 0.05 )lm caused significant inhibition to spreading. However, Mason also 

Il2 



advised that the shape of the roughness affected the size at which roughness could be 

seen to affect the contact angle.127 The results do however support the theory 

proposed by Shuttleworth and Bailey 82 (and supported by the work of Bartell and 

Shepherd 91, 92) that for roughness having a pyramid shape, as 45° engravings do, 

that variation in the pyramid height (or in this case cell depth) does not affect the 

contact angle. 

It is also to note that Anilox Pira I was not a new anilox and had been used over 

several years for printing research. The anilox showed signs of wear. The effect of 

wear on an anilox engraved at 45° is to significantly increase the size and smoothness 

of the land around the cells, to reduce the carrying volume of the cells and to roughen 

the polished unengraved areas at either end of the anilox. 

As reported in Chapter 3, the MAMS and FT A instruments gave very different 

results, however the overall trends observed in the results remained the same 

regardless of the instrument used. It can therefore be concluded that although the 

contact angles measured on anilox Pira 1 with the MAMS instrument may be 

artificially low, the lack of difference in contact angle between the bands is 

significant. The results obtained with the MAMS instrument on Pira 1 and Harper 1 

were done under the same conditions. Therefore comparisons between the two anilox 

rolls are valid. There were however variables between the two rolls that could not be 

controlled. The ceramic used, the roll circumference and the angle of engraving are 

all different. 
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4.1.2 Calculation of surface energies from contact angle data 

. The results were used as before to calculate surface energies for the three bands. 

The calculated values are shown below in table 4.3. 

average Standard 
surface energy deviation 

mJm-2 mJm-z 

Polished band dispersive component 49 1 

polar component 15 1 

total surface energy 64 2 

band 1 dispersive component 49 1 

polar component 13 1 

total surface energy 62 2 

band 2 dispersive component 49 1 

polar component 13 1 

total surface energy 62 2 

band 3 dispersive component 50 0 

polar component 13 1 

total surface energy 63 1 

Table 4.3. Surface energies calculated from the MAMS data for the Pira banded 

anilox. 

The cell volume and depth were seen to have no significant effect on the contact 

angle, and therefore no significant effect on the surface energies of the bands. The 
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surface energy values are higher than those calculated from the Harper IMAMS 

data. The ceramic used to make the anilox is of unknown compositions and this is 

thought to account for the difference in wettability. 

4.1.3 Comparison between the CO2 engraved bands on aniloxes Harper 1 and 

Pira 1 

The engravings on Pira 1 were made with a C02 laser. As the contact angle results 

were not significantly different for the three engraved bands the result was averaged 

into a single value for the engraved areas of the anilox. This was compared with the 

results obtained with 5 micro litre drops on the band of Harper I which was engraved 

by a CO2 laser. 

Perc:ertage c:A 
Contact Contact angle Total 

Anllox 
lines per ClI'ClITlfereIICe c:A 

angle with with suface 
suface energy 

an roll frcmpolar 
water dlodomethane energy 

Interactions 

Harper 1 ~ band 263 201rnn 64° +/- 2 19" +/-2 56 rnJIm2 14% 

Plra 1 (average c:A 
149 353rTm 52" +/- 2 15° +/- 2 62 rnJIm2 21% 

engraved bands) 

Table 4.4. Comparison of data obtained with the MAMS instruments on the bands of 

aniloxes Harper 1 and Pira I made by CO2 lasers. 

The contact angles obtained with diiodomethane drops on the two anilox were 

similar. The contact angles obtained with water were much lower on anilox Pira I. 

This translates to a surface energy which is much more polar than that of anilox 
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Harper 1. There is no agreement in the results that could be considered a 

characteristic of the CO2 laser that is independent of the anilox. There are however 

many unknowns which make the comparison of the engravings difficult. The 

engravings are made at different angles. Harper 1 was engraved at 60° whilst Pira 1 

was engraved at 45°. Anilox Pira 1 is of unknown age and the type of C02 

technology used to make it is unknown. The chemical composition of the ceramic is 

known to vary between manufacturers. To evaluate any differences in the ceramic, 

comparisons of the polished unengraved areas were made. 

4.1.4 Comparison between the polished unengraved bands on aniloxes Harper 1 

and Pira 1 

The contact angles on the polished band of the Pira 1 were seen to be different to 

those observed on Harper I. Table 4.4 shows the data for the two polished bands. 

CiI"Cll1lference cI Cortact angle Contact angle with T c:t.aI surface 
Perc8l1tage cI suface 

Anllox energy from polar 
roll wlthwat.er cllodomethane energy 

Intsractlons 

Harper 1 201rrm 56· 20" 59.6mJ1m2 20"10 

P1ra1 353rrm 50· W 63.8mJ1~ 22% 

Table 4.5. Comparison of data obtained with the MAMS instruments on the polished 

bands of aniloxes Harper 1 and Pira I. 
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Since the nature of the ceramic on the Pira roll is unknown, it is impossible to rule 

out chemical differences between the two ceramic bands. However the percentage of 

the surface energy due to polar interactions (and the non-polar interactions) was 

comparable for the two anilox rolls. This suggests that the difference between the 

observed contact angles is not a chemical one but as a result differing distortions of 

the drops due to the difference in curvature between the rolls. 

The Pira roll had a larger circumference than Harper 1. Initially it was believed that a 

large curvature would produce more accurate results, as the area underneath the drop 

would be a closer approximation to a flat surface. Unfortunately, having a shallower 

curvature produced some practical problems when taking the measurements. With 

the small curvature of aniJox Harper 1, it was very easy to see when the drop was at 

the zenith of the roll. When measurements were made on Pira 1, it was much more 

difficult as the zenith was less defined. Any error in drop position resulted in the 

camera taking a picture with the bottom of the drop obscured by the roll. The 

instrument would then report a smaller contact angle. 
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4.2 Printing with anilox Pira 1 on a wide web flexographic Press 

The anilox Pira 1 was designed for use on the research press at Pira International. 

The press is an Italian OMA T. A schematic drawing of the press is shown in Figure 

4.1. In order to remove the influence of the transfer properties of the printing plate 

from the results, the web was redirected to run between the anilox and the plate 

cylinder. The print was made directly from the anilox in a style analogous to gravure 

printing. A plate was mounted onto the plate cylinder to act as a cushion between the 

plate cylinder (which was acting as the impression cylinder) and the web. The 

contact between the paper and the anilox could therefore be achieved at normal 

printing pressures for flexographic printing. The original web path is indicated in 

Figure 4.1 with a blue line; the new web path is shown as a red line. 

Figure 4.1. A diagram of the Pira flexo press showing the modified web path used to 

print from anilox Pira I. 
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The substrate used for the trial was uncoated paper donated by Pira International. It 

was made by Stora Enso and had the brand name 4CC. Its weight was 250gsm and it 

had been calendared. The paper spanned two of the anilox bands and as bands 1 and 

2 were at the centre of the roll they were the ones from which printing took place. 

The ink used was UV ink donated by Coates Lorilleux. (Now part of the Sun 

Chemical group) It was a low viscosity, free radical cyan ink with the brand name 

Arena.128 It was selected as the lowest viscosity UV cyan available from Coates at 

that time. The viscosity of the ink was 3 poise. The viscosity was also tested with a 

Zahn cup and it took 100 seconds for the ink to pass through Zahn cup 3. However, 

the thixotropic nature of the ink made its viscosity measurement in this way of little 

value. A high viscosity UV ink with a viscosity of 15 poise was also supplied as it 

had been hoped to measure the affect of ink viscosity on transfer from the anilox. 

This ink was extremely thixotropic and due to problems pumping the ink into the 

doctor blade chamber it could not be used in the trial. 

The printing speed was varied between 2S and 100 metres per minute. Printing 

pressure was varied from the lowest possible pressure to the highest pressure 

obtainable at the aniJox plate nip. The print densities were measured 10 times at 4 

points across each band giving a total of 40 measurements per band at each pressure. 

An extra point was measured on the prints made at 50 mlmin giving a total of 50 

measurements for each band at each pressure at this speed. A repeating light line 

was visible across the print perpendicular to the web. The repeat length of the line 

Was found to correspond to the circumference of the anilox and it was concluded that 

the line was due to anilox plugging. Optical density measurements were made but to 
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avoid inaccuracies no measurements were taken on areas printed by the plugged 

cells. The density measurements are shown in full in Section A4-2 of the appendix 

and summarised in table 4.6. (The data is also presented in graphical form in Figures 

4.2 and 4.3.) 

Speed 
light Pressure Medium pressure High Pressure 

(m/min) 
meanOD 

Standard 
meanOD 

Standard 
meanOD 

Standard 
deviation deviation deviation 

Band 1 Band 1 Band 1 

25 0.62 0.04 0.71 0.05 0.68 0.07 
50 0.64 0.04 0.66 0.05 0.66 0.04 
75 0.47 0.04 0.66 0.04 0.66 0.03 
100 0.44 0.03 0.61 0.03 0.64 0.04 

Band 2 Band 2 eand2 

25 0.68 0.04 0.78 0.03 0.74 0.07 
50 0.69 0.04 0.70 0.03 0.73 0.03 
75 0.63 0.04 0.61 0.04 0.68 0.03 
100 0.48 0.03 0.66 0.03 0.68 0.04 

Table 4.6. Density measurements taken from the prints made by anilox Pira 1 on the 

research press at Pira International. (Using densitometer model Gretag 0 186) 
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Figure 4.2. The variation in print density with printing pressure and press speed. (Band 1) 
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As can be seen from Figures 4.2 and 4.3, the optical densities measured on the 

print from band 2 are consistently higher than those measured on the print from 

band 1. This is true for all pressures and speeds. This was expected as band 2 was 

engraved to hold a greater volume of ink than band 1. As discussed in Sections 

4.1.2 and 4.1.3, the difference in cell geometries was not sufficient to produce a 

difference in the observed contact angles on the bands and therefore in the 

calculated surface energies. The increased volume of the cells on band 2 did 

produce an increase in the optical density of the print. 

Figure 4.4 shows the effect of varying the printing pressure on the print density. 

The low-pressure setting was the minimum pressure that produced a solid print. It 

was expected that increasing the pressure in the nip would result in a thicker film 

of ink and therefore an increase in optical density would be observed. Advancing 

the anilox closer to the plate cylinder increased the pressure at the nip. It was 

calculated than on the medium pressure setting the anilox was advanced O.075mm 

(equivalent to 3 notches on the press dial) and at the high pressure setting the 

anilox was advanced O.15mm (equivalent to 6 notches on the press dial) 
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Figure 4.4. The influence of printing pressure on optical density for bands I & 2. 

At 25 metres per minute the increased pressure from medium to high was seen to 

be detrimental to the print density. It was hypothesised that at this speed the ink 

was been driven into the paper and had time to be absorbed before it reached the 

curing unit. At 50 metres per minute pressure was curiously seen to have very 

little effect on print density. At higher speeds, the increase in pressure produced 

an increase in optical density. 
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Figure 4.5. The influence of Press speed on optical density for bands I & 2. 

In general, optical densities increase with increasing fi lm weight. This is 

consistent with Fouche and Blayo' s observations for an ink based around a low 

molecular weight oligomer at low printed fi lm weight. 72 Again, there is an 

anomaly at 50 metres per minute, particularly at the low-pressure setting. It is 

proposed that 25 metres per minute the rotation speed of the an i lox is insufficient 

to release the optimum amount of ink. At 50 metres per minute the rotational 

force becomes sufficient to sheer thin the ink and propel the ink towards the 

substrate. 
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The standard deviation of the optical density measurements was larger than 

expected. This was due to the low quality of the printed solid due to poor contact 

between the rough surfaces of the anilox and paper. A coated paper, 4CC Art, also 

made by Stora Enso, was originally selected for the trial and the print from both 

bands of the anilox onto this paper was much more uniform. The supply of the 

coated paper was however limited and initial problems curing the ink lead to an 

unforeseen amount of waste. In order to get a complete set of results an alternative 

paper was obtained.. Although some prints were made on coated paper at low 

speeds, the pressure settings were not the same as on the uncoated paper. 

Therefore direct comparisons between the papers could not be made. 

4.3 The relation of optical density to film thickness and ink 

transfer 

In order to assess the amount of ink transferred from the anilox cell to the 

substrate two attempts were made to measure the ink film thickness of the print. 

The first method was a direct measurement using an optical microscope in 

conjunction with specialist software. The second method was an indirect approach 

using a series of calibration prints of known density and film weight produced on 

a Mickle proofer. 
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4.3.1 Using optical microscopy to assess film thickness 

In order to relate the optical densities measured to the film thicknesses laid down 

by the anilox, sections of the prints were examined by optical microscopy. 

Samples were prepared and analysed at Coates Lorrelleux. Small strips of the 

print were set in resin. Then cross sections of the print, held rigid by the resin 

were cut using a microtome. The slices of resin-encased print were placed under 

the microscope. Figure 4.6 shows a cross section of the print. The blue areas are 

the ink. The yellow to orange areas are the paper fibres. The thin slice of resin 

was very difficult to handle and a crease is clearly visible running diagonally 

across the image. 

Figure 4.6. An optical micrograph of a cross-section of print. 
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The sample featured in Figure 4.6 is from band I, printed at 75 metres per minute 

and low pressure. Six samples were analysed in all. All were from band I and 

covered all three pressure settings and speeds from 25 to 75 metres per minute. A 

computer program was used to provide measurements of the ink film thickness. 

Judgement was, however, required to identify the area of printed film at the 

substrate surface. Copies of the results obtained are included in the Section A4-3 

of the appendix. There was obvious penetration of the blue ink into the paper. The 

unevenness of the print and the small amount of ink transferred also contributed to 

the poor accuracy of the measurements. 

The values obtained for the film thickness were plotted against optical density to 

produce a calibration curve from which film thickness could be predicted from 

measured optical densities. This plot is shown in Figure 4.7. 
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Figure 4.7. Correlation of film thickness as measured by optical microscopy to 

optical density. 
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The results did not show any relationship between film thickness and optical 

density. This was attributed to poor print quality, absorption of the ink and very 

uneven film thickness. As indicated in the results, the standard deviation of some 

of the film thickness results was several times that of the reported value. 

The print quality of the Pira 1 prints was too low for a meaningful film thickness 

value to be obtained from a small cross section of print. 

4.3.2 Using a proofing press to estimate film weight 

An alternative method was employed to relate optical density to film thickness, by 

making a series of calibration prints of known film weights, using a piece of 

equipment called the Mickle proofer. Sample of the ink and substrate from the 

press trails were used for these prints to ensure consistency. 

The Mickle proofer is a three-roll distribution system with a removable printing 

carriage. Prints are made from the carriage on a separate printing machine A 

diagram of the Mickle proofer is shown in Figure 4.8. 
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1 Printing carriage 

<: 
Inking system Printing system 

Figure 4.8 The component rolls of the Mickle proofer. 

The rubber transfer roll was inked and the drive roll activated. The friction 

between the drive roll and the transfer roll powered the transfer roll , which then 

turned the distribution roll. The distribution roll moved with a reciprocating action 

to evenly distribute the ink. When an even distribution of ink was judged visually 

to have been attained, the printing carriage was placed in contact with the transfer 

roll. The carriage was left to ink for at least a minute. When the carriage was 

evenly inked it was removed, its weight recorded, and it was placed onto the 

printing machine. The printing machine produced a print of 0.2m by 0.05m or 

0.0Im2
, which was then immediately cured under a UV lamp. The carriage was 

then reweighed to determine the amount of ink that had been transferred to the 

substrate; the carriage was weighed to four decimal places. 

A series of prints was made with a range of film weights. The optical densities of 

these prints were measured and plotted against the film weights as shown in 
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Figure 4.9. Ten density measurements were taken on each print using a Gretag 0 

186 densitometer. These measurements are included in the Section A4-4 of the 

appendix. 
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Figure 4.9. Fi lm weight of prints made by the Mickle proofer, plotted against 

optical density. 

As expected the relationship between optical density and film weight was not 

linear. A logarithmic curve fit was made and is shown in Figure 4.9 as the light 

blue broken line. A far better curve fit was achieved with a power relationship 

curve as shown by the green line. The R2 value, which indicates the accuracy of 

the curve fit to the data was 0.9954. 

The estimated error of the density measurements was obtained from the standard 

deviation of the results and found to be 0.3. The error of the film weight was 
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estimated at O.0005g. When the error bars were added to the data it was noted that 

the logarithmic curve could be considered reasonable within the bound of the 

experimental error. It was however decided to use to power relationship as the 

calibration curve due to the accuracy of the curve fit to the data. 
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Figure 4.10. The error involved in the measurement of optical density and film 

weight, from the Mickle proofer data. 

The data in Figures 4.9 and 4.10 were presented with optical densities on the y-

axis. However in order to more easily predict the film weight of a known density 

series it is helpful to have the unknown, that is the film weight, as the y term. The 

equation of the best-fit curve could then be used to calculate the y term, (film 

weight) for any given value of the x term (the optical density). Figure 4.11 shows 

the calibration curve in its final form. 
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The density results from Table 4.6 were put into the equation of the calibration 

curve. The calculated film weights are shown in Table 4.7. 
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Figure 4.11. The calibration curve used to calculate the film weight of the prints 

from ani lox Pira 1. 
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Film weight In grams 

Speed Light Medium High 
mlmin pressure pressure pressure 

Band 1 25 0.0038 0.0047 0.0044 

50 0.0041 0.0042 0.0041 

75 0.0024 0.0032 0.0041 

100 0.0022 0.0027 0.0031 

Band 2 25 0.0044 0.0065 0.0051 

50 0.0046 0.0047 0.0050 

75 0.0030 0.0037 0.0045 

100 0.0026 0.0031 0.0035 

Table 4.7. The calculated film weight in grams ofa 0.lm2 area of print. 

The volume of ink put down on the substrate could then be calculated from the 

film weight. A value for the density of the ink was not available so the weight of 

Icm2 of ink was measured. Ten repeat measurements were made. The average 

weight was found to be 1.194g. Measurements were made at 23°C. The anilox 

ink carrying capacity was specified in cubic centimetres per square metre. The 

weight of ink on O.Olg as calculated above was converted to a volume of ink by 

multiplication by 0.8375, the volume of 1 gram of ink. 
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Volume transferred In cm'/m2 

Speed 
Light Medium High 

pressure pressure pressure 

Band 1 25 0.3184 0.3982 0.3686 

50 0.3401 0.3520 0.3450 

75 0.2022 0.2670 0.3423 

100 0.1841 0.2300 0.2575 

Band 2 25 0.3717 0.4646 0.4247 

50 0.3860 0.3904 0.4164 

75 0.2507 0.3095 0.3769 

100 0.2138 0.2634 0.2893 

Table 4.8. The amount of ink transferred to the substrate in cm3/m2
• 

The measured holding capacity of the bands were 3.3 and 3.8 cm3tm2 for bands I 

and 2 respectively Table 4.9 shows the amount of ink transferred as a percentage 

of the amount of ink held by the anilox. 

Percentage of cell volume transferred 

Speed 
Light Medium High 

pressure pressure pressure 

Band 1 25 9.8 12.0 11.2 

50 10.3 10.7 10.5 

75 8.1 8.1 10.4 

100 5.8 7.0 7.8 

Band 2 25 9.8 12.2 11.2 

50 10.2 10.3 11.0 

75 8.8 8.1 9.9 

100 5.8 6.9 7.6 

Table 4.9. Ink transfer from the anilox as a percentage of the carrying capacity of 

the anilox cells. 

135 



When the percentage transfer is considered the two bands of the anilox transfer a 

similar percentage of their holding capacity at any given pressure and speed. 

Overall the amount of ink transferred is much less than would be expected from 

conventional flexo printing via a printing plate. 

4.4 Summary of results from aniioI Pira 1 

The findings from the work on anilox Pira 1 were 

1. Varying the depth of a cell when all other variables are fixed does not 

affect the wettability of the engraving. 

2. Differences in cell geometry that produce different amounts of ink transfer 

are not detectable by contact angle analysis. 

3. Optical microscopy is only a useful tool for measuring film thickness if the 

film weight is sufficiently high and the ink coverage is even. 

A third anilox was commissioned to have C02 and Y AG engravings with the 

same size and number of cells. This anilox was designed to fit on a laboratory 

scale press in order for contact angle measurement and ink transfer to be studied 

in tandem. Harper also made this anilox so that direct comparisons with the work 

done on Harper 1 could be made. 
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5. Analysis of anilox roll Harper 2 

5.1 Contact angle analysis of anilox Harper 2 

The original anilox studied, anilox Harper I, was designed to have comparable cell 

depths, as when the study began this seemed an appropriate starting point from 

which the two methods of laser engraving the cells could be compared. The analysis 

of Pira 1 discussed in Chapter 4 revealed that varying the cell depth with respect to 

the cell opening had no effect on the wetting of the cells. A new anilox was therefore 

needed in order to determine if the wetting trend observed on Harper 1 was effected 

by differing numbers of cells in contact with the applied liquid drop. 

A new anilox was produced for testing. As The Harper Corporation of America again 

provided this anilox it was termed Harper 2. Anilox Harper 2 was designed to have 

both CO2 and Y AG engravings with the same line screen so that any roughness 

effect caused by the number of cells in the area under the drop could be discounted. 

The cell volume was again kept constant. The specifications of the engravings as 

provided by the Harper Corporation are detailed in table 5.1. 

Anilox band Line screen Cell volume Cell depth Cell opening Cell wall 
(lines per em) (em3/m2

) (microns) (microns) (microns) 

CO2 393 2.53 7.8 22.0 3.0 

VAG 393 2.53 7.5 19.4 2.1 

Table 5.1. Specifications of the banded anilox Harper 2. 
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Harper 2 was designed to fit on the RK mini web press to allow prints to be made, 

and consequently its diameter was slightly larger than that of Harper 1. 

As with the Harper 1 anilox, contact angle measurements were initially measured 

using the MAMS instrument in the pressroom at Pira International. When the FT A 

instrument became available, the measurements were repeated in the laboratory at 

the London College of Communication. 

5.1.1 Contact angle analysis using the MAMS instrument 

The contact angle measurements on Harper 2 were carried out using the same 

MAMS equipment and grade of test liquid at the same conditions. A drop volume of 

5J.t1 was used for all measurements. As the experiment was done a year after the first 

tests on Harper 1, the measurements on Harper 1 were first repeated and found to 

agree well with the initial data as shown in Table 5.2. This demonstrates that the 

MAMS data for anilox Harper 1 was extremely reproducible. It is also interesting to 

note that in most cases the inclusion of a further twenty measurements had no effect 

on the standard deviation of the results. This demonstrates that the large standard 

deviations are produced by the lack of uniformity of the roll, rather than variations 

the measurement or drop dispensing technique. The data for the repeated 

measurements is in Section AS·} of the appendix. 

138 



5pI 5pI 
newavarage 5pI 5jj new IMIf'IIg8 

water water cIIodomeIhane diodomelhtI'Ie 5pI 
original repeat 5pI water original mpaat cIIodornethane 

PoII8hed mean 560 ~ W 2ff 180 1sr 
band 

standard 2'" 3 Z' 30 :r ~ deviation 

COzband mean 64· 640 64° 19" 18° 1SO 
standard 2° 2° Z' T 4° ~ deviation 

YAGband mean 7et 76" 7ft 150 140 16' 
standard 3° 4° ~ 4° ao ~ deviation 

Table 5.2. A summary the results obtained by repeating the MAMS test on anilox. 

Harper 1. 

Tests on anilox Harper 2 were carried out using the same test liquids under the same 

conditions. The results are summarised below in table 5.3 and are included in full in 

the Section A5-2 of the appendix. 

5~ 5~1 
water diiodomethane 

Polished band mean 600 21 0 

standard 
2° 20 

deviation 

CO, band mean 75° 19° 

standard 3° 3° deviation 

VAG band mean 860 26· 

standard 4° 30 
deviation 

Table 5.3. Results for the contact angle analysis of anilox Harper 2 using the MAMS 

instrument. 
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The results showed the same trend in wetting with the polished band easiest to wet, 

followed by the C02 band, with the YAG band again hardest to wet. There was more 

variation between the contact angle results on the three bands than with previous 

experiments. Table 5.4 shows the results on the two Harper rolls together for ease of 

comparison. 

Harper 1 Harper 2 Harper 1 Harper 2 
Water Water Diiodomethane Diiodomethane 

Polished 56° 60° 20° 21· 
band 

mean 

standard 2° 2° 3° 2° 
deviation 

CO2 band mean 64° 7S· 19° 20° 

standard 
2° 3° 2° 3° deviation 

VAG band mean 76· 8S· 15° 26· 

standard 
3° 4° 4° 3° deviation 

Table 5.4. Comparison between contact angle data for anilox rolls Harper I and 2 

obtained using the MAMS instrument. 

The mean contact angles observed with water on the polished ceramic bands of 

aniloxes Harper I and Harper 2 varied by 4°. This is equal to the sum of the standard 

deviations of the two results. These values are close enough to verify Harper's 

assurance that same type of ceramic was used to make both rolls. 

There was a large difference between the contact angles observed on the YAG band 

using diiodomethane drops. This could indicate that the YAG band on Harper 2 is 

physicaJIy or chemically different to the Y AG band on Harper 1. Harper had 

indicated that laser and ceramic were the same for both rolls. 
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The mean contact angle values from the test using water on the engraved bands of 

Harper 2 were much higher than those on Harper 1. It was hypothesised that this 

difference could be related to the difference in the line screen values. Considering 

the C02 bands, the line screen increased from 236 lines per centimetre on Harper 1 to 

393 lines per centimetre on Harper 2. The contact angle was observed to increase by 

11°. But in the case of the YAG band the line screen decreased from 472 lines per 

centimetre on Harper 1 to 393 lines per centimetre on Harper 2. The contact angle 

was also observed to rise by 10° ruling out any relation between the line screen and 

the observed contact angle. 

The increase in roll circumference of anilox Pira 1 in relation to Harper 1 was 

believed to have produced a systematic error that reduced the observed contact angle. 

Harper 2 has a circumference of 254.5 mm and is therefore larger than Harper 1, 

which has a circumference 201.1 mm, but smaller than Pira 1 which has a diameter 

of 353 mm. The observed contact angle on the polished area of Harper 2 was very 

slightly larger than that observed on Harper I. Although this does not support the. 

above hypothesis, some of the difficulties experienced in centering the drop on the 

zenith were overcome when measurements on Harper 2 were made. Harper 2 is a 

much shorter in length than Pira 1. Markers were made which were attached to each 

end of Harper 2 and marked the zenith. The anilox could then be viewed from one 

end to ensure that the drop lined up with the markers. This technique could not be 

employed with Pira 1 as the length of the roll was such that accurate positioning in 

this way was not possible. 
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5.1.2 Contact angle measurements using tbe FTA instrument 

The contact angles were also measured using the FT A instrument. As these 

measurements were taken at the same time as those on Harper 1 there was no need to 

reconfirm the Harper 1 results for consistency. The results are summarised in Table 

5.5 and shown in full in the appendix in Section A5-3. 

Water Diiodomethane 
FTA FTA 

Polished band mean 74° 44° 

standard 3° 2· 
deviation 

CO2 band mean 91° 43· 

standard 
2° 2· 

deviation 

VAG band mean 106· 43· 

standard 2° 2· 
deviation 

Table 5.5. The results of contact angle analysis on anilox Harper 2 using the FTA 

instrument. 

Again the contact angles reported by the FT A were seen to be significantly higher 

than those obtained using the MAMS instrument. This was again attributed to 

differences in the dispensing mechanisms between the two instruments. The results 

are compared with the contact angle data for Harper 1 (measured with the FT A 

instrument) and are shown in Table 5.6. 
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Harper 1 Harper 2 Harper 1 Harper 2 
water Water diiodomethane Diiodomethane 

Polished 
75° 74° 42° 44° 

band 
mean 

standard 3° 3° 2° 2° 
deviation 

CO2 band mean 84° 91° 43° 43° 

standard 
2° 2° 2° 2° deviation 

YAG band mean 100· 106° 45° 43° 

standard 
2° 2° 2° 2° deviation 

Table 5.6. Comparison between contact angle data for anilox Harper 1 and 2 

obtained using the FTA instrument. 

The results on the polished unengraved bands are very similar. This again indicates 

that the ceramic is comparable between the two anilox rolls and that the difference in 

curvature has no effect on the results. Increased water contact angles were again 

seen on the C02 and YAG bands, although the increase seen on the Y AG band was 

only just outside the sum of the standard deviation of measurements. The results with 

diiodomethane drops showed no significant difference between the rolls. The change 

in dispersive wetting on the Y AG band shown by the MAMS instrument is not 

reflected in the FT A results. The results on each instrument were repeatable 

indicating that a systematic difference is present in the results. It should be noted 

that the contact angles made by the diiodomethane were small and were at the limit 

at which the MAMS instrument could accurately measure. 
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5.1.3 Advancing and receding contact angles 

Advancing and receding contact angle measurement was attempted in the same way 

as for Harper I. Measurements were however more difficult to make on Harper 2 

because its increased size made positioning under the FT A dispensing platform more 

difficult. The contact line moved entirely in one direction. Figure 5.1 shows a screen 

shot of a water drop being advanced over the C02 band. So long as the drop did not 

begin to preferentially spread down the sides of the ro ll , advancing contact angles 

could still be measured. 

:; I TA32 VIdeo 2.0 ( • 

.. 00 

Contact Arge Ideo) 101 .20 
I Contact /!otv;Je Left (dog) 101 .20 

TilArrJe (deo) 0.39 I B .... Invn) 3.2071 
Hili> (nvn) 1.9522 
V"""ltJ) 11 .781 
Wetted Tip Wdh (nvn) o.Dl4 
Mamun Diomel .. (own) 1.2848 
Contrast (d.) 255 
Foctnl~ 182 
Black Peak (ds) 0 

! \IIhle Peak (ds) 255 
i ~T" .. 1>oId ct. 105 

Figure 5.1. A screen shot of a water drop being advanced across the CO2 band of 

Harper 2. 
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The contact angle was measured on the advancing side of the drop only and plotted 

against the diameter of the drop base to select the data for which the drop was 

advancing. The advancing angles were then averaged into a single result. A vel)' 

small number of results were obtained. Four good measurements were recorded on 

the C02 band but only two on the polished and YAG bands. These measurements 

are shown in the Section A5-4 of the appendix. The average values are shown in 

Table 5.7. 

Polished CO2 YAG 
band band band 

Mean 930 1000 10r 

Standard deviation 1 1 4 

Table 5.7. Advancing angles measured on the bands of Harper 2 using water drops. 

The angle on the polished band is much higber than the value measured as the 

equilibrium angle. The angle measured on the C~ band is also higher but not by as 

large an amount. The angle measured on the YAG band is not statisticaJJy different 

from the angle measured using a static drop touched off with minimal additional 

spreading force. 

The liquid was then pumped back into the dispensing syringe in an attempt to obtain 

a value for the receding contact angle. As the tip of the needle was at one end of the 

drop the drop detached from the needle tip before enough liquid was removed to 

make the contact line recede. This is illustrated in Figure 5.2. A change to the 

method was employed for anilox Harper 1. Advancing and receding measurements 
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were made separately with the tip repositioned to be at the centre of the drop before 

the drop was receded. This method could not be employed on Harper 2 as cleaning 

with surfactant accidentally changed the surface wettablity of the Y AG band. This 

change to the surface of the anilox will be discussed in detail in Section 5.1.6. 

-:. FfA 32 Vlripo 7.0 • ~j..~ 

Zocm 

Figure 5.2 A screenshot showing the problem encountered when trying to obtain 

receding angles on anilox Harper 2. 

It was not possible to measure advancing or receding contact angles uSing 

diiodomethane as the test liquid. When the liquid was advanced onto the roll surface 

it preferentially advanced down one side of the roll immediately due to its low 
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surface tension. There was no stable advanced drop to measure, nor to remove liquid 

from to observe the receding angle. 

5.1.4 Surface energy calculations from the contact angle data 

The contact angle results were used to calculate surface energies as before. The 

surface energy values are summarized in Tables 5.8 and 5.9. As before the lower 

contact angles reported by the MAMS instrument translated into higher surface 

energies. The result for the polished band with the FT A is again slightly closer to the 

literature value of 50 mJm-2 than the MAMS result. 

Mean surface Standard 
energy deviation 
mJm-2 mJm-2 

Polished band dispersive component 48 1 

polar component 10 1 

total surface energy 58 2 

CO2 band dispersive component 48 1 

polar component 4 1 

total surface energy 52 2 

VAG band dispersive component 46 1 

polar component 1 1 

total surface energy 47 2 

Table 5.8. Surface energies of the bands on anilox Harper 2 obtained from the 

MAMSdata. 
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The surface energies calculated from the contact angles on all bands are within one 

standard deviation of the values calculated using the Harper 1 data. The large 

differences in observed contact angles made with water are again not reflected in the 

surface energy results. Thls again demonstrates the lack of sensitivity of surface 

energy as calculated by the geometric mean method. 

Mean Standard 
surface energy deviation 

mJm-2 mJm-2 

Polished band dispersive component 38 1 

polar component 6 1 

total surface energy 44 2 

CO2 band dispersive component 38 1 

polar component 1 1 

total surface energy 39 2 

VAG band dispersive component 38 1 

polar component 0 0 

total surface energy 38 1 

Table 5.9. Surface energies of the bands on anilox Harper 2 obtained from the FTA 

data. 

The differences in the contact angles made by water on the engraved bands of Harper 

2 were significantly higher than those observed on the engraved bands on Harper I. 

This difference became small when the surface energies were calculated, however it 

can be seen when the percentage polar make-up of the total surface energy is 

considered. Figure 5.3 shows the polar and dispersive components of each band of 

the Harper aniJoxes as percentages of the overall surface energy. 
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Figure 5.3.The polar component as a percentage of the overalI surface energy on the 

Bands of aniloxes Harper I and Harper 2. 

There is a visible reduction in the polar make up of the C02 bands that are shown by 

both instruments. The FT A instrument does not show the difference in polar wetting 

on the Y AG band, as the polar component is so smalI it is reported as zero in all 

cases. 

5.1.5 The acid-base theory of surface energy 

In order to calculate the acid-base components of the surface energy, contact angle 

measurements with formam ide were again made. These measurements were only 

made on the FTA instrument, as the MAMS instrument was no longer available for 

use. The results are tabulated in table 5.10 and are included in full in Section A5-5 

of the appendix. 
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Formamlde 

Polished band mean 43° 

standard 3" deviation 

CO2 band mean 61° 

standard 1° deviation 

VAG band mean 65° 

standard 
2° deviation 

Table 5.10. Contact angles made by formamide drops on the bands of anilox 

Harper 2. 

The measurements are within one standard deviation of the formamide results 

obtained on Harper 1 in all cases. The contact angles made by water, diiodomethane 

and formamide on each band were entered into the FT A software, which performed 

the acid-base calculations. The values returned are shown in Table 5.11 along with 

an estimate of the error associated with the measurement, which is based on a repeat 

of the calculation using the mean contact angle data plus or minus the standard 

deviation in a way such as to produce the largest difference in the result. 
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Polished band CO2 band YAG band 

mean standard standard 
mean 

standard 
deviation 

mean 
deviation deviation 

Total surface energy 43.5 1.9 39.0 1.2 37.2 1.2 

Dispersive component 37.5 1.1 38.1 1.1 38.1 1.1 

Polar component 5.94 0.08 0.89 0.18 -0.83 0.07 

Acid component 1.92 0.05 0.26 0.11 0.16 0.09 

aase component 4.61 1.20 0.75 0.50 -1.10 0.03 

Table 5.11. Components of the total surface energy (in mJm-2
) calculated from 

contact angle data by the FT A software. 

Again there is a change in acid-base nature of the surface caused by the presence of 

engraved cells. The dominant polar component of polished ceramic is the basic 

component. Engraving anilox Harper 2 with the C02 laser reduces the level of basic 

character significantly. The acidic character is also reduced. Engraving with the 

Y AG laser again produces a small negative value for the basic component. The small 

amount of polarity left on the YAG band is acidic. The errors quoted are the result 

of repeating the acid and base calculations using the mean contact angle plus and 

minus one standard deviation. In the case of the acid and base component the 

estimate of error produced is very large in comparison to the small values of the 

components. The polar component quoted should be the sum of the acid and base 

components. However as with the data presented in Section 3.5, the numbers in 

Table 5.11 do not add up. That is because there is no exact solution to the three 

simultaneous equations from which the acid and base components are calculated. 

Again the lack an exact solution and the large calculated errors are due to 

inaccuracies in the contact angle data. These inaccuracies are in part random 
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measurement errors and in part due to the changing value of the contact angle with 

the variable surface of the roH. The values for the acidic components on the 

engraved bands are not statistically significant. They are however lower than the 

value calculated for the polished band. The basic component is statistically different 

on all three bands. 

S.2 Ink transfer from anilox Harper 2 

AniJox Harper 2 was designed to fit on the gravure station of a RK mini-web press. 

Using this set-up prints could be made directly from the anilox as made from anilox 

Pira 1 on the Pira press. Samples of the ink and paper were retained from the Pira 

press trial. The paper was cut down and rewound onto smaller cores in order to fit the 

RK press. The original ink had gelled, a fresh sample was obtained from Coates; it 

was made to as close to the original recipe as possible. However some of the raw 

materials had to be substituted, as the originals were no longer available. Coates did 

not make details of the substitutions available. The pressure at the anilox/paper nip 

was 40 PSI. (40 pound-force/square inch (PSI) = 0.276 Newton/square millimetre) 

Prints were made at two speeds; five metres per minute and 10 metres per minute, 

which was the top speed attainable. The UV lamp was set at a nominal power of 50 

watts per centimetre for the lower speed and 83 watts per centimetre for the higher 

speed. Ten samples of print were cut from the web. Each sample was 50mm in 

length. Density measurements were made on these prints. The results are summarised 

in table 5.12 and shown in full in the appendix in Section A5-6. 
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Optical density Optical density Optical density Optical density 
S m/mln CO2 10 m/mlnC02 5 m/mlnYAG 10mlminYAG 

edge mean 0.S2 0.47 0.57 0.49 

standard deviation 0.04 0.02 0.05 0.02 

mid 1 mean 0.44 0.43 0.50 0.44 

standard deviation 0.04 0.02 0.06 0.03 

centre mean 0.36 0.35 0.44 0.40 

standard deviation 0.05 0.02 0.05 0.02 

mid 2 mean 0.36 0.34 0.42 0.39 

standard deviation 0.05 0.02 0.05 0.03 

Join mean 0.37 0.33 0.40 0.36 

standard deViation 0.06 0.03 0.06 0.02 

Table 5.12. Optical densities measured at 5 places across prints made from the YAG 

and CO2 bands of Harper 2. 

The ink density across the prints was not uniform. In order to quantify the variation 

of ink transfer across each band measurements were made of the edge of the print, at 

mid points 1 and 2, at the centre of each band and at either side of the join. These 

points are illustrated in Figure 5.4. Five measurements were made at each point on 

each sample. There were ten print samples. Fifty measurements were therefore made 

at each point and a total of two hundred and fifty measurements were made on each 

band. 
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YAGband C02band 

edge centre mid2 join mid2 centre mid 1 edge 

Figure 5.4. The points across the printed sample at which measurements were made. 

The data from Table 5.12 is represented graphically in Figure 5.5. There is a large 

difference in optical density across the print area of both bands. In all cases the 

optical density of the prints from the Y AG engraving are larger than those from the 

CO2 band. This supports the literature claims that Y AG cells transfer a greater 

percentage of the ink that they hold. 24 The difference between the optical densities 

of the prints from the two bands was smaller than expected. The standard deviations 

of the measurements are shown in table 5.12. These were large and were in most 

cases as large as the differences between the bands. The variation in optical density 

was due to the unevenness of the print produced. Printing directly from the anilox 

does not produce an even lay of ink as the anilox and paper surfaces are both rough 

and contact between them is uneven. As all the optical densities on the print from 

the Y AG band were higher than those from the CO2 band it is reasonable to conclude 

that more ink was transferred from the Y AG band than from the CO2 band despite 

the statistical uncertainty. Visual assessment also confirmed that the overall optical 

density was higher on the Y AG band. 
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Figure 5.5. The variation of optical density across the prints made by anilox 

Harper 2. 

The variations in print density across the bands of Harper 2 with changing speed are 

shown as 3D surfaces in Figures 5.6 and 5.7. In all cases less ink was transferred as 

the speed increased. 
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Figure 5.6. The variation of optical density across the print from the C02 band at two 

speeds. 
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Figure 5.7. The variation of optical density across the print from the Y AG band at 

two speeds. 
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5.2.1. Evidence of cell plugging on both bands of Harper 2. 

Initially the decrease in print density towards the middle of the print was attributed to 

uneven doctor blade pressure across the anilox. The doctor blade settings were 

adjusted before the print runs were made but an even print density across the roll 

could not be achieved. Shortly after the trial had taken place the anilox was analysed 

with a white light interferometer at the Welsh Centre for Printing and Coating at the 

University of Wales in Swansea. When profiles of the cells were measured evidence 

of plugging of the cells was observed. An example of a screen shot showing a 

number of plugged cells is shown in Figure 5.8. All the cells in the shot are plugged 

apart from one. The unplugged cell is on the far right of the x profile line. 
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Figure 5.8. A screen shot from the Veeco roll scope showing plugged cells on the 

Y AG band on Harper 2. 
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The colour-coded image on the left ofthe figure shows the unplugged cell as having 

a light blue base whilst the rest are coded yellow. The scale on the side of the x 

profile shows the unplugged cell to have a depth of7.7 microns. This is close enough 

to the manufacturers value of 7.5 microns to support the theory that the cell is 

unplugged. The other cells in the shot have depths of approximately 4 microns. The 

plugging was very obvious on the Y AG band and appeared to cover most of the roll. 

The plugging was not observed at the edge of the Y AG band. The unplugged area 

was observed to extend approximately 50mm from the edge of the band. The 

plugging on the CO2 band was less obvious and was initially missed when the roll 

was analysed. Two-dimensional profiles of area on the C02 band were made and 

when these were analysed two out of the three areas selected showed cell depths that 

were lower than the other measurement area and lower than the manufacturers value 

for the cell depth of 7.8 microns. This is illustrated in Figures 5.9 and 5.10. These 

profiles are used in Chapter 6.and are shown in Section A6-11 of appendix. 
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Cell profile of a CO. cell on anllox Harper 2 (measurement position 1) 
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Figure 5.9. A two-dimensional profile of the C02 band showing plugged cells. 
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Cell profile of a CO2 cell on anllox Harper 2 (measurement position 3) 
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Figure 5.10. A two-dimensional profile of the C02 band showing unplugged cells. 

The depth of the cells measured in measurement position I are between 4 and 5 

microns. An example is shown in Figure 5.9. Measurements were made at two other 

positions. The cell depths measured in the other measurement positions were 

approximately 7 microns. An example is shown in Figure 5.10. The value supplied 

by Harper for the cell depth of the C02 band was 7.8 microns. Although the depth of 

the cells shown in Figure 5.10 are shallower than the manufacturers value the depth 

of the cells is accepted to vary and a 0.8 micron distance does not suggest plugging 

(although the possibility of slight plugging cannot be discounted). 

The work done recording the profile of the cells on anilox Harper 2 with the 

interferometer concentrated on the measurement of the slope of the cell wall and the 

interior roughness of the cells. These measurements were made on unplugged ceIls. 

(This work is shown in detail in Chapter 6.) It was not possible to map the entire roIl 

and quantify the extent of the plugging. It is interesting to note that although contact 
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angles of the engraved bands were being regularly measured before the press trial, 

plugging did not show up in the contact angle measurements on either band. 

At the time of measurement it was assumed that the plugged ink was a result of poor 

wash-up after printing. It was later noted that the positions of the unplugged areas at 

each end of the roll are approximately the same size as the dense areas on the prints. 

This shows that the cells were plugged before the press trial took place. Although no 

printing had been done on Harper 2 before the trial, it had been used to measure the 

contact angles made by inks on its surface, both for this project and for another. It 

was noted that the ends of Harper 2 were difficult to position under the FT A 

instrument as the roll became unbalanced. Although the influence of doctor blade 

pressure cannot be ruled out, it is likely that the plugging of the cel1s is the cause for 

the uneven print across the bands of Harper 2. 

There was a further problem with the results of the press trial. The optical density 

was observed to vary not only across the aniJox, but at a press speed of five meters 

per minute it also varied as the run progressed. When an acceptable print was 

obtained at each speed (by adjustment of the doctor blade settings) the web was 

marked and the reel of paper was allowed to run to completion. Samples were cut 

from the reel at random intervals. The reel had been rewound to isolate the prints 

taken over the time period in which the press was stable. Samples 1 to 7 were taken 

in order, as the reel was unwound. Therefore sample 1 was from near the beginning 

of the run and 7 from near the end. Samples 8, 9 and 10 were taken at random 

intervals from the unwound printed web. The print density varied more than 

expected on the five metres per minute run. The density was observed to decrease as 
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the run progressed. This is illustrated in Figure 5.11. The decrease in optical density 

was attributed to a press problem, as it was consistent on both bands. The most 

obvious cause is insufficient ink in the inking tray leading to ink shortage in the 

anilox cells. 
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Figure 5.11. Variation in optical density of the samples printed at five metres per 

minute using the RK. mini-web press. 
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Figure 5.12. Variation in optical density of the samples printed at ten metres per 

minute using the RK mini-web press. 

The optical density data for the ten samples is shown in Figure 5.12. There was still a 

small amount of variance between the optical densities on the prints taken from the 

run at ten metres per minute. The variation was however more random and the trend 

observed on the earlier run at five metres per minute was not repeated. 

The optical densities of all the prints were very low. This is in part due to poor 

contact between the substrate and the anilox, and in part due to the plugging of the 

anilox with dried ink. The specification of the anilox was selected by Harper to have 
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a cell count and transfer volume that were typical of those used for high quality flexo 

printing. The line screen count of 393 lines per centimetre and the volume of 2.53 

cm3/m2 fell within the recommended range for printing of a process colour (the ink 

used was Arena process cyan) as provided by Coates.128 However they fell well 

outside the range recommended for printing solids. Coates recommend a line screen 

of 100 to 160 lines per centimetre and an engraved volume of7 to 9 cm3/m2
• Anilox 

Harper 2 would not be expected to transfer a sufficient volume of ink to produce a 

high-density solid print under standard printing conditions. 

5.2.2 The relation of optical density to film thickness and ink transfer using a 

calibration curve 

As discussed in Section 4.3 the relationship between optical density and the volume 

of ink transferred is not linear. To estimate the amount of ink transferred to the 

substrate in this trial a series of calibration prints were made in the same manner as 

was described in Section 4.3, again using the Mickle proofer. Prints were made 

using the leftover materials from the press trial. 

As the printing pressure at the anilox/paper nip was known, the pressure setting of 

the Mickle proofer could be adjusted in order to replicate printing conditions as 

closely as possible. The movement of an adjustable weight controlled the force 

acting on the printing carriage. The contact area between the carriage and the 

substrate was determined by inking the carriage and pressing it against the substrate. 

The contact area was measured and found to be 400 square millimetres. It was 
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calculated that to replicate the printing pressure on the RK lab press 0.276 

Newton/square millimetre that a force of lION would be needed on the Mickle. The 

Mickle proofer produces prints of 0.05m by 0.2m or 0.01 m2
• The printing carriage 

was reweighed after the printing to find the weight of ink covering the 0.0 I m2 area. 

This process was repeated until a range of prints of differing film weights were 

obtained. The optical densities of these prints were measured. Figure 5.13 shows a 

plot of optical density versus film weight for the prints. The error in optical density 

measurements was taken to be the average of the standard deviations, which was 

0.02. The error in the film weight was estimated to be 0.0005g as before. 
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Figure 5.13. The relationship between optical density and film weight of prints 

produced on the Mickle proofer. 
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Curves were fitted to the data in an attempt to establish a suitable calibration 

equation. The red curve is a power relation. The blue curve is a logarithmic relation. 

The power relationship between film weight and optical density gives the best fit and 

was accepted as the calibration curve. The calibration curve is shown in Figure 5.14. 

For convenience the axis were again swapped around to allow the film weight to be 

calculated easily from the equation of the fitted curve. The equation of the curve was 

y = 0.011x21707 where y is the film thickness and x is the optical density. The R2 

value was 0.9855 indicating that the curve is a good fit to the data. 
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Figure 5.14. The calibration curve relating optical density to film weight for a series 

of prints made with the Harper 2 trail materials on the Mickle proofer. 
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The film thickness relating to the optical densities of the prints from Harper 2 were 

calculated from the values in table 5.12 using the above equation and tabulated in 

Table 5.13. 

Film weight In grams 

6m/min CO2 10m/mJnC~ 5m1mlnYAG 10 mlminYAG 

edge 0.00266 0.00214 0.00325 0.00234 

midi 0.00186 0.00176 0.00244 0.00185 

centre 0.00120 0.00113 0.00186 0.00161 

mid 2 0.00120 0.00106 0.00167 0.00142 

join 0.00120 0.00099 0.00151 0.00120 

Table 5.13. The calculated film weight in grams ofa O.lm2 area of print. 

The volume of ink put down on the substrate could then be calculated from the film 

weight. A value for the density of the ink was not available so the weight of 1 cm2 of 

ink was again measured on a balance accurate to 4 decimal places. Ten repeat 

measurements were made. The average weight was found to be 1. 1385g. 

Measurements were made at 23°C +1- 1°. The weight of ink covering 0.01m2 as 

calculated above, was converted to a volume of ink in cubic centimetres by 

multiplication by 0.8793, the volume of 1 gram of ink in cm3
• This was then 

converted to cubic centimetres per square metre by mUltiplication by 100. The 

calculated volumes transferred in cubic centimetres per metre squared are shown in 

Table 5.14. 
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Volume of transferred Ink In cma/ma 

5 mlmln COa 10 m/minCOa 5m1mlnYAG 10 m/mlnYAG 

edge 0.234 0.188 0.285 0.205 

midi 0.163 0.165 0.215 0.163 

centre 0.105 0.099 0.163 0.132 

mid 2 0.105 0.093 0.147 0.125 

Join 0.105 0.087 0.132 0.105 

Table 5.14. The calculated volume of ink transferred to the substrate in cubic 

centimetres per square metre. 

The carrying capacity for the cells on both bands of Harper 2 was specified by 

Harper as 2.53 cm3/m2
• The amount of ink transferred is expressed as a percentage of 

the capacity of the cells in Table 5.15. 

Percentage of cell volume transferred 

5m1mln CO2 10m/minCO: 5 mlmlnYAG 10 m/mlnYAG 

edge 9.2 7.4 11.3 8.1 

mid 1 6.4 6.1 8.S 8.4 

centre 4.2 3.9 8.4 S.2 

mid 2 4.2 3.7 5.8 4.9 

Join 4.2 3.4 5.2 4.2 

Table 5.15. The amount of ink transferred from the cells on each band as a 

percentage of the transfer capacity of the bands as specified by Harper. 

As the carrying capacity of the cells was the same on each band translating the 

results to the percentage of the potential volume that was transferred does not change 
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the trends observed in the data. The YAG band is seen to transfer slightly more ink 

to the substrate in all cases. There is small difference between the bands at 5 metres 

per mInute. The difference becomes smaller still at 10 metres per minute. The effect 

of press speed on release from the anilox is masked by the variance in the data from 

the 5 metres per minute run. In all cases the amount of ink transferred to the 

substrate is smaller than expected with conventional flexo printing. This can again be 

attributed to the poor contact between the rough surfaces of the anilox and paper at 

the nip. There is a marked difference in the percentage of ink transferred between the 

edge of each band and the join area. The percentage of ink held in the cell that is 

transferred, halves at the join of the roll where the cells are known to be plugged. 

This is reasonably consistent for both bands at both speeds. There was no difference 

seen in the extent of plugging or its effect on ink transfer between the bands. 

5.3 Contact angle analysis of the paper substrate in order to 

determine the surface energy difference at the anilox/paper nip 

Contact angle analysis of the paper substrate was carried out in an attempt to 

determine the wettability of the paper and the surface energy difference at the 

anilox/paper nip. Analysis was carried out on the FT A only. Drops were touched off 

against the substrate surface to minimise spreading due to application force. The drop 

volume applied to the surface was dictated by the size of drop that could be held on 

the needle tip. The results are summarised in Table 5.16 and are shown in full in 

Section A5-7 of the appendix. 
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Water Dliodomethane Fonnamlde 

Contact drop Contact drop Contact drop 
angle volume angle volume angle volume 

mean 106° go 49° 3° 98° 80 

standard 30 0.40 3° 0.20 30 0.20 
deviation 

Table 5.16. Contact angles made on samples of the paper used in the Harper and Pira 

press trials using the FTA instrument. 

The difficulties experienced making contact angle measurement on paper samples 

were different to those experienced on anilox rolls. The paper was attached onto a 

carriage plate in order to hold it flat. However, absorption into the substrate was a 

problem, particularly with diiodomethane. Drops of water and formam ide were 

completely stable for 6 seconds. All contact angle measurements were made over the 

first 6 seconds after contact occurred. Diiodomethane drops started to sink into the 

paper as soon as contact occurred. Twenty one measurements were made over 2.1 

seconds and these contact angles were averaged to produce the final reported value. 

Examples of the change of contact angle over time are shown for each test liquid in 

Figures 5.15, 5.16 and 5.17. 
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Figure 5.15. The stability of the contact angle made by a water drop on paper over 

5.6 seconds. 
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Figure 5.16. The stability of the contact angle made by a diiodomethane drop on 

paper over 2.1 seconds. 
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Figure 5.17. The stability of the contact angle made by a formamide drop on paper 

over 6 seconds. 

Surface energy values were calculated from the mean contact angle data, using the 

Owens-Wendt geometric mean method and the acid-base method. The results are 

tabulated in Tables 5.17 and 5.18. It must be stressed that as there is no stable 

equilibrium contact angle, the conditions for the application of the young equation 

are not met. Surface energy calculations from contact angle data on paper therefore 

have limited meaning and can best be regarded as a guide to the nature of the paper 

surface. 
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Surface energy (mJm-2
) mean standard deviation 

Total surface energy 35 2 

Dispersive component 35 2 

Polar component 0.03 0.1 

Table 5.17. Surface energies of sample paper calculated using the Owens-Wendt 

geometric mean method by the FTA software. 

The value of the polar component was much smaller than the estimate of error in the 

calculation. This is because experimental problems in obtaining stable contact 

angles on paper lead to high standard deviations for all the contact angle data. 

Surface energy mJm-2 mean -1 standard + 1 standard 
deviation deviation 

Total surface energy 32.0 33,6 30.4 

Dispersive component 34.8 36,5 33.2 

Polar component -2.8 -2.87 -2.78 

Acid component -4,8 -0.45 -5.09 

Base component 0.4 4.59 38 

Table 5.18. Surface energies of sample paper calculated using the acid-base method 

by the FT A software. 

In this calculation the acid and base values produced by entering the smallest 

permutations of contact angle values (based on the mean value minus the standard 

deviation) was very different to the values produced by entering the largest possible 
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contact angles (the mean plus one standard deviation). It was misleading just to quote 

the larger value as the error, therefore both were noted. 

The surface energy of the paper calculated from the contact angle data was very low. 

It is lower than the value at which filmic substrates are normally corona treated. 

Although the wettability of paper is extremely variable and corona treatment is very 

occasionally needed, the hydrophobic character in these cases is usually from surface 

coatings or treatments. The paper was known to be uncoated. The surface energy of 

the paper was checked with Dyne solutions provided by Coates. All the available 

Dyne solutions, from 32 to 46 dynes, wet the paper. This would indicate that the 

surface energy is above 46 dynes. The Dyne solutions were applied by a cotton bud 

to the paper surface. There is an additional spreading force using this method. It has 

already been seen from the FT A and MAMS contact angle data on anilox Harper 1 

and Harper 2 that the same liquid on the same surface can exhibit different contact 

angles depending on how the drop is introduced to the surface. In the case of the 

application of Dyne solutions to paper, the cotton bud forces the solution into pores 

and between fibres. Coates only recommend the Dyne solution method for the 

surface energy evaluation of non-porous substrates. Surface energy measurements 

of the same order as calculated from the contact angle data are reported in work by 

Huang et al 129 who quote a surface energy of 30.77 mJm-2 for a sized handsheet. 

Contact angle measurement of the bands of anilox Harper 2 and the paper substrate 

were measured with the same test liquids on the same instrument using the touching 

off technique to dispense the drop. The total surface energies calculated from the 

contact angle data were 39 and 38 mJm-2 for the C02 and YAG bands respectively, 
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using the geometric mean approximation. (These values found not to be statistically 

significant when measurement of the errors were propagated.) There is a significant 

difference between these figures and the total value for the surface energy of the 

paper calculated using the geometric mean method, which was 32.Jm-2
• The surface 

energy difference at the nip is not favourable, i.e. there is no energetic incentive for 

the ink to transfer to the paper. This may be another factor in explaining the poor 

transfer of ink from the anilox to the paper. 

5.4 The effect of (leaning anilox Harper 2 with a spedalist product 

Anilox Harper 2 was cleaned with a specialist cleaning product in order to remove 

the plugged ink. The effect of cleaning anilox Harper 1 with the same product has 

already been discussed in Section 3.7. The cleaning product was seen to change the 

wettability of the Y AG band only on Harper I. The contact angles were measured 

on Harper 2 after cleaning. The results are tabulated in Section AS-8 of the appendix 

and are summarised in Table 5.19. Again no change was seen on the C02 and 

polished bands but the YAG band was much more receptive to wetting by water. 
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Original water Post-clean Original Post-clean 
water diiodomethane diiodomethane 

Polished band mean 74° 74° 44° 42° 

standard 3° 2° 2° 2° deviation 

CO2 band mean 91° 93° 43° 44° 

standard 2° 2° 2° 1° deviation 

YAGband mean 105° 82° 43· 42° 

standard 2° 3° 2° 1° deviation 

Table 5.19. The effect of using a specialist cleaning product on the contact angles 

observed on Harper 2. 

The contact angle observed on the Y AG band using water and the MAMS instrument 

was 86° with a standard deviation of 40

• The contact angle observed with the FT A 

after cleaning is within the range of error associated with this measurement. This 

supports the theory that the traces of cleaning product that remained on Harper 2 

helped the water reach thermodynamic equilibrium on the surface of the anilox. 

The cleaning product was not easy to remove from the YAG bands of the Harper 

anilox. 

The contact angle observed with water on the YAG band was still low after several 

days of cleaning the aniJox rolls with water and organic solvents. The anilox were 

not successfully cleaned during the period of these investigations. 
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5.5 Summary of results from anilox Harper 2 

1. The wettability trends observed on anilox Harper 1 were also observed on 

Harper 2. 

2. The contact angle recorded on the engraved bands of Harper 2 were higher 

using both the FT A and MAMS instruments. This was not directly related to 

the size of the cell opening or the number of cells per centimetre. 

3. Contact angles measured on the MAMS instrument were again lower than 

those measured on the FT A instrument. The trends observed in the data were 

the same on both instruments. 

4. The contact angle obtained with a static water drop on the FT A was not 

statistically different to the contact angle produced by advancing the water 

drop. A small difference between the static and advanced water drop was 

seen on the C02 bands and a large difference was seen with the polished 

band. The angle measured on the Y AG band with the static drop is therefore 

not an equilibrium angle. The angle measured on the C(h band is likely to be 

an overestimate of the equilibrium angle. 

5. Measurement of advancing and receding contact angles with diiodomethane 

were not possible, as a stable large drop could not be obtained. Measurement 
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of receding contact angles with water was not obtained due to experimental 

difficulties. 

6. The Owens-Wendt geometric mean approximation indicates that the change 

in the wettability across the bands is due to a change in the polar nature of the 

roll surface. The engravings being less polar than the polished unengraved 

surface, and the C02 engraving having more surface polarity that the YAG 

engraving. The Y AG engraving showed a negligible amount of polar 

character. 

7. The acid base theory of wetting indicates that the change in surface energy is 

mainly due to the reduction of the basic nature of the surface. The engravings 

being less basic than the polished unengraved surface, and the C02 engraving 

having more basic character that the YAG engraving. The engraved bands 

also have less acidic character than the polished band. There was no 

significant difference between the acidic components of the engraved bands. 

This trend was also seen on anilox Harper 1. 

8. There was a small difference between printed ink densities from the engraved 

bands. The YAG band produced a print with a higher optical density. 

Transfer directly from the aniJox to the paper was, overall, very poor. 

9. Plugging of the anilox cells gave an artificially low optical density on all but 

the outside edges of each band. The print was uneven due to poor contact 

between the anilox and paper. 
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10. Plugging of the anilox up to an approximate height of 3 microns did not 

affect the contact angles made by pure liquids on the surface of Harper 2. 

II. The use of a calibration curve to calculate the percentage ink transfer from 

the cell showed than the maximum transfer from the unplugged areas of the 

anilox to the paper was only 11 % and 9% of the ink carried in cells on the 

Y AG and C02 bands respectively at 5 metres per minute. 

12. The surface energy of the paper used in the press trail was found to be lower 

than that of each band of the anilox. 
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6. Mathematical adjustment of the contact angle to 

compensate for surface roughness 

As discussed in Section 1.3.3, the surface roughness of each engraved band is 

characterised by the power output of the laser used to make the engraving. The Y AG 

laser produces cells by ablating the ceramic whilst the lower power C~ laser melts 

then recasts the ceramic to form the cells. This difference between the engraving 

techniques gives rise to cell interiors with different roughness. In Chapter Two, three 

theories for explaining the effect of roughness on the contact angle were discussed in 

detail. They were the Wenzel equation, the Shuttleworth and Bailey equations and 

the Cassie and Baxter equation. In this chapter, each theory will be applied to the 

contact angle data that was collected on bands on anilox Harper 1, Pira 1 and 

Harper 2. 

6.1 Application of the Wenzel, Shuttleworth and Bailey, and Cassie 

and Baxter theories to anilox Harper 1 

The contact angle data collected from the bands on Harper 1 was summarised and 

discussed in Chapter 3. The contact angle data used in this section is derived from 

the contact angles made with the 5J.1.1 water and diiodomethane drops measured on 

the MAMS instruments, and the contact angles made with formam ide, 

diiodomethane and water measured on the FTA. For the purposes of evaluating the 

models, the polished band is assumed to have no roughness and the contact angles 
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observed on it are assumed to be a reasonable approximation of the equilibrium 

contact angle. The consequences of these assumptions will be discussed in Chapter 8. 

The curvature of the roll is constant for all measurements and its effects on the 

contact angle are considered constant. The profile of the ceJl is considered to be 

macroscopic roughness whilst the roughness of the cell wall and interior are 

considered microscopic roughness. 

6.1.1 Measurement of the cells on Harper 1 

Before the effects of the roughness could be calculated, the roughness itself had to be 

examined to detennine factors such as true surface area, the maximum gradient of 

the roughness peaks and the fractional area corresponding to the land around the 

cells. In order to obtain this infonnation detailed measurements of the anilox surface 

were needed. Initially, measurements were made on a Proscan 1000 optical sensor 

provided by Scantron. More detailed measurements were later made on a Veeco 

white light interferometer provided by the Welsh Centre for Printing and Coating in 

Swansea. 

Figures 6.1 to 6.4 show images created by the Proscan optical sensor. Figure 6.1 

shows an area of the C02 band covering multiple cells. Figure 6.2 shows the same 

size area on the Y AG band. Figures 6.3 and 6.4 show close up images of single cells 

from the CO2 and YAG bands respectively. The most obvious thing about the two 

images is that the YAG cells are much smaller in diameter than the C02 cells. As was 

mentioned in Chapter 3, anilox Harper 1 was designed with the cell depth as the 
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controlled variable, the other parameters were selected by the Harper Corporation to 

be typical values for the cell depth and laser type. The Y AG cells are expected to 

release to a greater depth than the C~ cells, therefore the three to one ratio of cell 

opening to depth dimensions can be exceeded with Y A G engravings and the 

openings can be made narrower. 

In Section 1.3.3 the characteristic shapes of the cells were discussed. The cells 

produced by the C02 laser were described as bowl shaped, whilst the cells produced 

by the YAG laser were described as tubular. The distinction is however not apparent 

from the images in Figures 6.1 to 6.4. The shapes of real cells are very irregular and 

the images do not support the claims made in the literature. The images show that the 

land area on the C02 band is a double ridge. This is visible in Figure 6.1 in the 

profile in x~axis, and in figure 6.3. The YAG cells are surrounded by a single ridge. 

This double ridge is produced by the recast from the two adjacent cells being pushed 

together. As a Y AG laser produces very little recast ceramic the land between two 

YAG cells is narrower and without the double peaks. An irregular ridge is however 

seen in the y-axis profile in Figure 6.2. This profile follows the length of the cell 

land area. The land areas between the Y AG cells are very thin and it can be seen 

from the profile in the x-axis in the Figure 6.2 that the height of the celJ wall varies 

more than between the C02 celJs as there is less unablated ceramic to produce a land 

at a constant height. The irregularities in the long cell land area are a result of the 

variation between the heights of the non-adjacent cells at either end of the land. 
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Figure 6.1. A scan showing the C02 band of ani lox Harper I. 
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Figure 6.2. A scan showing the Y AG band of anilox Harper I. 
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Figure 6.3. A close up scan of a single C02 cell on ani lox Harper I. 
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Figure 6.4. A close up scan of a singleY AG cell on anilox Harper I. 
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Figure 6.5 shows images taken from the x dimension plots of Figures 6.1 and 6.2. It 

shows the 20 surface scan of the engraved bands made by the Proscan optical sensor 

placed together for comparison. Unfortunately, the original image had axes of 

different scales, the height of the cells being a larger scale than the width. To see the 

true shape of the cells the proportions of the image were carefully manipulated using 

Adobe Illustrator and Photoshop to make the scale of the image uniform. 

~~-~~-~--. CO2 

~~. ~~YAG 
• 

Figure 6.5. Roughness of the engraved bands as recorded by the Proscan 1000 

optical sensor. 

[t can be seen from Figure 6.5 that when the scale of the height and width are 

equalised the gradient of the YAG cell walls appear steeper than the CO2 cell walls. 

The land area between the CO2 is again seen to be clearly wider than that between 

the YAG cells. 

Whilst the Scantron instrument shows the shapes of the cells on each of the bands it 

is not sensitive enough to show information about the roughness of the cell interior 

walls. As discussed in Section 1.3.4, the Veeco white light interferometer is a 

specialist measurement instrument designed to obtain information about the cell 

dimension, volume and roughness of an ani lox roll. The Welsh Centre for Printing 

and Coating has two interferometers. A fixed instrument with a platform on which a 
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small anilox can be placed for analysis and a portable roll scope for larger anilox. 

Harper 1 was small enough to be analysed by the fixed instrument. 

Figures 6.6 and 6.7 show two-dimensional profiles of cells on the C02 band and the 

YAG band respectively. Figures 6.8 and 6.9 show three-dimensional images of an 

area on each band containing multiple cells. 
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Figure 6.6. A 2D cell profile measured on the CO2 band of Harper I by the Veeco 

interferometer. 
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Figure 6.7. A 2D cell profile measured on the Y AG band of Harper I by the Veeco 

interferometer. 
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Figure 6.8. A 3D profile of cells on the C02 band of Harper I measured by the 

Veeco Interferometer. 

Figure 6.9. A 3D profile of cells on the Y AG band of Harper I measured by the 

Veeco Interferometer. 
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The three-dimensional images shown in Figures 6.8 and 6.9 demonstrate the 

difference in roughness of the land area between the cells. Figure 6.8 shows that 

although some of the land between the cells is irregular it is relatively smooth when 

compared with the jagged land area between the Y AG cells shown in Figure 6.9 

The Scantron and Veeco images of the cells on the YAG band show that the cell 

depth appears to be less than the figure quoted by the manufacturer. However, a very 

small number of measurements were made and from these it is not possible to make a 

judgement as to how representative the results were to the anilox as a whole. It was 

not the remit of this work to assess the accuracy of the measurement methods or the 

manufacturers values. Multiple measurements to determine a statistically valid 

measurement for the average cell depth were not made, therefore the manufacturers 

value for the cell depths will be used in all calculations. 

It is clear from both the Scantron and Veeco images that the real cells are not regular 

in size or shape. This makes the calculation of the parameters needed to modify the 

contact angle difficult. It was possible to obtain two-dimensional profiles of the 

bands on Harper 1 from which the gradient of the cell wall could be measured. Four 

scans were made of sections of the each band. From each scan, profiles of two cells 

were recorded in the x and y directions. A total of sixteen measurements were 

therefore made on each band. The raw data for each profile was processed by 

Microsoft Excel. A section of the cell wall was highlighted and a best-fit line added. 

The gradient of the best-fit line was recorded. The gradients of the best-fit lines were 

averaged to give a value for the mean slope of the cell wall for each band. The 

correlation coefficient, or R2 value for each best-fit line was also noted. The R2 value 
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varies between 1 and -1 and shows how well the data can be predicted from the best 

fit line. (1 and -1 being perfect fits whilst 0 indicates no fit). The R2 value gives an 

indication of the deviation of the cell wall from its average slope, and provides a 

way of comparing the roughness of the cell walls. The plotted cell profiles and fitted 

slopes are shown in Sections A6-1 and A6-2 of the appendix respectively. The 

obtained values for the gradient of the cell walls are shown in Table 6.1. 

CO2 VAG 

Sample 
Gradient R2 Sample Gradient R2 

position p<)sitlon 
1x1 0.61 0.965 1x1 0.84 0.956 
1x2 0.65 0.952 1x2 1.04 0.972 
1y1 0.56 0.978 1y1 0.88 0.945 
1y2 0.56 0.988 1y2 1.06 0.952 
2x1 0.49 0.963 2x1 0.97 0.964 
2x2 0.67 0.979 2x2 1.13 0.967 
2y1 0.65 0.996 2y1 1.27 0.963 
2y2 0.52 0.991 2y2 0.15 0.945 
3x1 0.66 0.980 3x1 0.87 0.969 

3x2 0.67 0.989 3x2 1.25 0.949 
3y1 0.75 0.995 3y1 1.24 0.915 

3y2 0.67 0.992 3y2 1.16 0.974 
4x1 0.70 0.989 4x1 0.71 0.933 
4x2 0.75 0.994 4x2 0.96 0.976 
4y1 0.58 0.976 4y1 1.01 0.949 
4y2 0.60 0.977 4y2 0.94 0.899 

mean 0.63 0.981 mean 0.97 0.152 
devlatton 0.08 0.013 deviation 0.27 0.021 

Table 6.1. The gradient of the cell walls of Harper 1, measured from data collected 

by the Veeco interferometer. 

The C02 cells had a shallower sloping wall than the YAG cells. The stope of the 

wall of the YAG cells showed a much larger deviation from the mean value, and the 

fit of the gradient line to the profile was worse than that of the C~ data, (shown by a 
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lower R2 value.) indicating that the YAG cell interior is less regular than the C02 

cell. 

The roughness of the cell interior was measured using the interferometer. A sample 

area of 17 microns by 11 microns was profiled by the interferometer. The software 

made a compensation for the curvature of the cell wall and a roughness average or Ra 

was reported. The Ra value is the average deviation of the height (of depth) of the 

roughness peaks from the baseline. The Ra values were measured 5 times on 3 cells. 

The results were averaged and the standard deviation noted. The results are shown in 

Table 6.2. 

Measurement 
R. (nm) R. (nm) 

number Harper 1 Harper 1 
CO2 band YAG band 

1A 488.2 514.5 
2A 418.9 359.0 
3A 434.8 248.1 
4A 484.1 390.1 
5A 353.6 381.5 
18 464.9 396.8 
28 396.4 410.1 
38 490.8 464.3 
48 518.2 385.7 
58 613.8 548.0 
1C 381.6 375.8 
2C 450.7 406.6 
3C 409.9 438.9 
4C 406.6 427.5 
5C 400.5 358.6 

mean 447.5 407.0 

standard 65.4 70.0 deviation 

Table 6.2. The roughness average of the interiors of the engraved cells, measured by 

the Veeco interferometer. 

190 



The Ra value unfortunately cannot be mathematically related to the Wenzel r-value. 

The measurements are however of much interest as they demonstrate that there is not 

a significant difference between the roughness of the interiors of the cells produced 

by the different lasers. There is no measurable characteristic roughness produced by 

the laser but the measurement in the form of RA only reports the average height of 

the roughness and gives no information about the roughness shape. The Veeco 

images showed that the C02 cells had undulating roughness whilst the Y AG cell 

interior appeared jagged. Spreading of a liquid is more sensitive to peaks with steep 

gradients, which pin the contact line. 

Where possible the required parameters for each of the treatments of the contact 

angle data, were calculated from the information obtained from the Proscan optical 

sensor and the interferometer. However, this was not always possible. The Wenzel r 

factor due to the presence of the cells could not be directly measured, as although 

both instruments were capable of estimating the volume of a cell, neither could give 

the surface area of the cell interior. Therefore, attempts were made to approximate 

the cells on each band by a regular, mathematically definable shape from which the 

necessary topographical information could be estimated. 

6.1.2 Using the Wenzel equation 

The Wenzel equation is the simplest method of mathematically adjusting the contact 

angle to compensate for the effect of surface roughness. It applies the theory that the 

change in contact angle on a rough surface is due to the increase in contact area 
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between the solid and liquid. The Wenzel equation has been discussed in detail in 

section 2.1.2. The object of this exercise is to determine if the increased area that is 

produced by the engraved cells is responsible for the changes to the contact angles 

measured. The Wenzel equation has been criticised as only being applicable to 

highly artificial roughness with patterns that a1l0w the contact line to move evenly in 

a1l directions. 84, 85 The pattern of cells is artificially regular and therefore is, in 

theory, a suitable surface for the Wenzel equation to be applied .. The roughness of 

the cells forms a regular pattern as shown in Figure 6.10. This is compared to the 

concentric ring model on which the Wenzel equation is knows to be applicable. 

Engraved cells Concentric rings 

Figure 6.10. Comparison of the regular pattern formed by cell in an engraving made 

at a sixty-degree angle with the concentric ring model. 

The Wenzel equation uses a roughness factor, r, which is the ratio of the apparent 

area to the true area, this factor could not be calculated from the measured profiles as 

neither instrument had the capability of reporting the surface area of the cell interior 

wall. It was therefore necessary to estimate Wenzel's roughnes ratio r. In order to do 

this, the cells were assumed to have the shape of herni-ellipsoids, with two axes 

equal to the cell opening and the third axis equal to twice the cell depth. The 

equations for the surface area of an ellipsoid 130 and calculations are detailed in 

Section A6-3 of the appendix. 
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The calculations produced surface area values of 1421.42 J.U112 for the C02 engraving 

and 625.33 fJ.m2 for the YAG engraving. The cell wall was assumed to be circular, 

and the diameter of the land area of the cell was assumed equal to the cell opening 

plus half the width of the cell wall at each side. This gives the flat land area of the 

cell as 1385.44 J.U112 for a C02 cell and 352.99 J.U112 for a YAG cell. When the flat 

land area is divided by the calculated surface area for the hemi-ellipsoid model plus 

the wall area, Wenzel's r factor is obtained. The calculated values ofr were, 1.2 for 

the C02 band and 2.0 for the Y AG band 

As previously stated, for the purpose of this work the surface roughness of the anilox 

can be split into two components, the macroscopic roughness due to the cells, which 

is characteristic of the line screen, and the microscopic roughness inside the cells, 

which is a feature of the ceramic, and laser type used to make the engraving. The size 

and shape of the cells are known and the ellipsoid model provides an estimate of r, 

Wenzel's factor of roughness, which is based on the macroscopic roughness only. 

Putting the calculated r-values into the Wenzel equation would, if the theory is 

correct, adjust the contact angle to remove the effect of the component of anilox 

roughness due to the line screen of the engraving. The theoretical contact angle 

generated by the calculation would be the theoretical contact angle produced by the 

interaction between the test liquid and the anilox surface, the properties of which are 

defined by the surface energy of the ceramic and the micro-roughness inside the cell 

and on the cell wall. It is not the theoretical value for a completely smooth sample. 

The contact angle measurement is modified to compensate for the bands having 

different numbers of cells over a given area and for the difference in surface area 

between the two cells. The Wenzel contact angles calculated from the MAMS and 
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the FTA data are shown in Tables 6.3 and 6.4, respectively. 8m is the measured 

macroscopic contact angle and Ow is the calculated Wenzel angle. 

CO2 band VAG band 

9 m water 64· 76° 

all' water 69° 83° 

9 m diiodomethane 19° 15° 

Ow dliodomethane 38° 61° 

Table 6.3. The observed and calculated contact angle values using the Wenzel 

equation on Harper 1 data from the MAMS instrument. 

CO2 band VAG band 

8 m water 84° 100° 

aw water 8So 9So 

9 m diiodomethane 43° 45° 

Ow dilodomethane 52° 69° 

9 m formamide 60° 64° 

9" fonnamlde 65° 77° 

Table 6.4. The observed and calculated contact angle values using the Wenzel 

equation on Harper 1 data from the FT A instrument. 
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The Wenzel equation predicts that the C02 band with a roughness ratio of 1:2 and a 

contact angle with water of 84° on the FTA instrument, would have a contact angle 

of 85° if the roughness was removed. However, it has been observed experimentally 

that the contact angle on a smooth piece of the material is 75°. This trend is repeated 

for the C02 and Y AG, water contact angles measured on the MAMS instrument. The 

contact angles made by water on the VAG band and measured by the FTA 

instrument are modified towards the observed contact angle on the smooth sample. 

However, as the Wenzel equation modifies the cosine of the angle, the lowest obtuse 

contact angle can be modified to become is 90°. Therefore no matter what value of r 

is used the equilibrium value of 75° cannot be found. 

There is a significant problem with use of the FT A instrument contact angle data in 

the Wenzel equation. The Wenzel equation uses equilibrium contact angle data. The 

contact angle data obtained using the FT A instrument, which were initially believed 

to be equilibrium angles, were found at a later point in the investigation to be 

advancing data (as discussed in Section 3.3.) the angles used are therefore already 

overestimates of the equilibrium contact angle. 

As has been discussed in Section 2.1.2, using the Wenzel equation to predict the 

presence of roughness on a sample contradicts the experimental observations on all 

but very artificial structures with the impedance to the movement of the contact line 

is equal in all directions. It is clear from these results that the Wenzel equation does 

not describe the wetting behaviour on anilox Harper 1 
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It was thought that as this pattern has many lines of symmetry that the contact line 

would move evenly in all directions and approximate the concentric ring 

arrangement that the Wenzel equation has been shown to be applicable to. Contact 

angle analysis demonstrated that the hexagonal close packed arrangement of cells did 

not aHow the contact line to move evenly in all directions. The Scantron and Veeco 

images showed that the real cell profile is far from regular and the curvature of the 

roll clearly promotes travel around the roll rather than along it. 

The accuracy of the hemi-ellipsoid model used to approximate Wenzel's r-value was 

tested by making a comparison between the volume of the hemi-ellipsoid and the 

reported volume of the anilox cells. The volume of the hemi-ellipsoid was calculated 

in cm3/m2 and compared to the manufacturers reported volumes. The ellipsoid model 

overestimated the volumes for both bands, giving a volume of 5.8 cm3/m2 for the 

C02 band, which is high, compared to the reported figure of 4.1 cm3/m2
, and 5.7 

cm3/m2 for the Y AG band, which is again high, compared to the reported volume of 

3.6 cm3/m2
• The calculations to obtain these figures are in Section A6-4 of the 

appendix. 

The volume of the cells was approximated from the volumes supplied by Harper as 

cm3/m2 as 4674 J.Lm2 for the C<>7 band and 4160 J.LIn2 for the YAG band. Other 

regular shapes were evaluated to see if they produced an acceptable approximation to 

the volume of the cell. Cylinders produced twice the expected volume whilst cones 

and hexagonal based pyramids gave volumes of half the expected value. 
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Although the volumes given by the ellipsoid model are overestimates, it would not 

be correct to suggest that the ellipsoid model would also overestimate the surface 

area of the cell. The model assumes that the cell interior is smooth; the irregularity 

of the cell wall would increase the surface area of the cell. Contact angle 

measurement is sensitive to roughness of the order of 100 nm. 74 The interferometer 

measurements show that when the slope of the cell wall is taken into account the 

average height of the roughness peaks is in the order of 400nm which is therefore 

large enough to have an effect. The roughness of the cell interior walls was found 

not to differ significantly between the bands, however there are twice as many cells 

on the Y AG band so the increased roughness would be double that for the C02 band. 

6.1.3 Using the Shuttleworth and Bailey equation 

The Shuttleworth and Bailey equations link the size of the advancing or receding 

contact angles to the slope of the surface roughness. These equations were discussed 

in Section 2.1.4. In order to adjust the contact angle data to compensate for the 

roughness of the cells, the maximum slope of the cell wall needed to be calculated. 

The hemi-ellipsoid model could not be used, as the maximum slope would be 90° for 

both cell shapes. Therefore to model the slope of the cell more accurately the cell 

shape was assumed to be a parabolic. This is shown in Figure 6.11. 
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Figure 6.11. The engraved cells of Harper I approximated as quadratic parabola. 

The term c is the y axis intercept and has the values -10.7 and -10.6 for the C02 and 

Y AG parabola respectively. The term a is calculated from the value of x when y = 0 

and is 0.0296 for the C02 curve and 0.1170 for the Y AG curve. The gradient can be 

found by using differential of the equation of the curve, 2ax. The maximum gradient 

can be found by putting in the maximum value of x. The maximum gradients are 

1.12 for the CO2 curve and 2.23 for the YAG curve. Taking the inverse tangent gives 

the slope as an angle in degrees, giving maximum angles of 48° for the C02 curve 

and 66° for the YAG curve. 

In order to verify that a parabola gave a good approximation to the cell shape data 

from a C02 cell profiled by the Veeco instrument was transformed to make fit the 

same mathematical space as the parabola. The data was manipulated so that it was 

centred about the y-axis and positioned below the x-axis. Values for the y co-

ordinate were calculated for the x co-ordinates for which data was available using the 

above equation. The results are plotted in Figure 6.12. 
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Figure 6.12. Fitting of the parabola y = O.0269x2- IO.7 to a mapped cell from 

measurement Harper I C02 I x2. 

The parabola appeared a good fit to the experimental data. The exercise was 

repeated for a Y AG as shown in Figure 6.13. The fit of the parabola to the Y AG 

cell was not as good. It was however concluded that this was due to the irregular 

shape of the Y AG cell and that the parabola was the closest simple mathematically 

defined shape that could be used. 

~----~·--~---IO +----.- ,--, 
·8 -6 -4 -2 2 6 6 

·2 

- Measured cell depth (micron s) 

- Calculated from parabola equation 
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Figure 6.13. Fitting of the parabola y O.1170x2- IO.6 to a mapped cell from 

measurement Harper I Y AG 4x2. 
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It was possible to generate parabola that were closer fits to the individual cells by 

using the trendline function in Excel. The red line in Figure 6.14 shows the best-fit 

2nd order quadratic parabola along side the measured data and simple parabola. 

y = O.0703C . O.0844x · 8.571 
W=0.9574 

- Measured cell depth (microns) 

- Calculated from parabola equation 

- fitted quadratic trendline E= 0.0324,c + 0.0155x . 11 .463l 

R2 = 0.9732 J 

Figure 6.14. Fitted parabola to data from single cells on anilox Harper I. 

There are two advantages of using the simple parabola model. The fitted parabolas 

are specific to the selected cells. There is considerable variation between the 

measured cells and the quadratic equations generated for each cell cannot easily be 

averaged to give a general equation. The simple parabola is based on general 

measurements believed to be representative of the cells as a whole. The simple 

parabola can also be used to estimate the surface area. The calculations for this are 

shown in the Section A6-5 of the appendix. It is theoretically possible to make these 

calculations for the fitted equations but the mathematics becomes more complicated. 

As the surface area of the parabola could be calculated, the Wenzel r-values were 

recalculated using this model. The calculations are shown in the Section A6-7 of the 

appendix. The r-value for the CO2 cell was unchanged at 1.2. The r-value for the 
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Y AG cell was reduced from 2.0 to 1.7 this produced a change in the Wenzel contact 

angle for the MAMS data from 83° to 82°. The conclusions reached in Section 6.1.2 

are unchanged by the use ofa more accurate model of the cell profile. 

When the interferometer was used to map the anilox it became possible to measure 

the gradient of the cells directly from the profile data. The measurements and profiles 

are shown in Sections A6-1 and A6-2 of the appendix. The mean values for the 

gradient listed in Table 6.1 are shown in Table 6.5 along with the conversion of the 

gradient to an angle in degrees. 

COzband YAG band 

tans gradient R2 value tan e gradient R2 value 

Mean 0.63 320 0.98 0.97 440 0.95 

Standard deviation 0.08 30 0.01 0.27 80 0.02 

Table 6.5. The gradient of the cell wall of anilox Harper 1 calculated from data 

obtained with the Veeco interferometer. 

The parabola approximation of the slope of the cells was seen to overestimate the 

angle of slope for both cells by approximately a third. Whilst the magnitudes of the 

slopes predicted by the model were very inaccurate the difference between the slopes 

of the cells was accurately predicted. 

The Shuttleworth and Bailey equation for advancing angles is Sa = Se + 0 m. (Section 

2.1.4, Equation 2.5.) The observed and theoretical equilibrium contact angles for the 

MAMS and FTA data are shown in Tables 6.6 and 6.7 respectively. The data from 
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the MAMS instrument had to be Equilibrium data as no other data was available. 

Advancing data was obtained on the FT A however the number of repeats was small. 

Advancing data was used for the diiodomethane calculations, however the advancing 

data using water was very similar to the equilibrium measurements (showing that the 

method of introducing the drop had produced advancing angles in that case). The 

equilibrium angles for water were used in place of the advancing data, as there were 

enough data points to be confident of an accurate average. 

Observed Modified using Modified using 
contact angle parabola model measured values 

Polished 
water 66° 

band 
. .. 

dllodomethane 20° . .. 

CO2 band water 84° 16° 32· 

diiodomethane 19° 0° 0° 

VAG band water 76° 10· 32· 

dllodomethane 16· O· 0° 

Table 6.6. Theoretical contact angles produced by applying the Shuttleworth and 

Bailey equation to the MAMS data from anilox Harper 1. 
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Observed Modified using Modified using 
contact angle parabola model measured values 

Polished 
water 75° 

band 
. . 

dilodomethane 42° . . 
CO2 band water 84° 36° 52· 

dilodomethane 51° 3° 19° 

YAG band water 100° 30° 56° 

dllodomethane 61° 0° 7° 

Table 6.7. The theoretical contact angles produced by applying the Shuttleworth and 

Bailey equation to the FT A data from anilox Harper 1. 

The angle of maximum slope of the roughness is subtracted from the observed 

contact angle to give the theoretical angle. In some cases this is larger than the 

observed angles made by diiodomethane or fonnamide drops. This gives a modified 

contact angle of 0°. An angle of 0° cannot be used in surface energy calculations, as 

it would imply an infinitely high surface energy. 

The contact angles obtained using the MAMS instrument were equilibrium contact 

angles. As the Shuttleworth and Bailey equations modifY the advancing or receding 

contact angles they are not appropriate for use with the MAMS data. The FT A 

instrument produced advancing data. The use of the Shuttleworth and Bailey 

equation adjusts the contact angles made by both test liquids in the correct direction. 

However if the measurement on the polished unengraved area using the FT A 
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instrument is considered a reasonable approximation of the equilibrium angle, using 

this equation over adjusted the contact angles significantly for both sets of data. The 

FT A was used to make measurements of advancing contact angles and equilibrium 

contact angles. However the contact angle measurements on all bands were found to 

have been advanced, even when the intent was to measure equilibrium angles. The 

polished band was also found to be an advanced angle and therefore the estimate of 

the eqUilibrium angle is known to be too high. The equilibrium angle using 

diiodomethane on the polished band was not equal to the advancing angle on that 

band. However this does not necessarily mean that it is a good approximation of the 

equilibrium angle. The modification of the FT A data using the measured values for 

the maximum gradient give values very close to the equilibrium contact angles 

measured with the MAMS instrument on the polished band. This is shown in table 

6.8. The errors quoted along side the angles are a sum of the uncertainties from the 

contact angle measurement and the gradient measurements. 

The calculated angle for diiodomethane on the Y AG band is the furthest away from 

the MAMS value. When the uncertainty in the measurement of the slope is 

considered the measurement could be 8° higher than the reported value. There was a 

3° uncertainty in the measurement of the angle. This gives a total uncertainty of 11 0 

and indicates that the true value for this angle could be as high as 18°, which is 

within the bounds of the uncertainty of the contact angle measurement on the 

polished band. The agreement between all the other calculations and the measured 

values are very good. 
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Contact angle on the polished band measured 56° +/- 2° 
using the MAMS instrument 

Shuttleworth and Bailey angle calculated from 
Water advancing angle data measured using the FTA 52° +/- 5° 

instrument and on the CO2 band 

Shuttleworth and Bailey angle calculated from 
advancing angle data measured using the FTA 56° +/_10° 

instrument and on the VAG band 

Contact angle on the polished band measured 
20° +/- 2° 

using the MAMS instrument 

Shuttleworth and Bailey angle calculated from 
Diiodomethane advancing angle data measured using the F1' A 19° +/- 5° 

instrument and on the CO2 band 

Shuttleworth and Bailey angle calculated from 
advancing angle data measured using the FT A 7° +/_11° 

instrument and on the VAG band 

Table 6.8. A comparison of the angles produced the MAMS instrument on the 

polished band to those calculated using the Shuttleworth and Bailey equation and the 

advancing data obtained using the FT A. 

The use of the Shuttleworth and Bailey equation, like the Wenzel equation predicts 

that the diiodomethane drops should be affected by the roughness of the bands in the 

same way as the water drops. However, the advancing contact angles of the 

diiodomethane drops on the rough bands were only slightly higher than those on the 

smooth bands, other factors such as the curvature of the roll, micro roughness of the 

polished band and surface contamination clearly have produce contact angle 

hysteresis on the unengraved polished areas of Harper 1. 

Johnson and Dettre 93 hypothesised that the maximum and minimum combinations, 

taken by Shuttleworth and Bailey to be the advancing and receding contact angles are 

not likely to occur in real conditions due to thermodynamic constraints. They 
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suggested that the true equilibrium contact angle was somewhere between the 

predictions made by Shuttleworth and Bailey. and the prediction made by Wenzel. 

This would give a range from 52° to 69° for the C02 band and 56° to 83° for the 

Y AG band. The corresponding observed value on the polished band is 56° using the 

MAMS instrument. These results support the hypothesis that the contact angle on the 

polished band as measured with the MAMS instrument approximates the equilibrium 

contact angle. The error involved in these calculations is however large. The surface 

of the anilox was not rigorously designed to be uniform and easily modelled or 

measured as was the case for surfaces in which these equations have been developed 

on. There is significant error involved in estimating Wenzel's r-value and measuring 

gradients of the cells. The Shuttleworth and Bailey equations have been successfully 

used to explain the size of the advancing contact angle on structured paper samples 

by Wagberg & Westlind 97 

6.1.4 Using the Cassie and Baxter equation 

When the contact angle on a surface approaches or exceeds 90°, it may not be 

favourable for the test liquid, in this case water, to wet the bottoms of the cells. This 

would result in a composite surface of soJid/liquid and solid/vapour interfaces, which 

can be described using the Cassie and Baxter equation (Equation 2.4). cos 9c = flcos 

ge - f2• where fl and f2 are the fractions of solid/liquid and solid/air interfaces 

respectively and 9c and Oe are the Cassie and equilibrium contact angles. 
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The contact angles made by water on the engraved bands of the anilox were 

considered in order to determine if the Cassie and Baxter equation could be applied. 

A three-dimensional scan of a small section of each anilox band had been made with 

a Proscan 100 optical sensor. Changes in height were indicated by colour, with blue 

showing the low areas at the bottom of the cells and green the raised cell wall. 

2J." 

y ~I --~---+I __ ~ __ ~I __ --+ 
ga9 979 J.49 

Y (PR) X (Pn) 

Figure 6.15. A Scan of cells on the CO2 band made by the Scantron Proscan 100 

instrument. 

Graphical tools were used to determine whether the changes to the contact angle 

made by water on the engraved bands could be explained by the bottoms of the cells 

being unwet. An area of the image covering 42 cells was selected. The image size 

was measured and found to be 18878 pixels squared. A circle shape was selected 

which best covered up the blue and purple areas of the cell (up to an approximate 
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depth of 3~m on the scale). The image with the circles overlaid is shown in Figure 

6.13. Each circle had a diameter of 9.5 pixels and therefore covered an area of 71 

pixels squared. The cells in total thus take up an area of 2977 pixels squared. This 

translated to 16% of the overall area or a fractional area of 0.16. 

Figure 6.16. A section of the Scantron image on the CO2 band with the bottom 3~m 

of each cell blacked out 

The Cassie equation can be rearranged to solve for f" the fractional area 

corresponding to the solid/liquid interface, using the relationship f2 = I - fl. 

f, = (cosec +1) / (cosge+l) Equation 2.5 

The observed angles on the engraved bands are assumed to be Cassie contact angles. 

The observed angle on the unengraved, polished band is assumed to be the 

equilibrium contact angle. 

208 



Using the MAMS data, the value fl is equal to the cosine of 64, plus 1, divided by the 

cosine of 56 plus 1. This gives a value of 0.92 for fl' the fraction of water/ceramic 

interface. The fraction of the surface that is unwet, f2 is therefore 0.08 or 8%. 

Using the FTA data, the value fl is equal to the cosine of 84, plus 1, divided by the 

cosine of 75 plus 1. This gives a value of 0.88 for ft, the fraction of water/ceramic 

interface. The fraction of the surface that is unwet, f2 is therefore 0.12 or 12%. 

The values using the FTA data are closest to the value estimated by the graphical 

analysis of 16%. However the FT A data is advancing data and therefore should not 

be used either as a Cassie angle or an equilibrium angle. The value of 8% produced 

by the MAMS data must be the correct value if a composite air/ceramic surface is 

formed when the bands are wet with water and this is half that predicted by the 

graphical estimate. 

The calculations were repeated using a Scantron image of the YAG cells, this is 

shown in Figure 6.17. The blue and purple areas of the scan were again overlaid with 

circles of known diameter. This time an area corresponding to the bottom 4 f.tm of 

the cell was covered. This is shown in Figure 6.18. The Isolated area contained 40 

cells of radius 13 pixels and had an area of 13867 pixels squared. The overlaid area 

was found to cover 38% of the overall area. 
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Figure 6.17. An image of cells on the Y AG band, made by the Scantron Proscan 100 

instrument. 

Figure 6.18. A section of the Scantron image on the Y AG band with the bottom 4 

Jlm of each cell blacked out. 

Again using Equation 2.5, fl using the MAMS data is found by the cosine of 76, plus 

I divided by the cosine of 56 plus I. This returns an answer of 0.80 which gives the 

amount of unwet surface as 20% 
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When the FT A contact angle data was substituted into the equation fl was calculated 

to be 0.66, Giving the unwet fraction f2 as 0.34 or 34%, This value is of the same 

order as the estimate of the base of the Y AG cell of 38% but is again based on 

advancing data which is unsuitable for use in this way. 

The graphic estimation of the unwet was based on the height that could easily be 

selected as the base of the cell from the Scantron images. The height that could be 

chosen was determined by the colour variation of the scale. A circle with area 36 

pixels squared (which is the area of air/water interface at the base of each cell if 8% 

of the surface remained unwet) was added to the image of the cells in Figure 6.19. 

The cells however proved too irregular and the scale too large to give a definite value 

for the amount of un wet cell this would correspond to. 

Figure 6.19. A section of the Scantron image on the C02 band with an area 

corresponding to 8% of each cell blacked out. 

211 



In order to model the depth to which an average cell would be wet to, if the 

prediction made by the Cassie and Baxter equation and MAMS data is correct, the 

parabola model detailed in Section 6.1.3 was used. The surface area of one cell with 

its share of land was calculated as for use with the Wenzel equation (shown in 

Section A6-6 of the appendix.) The surface area of a new small parabola at the 

bottom of the large parabola was calculated. This is illustrated in Figure 6.20. The 

height of the parabola from its minimum was varied by changing the y value at the 

top of the parabola until the ratio of the area of the circle formed at a height termed y 

= n. to the surface area of the large parabola minus the surface area of the small 

parabola, reached the desired relationship of 0.92. 

yaxis 

-22 -19 19 22 x axis 

y=n 

10.7 

Figure 6.20. Using the parabola model to calculate the depth to which a C02 cell is 

unwet according to the Cassie and Baxter model. 

The area of the circle at y=n (the diameter of which is shown by the green line in 

Figure 6.20.) is the area of air/water interface. The area of the cell and land in contact 

with the water is shown in red. The calculation is shown in detail in Section A6-7 of 

the appendix. When the relative areas were varied, the value of n that produced an 
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area of air/water interface of 8% was -9.43. This indicates that the bottom 1.27 

microns of the cell remain unwet. 

This calculation was repeated for a VAG cell modelled by a parabola as described in 

Section 6.1.3. The value ofn that produced an air/water interface of 20% was -5.93. 

This indicates that the bottom 4.67 microns of the cell remains unwet. 

The Cassie and Baxter theory can be used to explain the differences in wetting 

behaviour between water and diiodomethane. The surface energy of the anilox is 

largely non-polar and the diiodomethane wets. by dispersive or non-polar 

interactions. Therefore the diiodomethane drops have no problems in wetting the 

cells completely, no composite surface is formed and therefore no change in the 

contact angle due to the presence of an additional solid/air interface. 

If the water penetrates the cells, the volume of the drop that is observed on the 

surface should be less than the dispensed volume. In theory, it should be possible to 

check to see if there is a volume "loss" observed due to the liquid sitting in the cells 

and therefore being invisible to the camera. The largest drops observed during these 

experiments had a diameter in the order of 6 mm and therefore took up an area on the 

roll of approximately 2.8 xlOos m2, From the volumes supplied by Harper, this 

equates to 0.12 J.Ll for the C02 band and 0.10 J.Ll for the VAG band. Even if the cells 

were completely filling this would still be too small a difference to detect with either 

the MAMS or the FTA instruments. 
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There is support for the applicability of the Cassie and Baxter equation to the wetting 

of the anilox cells from a paper by Oliver and Mason. 99 They examined a metal 

surface that contained an orthogonal array of holes (the same pattern as a 45° 

engraving) having an approximate line count of 28 lines per cm. Their findings on 

wetting this surface with ethylene glycol were that for large drops the results were 

consistent with the Cassie and Baxter equation, and that the liquid did not penetrate 

into the holes. The equilibrium contact angle reported for ethylene glycol on 

polished stainless steel was 60.2° +1- 1.6° indicating the liquid wet the surface more 

easily than the water wet the anilox. The sides of the holes in the steel were at 90° to 

the surface rather than the gentler slope of the cells on the anilox, making penetration 

of the holes less favourable. The anilox cells are however an order of magnitude 

smaller than the holes present in the stainless steel. Therefore smaller pockets of the 

air/liquid interface would have to be created in order for the cell bottoms to remain 

unwet. 

A recent paper by Abdelsalsm et al 131 has studied the contact angles formed on a 

close packed array of cells formed on a gold surface, which resemble a 60° engraving 

on a smaller scale. The size of the pore opening is controlled by depositing varying 

thicknesses of gold through an array of polystyrene spheres. The size of the openings 

are not listed in the paper, however three pores cover a 2J.Ull length making them 

about two orders of magnitude smaller than anilox cells. The findings of this work 

were that by increasing thickness of the gold, and therefore changing the shape of the 

pores from shallow bowls to almost enclosed spheres the contact angle was seen to 

change in accordance with the Cassie and Baxter relation. This is particularly 

significant to this work as the smooth gold gave a contact angle with water of less 
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than 900 (as does the unengraved ceramic) It was shown that roughness can make a 

hydrophilic surface hydrophobic. 

It is the hypothesis of this author that spreading on a microscopic scale occurs by the 

contact line travelling over peaks and troughs due to the presence of the engraved 

cells, the effect of the roughness on the contact line is very localised and becomes the 

determining factor when the contact line is advanced or receded. The advancing 

angles are therefore dictated by cell geometry and uniformity. The changes to the 

contact angles that are observable when polar liquids are able to reach equilibrium 

contact angles on the engraved bands are due to incomplete penetration into the cells 

by liquids with highly polar nature, as is consistent with the theory of Cassie and 

Baxter and with the experimental observations of Oliver and Mason, 97 and 

Abdelsalsm et al. 

6.2 Using the Wenzel, Shuttleworth and Bailey and the Cassie and 

Baxter equations on the contact angle data from Pira 1 

6.2.1 Estimation of the dimensions of the cells on the aniiOI Pira 1 

AniJox Pira 1 was too large to move from the Pira pressroom. As none of the 

measurement devices could be taken to Pira it was not possible to obtain any data on 

the topography of the engraved cells. The mathematical modelling strategy was used, 

as with anilox Harper 1 in Section 6.1, to produce estimates of the geometry of the 

roughness due to the cells. The theories of the modification of the contact angle were 
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then applied to the roughness geometries in order to assess the applicability of these 

theories to the contact angle data. 

The shape of the cells on anilox Pira 1 was modelled mathematically. As the cells on 

Pira 1 were engraved in a 45° pattern the best approximation of the cell shape is a 

square based pyramid (see section 1.3.3) the height of the pyramid i.e. the depth of 

the cell, was not known and had to be calculated from the cell volume and the width 

of the cell opening. The calculations are shown in full in the Section A6-8 of the 

appendix. The width of the cell was calculated from the Jine screen with the cell wall 

estimated frOPl literature values. The cell opening was calculated as 4.9 x 10-sm or 

49 microns. The volume of an individual cell was calculated by multiplying the 

reported volume in cm3/m2 by the area that the celJ occupies and were found to be 

1.5x I 0-14 m3 for band one, 1.7xl 0-14 m3 for band two and 1.9x 10-14 m3 for band three. 

The calculated cell depths were 1.9 xl(}sm or 19 microns for band one, 2.1 xlO-sm 

or 21 microns for band two and 2.4 xl O-sm or 24 microns for band three. From this 

information the parameters needed for the Wenzel, Shuttleworth and Bailey, and 

Cassie and Baxter equations were calculated. These calculations form Sections A6-9 

and A6-10 of the appendix. 

6.2.2 Application of the Wenzel, Shuttleworth and Bailey and Cassie and Baxter 

equations to the Pira 1 data 

In the absence of any chemical change to the anilox surface brought about by the 

engraving process, it would be expected that the roughness created by the presence 
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of the cells would change the observed contact angle. The Wenzel and Shuttleworth 

and Bailey and Cassie and Baxter equations were used as before in an attempt to 

estimate the magnitude of predicted change in contact angle. 

The Wenzel equation was applied to the contact angles observed on anilox Pira 1 in 

the same way as with Harper 1. The r term was calculated by assuming that the 

increased volume was equal to the surface area of the triangular faces of the pyramid 

plus the cell wall. The calculations are shown in full in Section A6-9 of the appendix. 

The r values were: for band one, r = 1.13 and for band two r = 1.15, for band three r 

= 1.20. The r-values were then used along with the contact angle data obtained 

using the MAMS instrument, to calculate the Wenzel contact angle for each band. 

The results of the calculation are shown in Table 6.9. 

The theoretical contact angles predicted by the Wenzel equation again shifted the 

contact angles in the opposite direction to the experimental observations. However 

the estimated cell dimensions for the bands were very similar and gave r values for 

bands one and two that were only 0.02 apart. These r values were not rounded to one 

decimal place, as has been the case in other calculations, as the difference would 

have been exaggerated to 0.1. The r values used in the calculations were correct to 

two decimal places. 
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Observed Wenzel contact 
Shuttleworth & 

contact angle angle 
Bailey 

contact angle 

Water Polished band 50° . . 
CO2 band 1 52° ar 14° 

CO2 band 2 52° 58° 11° 

CO2 band 3 52° 59° 8° 

Dllodomethane Polished band 14° . . 
CO2 band 1 1r 3r 0° 

COzband 2 15° 33° O· 

CO2 band 3 12° 3So O· 

Table 6.9. The effect of applying the Shuttleworth and Bailey, and Wenzel equations 

to the Pira I data. 

The use of the Wenzel equation not only moved the contact angles in the opposite 

direction to the observations but also created a small difference between the bands. It 

is clear that the Wenzel equation does not describe the wetting interactions at the 

surface of Pira 1. 

The slope of the cell wall was calculated for each band and found to be 38
0

, 41
0 

and 

44· for bands 1, 2 and 3, respectively. When these angles were subtracted from the 

MAMS contact angles in accordance with the Shuttleworth and Bailey equation for 

advancing angles the resulting calculated contact angles were much lower than the 

eqUilibrium value observed on the unengraved band. The modification of the 

diiodomethane contact angles took them below 0°. As discussed in Section 6.1.2, the 

Shuttleworth and Bailey method used is for advancing contact angles. The contact 

angles that have been observed on the bands of anilox Pira 1 have been allowed to 

find an equilibrium shape and have not been further advanced by the addition of 
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more liquid. The observed angles are therefore lower than true advancing angles 

would be. It was not possible to measure advancing angles with the MAMS 

instrument therefore the Shuttleworth and Bailey modifications have no relevance to 

the Pira 1 data. 

As the contact angles observed on the polished and unengraved areas are within the 

deviation of measurement there is no evidence to suggest that there is incomplete 

wetting of the cells, leading to a composite air/ceramic surface which could be 

described by the Cassie and Baxter equation. It is apparent that none of the methods 

of modifying the contact angle to compensate for the deviation of the anilox surface 

from the ideal are appropriate. It is unfortunate that advancing and receding contact 

angles could not be measured on anilox Pira I, as the Shuttleworth and Bailey model, 

is in theory, the best suited to apply to the system. The engraved pyramids are of a 

smaller order of magnitude than those used in the work of Bartell and Shepherd 91,92 

however the surfaces are topographically similar and the Shuttleworth and Bailey 

equations were shown to be applicable in that case. 

6.3 Application of the Wenzel, Shuttleworth and Bailey, and Cassie 

and Baxter theories to anilox Harper 1 

6.3.1 Measurements of the cells on Harper 2 

Measurements of the cell profiles of Harper 2 were made using a Veeco 

interferometer at the Welsh centre for Printing and Coating in Swansea. Harper 2 
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was too large to fit on the sample platform of the instrument used to measure Harper 

1. The Veeco roll scope, a portable interferometer therefore had to be used. The roll 

scope was less sensitive than the instrument used to measure Harper 1 and the 

amount of noise in the measurements was much greater. Two-dimensional 

measurements of the cells were made in the same way as for anilox Harper 1. The 

data was exported into Excel. Measurements were made at three sites on the C02 

band and two sites on the YAG band. Four profiles of the cell were made at each 

site. The data was graphed in Excel and gradients were fitted to the slope of the cell 

wall as done with the Harper 1 data. The graphical profiles and fitted gradients are 

shown in Section A6-11 and A6-12 of the appendix. The results of this work are 

tabulated in Table 6.10. 

CO2 VAG 

Sample Gradient R2 Sample Gradient R2 

1x1 1.57 0.947 1x1 0.71 0.916 

1x2 0.38 0.915 1x2 0.97 0.882 

1y1 0.39 0.952 1y1 0.70 0.895 

1y2 0.87 0.782 1y2 0.94 0.891 

2x1 0.35 0.941 2x1 0.59 0.952 

2x2 0.57 0.865 2x2 0.74 0.788 

2y1 0.37 0.943 2y1 0.47 0.965 

2y2 0.47 0.958 2y2 0.52 0.924 

3x1 0.42 0.970 

3x2 0.45 0.969 

3y1 0.59 0.958 

3y2 0.51 0.973 

mean 0.58 0.931 mean 0.71 0.901 

deviation 0.34 0.055 deviation 0.18 0.054 

Table 6.10. The gradient of the cell walls of Harper 2, measured from data collected 

by the Veeco roll scope interferometer. 
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There was a problem with dried ink plugging the cells of the anilox. Some plugging 

damage to the cells was visible with the naked eye. This had been visible since 

before the press trial and was believed to be from attempts to measure contact angles 

using UV curable and water-based inks. Surface measurements were not made in 

these areas. Further plugging of the anilox that was not visually discemable was 

obvious from the image produced by the interferometer. Scans which showed 

obvious plugging were discarded. Unfortunately some plugged cells on the C02 band 

were overlooked when the measurements were taken and identified only when the 

data was studied at a later date. The sites coded 1 and 2 on the C~ band were seen 

to have significant plugging. Figures 6.21 6.22 and 6.23 show examples of cell 

profiles from sites 1, 2 and 3 respectively. Graphs showing all measurements made 

are included in Section A6- I 1 of the appendix. The cells from sites 1 and 2 are 

shallow and have flatter bases showing that they are plugged with ink. The cells 

measured at site 3 are deeper and have a more pointed bottom on the graphs. It is 

useful to note here that the scales of the x and y axis are unequal and exaggerate the 

depths of the cens. 
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Figure 6.21. A profile of cells at measurement site 1 on the CO2 band showing 

plugged cells. 
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Figure 6.22. A profile of cells at measurement site 2 on the C02 band showing 

plugged cells. 
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Figure 6.23. A profile of cells at measurement site 3 on the CO2 band showing 

unplugged cells. 

The cell depth reported by the Harper Corporation was 7.8 microns. Although the 

cells shown in Figure 6.23 are deeper than in those in Figures 6.22 and 6.21 they are 

of the order of 7 microns, 0.8 microns less than stated. As previously discussed in 

Section 5.2.1 and Section 6.1.1 , the manufacturers values for the cell depth are an 

average value and as multiple measurements were not taken the accuracy of these 

values is not known. The values of the cell depths on Harper I were also lower than 

the values reported by Harper. It is therefore reasonable to assume that the cells 

measured at site 3 on the CO2 band are unplugged and that the small variation from 

the manufacturers value is as a result of different measurement techniques to 

establish the value for the cell depth and normal manufacturing variations in the cell 

dimensions. 
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The gradients measured from the cells at site three, when averaged, gave a result that 

was smaller than the average gradient on all C~ sites. The results for site three are 

shown in Table 6.11. Four measurements are however too few to be confident that 

the result is representative. The data was reconsidered and two more gradient 

measurements were made at each position on site 3. The results are shown in Table 

6.12. The average gradient of these measurements is of the same order as the initial 

calculation from all sites showing that cell plugging has no affect on the gradient of 

the cells. 

CO2 

Sample 
Gradient R2 

position 

3x1 0.42 0.970 

3x2 0.45 0.969 

3y1 0.59 0.956 

3y2 0.51 0.973 

mean 0.49 0.967 

deviation 0.08 0.008 

Table 6.11. The gradient of the cell walls measured using initial measurements on 

cells at site 3 only. 
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CO2 

Sample 
Gradient R2 

position 

3x1a 0.42 0.970 

3x1b 1.05 0.940 

3x1c 0.52 0.960 

3x2a 0.45 0.969 

3x2b 0.38 0.942 

3x2c 0.83 0.938 

3y1a 0.59 0.956 

3y1b 0.70 0.933 

3y1c 0.53 0.963 

3y2a 0.51 0.973 

3y2b 0.47 0.902 

3y2c 0.54 0.748 

mean 0.68 0.933 

standard 0.19 0.062 
deviation 

Table 6.12. The gradient of the cells on site 3 of the C02 band calculated from 3 

measurements in each position. 

The exercise of making mUltiple measurements on the cell profile data demonstrated 

a possible systematic error in the results. When measurements were made, in order to 

select a best-fit line with a high R2 value, a cell wall that was relatively smooth was 

normally selected. As the selection of the walls measured was therefore not random 

the results could not be assumed to be representative of the sample set as a whole. 

Figure 6.24 shows an example of how the profile of the cell influenced the 

measurement of the gradient. Figure 6.24 shows a graphical representation of the 

profile of two cells that has been converted into a picture in order to add multiple 

gradient lines. The gradient lines are an illustration of the lines fitted by Excel. The 
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original best-fit graphs can be found in Section A6- 12 of the appendix. The first two 

lines fitted to the profile, 3y2a and 3y2b, are shown in Figure 6.24 in red. Both best-

fit lines are a good fit to the data. They are both measurements of slope in the same 

direction, the positive direction (\). When the third measurement was taken the 

best-fit line (shown in yellow) is not a good fit to the data. If this measurement is 

ignored then only measurements in one direction are made. However the slope 

calculated is not an accurate measure of the steepness of the cells (as in the case of 

the gradient indicated by the yellow line). Measurements were therefore taken 

wherever possible on both positive and negative slopes 
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Figure 6.24. An example of how the quali ty of the profile can influence the gradient 

measurement. 

The data obtained on the Y AG bands was re-examined and further measurements 

were made to increase the number of measurements. Care was taken to include 

226 



measurements from each side of the cell wall. Two measurements were made on 

each profile. The complete set of measurements is shown in Table 6.11. The extra 

measurements made did not significantly alter the average gradient reported, the 

average R2 value (used as an indication of the roughness) or the standard deviation of 

the results. The gradient values used with the Shuttleworth and Bailey equations will 

be the mean values for Tables 6.12 and 6.13. 

YAG 

Sample 
Gradient R2 

position 

1x1 0.71 0.916 

1x2 0.97 0.882 

. 1y1 0.70 0.895 

1y2 0.94 0.891 

2x1 0.59 0.952 

2x2 0.74 0.788 

2y1 0.47 0.965 

2y2 0.52 0.924 

1x1b 1.05 0.958 

1x2b 0.48 0.935 

1y1b 0.78 0.829 

1y2b 0.64 0.916 

2x1b 0.72 0.912 

2x2b 0.74 0.851 

2y1b 0.97 0.834 

2y2b 0.78 0.887 

mean 0.74 0.896 

standard 
0.18 0.060 

deviation 

Table 6.13. The gradient ofthe cells on site 3 of the YAG band calculated from 2 

measurements made on each profile measured. 
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The roughness was again measured using the roll scope interferometer. The reading 

again included more noise and although the difference in roughness between the two 

bands was larger ~an on Harper I the amount of noise in the reading made it 

impossible to determine if this difference is real. 

Measurement 
R. (nm) R. (nm) 

number 
Harper 2 Harper 2 
CO2 band YAGband 

1A 396.97 437.59 

2A 380.02 756.95 

3A 498.98 401.51 

4A 574.41 510.95 

5A 407.48 593.67 

18 340.73 556.00 

28 361.55 670.64 

38 326.04 500.04 

48 502.82 404.10 

58 318.33 716.36 

1C 323.89 581.43 

2C 404.53 348.27 

3C 485.23 508.61 

4C 418.42 459.97 

5C 457.91 717.06 

mean 413.15 544.21 

standard 
76.79 127.03 

deviation 

Table 6.14. Measurements of interior surface roughness of the two engraved bands 

on Harper 2. 

In order to calculate the parameters needed for analysis the cells on each band were 

modelled by a parabola in the same way detailed for Harper 1 in Section 6.1.3. The 

parabolas with their equations are shown in Figure 6.2.4. The parabolas are mapped 

onto measured data from a C02 and YAG cell in Figure 6.25 and 6.26 respectively. 
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The fit of the parabolas to measured cell data is not as good as was seen with the 

Harper I data. This is for three reasons. The CO2 engraving was made close to the 

size limit of the laser and the cells are likely to be less regular. The roll scope used to 

make the measurement is a much less accurate interferometer than the one used to 

map Harper I and the measurement included much more noise due to vibration, as 

the roll was not measured on a sample stage due to its larger size. 

VAG 
,alii ,alii 

-7.5 

y = O.0645x2-7.8 y = O.0797x2-7.5 

Figure 6.25. Parabola derived from the cell specifications of Harper 2. 

, 0 

• 2 · 11 -4 ·3 ·2 ·1 11 1 

· 1 

·2 

· 3 

l-Measured values 

- Parabola values 
- - -

Figure 6.26. Fitting of the parabola y = O.0645x2-7.8 to a mapped cell from 

measurement Harper 2 C02 3x I. 
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Figure 6.27. Fitting of the parabola y 0.0797x2-7.5 to a mapped cell from 

measurement Harper 2 Y AG 2y2. 

6.3.2 Applying the Wenzel equation to the Harper 2 data 

As with the work on anilox Harper I, the r-value needed in order to calculate Wenzel 

angles from the Harper 2 data could not be measured and was estimated by the 

parabola model shown in the previous Section. The calculations to find the surface 

area of the parabolas that approximate the cells are shown in Section A6-5 of the 

appendix. The calculations of the Wenzel r-values are shown in Section A6-6 of the 

appendix The r-values calculated from this model were r = 1.3 for the C02 cells and 

r = 1.4 for the Y AG cells. The above values were used to calculate the Wenzel 

contact angle ew from the MAMS and FTA data that was presented in Chapter 5. 

The results of the calculation are shown in Tables 6.15 and 6.16 for the MAMS and 

FT A data respectively. 
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CO2 band YAG band 

em water 75° 86· 

ew water 79· 87· 

em diiodomethane 20· 26· 

aw diiodomethane 44· 50° 

Table 6.15. The observed contact angle em and calculated Wenzel contact angle ew 

values using the Wenzel equation and Harper 2 data from the MAMS instrument 

CO2 band YAGband 

em water 91° 105· 

aw water 91° 101° 

em diiodomethane 43° 43° 

ew dllodomethane 66° 69° 

Table 6.16. The observed contact angle 8m and calculated Wenzel contact angle ew 

values using the Wenzel equation and Harper 2 data from the FT A instrument. 

The use of the Wenzel equation on the FT A data is questionable, as it is known that 

the contact angle was advanced when measurements were made. The case of the 

FTA data is however interesting as the Wenzel angles modify the contact angle 

towards the observed angle on the unengraved band when the angle is greater than 
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90°. The maximum modification of these angles is to 90° therefore modification 

using the Wenzel equation can never produce the observed equilibrium angles. The 

Wenzel equation again fails to predict the effect of the engraved cells on the 

wettability of the band. 

6.3.3 Applying the Shuttleworth and Bailey equations to the Harper 2 data 

The previous sections have demonstrated that the Shuttleworth and Bailey equations 

can only be meaningfully applied to advancing and receding contact angle data. This 

data was difficult to measure on Harper 2 (see Section 5.1.3) and only advancing 

data for engraved bands using the FTA is available. The gradients needed for use in 

the equation were measured from profiles of the cells as discussed earlier in Section 

6.3.1. The gradients obtained from that work were converted to degrees and are listed 

in Table 6.17 along with the deviation, which gives an indication of the error 

involved in the measurement. 

CO2 band VAG band 

tan a gradient R2 value tan a gradient R2 value 

Mean 0.55 29· 0.92 0.74 36· 0.90 

Standard deviation 0.13 6· 0.07 0.18 7· 0.05 

Table 6.17. Measured gradients from the Veeco images converted into degrees 

The slope of the cell can also be estimated from the parabola model by 

differentiating the equation of the curve as discussed in Section 6.1.3. The maximum 

232 



gradients are 1.419 for equation of the CO2 parabola, which equates to an angle of 

54°, and 1.546 for the equation of the YAG parabola, which equates to an angle of 

57°. These angles are obviously much higher than the measured values. This is due 

in part to the larger error in fitting a parabola to the cells on Harper 2. 

The advancing FT A data was used along with the measured and estimated slopes to 

calculate the equilibrium contact angles in accordance with the Shuttleworth and 

Bailey equation for advancing angles. The results are shown in Table 6.18. 

Observed contact Modified using Modified using 
angle (FTA) parabola model measured values 

Polished band 74° . . 
CO2 band (advanced) 100° 46° 71° 

VAG band (advanced) 107° SOO 71° 

Table 6.18. Modification of the observed contact angles (measured using the FTA 

instrument) using the Shuttleworth and Bailey equation. 

Contact angle on the polished band measured using 60° +/- 2° 
the MAMS instrument 

Shuttleworth and Bailey angle calculated from 
Water advancing angle data measured using the FTA 71° +/- 8° 

instrument and on the CO2 band 

Shuttleworth and Bailey angle calculated from 
advancing angle data measured using the FTA 71° +1- go 

instrument and on the VAG band 

Table 6.19. Comparison of the advancing contact angle data on Harper 2 modified 

with the Shuttleworth and Bailey equation with the equilibrium contact angles 

obtained by the MAMS instrument. 
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The estimate of error in the modified contact angle calculated from the advanced data 

and the measured gradients, and the equilibrium data measured on the polished 

unengraved band using the MAMS instrument overlap. The modified angles are not 

however as close to the equilibrium value was seen for the Harper 1 data. There was 

a very small amount of advancing data measured on anilox Harper 2 due to the 

stability of large drops at the zenith of the larger anilox. Only two data points were 

available for the Y AG band and four for the C02 band. (The data is therefore not 

reliable.) The data initially believed to be equilibrium data is was later shown to be 

advanced data. The Shuttleworth and Bailey equation was appJied to this data (using 

the measured gradient). The data is tabulated as a comparison to the equilibrium 

contact angle data obtained on the polished band with the MAMS instrument. 

Contact angle on the polished band measured 60" +/.2° 
using the MAMS instrument 

Shuttleworth and Bailey angle calculated from 
Water ,dvancing angle data measured using the 62° +/.8° 

FTA instrument and on the CO2 band 

Shuttleworth and Bailey angle calculated from 
advancing angle data measured using the 69° +/.9° 

FTA instrument and on the VAG band 

Contact angle on the polished band measured 21° +/.2° 
using the MAMS instrument 

Shuttleworth and Bailey angle calculated from 
Dilodomethane advancing angle data measured using the 14° +/. 7° 

FTA instrument and on the CO2 band 

Shuttleworth and Bailey angle calculated from 
advancing angle data measured using the 7° +/. go 

FTA instrument and on the VAG band 

Table 6.20. Comparison of the FTA data for water and diiodomethane on Harper 2, 

modified with the Shuttleworth and Bailey equation with the equilibrium contact 

angles obtained by the MAMS instrument. 
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The result of applying the Shuttleworth and Bailey equation to the FT A data is closer 

to the equilibrium value measured using the MAMS instrument. The results are 

more varied for the diiodomethane measurements, however, it is worth noting that 

the equilibrium value for the diiodomethane was measured at the limit of the MAMS 

instrument and the inaccuracy in the reading is larger than the deviation of results 

suggests. 

Although the Shuttleworth and Bailey equation has been shown to explain the size of 

the advancing angle on the engraved bands there is a large advancing angle on the 

polished band. The difference between the equilibrium measurement with water as 

the test liquid on the MAMS instrument and the advanced measurement on the FT A 

was from 60° to 74° The angle was advanced to 93° indicating using the 

Shuttleworth and Bailey equation in reverse that there is roughness with a gradient of 

the order of 33° on the polished band. Although the band is polished and smooth to 

the eye there is micro-roughness that could cause such hysteresis. The size of 

roughness that contact angles measurement is sensitive to has been reported as less 

than lOOnm.74 As stated in Section 2.1, hysteresis occurs on all but the most artificial 

of surfaces and impurities and irregularities certainly exist on the all bands that 

would increase the observed advancing angle, and alter the observed static angle 

from the true equilibrium value. Whilst the static value observed with the MAMS 

instrument is as close to the equilibrium value as it was possible to measure, it is 

important to remember that it is not a necessarily true equilibrium value as would 

fulfil the criteria for use with Young's equation. The presence of hysteresis on the 

polished bands indicates that this surface does not fulfil the conditions required by 

the young equation. The agreement of the advancing data on the engraved bands 
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with the angle observed on the polished band using the MAMS instrument, when 

combined with the Shuttleworth and Bailey equation, suggests that whilst other 

factors contribute to hysteresis, roughness is the dominant influence on the 

advancing angle and that the static contact angle measured with the MAMS 

instrument is a good approximation of the equilibrium contact angle. 

6.3.4. Applying the Cassie and Baxter equation to the Harper 2 data 

As with Anilox Harper 1 the contact angles measured on the engraved bands of 

Harper 2 are large when polar liquids are used, indicating that it may not be 

favourable for the liquid under test to wet the entirety of the cell. As anilox Harper 2 

was not measured using the Scantron optical sensor there is no top view image 

available for analysis as there was for Harper 1. The parabola method was used to 

estimate the height from the bottom of the cell that would remain unwet assuming 

the Cassie and Baxter equation to be applicable to the data. The surface area of each 

parabola was calculated as discussed in Section 6.1.4. The point n on the Y axis of 

the parabola was adjusted until the ratio of the surface area above point n to the area 

of the circular disc at point was equal to the figure predicted by the Cassie and 

Baxter equation describing a composite solid/air interface. Taking the Cassie contact 

angle ec to be the angle observed on the engraved band and the equilibrium angle ee 

to be the angle observed on the polished band and using the Cassie and Baxter 

relationship fl = (cosec + 1) / (cosee+ 1), The fraction of ceramic in contact with the 

liquid at the interface (fl ) is therefore 0.84 or 84% for the C02 band and 0.71 or 71% 

for the Y AG band. 
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The calculations detailed in Section A6-7 of the appendix produced an unwet height 

of 2.07fl.Dl for the CO2 cells and 3.44J.J.m for the Y AG cells. The plugged cells on the 

CO2 band as shown in Figures 6.21 and 6.22 are approximately 5J.Ull deep. The ce))s 

shown in figure 6.32 had a depth of approximately 7J.U1l showing that the extent of 

the plugging was in the order of 2J.1m. Figure 5.8 in Chapter 5 showed that the 

plugged YAG cells had a depth of approximately 4J,J.ID, the bottom 3.5 J.1m being 

plugged with ink. The plugged cells on both bands had gone undetected by contact 

angle analysis. Contact analysis is normally very sensitive to contamination of the 

sample surface therefore it is reasonable to suggest that the bottoms of the cells were 

not wet by the test liquid. The prediction of the air/ceramic composite interface in 

contact with a non-wetting liquid is reasonable for water and maybe Formamide 

however Diiodomethane wet the surface well and would be expected to penetrate to 

the bottom of the cells. There was no indication of the contact angle made by 

Diiodomethane on either of the bands changing. However it is not known when the 

plugging happened and which results were made before or after plugging took place. 

Therefore it is impossible analyse the data to prove or disprove this theory. 
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6.4 Summary of results 

The conclusions that can be drawn from this work are: 

1. The assumption that the YAG laser produced a rougher cell interior was 

found not to be valid. The difference between the measured roughness 

average (RA) values of the interior of the C02 and YAG engraved cells 

was smaller than the standard deviation of the results. This measurement 

did not however compare the shape of the roughness. When the profiles 

made of the two types of cells were considered the shape of the roughness 

was found to be different. 

2. The Wenzel equation did not explain the change in contact angle on the 

engraved bands for any of the anilox rolls, when measured using the 

MAMS instrument. 

3. The Wenzel equation was not appropriate for use with the FTA contact 

angle data as the angles measured were not equilibrium angles. The 

Shuttleworth and Bailey equation for advancing angles was the most 

suitable to apply as the parameters needed were all directly measurable. 

4. The results found when the Shuttleworth and Bailey equation was applied 

to the advancing contact angle data for water obtained with the FT A 

instrument were very close to the equilibrium contact angle data obtained 
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with water using the MAMS instrument. This was true both for the 

Harper 1 and Harper 2 data. 

5. The increase in contact angle due to advancement of the contact line 

across the engraved bands as described by the Shuttleworth and Bailey 

theory provides an explanation for the different contact angle values 

produced by the MAMS and FTA instruments. 

6. The Cassie and Baxter theory that roughness produces a composite 

solid/air surface at the liquid interface for liquids which exhibit poor 

wetting was cited as applicable similar systems. The amount of cell unwet 

by water was consistent with the level of plugging which was undetected 

by contact angle analysis 

As expected, the Wenzel theory did not predict the influence of the roughness caused 

by the process of engraving on the contact angle observed. This is consistent with 

results found in the literature search and is as a result of the theory's assumption that 

the contact line is free to move evenly in all directions. 

The Shuttleworth and Bailey, and Cassie and Baxter theories were however found to 

be relevant to the wetting of engraved anilox bands. The Shuttleworth and Bailey 

equations explain quite well the increase in contact angle when the test Jiquid is 

advanced across an engraved band. The theory holds for all bands on which 

advancing data is available. The theory also explains the difference in reported 
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contact angles produced by the two instruments used in this work. The large 

advancing angle observed on the polished band indicates that environmental factors 

such as the curvature of the roll and impurities on the surface make a large 

contribution to hysteresis, however the consistency of the results indicates that the 

slope of the cell wall produces the largest barrier to the movement of the contact line 

and it is this which dictates the receptiveness of the engraved band to a test liquid. 

This theory may also explain why the Y AG cells on Harper 2 transferred more ink 

than the C02 cells. 

The Cassie and Baxter theory explains the difference in equilibrium contact angle on 

the polished and laser engraved bands with polar liquids and the lack of such a 

difference with non-polar liquids. It also could explain why plugging of anilox 

Harper 2 went unnoticed despite routine checks with polar liquids being made. It 

does however not explain how such plugging could have no effect on the contact 

angle made by diiodomethane. 

This work has highlighted some of the problems encountered when attempting to 

measure and interpret contact angle data in practical situations. Applying the three 

theories to explain the behaviour of wetting of a rough surface has built up a picture 

about how the test liquids interact with the engraving and the polished areas. It has 

established that the contact line is pinned as the liquids move over the engraved 

surface and that the effect of this is so strong that it can be done accidentally as in the 

case of the measurements using the FT A. The work has also raised to possibility the 

hypothesis that the bottoms of the cells are not wet when the engraving is put in 

contact with a drop of water. 
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A report was written for the Harper Corporation of America describing the contact 

angle analysis done using the MAMS instrument on aniJox Harper 1 and some of the 

early work looking at the use of the Wenzel equation. This report is included in 

Section B-1 of the appendix. The report was written at a very early stage in the 

investigation and cited cell interior roughness as a major factor in wettability of the 

anilox. After receipt of this report the Harper Corporation introduced a method of 

modifying the interior roughness of a cell produced by a C~ Laser. The new anilox 

was given the name "Platinum" by Harper. 132 The change appeared to be in the 

chemical nature of the ceramic used but Harper would not provide any details. A 

sample roll was obtained for testing to see if the theories developed on the initial 

anilox would hold for a 3rd Harper roll. 
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7. Analysis of anilox roll Harper 3 

Anilox Harper 3 was created to demonstrate Harper's latest product, the "Platinum" 

engraving. Harper disclosed that the composition of the ceramic and the pulse of the 

CO2 laser had been modified in order to produce cells with smoother interior walls 

and a reflective appearance. The name Platinum refers to the appearance of the 

engraving and does not necessarily indicate that the ceramic contains platinum metal. 

Harper cited reactions between the laser and trace elements in the ceramic for the 

change but gave no specific information. 

Platinum Anllox Surface 
(37lx) 

Conventional Anllox Surface 
(37Ix) 

Figure 7. L Scanning electron microscopy (SEM) images of the conventional and 

Platinum anilox bands taken from Harpers website. 132 

The anilox had two engraved bands. Both bands were engraved by a C02 laser 

however one was made by the conventional Echocell C02 laser and the other was 

made by a CO2 laser with a modified pulse profile. Harper did not disclo e detail of 

how the pulse was modified. The bands were termed Normal C02 and Platinum 0 2. 
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There was also a very small polished band, which was 2mm wide. The engraved 

bands had line counts of 80 lines/cm. The cells were much larger than those on Harper 

I or 2. Harper gave values for the cell depth of 19 ~m for the platinum band and II 

~m for the conventional C02 band. The cell opening was specified as 120 microns, 

with a wall of 7 microns for both bands. It should be noted that the band termed 

Normal C02 has the same " Platinum" ceramic composition as the Platinum 

engraving, because the ceramic composition could not be varied across the anilox. 

The difference between the engravings is in the laser used. The Normal band should, 

in theory, be chemically different to the CO2 bands on aniloxes Harper I and 2. 

Figure 7.2 shows photomicrographs taken of cells on each band of Harper 3. The 

images of the base of the cells are a little blurry as the microscope was focused on the 

cell land. The images are however useful to illustrate the difference in colour 

between the engravings and to show that the land area between the Platinum cells 

appeared better defined and more uniform. 

Conventional CO2 cell (400x) Platinum C02 cell (400x) 

Figure 7.2. A digital photomicrograph of a cell on each of the engraved bands of 

Harper 3. 
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7.1 Contact angle analysis of anilox Harper 3 

Contact angle analysis was done with the FT A instrument. The analysis was carried 

out at the same time as the analysis of the other two Harper anilox rolls and under the 

same conditions. Water, diiodomethane and formamide were used as test liquids. The 

results are summarised in Table 7.1. The data is shown in full in Section A7-1 of the 

appendix. 

Water Dllodomet.hane Formamlde 

Polished 
mean 82° 48° 79° 

band standard 3° 2° 2° deviation 

CO2 
mean 88° 46· 63° 

band standard 2° 1° 2° deviation 

CO2 mean 86° 44· 84° 
Platinum 

band standard 2° 1° 2° deviation 

Table 7.1. Contact angles observed on anilox Harper 3 using three test liquids. 

As shown in Figure 7.2, the Platinum and Normal C02 bands appear to have a 

different physical or chemical composition at the surface, which changed the 

appearance of the engravings. The change that produced the platinum coloured 

surface of the Platinum band did not change the contact angle for any of the three test 

liquids. 

Smaller drop volumes had to be used on the polished band, as it was too narrow to 

accommodate the standard sized drops. The largest drop size that could be 
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accommodated on the band was used. This was different for each liquid. The drop 

sizes used were approximately 1.5~1 for water, 1 tll for formamide and 0.4 ,.d for 

diiodomethane. In order to check that using smaller drops did not change the contact 

angle on the polished band contact angles using 1.5~1 water drops were measured on 

the polished band ofanilox Harper 1. The results are shown in Table 7.2. 

Anilox Harper 1 Anilox Harper 3 

Repeat number 
Contaclangle Oropvolume Contact angle Drop volume Contact angle Oropvolume 

(degrees) (microlltres ) (degrees) (microlitres) (degrees) (mlcrolitres) 

1 72 5.0 76 1.6 82 1.7 

2 76 4.6 77 2.1 86 1.6 

3 72 3.9 76 1.6 79 1.3 

4 71 4.7 75 1.5 81 1.7 

5 69 4.8 73 1.5 80 1.6 

6 75 4.1 77 1.7 85 1.6 

7 76 4.5 74 1.6 84 1.6 

8 71 4.1 74 1.5 83 1.3 

9 76 5.0 73 1.5 81 1.4 

10 70 4.1 77 1.6 82 1.3 

Mean 73 4.5 75 1.1 82 1.5 

Standllrd deviation 3 0.4 2 0.2 2 0.2 

Table 7.2. Comparison between large and small water drops on the polished band of 

Harper 1 and of small drops on the polished band of Harper 3. 

It is clear that not only did varying the drop size make no significant difference to the 

contact angle on the polished band of Harper J, but that the polished Platinum 

ceramic of Harper 3 is more hydrophobic than that of Harper 1. 
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The contact angles made by the three test liquids on the polished bands of anilox 

Harper 1,2 and 3 were tabulated in Figure 7.3 so that the data obtained on all three 

Harper rolls could easily be compared. 

Water Diiodomethane Formam ide 

Harper 1 75° +/- 3° 42° +/_2° 43° +/- 3° 

Harper 2 74° +/- 3° 44° +/- 2° 43° +/- 3· 

Harper 3 82° +/- 2° 48° +/- 2° 79° +/- 2° 

Table 7.3. Comparison between contact angle data made by water, diiodomethane and 

formam ide on the polished bands of the three Harper anilox rolls. 

The ceramic on the polished bands of Harper 1 and 2 shows the same wetting 

character. There are small decreases of the wetting of Harper 3 with water and 

diiodomethane but there is a marked decrease in the wetting of the band with 

formamide. 

The ~ontact angle data on the C02 bands of all three Harper anilox were also collated 

and are shown in Table 7.4. 

Water Diiodomethane Formam ide 

Harper 1 84° +/- 3° 43° +/- 2° 600 +1_ 2° 

Harper 2 91° +/- 3· 43° +/- 2° 60° +/-1° 

Harper 3 normal CO2 88° +/- 2· 46° +/- 2° 63° +/- 2° 
Harper 3 Platinum CO2 86° +/_2° 44° +/- 2° 84° +/_2° 

TabJe 7.4. Comparison between contact angle data made by water, diiodomethane and 

formamide on the C02 bands of all three Harper aniJox. 
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The contact angles 9bserved using all three test Jiquids on the engraved bands of 

Harper 3 are not only not significantly different from each other, they are also not 

significantly different from those on Harper 1. The formamide and diiodomethane 

contact angles are comparable to those on Harper 2. The large difference in the 

wetting with formamide of the Harper 3 polished ceramic is not seen on the engraved 

bands. 

The only anomaly is the water contact angle on Harper 2. The line screen and 

diameter of the three anilox are shown alongside the contact angle values in Table 7.5 

in order to rule out a trend based on physical properties of the anilox. 

Water eontact angle Line count Roll diameter 
(degrees) (cells/em) (mm) 

Harper 1 CO2 84° +/.3° 600 64 

Harper 2 CO2 91° +/. 3° 1000 81 

Harper 3 Normal CO2 88° +/.2° 80 59 

Harper 3 Platinum CO2 86° +/.2° 80 59 

Table 7.5. Contact angles made by water on the C02 bands of the three Harper anilox 

along with line count and diameter of the rolls. 

Harper 2 has a much finer line count than the other Harper rolls and shows a higher 

contact angle. However, the contact angle on Harper I is smaller than that on Harper 

3 despite more than an order of magnitude difference in the line count. This does not 

support a relationship between line count and contact angle. The change in degree of 

curvature of the roll (related to roll diameter) does not reveal a trend. The C02 

engraving on Harper 2 was however made at the limit of how small the cells could be 

at that time. 
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In Chapters 3 and 5 dealing with the contact angle measurements on anilox Harper 1 

and 2 respectively, it was discovered that the contact angles measured using the FT A 

instrument were advancing contact angles. As the contact angles made on Harper 3 

were made in the same way under the same conditions it it is reasonable to compare 

the measurements on Harper 3 with those for other Harper anilox (measured using the 

FTA) It is also reasonable to assume that these angles will also be advancing angles. 

To check the validity of this assumption a drop was advanced across each of the 

bands. The mean advancing contact angles observed were 92° normal band and 91° on 

the Platinum band. These are slightly larger than the contact angles measured as 

equilibrium angles. It was observed that the contact line moved in a series of jumps. 

The contact line sticks and the contact angle increases without any movement in the 

line, then the line jumps and the angle falls. Two consecutive frames from the 

advancing drop on the Platinum band were captured and are shown together in Figure 

7.3. They show an increase in the contact angle from the first frame to the second as 

the contact angle sticks. It was noted that the lower angle was within the observed 

range of the static angles measured. The advancing angle quoted was an average, 

which included many sticks and jumps of the contact line. 
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-;. H A32 Vule o 2.0 -;. f I A32 Video 2.0 

Figure 7.3 Consecutive frames showing the advancing contact angle sticking. 

An attempt was made to measure receding angles on each of the bands. As with the 

other anilox it was only possible to quote receding angles as being less than the cut 

off at which the drop breaks away from the tip of the syringe. For the normal C02 

band the value was less than 51 ° and for the polished band the value was less than 6°. 

There is a large difference between these values, however the tip of the syringe was 

higher when the measurement was made on the normal CO2 band and far less of the 

volume of the drop was removed before the drop detached. 
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7.2 Surface energy calculations from FTA data 

The contact angle data was used with the Owens & Wendt geometric mean equation 

to calculate the surface energies of each band, as a sum of the dispersive and polar 

contributions. (As has been done for the other Harper anilox in previous chapters.) 

The calculated surface energies are shown in Table 7.6. 

Average surface 
Standard 
deviation 

energy mJm-2 

mJm-2 

dispersive component 35 1 
Polished 

polar component 4 1 band 
total surface energy 39 2 

dispersive component 36 1 

CO2 band polar component 2 1 

total surface energy 38 2 

dispersive component 38 1 
Platinum 

polar component 2 1 CO, band 
total surface energy 40 2 

Table 7.6. Surface energies calculated using the Owens and Wendt equation with the 

contact angle data for water and diiodomethane. 

As has been seen for the other Harper aniloxes large changes in contact angles, 

particularly with the polar liquid, result in small changes in the calculated surface 

energies. The surface energies calculated in this way are based on the diiodomethane 

and water contact angles only and therefore do not reflect the large differences in the 

formam ide contact angle between the engraved and unengraved bands. 
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The calculated surface energies are compared to those calculated from FT A data from 

anilox Harper I and 2, in Table 7.7. The estimates of error are not shown for clarity 

but are in order of +/- 1 mJm"2 for the dispersive and polar components and +/- 2 

mJm-2 for the total surface energies. The difference observed in the contact angles on 

the polished bands shows up as a difference in surface energies between the polished 

band on Harper 3 and the polished bands on the other Harper aniloxes. The dispersive 

and polar components of the surface energy of the polished band of Harper 3 are both 

smaller resulting in a lower total surface energy. The total surface energies on the 

C02 engraved bands all fall within twice the standard deviation of error (Indicating a 

95% confidence level that there is no difference between the bands.) The difference in 

surface energy of the unengraved platinum ceramic is therefore seen to disappear once 

engraving with a COt laser has taken place. 

Harper 1 Harper 2 
Harper 3 Harper 3 
Normal Platinum 

dispersive component (mJm-2) 39 38 35 

POlished 
polar component (mJm-~ 6 6 4 

band 

total surface energy (mJm"z) 4S 44 39 

dispersive component (mJm-2) 38 38 36 38 

CO2 polar component (mJm-2) 3 1 2 2 band 

total surface energy (mJm"z) 41 39 38 40 

Table 7.7. Surface energies (mJm-2) calculated from the FTA advancing contact angle 

data on the polished and C02 engraved bands of the three Harper anilox rolls. 
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The contact angles made by water, diiodomethane and fonnamide were used to 

calculate the components of surface energy in accordance with acid base theory. As 

the solving of the three simultaneous equations for the dispersive, acid and base 

components of surface energy is complicated it was again left to the FT A software to 

make the calculations from the average contact angles. This however gives no value 

of error associated with the results. The FT A does report any problems with the 

calculation and for the nonnal C02 band reported that there was no solution for the set 

of data. (Indicating that the sum of the components does not equal the total surface 

energy.) The other results included negative values. Both these observations indicate 

that the result has been affected by error in the contact angle measurements. The 

values returned for the dispersive, polar, acid and base components for each band are 

shown in Table 7.8. 

POlished Normal Platinum 
band CO2 band COabind 

dispersive component 35.4 36.5 37.5 

polar component -4.5 1.0 -0.3 
Average 

surface energy acidic component -0.3 0.1 0.0 
mJm·2 

base component 16.9 2.4 3.9 

total surface energy 30.9 37.5 37.3 

Table 7.8. Surface energies of the bands on Harper 3 calculated using the acid-base 

equations and the water, diiodomethane and fonnamide contact angle data. 

The large contact angle made by formam ide on the unengraved band translates to a 

large value for the base component of surface energy. This component is seen to drop 

significantly after engraving has taken place. The acid and base components for the 

252 



polished bands on all three Harper anilox are shown together in Table 7.9. The base 

component of Harper 3 again stands out as being far larger than on the other bands. 

Polished Polished Polished 
band Harper band Harper band Harper 

1 2 3 

dispersive component 38.59 37.5 35.4 

Average 
polar component 5.32 5.9 -4.5 

surface 
acidic component 1.785 1.9 -0.3 energy 

mJm,2 
3.977 4.6 16.9 base component 

total aurface energy 43.92 43.6 30.9 

Table 7.9. The acid base components of surface energy on the polished bands of the 

three Harper anilox rolls. 

When the same information is presented for the C02 bands in Table 7.10 it is the base 

component of Harper 2 that stands out as being small in comparison to the other 

calculated values. 

COaband COaband NormalCOa 'letinumCOa 
Harper 1 Harper 2 band Harper 3 band Harper 3 

dispersive component 37.0 38.1 36.5 37.5 

Average 
polar component 1.6 0.9 1.0 -0.3 

surface 
acidic component 0.2 0.3 0.1 0.0 energy 

mJm-2 
base component 3.7 0.7 2.4 3.9 

totalaurface energy 38.6 39.0 37.5 37.3 

Table 7.10. The acid base components of surface energy on the C02 bands of all three 

Harper anilox. 
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7.3. Modification of the contact angle data to estimate the equilibrium contact 

angle 

As no measurements were taken using the MAMS instrument there is no equilibrium 

angle data for the polished band of Harper 3. The Shuttleworth and Bailey equation 

for advancing angles was used to predict the value of the equilibrium angle on 

unengraved ceramic. 

As no topographical measurements were made on Harper 3 the slope of the cell wall 

is estimated from parabola with y and x intercepts set to match the dimensions of the 

cells. The parabola are show in Figure 7.4 and have the equations y = 0.028x2 - 10 for 

the normal CO2 band and y = 0.056x2 -20 for the Platinum band. 

~~~--~~~--~~~--~~~o ~~~--~ 

-5 -5 ' 5 10 15 20 25 30 

-15 

Figure 7.4. Parabolas representing the curvature of the engraved cells on anilox 

Harper 3. 

The maximum gradients of the parabola are the inverse tangent of2ax and are 34° for 

the Platinum band and 19° for the normal CO2 band. 
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Using the Shuttleworth and Bailey equation for advancing angles gives two different 

values for the equilibrium angle as the advancing angles are almost identical but the 

slopes given by the model are very different. Using the measured advancing angle for 

each band the values calculated for the equilibrium angle are 73" using the Normal 

CO2 angle and 57° using the Platinum angle. 

The cells on Harper 3 are more than a factor of 10 larger than those on Harper 1 for 

which the parabola gave a good approximation of the shape. As no information on 

the shape of the curvature of the cells on Harper 3 is available it is impossible to tell if 

the lack of agreement between the measurements is due to the inaccuracy of the 

parabola method of from other factors. 

7.4 Summary 

The conclusions that can be drawn from the work on Harper 3 are: 

1. The ceramic composition affects the wettability of the unengraved band. The 

change that Harper made in the ceramic of Harper 3 increased polar 

component of its surface energy t the polar increase was seen to be basic in 

nature. 

2. Surface composition, cell interior surface roughness and cell depth were seen 

to have no affect on the contact angles observed on the engraved bands. 
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3. The increased basic surface energy of the Harper 3 ceramic was reduced to 

normal levels by the engraving process. 

Anilox Harper 3 reinforces the findings on anilox Pira 1, that the cell depth does not 

affect the wettability of the engraving, it also indicates that the laser type controls the 

final wettability of the band. 
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8 Conclusions and further work 

8.1 Conclusions 

This research has demonstrated that during the process of laser engraving, a ceramic 

anilox changes the wettability of its surface, in particular its receptiveness to polar 

liquids. The type of laser used to make the engraving has been found to greatly 

influence the change in wettability. The C02 laser produced a surface that was more 

easily wetted by a polar liquid than the YAG laser, however, both types of laser 

engraving were less receptive to polar liquids than the unengraved material. 

Anilox Harper 1 was designed to have cells engraved by each type of laser and to 

have engraved cells with similar depths. There were twice as many YAG cells as 

C02 cells per centimetre of engraving. Harper 1 also had a polished unengraved 

band. The engraving process changed the wettability of Harper 1 when water and 

formam ide were used as the wetting liquids, however the engravings did not produce 

a change in the wettability when diiodomethane was used as the wetting liquid. 

When these contact angles were used with the Owens-Wendt and acid-base theories 

of surface energy calculation, the surface energies of all bands were found to be 

predominantly dispersive in nature. The laser engraving process reduced the polar 

character of the surface and the change between the bands was characterised by a 

loss of basic character from the CO2 band to the YAG band. When commercially 

available inks were used, the standard water-based ink showed the same trend as was 

observed with water (although with lower contact angles) and a UV curable ink 

followed the same trend as formamide. This led to the hypothesis that UV inks 
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interact with surfaces having a basic character. This hypothesis seemed sensible 

when the fonnulation a generic UV ink was considered. Water interacts with a solid 

with acid and base character in equal amounts. The water-based ink interacted with 

the anilox in a similar manner despite the pH of the ink being slightly alkaline. 

However the acid-base theory uses the Lewis definition of acid and bases rather than 

the Lowry Bronstead acids and bases (as measured by pH meters). 

When anilox Harper 1 was commissioned, the cell depths of the engraving were 

designed to be equal, there was a small difference between the cell volumes but this 

was not practically significant. These variables were fixed as in the early stages of 

this work it was believed that it was important to control the volume of test liquid 

which entered the cells in order to obtain comparable results between the engraved 

bands. The cell opening and land sizes were very different. 

Pira 1 was a commercially obtained banded anilox with cells engraved by a C(h 

laser. There were three bands with constant cell opening and land sizes but variable 

cell depths (and therefore volumes) across the different bands. Varying the cell depth 

was seen to have no affect on the observed contact angle. As expected increasing the 

cell volume increased the amount of ink transferred when the anilox was used. 

Contact angle analysis cannot therefore be used to directly predict ink transfer. There 

was less difference between the wetting of the engraved and unengraved bands than 

was seen with the other anilox rolls studied. This is believed to be as a result of wear, 

resulting in a smoother and larger land area around the cells, smoother cell interiors 

and a roughening of the unengraved area. Pira 1 was the only anilox studied that had 

been extensively used for printing before testing. 
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Anilox Harper 2 was designed to have engravings made by C02 and Y AG lasers 

with the same number of cells per centimetre and the same cell volumes. The cell 

depths were comparable. The cell geometries were different and were characteristic 

of the laser used. Anilox Harper 2 also had unengraved polished areas at both ends. 

The engraved and polished bands were wetted more or less equally by 

diiodomethane. The decrease in receptivity to wetting by polar liquids was again 

seen on the engraved bands. The Y AG band was the least receptive to wetting by the 

polar liquids used, namely water and formam ide. The difference between the 

engravings was again a reduction of basic character from the C02 engraving to the 

Y AG engraving. The Y AG engraving had a negligible amount of polar character. 

Both engraved bands on anilox Harper 2 were harder to wet with water than their 

corresponding bands on Harper 1. The receptiveness to formam ide and 

diiodomethane were unchanged. This decreased receptiveness to water was barely 

significant for the Y AG band but was larger for the C~ band. It was believed to be 

related an increase in roughness of the land area around the cells of Harper 2. 

When anilox Harper 2 was used to print a UV ink, there was a small difference in 

print density produced by the two bands. The Y AG band put down very slightly 

more ink than the CO2 band. Overall transfer amounts were low due to poor contact 

between the anilox and paper, both of which being rough surfaces, and the high 

surface energy of the paper, which made transfer less favourable. 

After receiving a report from this author into the wettability of anilox Harper 1 

citing cell interior roughness as a major factor in wettability, (see Section B-1 of the 
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appendix) Harper developed a new type of engraving, which they named Platinum 

due to its silvery appearance. The ceramic of the Platinum anilox was a modified 

composition, as was the pulse of the C02 laser used to produce it. Harper claimed 

that the Platinum engraving had smoother cell interior walls, and that this produced 

better ink release. A sample roll was provided to this author for analysis; this roll 

was named Harper 3. Contact angle analysis on the unengraved, polished areas of 

Harper 3 confirmed that the wettability of the ceramic had been modified chemically 

and that the unengraved material was far less receptive to wetting by formamide and 

water. The polished unengraved ceramic was also slightly less receptive to 

diiodomethane than the ceramic of the previous two Harper anilox rolls. Calculations 

of surface energy using acid-base theory showed that the basic component surface 

energy had been significantly increased. Anilox Harper 3 was engraved by 

conventional C02 laser and by a modified "Platinum" C02 laser. The process oflaser 

engraving was observed to destroy the increased basic character seen in the 

unengraved polished areas of the roll. Harper claimed that the cell interior roughness 

of the Platinum cells was reduced. Contact angle analysis with water, diiodomethane 

and formamide did not reveal differences in wettability between the cells on the 

normal C02 and Platinum bands. 

The main differences cited in the literature between the C02 and YAG laser 

engraved cells are the amount of recast ceramic that the lasers produce, this makes 

up the walls of the engraved cells, and determines the shape of the cells. The C02 

laser melts the ceramic, which is recast into the walls of a bowl shaped cell. On the 

other hand, the Y AG laser ablates a high percentage of the ceramic and is said to 

produce ''test tube" shaped cells. It is an observation of this research that, whilst 
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profiles of the C02 cells fitted the approximation of a bowl or quadratic parabola 

reasonably well, the Y AG engraving was found to have a very irregular shape which 

was not described well by the ''test tube" analogy or any simple mathematical form. 

The work also found no difference between the average heights of the interior 

roughness (Ra values) of the cells created by the different lasers. It is however 

important to note that the Ra values measure do not give any information on the 

topography of the cell interior walls and that the profiles of the cells showed a 

difference between the engravings, the Y AG engraving having a more jagged 

appearance. Also, the observed change in wettability of the YAG band after exposure 

to a specialist cleaning product suggests that there the YAG band is more porous 

then the C02 band. 

This work has also demonstrated the problems of measuring an equilibrium contact 

angle on a rough surface. The instrument used, or more specifically the method of 

introducing the drop to the solid surface, was shown to influence the observed 

contact angle. This was found to be as a result of pinning of the contact line. When 

the drop was introduced with minimum force it lacked the energy to overcome local 

barriers, for example the roughness of the cell land areas, and the observed angle, 

intended to be an equilibrium angle was found to be close or equal to the advancing 

angle. This is a problem associated with all equilibrium contact angle measurements 

on rough surfaces and is consistent with the observations of Good. 120 The angles 

measured using the FT A instrument were found either to be advancing angles or to 

be very close to the advancing angles. In this method the test liquid was dispensed 

via a syringe with a computer controlled pump, The contact angles measured with 

the MAMS instrument, which were manually pipetted on to the roll surface, were 
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found to be much lower and were found to be closer approximations of the 

equilibrium angle. 

Advancing angles are a much more reliable measurements to make in comparison to 

equilibrium angles, as it is obvious to the operator when the advancing angle has 

been reached. However, they are difficult to measure on anilox rolls due to the 

curvature of the surface. As the contact angle is advanced, the drop increases in size. 

Large drops are unstable on the zenith and are prone to rolling down the curved 

surface of the anilox. The disadvantage with measuring advancing angles is that they 

should not be used with Young's equation, which relates the contact angle to the 

interfacial forces at the solid/liquid/vapour interface. This in tum means that they 

should not be used to calculate the surface energy of the anilox. It is however 

common practice to calculate surface energies from advancing data. This calculation 

has no theoretical basis as the conditions for Young's equation are not met, but 

advancing contact angles and the surface energies calculated from them provide a 

guide to the nature of the surface and are in some ways more relevant to processes 

such as printing where equilibrium wetting rarely takes place. 

This work identified the primary reason for the deviation of the observed 

macroscopic contact angle em from the equilibrium contact angle Be as the extreme 

roughness of the surface. Three well-known theories, put forward by Wenzel, 

Shuttleworth and Bailey, and Cassie and Baxter, which attempt to describe the effect 

of roughness on the macroscopic contact angle, were discussed and applied to the 

experimental data for each anilox. 
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The Wenzel equation modified the equilibrium contact angle observed on a rough 

surface to compensate for the extra contact area produced by surface roughness. 

Calculations of the roughness were made using a mathematical model to approximate 

the shape of the cell. This model was much more accurate for the C02 cells than the 

YAG cells and only accounted for the macroscopic roughness, i.e. the overall shape 

of the cell, and did not take into account increased contact due to interior cell 

roughness. As the Wenzel equation uses equilibrium contact angles the experimental 

data obtained using the MAMS instrument was expected to be most suitable for use. 

The Wenzel equation modified the contact angle value to make it further away from 

the equilibrium value (taken as the contact angle measured on the unengraved 

ceramic). This is a common observation when the Wenzel equation is applied to real 

surfaces and is one reason that the Wenzel equation receives much criticism. It was 

the conclusion of this work that the Wenzel equation does not describe the influence 

of the roughness on the wetting of the anilox and cannot be reasonably applied to the 

experimental data. 

The Shuttleworth and Bailey equations modify the advancing and receding contact 

angles to remove gradient of the roughness. The FT A data was used along with 

measurements of the gradient of the interior cell walls obtained from profiles 

recorded with a Yeeco interferometer. It was noted that when the measured slopes 

were taken away from the advancing contact angles obtained using the FT A 

instrument, the value obtained was in a11 cases within the range of experimental error 

of the value for the same test liquid measured on the polished unengraved band of 

the anilox using the MAMS instrument. This confirmed that the contact angles 

observed using the MAMS instrument were close to the true equilibrium angles. The 
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slope of the cell walls was shown to be influential in the receptiveness to the test 

fluids when they were advanced across the engraved bands. The large advancing 

angle seen on the polished unengraved bands shows that this band is not an ideal 

surface and that there is resistance to the movement of the contact line due to micro 

roughness, the curvature of the roll and impurities on the surface. The correlation of 

the data with the Shuttleworth an Bailey equation indicates that whilst these factors 

are important on the polished band, the influence of the cell gradient on the progress 

of the contact line across the engraved bands is so large that it becomes the dominant 

factor in pinning the contact line and controlling the advancing angle. 

The Cassie and Baxter theory states that the contact angle of a heterogeneous surface 

is related to the equilibrium contact angles of each domain present on that surface in 

proportion to their makeup of the overall surface. A rough surface can be treated in 

this way if some of the surface remains unwet and the surface underneath the liquid 

phase is a composite of air and solid interfaces. The equilibrium angles observed 

using the MAMS instruments on the engraved bands were used to calculate the 

amount of air/liquid interface that would be present if this accounted for the change 

in the observed contact angle on the engraved bands with water, a test liquid that did 

not easily wet the engraved bands. This theory was selected to describe the wetting 

on the Harper anilox rolls as it explained the different wetting behaviour when polar 

and non-polar liquids were used. It can also be used to explain why the Pira anilox 

did not show the same trends as the Harper aniJox. On the Pira anilox factors the 

smoothness of the anilox due to wear, the increased land area around the cells and 

the increased wettability of the ceramic could reasonably result in water wetting the 

cells completely. 
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It is the conclusion of this study that the Cassie and Baxter theory of the creation of a 

composite solid/air interface describes the wetting when a polar Hquid is applied 

with enough momentum to overcome boundaries due to local roughness and find 

thermodynamic equilibrium. The creation of the composite surface results in an 

increase in the observed equilibrium contact angle, which is proportional to the 

amount of the surface that is unwet. When a non-polar Jiquid is applied in the 

manner it is thermodynamically favourable to wet the entire cell and no composite 

interface is formed. The contact angle is therefore similar when non-polar liquid is 

allowed to reach equilibrium on the engraved and unengraved areas of the anilox. 

When the test liquid is forced across the surface of the aniJox the gradient of the cell 

interior walls becomes the important factor in the wettability of the anilox. The 

steeper the cell walls the harder it is to wet. 

There was a small difference in printing from the bands of Harper 2 and Pira I. In 

both cases, the band with the steeper slope transferred more ink. In the case of Pira I 

this band held more ink in the cells but in the case of Harper 2 it did not. This study 

found that the slope of the cells is related to ink transfer and the advancing angle and 

it is the opinion of the author that ink transfer predictions could be made from 

advancing contact angle measurements. 
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8.2 Further work 

When undertaking a piece of academic research in a commercial environment, it is 

expected that the technology will progress whilst the work is in progress. One of the 

more significant commercial advancements during the course of this investigation is 

with the rheology of UV curable inks. The original ink used throughout this 

investigation was very thixotropic and relatively thick, even when the structure of the 

ink had been broken down. Modification of dispersion techniques and advancements 

in raw material technology have improved the flow of free radical UV inks, reducing 

the viscosity of the ink and making the inks much more Newtonian in flow 

behaviour. The improvement in rheology makes the UV inks much more suitable for 

contact angle analysis work as there is less likelihood that the viscosity will limit the 

movement of the ink, preventing it from finding thermodynamic equilibrium. The 

new generation inks also have a longer working time before they restructure so it 

may now be possible to measure advancing contact angles with real inks and 

correlate this to ink transfer directly. New cationic UV ink systems have also been 

developed with even lower viscosities than the new generation free radical inks and 

as these are based on a different chemistry with theoretical acidic functionality, it is 

reasonable to believe that these inks will wet the anilox differently to the free radical 

inks studied, It is hypothesised that a difference in the receptiveness of the C02 and 

Y AG bands to cationic UV inks will be seen. 

Further work should therefore include benchmarking the new generation UV and 

free radical inks to determine their wetting characteristics on anilox Harper 2. Both 

equiJibrium angles (using the MAMS dispensing method) and advancing angles 

266 



should be measured. The advancing angles could then be correlated to the amount of 

ink that is released from the cells using RK laboratory press and the methods detailed 

in this work. 

Another significant finding of the study was that the different engraved bands on 

anilox Harper 1 showed different levels of receptiveness to wetting by a standard 

water based ink. Further work should include contact angle analysis using a water­

based ink on Harper 2 and with modification of the RK laboratory press to include a 

suitable drying unit; the ink transfer of water-based inks could be evaluated. The 

wetting character of water-based inks is heavily influenced by the inclusion of 

surfactants and organic solvents in the formulation. The formulation is optimised for 

the end use, i.e. the wetting of the substrate. The effect of wetting additives on the 

equilibrium and advancing contact angles could be studied using the methods 

detailed in this work. This work should also be extended to take into account changes 

to the contact angle over time caused by movement of the surface active ingredients. 

Dynamic contact angle measurements using the Wilhelmy plate method discussed in 

Section 2.2.2 could be used for this purpose. 

The amount of ink released from the cells in both press trials was lower than 

expected; this was attributed to the poor contact between the rough anilox and paper 

surfaces, and the unfavourable surface energy gradient at the nip. Further work 

should include the use of filmic substrates rather than paper. This would serve two 

purposes. The surface of a film would be smoother and increase contact with the 

anilox at the nip. Also with the use of surface treatment such as corona treatment, 
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plasma treatment or flame treatment, the surface energy of the film could be varied 

and the effect of the surface energy difference at the anilox nip quantified. 

In this work, the FT A instrument was used to produce advancing and receding 

contact angles by the injection of test liquid into and then out of a static drop on the 

roll surface. For sma)]er samples the Wilhelmy plate method discussed in Section 

2.2.2 is a much more reliable method of obtaining advancing and receding data. 

Further work could include scaling up of the apparatus used to accommodate anilox 

rolls. The apparatus consists of a sensitive balance" which records the force exerted 

on the sample as it is moved up and down through a fluid. The problem in scaling up 

the apparatus would be designing a balance that could cope with holding anilox rolls 

with weights in the order of a kilogram whilst still being sensitive to the tiny 

increases in force as the anilox moves through the liquid and wetting and dewetting 

take place. 

Whilst the use of current contact angle theory has helped this author to a good 

understanding of the effect of the roughness of the anilox on its wetting properties 

there are two methods in which further valuable infonnation could be obtained. A 

method has been employed in which a rough surface has been coated with a very thin 

layer of extremely pure gold. 134 The roughness of the surface is retained but the 

chemical nature of the original surface is removed. By measuring the contact angles 

made by test liquids (pure liquids or even inks) on a section of anilox coated in this 

manner and an atomicaJly smooth and pure gold surface the effect of the roughness 

on the observed contact angle could be directly measured. 
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There are a number of analytical techniques that have been developed to measure the 

chemistry of surfaces and interfaces. These include XPS (X-ray photoelectron 

spectroscopy) ToF SIMS (time of flight secondary ion mass spectroscopy), AFM 

(atomic force microscopy), and AES (Auger electron spectroscopy). The most 

appropriate technique to future the understanding of the surface of the anilox is XPS, 

This technique involves placing the sample in a high-vacuum chamber and 

irradiating it with soft X-rays. Electrons from atomic core levels are ejected, and the 

chemistry of the surface can be mapped from their kinetic or binding energy. 

Surface properties which determine wetting spreading and adhesion character can be 

predicted from the chemical data This would allow chemical changes to the anilox 

cell interior surface produced by different laser engraving methods and conditions to 

be characterised and related to wetting and ink transfer. The advantage of this 

technique over other surface analytical techniques is that it can make measurements 

on rough surfaces. A small slice of the anilox surface would however need to be 

removed for analysis in order to fit into the vacuum chamber. 
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AppeodixA3 

Appendix Section A3-1 

Contact angle data for anilox Harper 1 measured using the MAMS instrument 
and reagent grade water as the test liquid. 

The drop volume reported for each measurement is calculated by the instrument, 
from the measured height and width of the drop. The drop volume shown in the table 
headings is the volume dispensed by the pipette. 

40111 water drops 

Polished band CO2 band VAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) (J.lI) (deg) (J.lI) (deg) (J.lI) 

1 48.58 47.55 59.18 35.39 73.87 40.46 

2 45.01 45.61 60.67 37.90 76.32 41 .62 

3 45.19 43.84 59.01 31 .35 73.09 30.98 

4 49.95 36.71 58.10 28.37 68.93 36.20 

5 50.30 40.82 56.72 29.89 75.38 35.40 

6 45.64 42.61 60.56 33.67 70.16 32.12 

7 45.90 35.25 50.73 33.02 69.14 45.42 

8 44.63 30.31 63.49 30.36 66.79 36.71 

9 50.50 51.15 52.50 30.68 70.75 34.64 

10 45.11 42.33 53.12 29.92 69.94 35.63 

11 50.65 38.08 58.90 28.71 72.84 35.74 

12 47.96 32.12 63.49 38.60 67.18 30.92 

13 48.56 41.65 56.99 33.81 74.95 40.95 

14 52.15 32.88 60.84 41 .11 72 .41 35.99 

15 49.85 36.75 62.76 35.19 67.08 38.28 

Mean 48.0 39.8 58.5 33.2 71.3 36.7 

Standard 
2.5 6.0 

Deviation 
3.9 3.8 3.1 4.1 
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Appendix Section A3-1 Continued 

Contact angle data for anilox Harper 1 measured using the MAMS instrument 
and reagent grade water as the test liquid. 

The drop volume reported for each measurement is calculated by the instrument, 
from the measured height and width of the drop. The drop volume shown in the table 
headings is the volume dispensed by the pipette. 

20JlI water drops 

Polished band CO2 band YAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) btl) (deg) btl) (deg) btl) 

1 55.48 18.68 63.80 14.73 77.14 17.12 

2 54.35 15.37 62.11 15.41 74.56 15.82 

3 49.55 15.02 65.44 13.84 77.80 17.82 

4 52.15 16.42 64.25 17.40 77.96 15.04 

5 51 .80 14.83 62.53 15.19 75.27 16.10 

6 49.95 16.63 64.71 16.98 80.10 13.15 

7 54.69 17.00 61 .89 17.52 75.62 12.93 

8 56.91 19.69 65.99 17.29 79.70 12.63 

9 54.45 17.91 64.38 13.07 83.15 14.06 

10 53.99 18.75 64.85 15.92 81 .07 15.07 

11 55.87 20.33 63.15 12.56 79.18 18.78 

12 51 .96 12.48 60.89 14.92 77.37 14.24 

13 51.39 17.13 67.93 12.77 80.68 12.31 

14 56.17 17.76 65.90 13.56 81 .65 17.04 

15 49.59 15.60 62.40 19.44 75.23 15.83 
' 16 52.87 19.49 69.35 13.62 77.42 16.06 

17 53.64 13.21 65.51 11 .73 76.02 13.84 

18 53.21 14.13 68.04 10.94 74.22 14.16 

19 57.14 13.31 62.89 16.24 75.96 15.94 

20 52.04 10.30 67.19 14.85 80.07 11 .92 

Mean 53.4 16.2 64.7 14.9 78.0 15.0 

Standard 
2.4 2.3 2.3 2.2 2.6 1.8 

Deviation 
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Appendix Section A3-1 Continued 

Contact angle data for anilox Harper 1 measured using the MAMS instrument 
and reagent grade water as the test liquid. 

The drop volume reported for each measurement is calculated by the instrument, 
from the measured height and width of the drop. The drop volume shown in the table 
headings is the volume dispensed by the pipette. 

5JlI water drops 

Polish~d band CO2 band VAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) btl) (deg) htl) (deg) htl) 

1 57.98 3.94 62.84 5.05 83.63 5.30 

2 56.05 5.25 66.70 4.03 74.12 4 .63 

3 56.67 6.02 61.11 3.73 77.32 3.51 

4 55.64 4.78 60.65 4.46 74.52 3.47 

5 55.13 6.34 64.98 4.94 75.89 4 .14 

6 54.01 3.69 62.50 4 .83 79.27 3.63 

7 52.84 6.31 62.12 4.56 76.49 3.59 

8 53.61 4.94 68.89 5.66 79.52 3.94 

9 60.36 5.52 61 .21 5.01 74.40 4.81 

10 52.74 6.36 63.27 5.14 76.22 5.16 

11 54.47 6.26 68.12 4.46 74.12 4.63 

12 57.18 8.37 63.07 3.91 74.83 5.11 

13 59.45 4.39 62.92 5.56 71 .83 5.27 

14 55.40 3.93 64.27 4.93 76.73 3.61 

15 58.45 5.07 65.21 4 .83 75.72 7.04 

16 56.49 4.59 63.61 5.62 72.92 6 .51 

17 58.27 4.65 61 .10 4.84 72.73 6.38 

18 54.24 3.24 64.07 4.81 74.06 4 .57 

19 57.50 4 .53 63.43 4.09 82.93 4.32 

20 55.55 4 .02 62.50 8.15 78.23 3.94 

Mean 56.1 5.1 63.6 4.9 76.3 4.7 

Standard 
2.2 1.2 2.3 0.6 3.2 1.1 

Deviation 
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Appendix Section A3-2 

Contact angle data for anilox Harper 1 measured using the MAMS instrument 
and diiodomethane as the test liquid. 

The drop volume reported for each measurement is calculated by the instrument, 
from the measured height and width of the drop. The drop volume shown in the table 
headings is the volume dispensed by the pipette. 

5J.l1 diiodomethane drops 

Polished band CO2 band VAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) btl) (deg) btl) (deg) (~I) 

1 18.45 5.16 22.55 4.27 12.77 3.30 

2 24.33 3.6 17.18 4.94 14.87 4.43 

3 19.51 3.44 21.55 4.67 13.42 2.99 

4 18.7 6.85 15.96 3.89 19.32 4.32 

5 19.46 4.33 14.53 5.63 10.84 3.22 

6 16.86 2.46 21 .28 5.23 15.46 3.08 

7 19.58 4.02 16.90 2.92 13.78 2.25 

8 18.45 4.77 20.16 4.39 16.39 4.05 

9 22.24 4.62 20.34 3.33 21 .17 3.06 

10 17.22 4.04 20.58 4.52 16.26 3.71 

11 21.4 3.94 21.50 3.79 15.46 3.08 

12 18.26 5.17 18.08 4.28 12.70 4.58 

13 21 .25 4.76 17.46 4.24 11 .22 4.28 

14 17.07 6.19 19.75 3.30 19.39 5.36 

15 17.04 5.25 21 .06 4.20 13.99 3.77 

16 22.98 5.3 19.55 5.39 10.56 3.39 

17 19.13 4.57 19.29 4.44 16.32 2.76 

18 18.68 5.57 16.65 3.54 11 .43 4.12 

19 19.6 5.27 19.60 3.63 14.31 2.97 

20 19.06 5.3 19.80 3.43 12.22 3.78 

Mean 19.5 4.7 19.2 4.2 14.6 3.6 

Standard 
2.1 1.0 2.2 0.7 3.0 0.8 

Deviation 
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Appendix Section A3-3 

Contact angle measurements using the FT A instrument with water and 
diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
using the ADSA technique. The drop volume shown in the table headings is the 
volume dispensed by the syringe. 

5J.11 water drops 
polished band CO2 band YAG band 

run number contact 
drop 

contact 
drop 

contact 
drop 

angle angle angle 
(degrees) 

volume (J.LI) 
(degrees) 

volume (J.LI) (degrees) 
volume (111) 

1 77.6 4.6 85.2 4.6 95.9 4.9 

2 12.3 4.9 81 .6 5.1 101 .0 4.9 

3 74.7 4.7 84.3 5.0 100.0 5.2 

4 74.1 5.2 83.6 5.2 97.3 4.7 

5 78.6 5.0 86.4 5.2 99.8 4.9 

6 73.8 5.3 83.6 4.2 101 .6 5.0 

7 71 .3 4.8 84.1 4.9 97.2 4.9 

8 73.9 4.9 82.2 5.8 102.3 5.2 

9 72.0 4.9 87.1 5.2 98.9 4.8 

10 76.0 5.0 85.3 5.0 99.9 5.0 

11 75.7 4.3 82.9 4.8 100.6 4.6 

12 12.6 4.8 84.6 5.2 96.2 4.9 

13 74.1 5.2 83.7 4.7 95.6 5.1 

14 77.0 5.2 86.9 5.3 97.6 4.7 

15 76.2 4.8 81 .6 5.0 102.8 4.9 

16 76.9 4.6 88.7 5.1 100.9 5.0 

17 73.8 5.0 87.4 4.9 99.8 4.8 

18 74.4 5.3 82.9 5.1 99.5 5.1 

19 76.5 5.2 81 .2 5.3 100.3 5.2 

20 73.7 4.8 84.3 4.7 102.6 4.6 

Mean 74.8 4.9 84.4 5.0 99.5 4.9 

Standard 
2.0 0.3 2.1 0.3 2.2 0.2 

deviation 
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Appendix Section A3-3 Continued 

Contact angle measurements using the FTA instrument with water and 
diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
using the ADSA technique. The drop volume shown in the table head ings is the 
volume dispensed by the syringe. 

7JlI diiodomethane drops 
polished band CO2 band VAG band 

run number contact angle drop contact angle drop volume contact angle drop volume 
(degrees) volume (111) (degrees) (111) (degrees) h1l) 

1 41 .2 7.2 44.8 6.9 42.9 6.4 
2 40.3 6.8 42.0 6.3 41 .0 6.0 
3 39.7 6.8 45.3 6.8 44.2 6.0 
4 43.9 6.9 45.2 6.5 43.2 6.2 
5 42.7 6.3 47.2 7.1 42.5 6.7 
6 41 .2 6.7 42.9 6.7 43.8 6.2 
7 44.3 6.8 43.3 6.6 46.4 6.1 
8 43.0 6.6 47.7 6.8 44.8 6.6 
9 41.6 6.3 45.5 6.3 42.0 6.3 
10 40.1 6.9 46.0 6.9 43.1 6.1 

Mean 41.S 6.7 45.0 6.7 43.4 6.3 

Standard 
1.6 0.3 1.8 0.3 1.5 0.2 

deviation 
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Appendix Section A3-4 

Contact angle measurements using the FTA instrument with formam ide as the 
test liquid. 

The drop volume reported for each measurement is calculated by the instrument, 
using the ADSA technique. The drop volume shown in the table headings is the 
volume dispensed by the syringe. 

5J.l1 formamide drops 

polished band CO2 band VAG band 

run number contact angle drop contact angle drop volume contact angle drop volume 
(degrees) volume bd) (degrees) bll) (degrees) (I.d) 

1 42.8 4.2 60.8 4.8 62.7 4.7 

2 44.1 4.8 62.3 4.5 63.7 4.6 

3 43.1 4.6 63.4 4.4 65.1 4.7 

4 43.8 4.7 59.8 4.5 64.7 5.1 

5 45.4 4.7 60.2 4.4 64.2 4.6 

6 44.1 4 .7 61 .5 4.4 60.1 4.7 

7 41 .5 4.6 59.7 4.5 62.9 4.6 

8 42.3 4.6 58.8 4.8 64.4 4.9 

9 42.6 4.9 57.0 4.8 65.0 4 .5 

10 43.1 4.6 59.4 4.6 63.8 4.5 

Mean 43.3 4.6 60.3 4.6 63.7 4.7 

Standard 
1.1 0.2 1.8 0.2 1.5 0.2 

deviation 

286 



Appendix Section A3-5 

Contact angle measurements using the FTA instrument using commercially 
available Cyan inks as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
using the ADSA technique. The drop volume shown in the table headings is the 
volume dispensed by the syringe. 

Water-based ink process cyan Sun Chemical 

polished band CO2 band VAG band 

run number contact angle drop contact angle drop volume contact angle drop volume 
(degrees) volume bll) (degrees) bll) (degrees) bll) 

1 52 2.9 63 6.3 73 3.5 

2 52 6.1 63 3.3 75 3.4 

3 54 7.2 65 3.8 73 8.1 

4 52 5.7 65 5.3 73 10.9 

5 56 7.3 64 5.6 72 4.3 

6 52 5.3 67 6.5 72 7.6 

Mean 53.0 5.8 64.5 5.1 73.0 6.3 

Standard 1.7 1.6 1.5 1.3 1.1 3.0 
deviation 

UV Ink Process cyan "Arena" Coates lorrelleux 

polished band CO2 band VAG band 

run number contact angle drop volume contact angle drop volume contact angle drop volume 
(degrees) b11) (degrees) bll) (degrees) bll) 

1 30 2.7 49 5.0 36 2.6 

2 33 3.8 44 3.6 41 3.0 

3 26 3.6 46 5.4 44 2.0 

4 35 2.0 41 4.5 44 3.4 

5 56" 7.2· 47 4.2 43 3.6 

Mean 32 3.0 45 4.6 42 3.0 

Standard 
3 0.6 3 0.6 3 0.7 

deviation 

* indicated not included in average figures 
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Appendix Section A3-6 

Contact angle measurements on Harper 1 post cleaning, using the FT A 
instrument with water and diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
using the ADSA technique. The drop volume shown in the table head ings is the 
volume dispensed by the syringe. 

SJ.11 water drops 
polished band CO2 band VAG band 

run number contact angle drop contact angle drop volume contact angle drop volume 
(degrees) volume lid) (degrees) lid) (degrees) lid) 

1 71 .5 5.0 86.8 3.8 75.6 8.6 

2 76.0 4.6 86.6 3.3 80.0 8.2 

3 72.1 3.9 87.7 3.7 79.5 7.8 

4 71 .0 4.7 60.5 5.4 79.3 7.4 

5 69.2 4.6 87.3 3.6 76.8 7.1 

6 75.1 4.1 80.9 3.9 78.8 6.9 
7 75.9 4.5 83.4 4.0 76.1 8.5 

8 71 .2 4.1 84.7 4.4 80.5 7.7 

9 76.1 4.9 86.4 4.4 76.3 6.5 

10 70.5 4.1 85.6 4.6 78.6 7.5 

11 69.2 4.2 84.4 4.3 
12 69.5 4.5 81 .5 5.0 

13 74.6 4.4 82.5 4.1 

14 68.4 4.1 79.7 4.4 

15 74.8 4.9 81 .0 3.9 

Mean 72.3 4.4 83.9 4.2 78.1 7.8 

Standard 2.8 0.4 2.8 0 .5 1.8 0.7 deviation 

SJ.11 diiodomethane drops 
polished band CO2 band VAG band 

run number contact angle drop contact angle drop volume contact angle dropvolumo 
(degrees) volume lid) (degrees) lid) (degrees) (iii) 

1 43.5 4.6 42.8 4.4 40.2 4.2 

2 41 .7 4.5 41 .4 5.0 43.0 4.4 

3 40.4 4.9 46.5 4.5 43.4 4.0 

4 42.0 5.1 42.0 4.4 45.9 4.6 

5 42.7 4.3 41 .4 4.5 44.6 4.8 

Mean 42.1 4.7 42.8 4.5 43.4 4.4 

Standard 
1.2 0.3 2.1 0.2 2.2 0.3 

deviation 
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Appendix A4 

Appendix Section A4-1 

Contact angle data for anilox Pira 1 measured using the MAMS instrument 

The drop volume reported is again a calculated volume from the measured height and 
width of the drop. The drop volume shown in the table header is the volume dispensed 
by the pipette. 

5JlI water drops 

Polished band Band 1 Band 2 Band 3 

Repeat Angle Volume Angle Volume Angle Volume Angle Volume 
number (deg) hll) (deg) hd) (deg) hLl) (deg) hd) 

1 50.7 6.5 50.9 5.6 51 .7 3.1 52.8 4.8 

2 45.9 5.4 49.5 7.1 50.7 3.3 54.5 6.1 

3 45.9 6.3 52.6 5.4 52.0 4.3 54.6 4.5 

4 49.6 6.7 55.9 5.5 56.7 6.1 52.2 5.7 

5 48.3 5.5 54.9 5.7 56.1 3.6 50.3 5.5 

6 48.5 6.2 50.5 5.9 55.6 5.3 50.5 5.9 

7 51 .8 4.8 49.6 5.9 53.3 4.7 55.3 6.2 

8 44.9 6.4 49.0 5.8 51 .3 5.6 48.0 5.5 

9 47.5 5.6 55.5 3.4 48.3 4.4 52.7 5.5 

10 53.3 5.5 53.3 7.4 50.1 7.4 53.0 7.5 

11 48.1 4.8 53.2 6.9 54.5 3.8 

12 50.6 5.0 48.8 7.8 53.7 6.6 

13 44.5 5.6 48.4 5.3 55.9 6.5 

14 47.9 3.5 53.6 4.6 52.1 6.1 

15 54.8 4.3 54.1 5.0 53.6 5.2 

16 54.2 4.6 49.1 6.0 50.9 5.2 

17 50.7 4.2 55.6 4.9 48.8 6.3 

18 49.1 5.5 50.3 4.8 50.4 5.8 

19 55.3 4.1 55.4 5.6 51 .7 5.8 

20 51 .9 3.9 51 .1 5.5 55.4 6.3 

Mean 49.7 5.2 52.1 5.7 52.6 5.3 52.4 5.7 

Standard 
3.3 0.9 2.6 1.0 2.5 1.2 2.3 0.8 

Deviation 
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Appendix Section A4-1 continued 

Contact angle data for anilox Pira 1 measured using the MAMS instrument 
continued 

The drop volume reported is again a calculated volume from the measured height and 
width of the drop. The drop volume shown in the table header is the volume dispensed 
by the pipette. 

5J.11 diiodomethane drops 

Polished band Band 1 Band 2 Band 3 

Repeat Angle Volume Angle Volume Angle Volume Angle Volume 
number (deg) (~I) (deg) bd) (deg) (~I) (deg) (Ill) 

1 12.8 4.7 14.7 3.5 16.3 4.4 10.4 4.1 

2 13.4 5.8 12.4 4.6 17.7 3.4 12.6 2.9 

3 13.9 4.0 20.1 4.8 15.3 3.3 13.4 5.3 

4 11 .7 4.5 15.0 5.7 17.9 3.6 13.0 5.5 

5 12.8 7.3 17.0 5.8 16.2 4.3 12.6 5.8 

6 15.7 4.3 17.6 6.2 13.3 4.9 11 .8 4.8 

7 12.7 4.2 16.4 5.9 15.4 4.5 12.3 4.6 

8 12.1 4.0 12.2 6.7 15.7 4.6 10.7 5.6 

9 14.0 4.0 13.8 4.8 17.3 4.0 13.0 4.9 

10 12.9 4.5 19.3 4.4 13.9 5.0 12.3 5.5 

11 16.7 5.0 12.7 4.7 12.7 4.7 

12 14.0 7.1 19.4 4.4 15.6 3.7 

13 14.3 6.0 18.9 4.7 16.7 4.5 

14 15.3 5.0 17.0 5.9 16.6 6.5 

15 15.3 4.2 18.0 5.4 12.7 5.9 

16 12.8 4.4 20.4 5.8 18.7 4.7 

17 13.5 4.0 16.3 6.0 12.4 5.4 

18 14.4 5.2 19.7 5.7 13.5 5.2 

19 11 .1 4.1 17.6 5.2 14.9 6.2 

20 14.4 4.9 17.5 3.5 15.6 5.7 

Mean 13.7 4.9 16.8 5.2 15.4 4.7 12.2 4.9 

Standard 
1.4 1.0 2.7 0.8 1.9 0.9 1.0 0.9 

Deviation 
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Appendix Section A4-2 

Optical density measurements made on the prints from anilox Pira 1 

25 Meters per Minute 

Light pressure Medium pressure High pressure 
Band 1 Band 2 Band 1 Band 2 Band 1 Band 2 

0.64 0.58 0.68 0.77 0.64 0.58 
0.65 0.69 0.77 0.81 0.65 0.69 
0.61 0.67 0.70 0.75 0.61 0.67 
0.67 0.70 0.64 0.80 0.67 0.70 
0.54 0.63 0.67 0.83 0.54 0.63 
0.63 0.69 0.73 0.78 0.63 0.69 
0.70 0.72 0.61 0.77 0.70 0.72 
0.60 0.75 0.64 0.78 0.60 0.75 
0.63 0.69 0.68 0.82 0.63 0.69 
0.62 0.66 0.65 0.78 0.62 0.66 

0.62 0.65 0.70 0.72 0.62 0.65 
0.58 0.62 0.71 0.73 0.58 0.62 
0.66 0.62 0.70 0.73 0.66 0.62 
0.60 0.66 0.69 0.81 0.60 0.66 
0.57 0.64 0.69 0.80 0.57 0.64 
0.61 0.68 0.70 0.75 0.61 0.68 
0.58 0.65 0.68 0.80 0.58 0.65 
0.55 0.69 0.64 0.77 0.55 0.69 
0.59 0.69 0.66 0.81 0.59 0.69 
0.56 0.61 0.71 0.79 0.56 0.61 

0.67 0.67 0.79 0.71 0.82 0.77 
0.66 0.66 0.78 0.74 0.82 0.82 
0.64 0.65 0.83 0.74 0.81 0.84 
0.62 0.75 0.72 0.76 0.73 0.79 
0.61 0.71 0.72 0.77 0.74 0.80 
0.59 0.64 0.74 0.74 0.70 0.81 
0.61 0.72 0.77 0.73 0.70 0.78 
0.60 0.73 0.79 0.74 0.72 0.81 
0.65 0.70 0.78 0.76 0.69 0.77 
0.69 0.69 0.76 0.80 0.74 0.81 

0.64 0.69 0.73 0.82 0.77 0.75 
0.62 0.65 0.71 0.79 0.82 0.79 
0.68 0.68 0.75 0.83 0.79 0.81 
0.58 0.68 0.65 0.76 0.67 0.80 
0.59 0.71 0.66 0.78 0.71 0.85 
0.64 0.72 0.69 0.78 0.75 0.86 
0.56 0.69 0.67 0.79 0.69 0.78 
0.57 0.72 0.62 0.82 0.72 0.84 
0.66 0.73 0.66 0.84 0.72 0.82 
0.61 0.66 0.74 0.78 0.68 0.84 

0.62 0.68 0.71 0.78 0.68 0.74 
0.04 0.04 0.05 0.03 0.08 0.08 
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Appendix Section A4-2 continued 

Optical density measurements made on the prints from anilox Pira 1 continued 

50 Meters per Minute 

Light pressure Medium pressure High pressure 

Band 1 Band 2 Band 1 Band 2 Band 1 Band 2 

0.72 0.65 0.71 0.69 0.67 0.7 
0.71 0.64 0.69 0.69 0.65 0.68 
0.69 0.60 0.68 0.65 0.62 0.7 
0.64 0.64 0.65 0.68 0.58 0.71 
0.62 0.66 0.66 0.69 0.62 0.75 
0.63 0.69 0.62 0.67 0.63 0.71 
0.61 0.70 0.56 0.66 0.6 1 0.67 
0.61 0.68 0.63 0.68 0.6 1 0.68 
0.58 0.64 0.59 0.72 0.68 0.67 
0.62 0.68 0.63 0.70 0.64 0.68 

0.62 0.67 0.64 0.75 0.67 0.7 
0.63 0.67 0.64 0.69 0.68 0.68 
0.65 0.70 0.62 0.71 0.60 0.7 
0.60 0.70 0.64 0.74 0.67 0.75 
0.59 0.75 0.62 0.72 0.68 0.71 
0.63 0.70 0.62 0.72 0.62 0.76 
0.60 0.75 0.62 0.70 0.61 0.7 1 
0.59 0.73 0.58 0.71 0.62 0.76 
0.60 0.71 0.60 0.67 0.62 0.74 
0.61 0.72 0.58 0.71 0.62 0.74 

0.69 0.70 0.60 0.68 0.58 0.74 
0.67 0.67 0.61 0.72 0.64 0.75 
0.66 0.78 0.66 0.77 0.60 0.78 
0.74 0.71 0.60 0.72 0.68 0.72 
0.61 0.69 0.65 0.70 0.65 0.72 
0.67 0.74 0.67 0.70 0.63 0.72 
0.6 1 0.66 0.63 0.69 0.67 0.75 
0.62 0.65 0.70 0.70 0.72 0.74 
0.66 0.66 0.68 0.71 0.72 0.7 
0.62 0.70 0.74 0.72 0.70 0.69 

0.69 0.69 0.72 0.74 0.78 0.71 
0.66 0.74 0.75 0.75 0.70 0.73 
0.71 0.71 0.72 0.72 0.71 0.68 
0.67 0.69 0.62 0.67 0.67 0.76 
0.64 0.68 0.65 0.68 0.63 0.74 
0.64 0.69 0.68 0.69 0.65 0.74 
0.60 0.63 0.64 0.67 0.64 0.73 
0.61 0.67 0.65 0.70 0.62 0.75 
0.66 0.69 0.60 0.69 0.62 0.73 
0.66 0.66 0.72 0.67 0.63 0.79 

0.69 0.75 0.67 0.71 0.68 0.77 
0.64 0.78 0.73 0.77 0.67 0.74 
0.67 0.74 0.75 0.76 0.64 0.82 
0.64 0.70 0.67 0.67 0.64 0.72 
0.67 0.72 0.68 0.67 0.63 0.79 
0.65 0.74 0.70 0.70 0.69 0.73 
0.66 0.69 0.67 0.69 0.61 0.73 
0.62 0.69 0.66 0.66 0.63 0.75 
0.63 0.69 0.66 0.66 0.63 0.7 
0.63 0.72 0.76 0.62 0.66 0.73 

0.64 0.69 0.66 0.70 0.65 0.73 
0.04 0.04 0.05 0.Q3 0.04 0.03 
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Appendix Section A4-2 continued 

Optical density measurements made on the prints from anilox Pira 1 continued 

75 Meters per Minute 

Light pressure Medium pressure High pressure 
Band 1 Band 2 Band 1 Band 2 Band 1 Band 2 

0.55 0.49 0.58 0.55 0.66 0.64 
0.57 0.47 0.58 0.56 0.61 0.69 
0.45 0.49 0.55 0.53 0.7 0.68 
0.5 0.5 0.56 0.53 0.63 0.67 

0.45 0.49 0.51 0.57 0.6 0.73 
0.43 0.49 0.5 0.57 0.64 0.72 
0.45 0.52 0.52 0.6 0.58 0.69 
0.44 0.5 0.53 0.61 0.63 0.72 
0.44 0.48 0.49 0.56 0.6 0.66 
0.45 0.5 0.57 0.58 0.62 0.7 

0.52 0.48 0.56 0.55 0.71 0.68 
0.45 0.48 0.6 0.58 0.64 0.69 
0.51 0.55 0.55 0.6 0.63 0.65 
0.45 0.55 0.55 0.56 0.67 0.69 
0.44 0.52 0.55 0.6\ 0.65 0.65 
0.42 0.52 0.51 0.61 0.62 0.7 
0.42 0.52 0.48 0.61 0.63 0.74 
0.44 0.55 0.52 0.65 0.6 1 0.73 
0.45 0.6 0.49 0.64 0.64 0.7\ 
0.43 0.5\ 0.52 0.6 0.65 0.65 

0.42 0.53 0.63 0.6\ 0.72 0.64 
0.43 0.54 0.57 0.66 0.69 0.65 
0.42 0.6 0.6 0.62 0.68 0.67 
0.47 0.54 0.6 0.65 0.62 0.65 
0.47 0.54 0.54 0.66 0.62 0.64 
0.47 0.5 \ 0.57 0.65 0.63 0.66 
0.47 0.57 0.59 0.63 0.71 0.7 
0.45 0.55 0.53 0.69 0.69 0.7 
0.46 0.56 0.55 0.68 0.66 0.71 
0.47 0.56 0.59 0.6 0.68 0.67 

0.45 0.6 0.6\ 0.57 0.67 0.76 
0.48 0.59 0.61 0.59 0.64 0.68 
0.44 0.6 0.59 0.6 0.67 0.69 
0.51 0.53 0.54 0.62 0.61 0.69 
0.48 0.56 0.54 0.65 0.64 0.68 
0.5 0.58 0.54 0.64 0.62 0.68 
0.5 0.57 0.56 0.6 1 0.62 0.66 

0.56 0.55 0.56 0.61 0.6 0.71 
0.47 0.55 0.56 0.66 0.68 0.66 
0.56 0.52 0.59 0.6 1 0.64 0.68 

0.47 0.53 0.55 0.61 0.65 0.68 
0.04 0.04 0.04 0.04 0.03 
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Appendix Section A4-2 continued 

Optical density measurements made on the prints from anilox Pira 1 continued 

100 Meters per Minute 

Light pressure Medium pressure High pressure 
Band 1 Band 2 Band 1 Band 2 Band 1 Band 2 

0.48 0.54 0.53 0.53 0.6 0.62 
0.48 0.52 0.53 0.53 0.6\ 0.63 
0.47 0.49 0.54 0.54 0.58 0.58 
0.45 0.52 0.51 0.54 0.61 0.59 
0.43 0.49 0.49 0.57 0.59 0.59 
0.44 0.48 0.48 0.57 0.58 0.62 
0.45 0.5 0.5 0.58 0.56 0.59 
0.45 0.54 0.5 0.63 0.53 0.62 
0.43 0.54 0.49 0.61 0.55 0.61 
0.46 0.5 0.5 0.62 0.53 0.66 

0.41 0.43 0.54 0.59 0.49 0.6 
0.4 0.45 0.55 0.54 0.52 0.62 
0.4 0.45 0.54 0.53 0.57 0.53 

0.44 0.44 0.49 0.56 0.49 0.6 
0.41 0.44 0.51 0.54 0.49 0.57 
0.44 0.45 0.5 0.56 0.53 0.62 
0.47 0.45 0.46 0.57 0.51 0.6 
0.45 0.49 0.49 0.53 0.49 0.6 
0.48 0.45 0.47 0.55 0.48 0.59 
0.45 0.46 0.55 0.55 0.49 0.57 

0.48 0.51 0.54 0.52 0.54 0.57 
0.48 0.48 0.5 0.54 0.52 0.55 
0.49 0.46 0.49 0.51 0.54 0.58 
0.46 0.48 0.49 0.52 0.52 0.55 
0.46 0.49 0.53 0.54 0.51 0.54 
0.44 0.52 0.46 0.53 0.5 0.58 
0.44 0.47 0.44 0.55 0.51 0.63 
0.42 0.51 0.48 0.53 0.51 0.53 
0.42 0.48 0.48 0.51 0.49 0.54 
0.44 0.5 0.52 0.57 0.5 0.56 

0.44 0.5 0.57 0.59 0.58 0.58 
0.46 0.5 0.56 0.56 0.53 0.63 
0.46 0.55 0.55 0.57 0.54 0.6\ 
0.4 0.48 0.5 0.52 0.59 0.58 

0.42 0.47 0.49 0.53 0.57 0.56 
0.42 0.46 0.5 0.51 0.58 0.64 
0.4 0.47 0.48 0.5 0.59 0.5 

0.42 0.48 0.49 0.55 0.59 0.52 
0.41 0.43 0.48 0.52 0.65 0.5 
0.45 0.52 0.55 0.6 0.55 0.54 

0.44 0.48 0.51 0.55 0.54 0.58 
0.03 0.03 0.03 0.03 0.04 0.04 
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Appendix Section A4-3 

Results of film thickness measurements determined by optical microscopy on 

sections of print from anilox Pira 1. Measurements are reported in microns. 

1736A Pira 1 band I 75 metres per minute low pressure 
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17368 Pira 1 band 1 75 metres per minute medium pressure 
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Appendix Section A4-4 

Density measurements made on prints from the Mickle proofer. 

Optical density 
Sample Sample Sample Sample Sample 

measurements 
weight weight weight weight weight 
0.0015 0.0110 0.0052 0.0045 0.0026 

1 0.39 1.12 0.08 0.67 0.49 

2 0.31 1.14 0.76 0.63 0.46 

3 0.30 1.11 0.72 0.37 0.45 

4 0.32 1.15 0.76 0.67 0.49 

5 0.31 1.21 0.78 0.68 0.49 

6 0.38 1.09 0.78 0.73 0.51 

7 0.30 1.13 0.76 0.68 0.51 

8 0.32 1.14 0.78 0.70 0.51 

9 0.37 1.12 0.83 0.67 0.56 

10 0.39 1.11 0.78 0.71 0.55 

mean 0.34 1.13 0.70 0.65 0.50 
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Appendix AS 

Appendix Section AS-l 

Repeat of contact angle data for anilox Harper 1, measured using the MAMS 
instrument and reagent grade water and diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
from the measured height and width of the drop. The drop volume shown in the table 
headings is the volume dispensed by the pipette. 

5JlI water drops 

Polished band CO2 band VAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) bll) (deg) (~I) (deg) (Ill) 

1 52.44 4.10 65.86 3.84 76.82 5.07 

2 59.65 5.44 66.13 3.55 74.30 4.15 

3 51 .64 4.11 64.08 4.83 77.67 5.60 

4 55.00 4.63 64.10 4.76 70.17 5.74 

5 59.89 3.26 63.63 4.73 70.46 5.62 

6 59.89 3.26 64.42 5.45 74.90 4.45 

7 55.20 3.70 60.13 4.27 77.61 5.71 

8 58.00 7.19 61 .00 4.90 83.28 4.39 

9 56.46 6.67 62.81 4.35 71 .68 3.57 

10 51 .98 7.42 60.77 4.18 71 .17 5.05 

11 58.77 6.75 62.90 6.56 70.23 5.70 

12 50.34 6.35 66.03 5.35 83.89 4.97 

13 58.89 4.94 65.38 5.46 76.04 3.63 

14 51.40 6.25 63.49 5.27 74.52 4.14 

15 55.28 5.18 62.59 4.91 70.41 5.02 

16 79.14 4.37 

17 74.52 4.14 

18 77.91 4.93 

19 77.83 4.26 

20 76.48 5.16 

Mean 55.7 5.3 63.6 4.8 75.5 4.8 

Standard 
3.4 1.4 1.9 0.7 4.1 0.7 

Deviation 

302 



Appendix Section AS-2 

Contact angle data for anilox Harper 2 measured using the MAMS instrument 
using water and diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
from the measured height and width of the drop. The drop volume shown in the table 
headings is the volume dispensed by the pipette. 

5111 water drops 

Polished band CO2 band YAG band 

Repeat Angle (deg) 
Volume Angle Volume Angle Volume 

number h.LI) (deg) hLl) (deg) (J.1I) 

1 59.70 4.46 72.97 4.85 84.49 5.50 
2 56.60 6.33 78.29 5.87 83.84 4.27 
3 60.25 4.38 78.1 9 2.76 83.49 4.34 
4 57.06 5.96 77.09 5.56 80.46 5.51 
5 60.27 6.66 72.37 6 .07 81 .76 3.91 
6 58.64 4.03 74.75 6.42 87.69 4.84 
7 60.74 6.78 76.43 9.45 80.65 5.36 
8 59.73 6.77 78.17 9.16 83.50 4.86 
9 61.47 4.81 74.63 7.35 83.48 8.74 

10 56.67 4.67 74.24 7.42 85.11 4.67 
11 59.87 3.67 73.85 6.70 81 .57 4.44 
12 61 .21 3.86 72.99 4.28 81 .33 6.86 
13 60.75 4.58 78.73 3.65 84.15 4.06 
14 55.09 3.31 69.92 9.09 81 .25 5.38 
15 58.27 4.41 76.20 7.64 79.56 7.74 
16 61 .93 5.00 70.07 4.19 81.44 4.44 
17 57.41 4.41 71 .90 4.03 83.68 5.15 
18 59.24 4.73 73.94 6.03 85.48 5.84 
19 59.41 2.99 75.73 4.98 87.23 6.87 
20 56.73 4.21 71 .93 4.00 83.89 4.63 
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Appendix Section AS-2 continued 

Contact angle data for anilox Harper 2 measured using the MAMS instrument 
using water and diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
from the measured height and width of the drop. The drop volume shown in the table 
headings is the volume dispensed by the pipette 

5J.l1 water drops 

Polished band CO2 band VAG band 

Repeat Angle (deg) 
Volume Angle Volume Angle Volume 

number bd) (deg) (~I) (deg) bll) 
21 59.08 3.60 72.68 4.90 88.30 4.98 
22 59.79 5.35 71.08 4.94 89.64 4.51 
23 61 .72 4.30 76.58 4.72 85.90 4.90 
24 54.33 4.27 76.68 4.59 87.57 4.42 
25 59.30 4.24 76.67 4.81 86.36 5.37 
26 61 .98 6.61 69.08 5.19 84.60 5.27 
27 55.61 4.82 75.72 4.34 90.31 4.98 
28 65.95 4.98 72.58 5.49 84.07 4.24 
29 62.62 5.56 76.65 5.18 83.08 5.64 
30 59.55 4.81 75.07 4.96 95.30 5.93 
31 61 .29 6.18 71 .94 4.89 93.88 4.84 
32 63.30 4.91 70.79 4.31 88.22 4.60 
33 60.48 4.21 75.27 5.10 87.16 4.57 
34 61 .14 5.15 72.01 5.17 87.95 4.94 
35 58.23 5.10 78.44 4.09 87.39 3.62 
36 61 .33 4.58 72.25 5.25 90.32 5.50 
37 58.71 4.74 78.94 4.29 94.43 5.05 
38 61 .67 6 .54 76.48 4.08 95.93 4.83 
39 60.30 5.14 78.72 4.76 90.60 4.90 
40 59.18 5.08 75.99 4.15 92.46 4.83 

Mean 59.7 4.9 74.7 5.4 86.2 5.1 

Standard 
2.3 1.0 2.8 1.5 4.3 1.0 Deviation 
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Appendix Section AS-3 

Contact angle measurements using the FT A instrument with water and 
diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
using the ADSA technique. 

water drops 

Polished band CO2 band VAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) bd) (deg) (,.d) (deg) bll) 

1 76.2 8.8 86.7 8.7 106.6 9.4 

2 71.7 9.0 89.3 9.2 103.3 8.2 

3 72.2 8.6 88.5 9.0 104.2 9.5 

4 74.4 8.6 92.4 9.4 107.3 9.2 

5 70.5 8.6 90.1 9.7 103.6 8.2 

6 73.8 8.7 90.7 9.3 106.2 9.2 

7 73.2 8.9 88.6 9.2 101 .9 9.4 

8 73.8 9.2 86.5 9.3 103.1 9.5 

9 73.4 9.0 95.6 9.5 104.6 9.5 

10 69.5 8.7 88.4 8.1 103.8 9.4 

11 79.5 8.5 95.8 9.6 102.4 9.7 

12 77.3 8.5 93.2 9.7 101 .3 10.1 

13 70.9 8.1 92.0 9.5 108.3 8.0 

14 74.3 8.6 87.5 9.5 101 .6 9.0 

15 72.1 8.5 93.0 8.2 105.8 7.1 

16 73.8 9.1 94.5 9.7 107.4 8.0 

17 77.3 8.5 94.0 9.6 107.7 8.9 

18 73.7 6 .1 92.1 9.5 103.8 7.7 
19 77.7 8.4 87.9 9.3 108.1 9.0 

20 76.1 8.1 88.9 9.6 108.9 8.7 

Mean 74.1 8.5 90.8 9.3 105.0 8.9 

Standard 
2.6 0.6 2.9 0.5 2.4 0.8 Deviation 
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Appendix Section AS-3 Continued 

Contact angle measurements using the FTA instrument with water and 
diiodomethane as the test liquids. 

The drop volume reported for each measurement is calculated by the instrument, 
using the ADSA technique. 

diiodamethane drops 

Polished band CO2 band YAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) btl) (deg) (~I) (deg) (~I) 

1 44.7 1.9 45.5 2.0 44.8 1.6 
2 43.1 1.8 42.3 1.8 44.7 1.8 
3 44.2 1.9 45.9 1.9 40.1 1.8 
4 44.7 1.8 43.6 1.8 47.1 1.8 
5 42.3 1.8 40.5 1.5 45.2 1.8 
6 46.8 1.9 44.6 1.7 43.9 1.8 
7 44.3 1.8 42.1 1.8 39.2 1.9 
8 41 .5 1.8 44.0 1.7 42.7 1.4 
9 43.6 1.8 40.1 1.8 42.1 1.8 
10 42.6 1.7 42.2 1.6 43.1 1.9 

Mean 43.8 1.8 43.1 1.8 43.3 1.8 

Standard 1.5 0.1 2.0 0.1 2.4 0.2 Deviation 
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Appendix Section AS-4 

Advancing and receding contact angle measurements using the FT A in trument 
with water as the test liquid. 

Polished band CO2 band VAG band 

Repeat Angle (deg) Angle (deg) Angle (deg) number 

1 92 99 110 

2 94 100 104 

3 98 

4 101 

5 100 

Mean 93.0 99.5 107.0 

Standard 
1.4 1.1 4.2 Deviation 

Appendix Section AS-S 

Contact angle measurements using the FTA instrument with formamide as the 
test liquid. 

The drop volume reported for each measurement is calculated by the instrument 
using the ADSA technique. 

Formamide drops 

Polished band CO2 band VAG band 

Repeat Angle Volume Angle Volume Angle Volume 
number (deg) btl) (deg) btl) (deg) btl) 

1 44.0 6.0 60.0 5.1 65.5 6.7 
2 40.9 6.2 59.3 6.8 64.5 5.7 
3 39.6 6.3 59.7 6.3 63.8 6.6 
4 47.3 6.2 61 .6 7.5 64.0 6.9 
5 42.1 4.4 62.0 6.4 66.3 7.1 
6 43.8 5.4 62.8 7.2 63.6 6.7 
7 39.9 7.2 61 .9 7.0 60.9 5.9 
8 43.1 6.9 60.8 7.9 65.3 5.0 
9 40.8 7.0 60.7 6.5 66.7 6.7 
10 46.6 6.1 61 .8 7.5 68.8 6.7 

Mean 42.8 6.2 61.1 6.8 64.9 6.4 

Standard 
2.7 0.8 1.1 0.8 2.1 0.7 Deviation 
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Appendix Section A5-6 

Density measurements made on the prints from the RK mini web press using 
anilox Harper 2 and Arena process cyan (UV ink from Coates Lorilleux). 

Measurement Sample number 
~osition A1 CO2 A2C02 A3C02 A4C02 A5C02 A6C02 A7C02 A8C02 A9C02 A10 CO2 

0.52 0.49 0.53 0.54 0.57 0.44 0.43 0.57 051 0.56 
0.54 0.51 0.56 0.54 0.48 0.50 0.45 0.53 0.55 0.53 
0.55 0.53 0.59 0.56 0.50 0.49 0.45 0.46 0.50 0.56 

EDGE 0.55 0.54 0.52 0.56 0.51 0.52 0.44 0.52 0.50 0.54 
0.51 0.56 0.51 0.55 0.54 0.50 0.42 0.54 0.53 0.55 

mean 0.53 0.53 0.64 0.55 0.52 0.4' 0.44 0.52 0.52 0.65 
std dey 0.02 003 0.03 0.01 0.04 0.03 0.01 0.0.- 0.02 0.01 

0.46 0.43 0.49 0.45 0.40 0.39 0.38 0.39 0.45 0.50 
0.44 0.47 0.49 0.48 0.43 0.43 0.38 0.43 0.42 0.48 
0.45 0.46 0.51 0.43 0.47 0.42 0.33 0.45 0.39 0.50 

MID1 0.50 0.51 0.49 0.47 0.45 0.41 0.37 0.42 0.42 0.46 
0.49 0.47 0.49 0.44 0.47 0.41 0.33 0.42 0.37 0.44 

mean 0.47 0.47 0.49 0.45 0.44 0.41 0.35 0.42 0.41 0.48 
Std dey 0.03 0.03 0.01 0.02 0.03 0.01 0.03 0.02 0.03 0.03 

0.40 0.41 0.43 0.39 0.33 0.30 0.30 0.33 0.34 0.46 
0.44 0.39 0.40 0.36 0.34 0.31 0.29 0.31 0.33 0.41 
0.41 0.44 0.45 0.35 0.35 0.33 0.31 0.30 0.32 0.42 

CENTRE 0.42 0.41 0.43 0.37 0.34 0.35 0.29 0.30 0.30 0.40 
0.45 0.42 0.39 0.35 0.34 0.32 0.34 0.31 0.33 0.44 

mean 0.42 0.41 0.42 0.36 0.34 0.~2 0.31 0.31 0.32 0.43 
std dey 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 

0.42 0.42 0.40 0.32 0.30 0.32 0.33 0.30 0.32 0.42 
0.41 0.40 0.41 0.33 0.33 0.33 0.29 0.31 0.32 0.46 
0.44 0.42 0.41 0.34 0.31 0.35 0.28 0.29 0.32 0.44 

MID2 0.43 0.39 0.44 0.34 0.33 0.34 0.28 0.29 0.30 0.43 
0.40 0.39 0.44 0.34 0.32 0.33 0.29 0.31 0.30 0.40 

meln 0.42 OAO 0.42 0.33 0.32 0.33 0.29 0.30 0,31 0.43 
atddev 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.01 0.01 O.~ 

0.42 0.39 0.43 0.33 0.32 0.31 0.26 0.27 0.29 0.43 
0.40 0.40 0.45 0.34 0.32 0.32 0.30 0.31 0.30 0.40 
0.42 0.39 0.44 0.36 0.35 0.34 0.39 0.31 0.38 0.46 

JOIN 0.46 0.43 0.42 0.38 0.34 0.34 0.27 0.32 0.35 0.43 
0.44 0.43 0.42 0.34 0.33 0.29 0.31 0.32 0.36 0.42 

mean 0.43 0.41 0.43 0.~5 0.33 0.32 0.31 0.31 0.34 0.43 
stddev 0.02 0.02 0.01 0.02 0.01 0.02 0.05 0.02 0.04 0.02 

Combined ...... OAO 0 .• 0.4t O.H 0.35 0.33 0 •• O.U O.~ 0041 

CoIIIbI.' .......... 0.15 0.11 0.11 0.11 0.11 0.14 0.12 0.11 0.104 0.11 ctNItIOft 
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Appendix Section A5-6 continued 

Density measurements made on the prints from the RK mini web press using 
anilox Harper 2 and Arena process cyan (UV ink from Coates Lorilleux). 

Measurement Sample number 
position Ai YAG A2YAG A3YAG A4YAG A5YAG A6YAG A7YAG A8YAG A9YAG A10YAG 

0.65 0.61 0.59 0.54 0.53 0.51 0.53 0.53 0.61 0.59 
0.60 0.63 0.59 0.57 0.51 0.51 0.54 0.53 0.61 0.62 
0.63 0.62 0.61 0.51 0.57 0.50 0.49 0.57 0.59 0.64 

EDGE 0.68 0.60 0.59 0.53 0.54 0.49 0.49 0.56 0.55 0.61 
0.63 0.60 0.61 0.58 0.52 0.52 0.49 0.51 0.57 0.59 

mean 0.84 0.61 0.80 0.65 0.53 0.51 0.51 0.54 0.59 0,81 
.tddev 0.03 0.01 0.01 0.03 0.02 0.01 0.02 0.02 0.03 0.02 

0.57 0.52 0.54 0.50 0.45 0.44 0.47 0.41 0.50 0.54 
0.59 0.55 0.53 0.47 0.46 0.43 0.45 0.46 0.58 0.51 
0.55 0.54 0.51 0.46 0.51 0.44 0.45 0.42 0.51 0.56 

MIDi 0.54 0.54 0.55 0.49 0.45 0.40 0.42 0.42 0.50 0.55 
0.55 0.57 0.58 0.47 0.50 0.43 0.40 0.40 0.49 0.60 

mtan 0.5& 0.54 0.54 0.48 0.47 0.43 0.4-4 0.42 0.5;1 0.55 
Stddev O.O~ 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.03 

0.44 0.50 0.46 0.42 0.42 0.39 0.39 0.41 0.46 0.50 
0.44 0.46 0.49 0.44 0.46 0.38 0.37 0.38 0.47 0.51 
0.49 0.54 0.50 0.46 0.43 0.42 0.37 0.37 0.41 0.56 

CENTRE 0.52 0.49 0.53 0.41 0.40 0.39 0.39 0.37 0.45 0.50 
0.50 0.51 0.49 0.42 0.39 0.39 0.38 0.36 0.45 0.48 

mean 0.48 0.60 0.49 0,43 0.42 0.39 0.38 0.38 0.45 0.51 
atd deY 0.04 0.03 0.~3 0.02 0.03 0.02 0.01 0.02 0.02 0.03 

0.45 0.49 0.48 0.44 0.43 0.37 0.37 0.38 0.44 0.47 
0.48 0.48 0.47 0.41 0.40 0.35 0.36 0.34 0.44 0.45 
0.49 0.50 0.48 0.41 0.39 0.36 0.34 0.40 0.46 0.46 

MID2 0.46 0.46 0.48 0.40 0.38 0.36 0.33 0.37 0.44 0.48 
0.44 0.47 0.48 0.41 0.41 0.36 0.36 0.34 0.40 0.47 

mean OM OM 0.48 0.41 0.40 0.36 0.35 0.37 0.44 0.47 
stddev OA2 0.02 0.00 0.02 0.02 0.01 0.02 0.03 0.02 0.01 

0.47 0.47 0.47 0.41 0.38 0.35 0.31 0.33 0.39 0.48 
0.45 0.47 0.45 0.38 0.40 0.33 0.37 0.34 0.39 0.46 
0.44 0.48 0.44 0.39 0.37 0.34 0.29 0.33 0.39 0.49 

JOIN 0.47 0.49 0.43 0.39 0.37 0.35 0.31 0.37 0.38 0.45 
0.48 0.45 0.44 0.40 0.39 0.37 0.30 0.33 0.39 0.50 

mean 0.46 0,47 0.4S 039 0.38 0.35 0.32 0.34 0.39 0.48 
stddev 0.02 0.01 0.02 0.01 0.01 0.01 0.03 0.02 0.00 0.02 

Combined mean OM 0 .... 0.45 OAO 0 .• O.~ 0'- 0 •• 0.A2 0 .... 

~ ....... 0.18 0.17 0.17 0.15 0.15 0.'-4 0.'" 0.11 0.1' 0.11 
.w~ 

309 



Appendix Section AS-6 continued 

Density measurements made on the prints from the RK mini web press using 
anilox Harper 2 and Arena process cyan (UV ink from Coates Lorilleux). 

Measurement Sample number 
position B1 CO2 B2C02 B3C02 B4C02 B5C02 B6C02 B7C02 B8C02 B9C02 B10C02 

0.45 0.47 0.44 0.49 0.46 0.47 0.50 0.48 0.43 0.46 
0.46 0.52 0.45 0.49 0.44 0.47 0.46 0.48 0.46 0.48 
0.51 0.47 0.46 0.46 0.44 0.49 0.48 0.47 0.46 0.43 

EDGE 0.46 0.44 0.49 0.50 0.46 0.45 0.49 0.49 0.46 0.47 
0.49 0.48 0.52 0.47 0.46 0.48 0.47 0.49 0.48 0.49 

mean 0.47 0.48 0.47 0.48 OAS 0.47 0.48 0.48 0.44 0.47 
Ifddev 0.03 0.03 0.03 0.02 0.01 0.01 0.02 0.01 0.02 0.02 

0.44 0.41 0.38 0.40 0.42 0.42 0.41 0.44 0.42 0.41 
0.40 0.40 0.39 0.42 0.43 0.43 0.46 0.42 0.42 0.39 
0.41 0.45 0.43 0.46 0.43 0.42 0.44 0.44 0.44 0.43 

MID1 0.43 0.41 0.44 0.44 0.43 0.42 0.42 0.46 0.42 0.44 
0.44 0.42 0.42 0.42 0.45 0.43 0.46 0.47 0.42 0.41 

mean 0."2 0.42 0.41 0.43 0.43 0.42 0."" 0.45 0.42 0."2 
Std dey 0.02 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.01 0.02 

0.35 0.33 0.32 0.33 0.32 0.33 0.34 0.35 0.30 0.34 
0.34 0.36 0.35 0.35 0.33 0.35 0.32 0.34 0.31 0.33 
0.37 0.38 0.33 0.36 0.33 0.33 0.37 0.36 0.34 0.35 

CENTRE 0.36 0.38 0.39 0.38 0.36 0.38 0.40 0.37 0.35 0.36 
0.33 0.38 0.36 0.37 0.40 0.41 0.37 0.37 0.35 0.36 

mean 0.35 0.37 0.35 0.36 0.3& 0.3& 0.36 036 0.33 0.35 
std dev 0.02 0.02 0.03 0.02 0.03 0.03 0.03 0.01 0.02 0.01 

0.32 0.34 0.32 0.34 0.36 0.32 0.32 0.31 0.31 0.35 
0.33 0.34 0.34 0.34 0.34 0.33 0.31 0.31 0.31 0.32 
0.34 0.36 0.30 0.32 0.35 0.33 0.35 0.34 0.29 0.40 

MID2 0.33 0.35 0.36 0.35 0.37 0.35 0.35 0.33 0.36 0.35 
0.32 0.37 0.32 0.33 0.34 0.39 0.33 0.32 0.32 0.39 

mean 0.33 0.35 0.33 o.~ 0.35 0.34 0.33 0.32 0.32 0.3e 
std deY 0.01 0.01 0.02 0.01 0.01 0.03 0.02 0.01 0.03 0.03 

0.29 0.29 0.33 0.30 0.31 0.31 0.31 0.30 0.34 0.33 
0.29 0.33 0.33 0.29 0.37 0.32 0.33 0.31 0.29 0.34 
0.29 0.35 0.36 0.32 0.35 0.34 0.33 0.30 0.35 0.35 

JOIN 0.34 0.34 0.34 0.34 0.34 0.38 0.34 0.31 0.35 0.39 
0.33 0.37 0.36 0.33 0.36 0.36 0.33 0.31 0.31 0.36 

mean 0.31 0.34 0.34 0.32 O.~ 0.34 0.33 0.31 0.33 0.35 
.td dev 0.02 0.03 0.02 0.02 0.02 0.03 0.01 0.01 0.03 0.02 

ComblMdMHn 0.34 0.35 0.34 O~ 0.34 0.35 0.38 0.34 0.33 0.31 

~ ..... nt 
0.13 0.13 0.13 0.14 0.13 0.13 0.141 0.14 0.12 0.13 ., ....... 
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Appendix Section AS-6 continued 

Density measurements made on the prints from the RK mini web press using 
anilox Harper 2 and Arena process cyan (UV ink from Coates Lorilleux). 

Measurement Sample number 
position B1 YAG B2YAG B3YAG B4YAG B5YAG B6YAG B7YAG B8YAG B9YAG B10YAG 

0.49 0.52 0.47 0.47 0.50 0.48 0.49 0.48 0.51 0.50 
0.49 0.47 0.49 0.51 0.47 0.50 0.48 0.49 0.46 0.52 
0.46 0.46 0.50 0.54 0.48 0.50 0.47 0.50 0.49 0.51 

EDGE 0.45 0.51 0.47 0.49 0.47 0.50 0.50 0.49 0.48 0.54 
0.49 0.50 0.51 0.51 0.53 0.53 0.50 0.52 0.47 0.56 

mean US 0.49 0.49 0.50 o..t9 0.50 0.41 0.50 0.48 0.$3 
std deY 0.02 0.03 0.02 0.03 0.03 0.02 0.01 0.02 0.02 0.02 

0.41 0.41 0.43 0.44 0.47 0.43 0.42 0.39 0.39 0.44 
0.44 0.42 0.43 0.44 0.47 0.41 0.48 0.45 0.40 0.45 
0.47 0.40 0.45 0.43 0.49 0.41 0.46 0.43 0.42 0.46 

MID1 0.40 0.42 0.40 0.48 0.47 0.43 0.43 0.42 0.43 0.45 
0.39 0.46 0.45 0.48 0.49 0.47 0.48 0.43 0.41 0.46 

mean 0.42 0,42 0.43 OM OM 0.43 0.45 0.-42 0.41 0.45 
Std deY 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.01 

0.38 0.38 0.38 0.40 0.39 0.41 0.39 0.38 0.38 0.38 
0.38 0.38 0.38 0.41 0.39 0.41 0.38 0.36 0.35 0.43 
0.42 0.40 0.38 0.40 0.46 0.42 0.37 0.42 0.41 0.41 

CENTRE 0.45 0.38 0.42 0.45 0.42 0.40 0.41 0.40 0.37 0.43 
0.42 0.40 0.42 0.38 0.42 0.39 0.42 0.40 0.41 0.41 

mean 0.41 O.~ 0.40 0.41 0.42 0.41 0.39 0.39 0.38 0.41 
stddev 0.03 0.01 0.02 0.03 0.03 0.01 0.02 0.02 0.03 0.02 

0.38 0.38 0.38 0.33 0.41 0.37 0.36 0.39 0.36 0.39 
0.37 0.43 0.40 0.37 0.38 0.39 0.39 0.37 0.40 0.37 
0.43 0.36 0.39 0.34 0.39 0.40 0.37 0.37 0.41 0.37 

MID2 0.39 0.40 0.39 0.45 0.35 0.38 0.43 0.38 0.36 0.42 
0.41 0.42 0.42 0.41 0.41 0.42 0.37 0.40 0.42 0.38 

mun 0.40 0.40 0.40 0.38 0.39 O.~ 0.38 0.38 0.39 0.39 
stddev 0.02 0.03 0.02 0.05 0.02 0.02 0.03 0.01 0.03 0.02 

0.36 0.38 0.34 0.35 0.36 0.37 0.32 0.36 0.34 0.32 
0.36 0.36 0.38 0.36 0.36 0.34 0.36 0.34 0.38 0.36 
0.36 0.37 0.38 0.34 0.35 0.35 0.36 0.33 0.35 0.36 

JOIN 0.38 0.37 0.35 0.35 0.39 0.36 0.38 0.35 0.36 0.37 
0.38 0.37 0.39 0.38 0.41 0.36 0.41 0.39 0.38 0.39 

mean 0.37 0.37 0.37 0.38 0.37 0.38 0.37 0.35 0.36 0.38 
std dev 0.01 0.01 0.02 0.02 0.03 0.01 0.03 0.02 0.02 0.03 

CombiIMtd mMft 0.S7 0.37 0.31 0.31 0.31 0.31 0.31 O.se 0 •• 0.38 

~ . ....." 0.13 0.1' 0.14 0."" 0.1 • O.t .. 0.1. 0.1' 0.13 0.11 ......,.. 
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Appendix Section AS-7 

Contact angle measurements on uncoated paper using the FTA instrument with 
water, diiodomethane and formam ide as the test liquids. 

Water drops Diiodamethane drops Fonnamide drops 
Repeat Angle Volume Angle Volume Angle Volume 
number (deg) bd) (deg) (Jll) (deg) btl) 

1 106.6 8.5 48.9 2.9 98.3 7.9 
2 107.2 8.8 44.8 3.0 98.0 8.3 
3 102.8 8.6 47.2 2.4 97.2 8.4 
4 102.3 8.3 44.6 2.5 98.0 8.3 
5 110.0 8.9 48.4 2.7 92.1 8.0 
6 105.1 9.1 50.6 2.6 95.0 7.9 
7 109.4 9.3 54.0 2.9 89.2 7.8 
8 108.5 8.6 51 .2 2.9 97.3 8.1 
9 100.7 7.9 55.3 2.8 97.7 8.1 
10 107.5 8.5 49.4 2.6 98.4 8.2 
11 107.1 8.7 52.4 2.9 
12 105.0 8.4 49.9 2.6 
13 108.1 8.5 55.4 2.9 
14 108.5 8.7 47.3 3.0 
15 105.9 8.3 46.2 2.6 
16 103.7 8.2 49.4 2.7 
17 105.0 8.1 49.6 2.5 
18 102.6 7.7 45.1 2.6 
19 104.6 8.8 46.6 2.5 
20 108.6 9.4 49.3 2.6 

Mean 42.8 6.2 61.1 6.8 64.9 6.4 

Standard 2.7 0.8 1.1 0.8 2.1 0.7 
Deviation 
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Appendix Section AS-8 

Contact angle measurements on anilox Harper 2 after cleaning had taken place. 
Measurements were made using the FTA instrument with water and 
diiodomethane as the test liquids. 

post clean contact angles 

Sill water drops 
polished band CO2 band VAG band 

run number contact angle drop contact angle drop volume contact angle drop volume 
(degrees) volume bd) (degrees) (,.d) (degrees) bd) 

1 72.6 4.9 92.5 4.3 60.4 4.9 

2 73.0 4.7 94.2 5.0 65.1 4.8 

3 75.3 4.7 90.7 4.6 79.3 5.1 

4 71 .1 4.5 92.9 4.7 64.6 4.9 

5 70.4 4.6 95.0 4.6 60.1 4.3 

6 71 .9 4.2 92 .1 4.6 63.7 4.5 

7 74.9 4.6 92.7 4.4 76.2 4.6 

6 75.6 5.1 91.6 4.5 62.6 4.5 

9 74.0 4.2 95.6 4.9 65.5 4.5 

10 72.6 4.4 94.1 4.7 64.0 4.6 

Mean 73.2 4.6 93.2 4.7 82.4 4.7 

Standard 
1.6 0.3 1.6 0.2 2.6 0.2 

deviation 

SJ.l1 diiodomethane drops 

polished band CO2 band VAG band 

run number contact angle drop contact angle drop volume contact angle dropvolumo 
(degrees) volume bd) (degrees) ("I) (dogrees) ("I) 

1 40.0 4.7 42.5 4.5 43.1 4.7 

2 41 .2 4.5 44.3 4.5 42 .1 4.7 

3 43.6 4.6 45.3 4.9 40.8 4.5 
4 41 .9 4.3 42.6 4.4 41 .4 4.3 

5 43.4 4.5 44.2 4.4 43.7 4.6 

Mean 42.1 4.5 43.8 4.5 42.2 4.6 

Standard 
1.6 0.1 1.2 0.2 1.2 0.2 

deviation 
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Appendix A6 

Appendix Section A6-1 

Cell profiles of the CO2 and YAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the C02 and YAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and YAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and YAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles ofthe CO2 and YAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and YAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and YAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and VAG cells on a nilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-1 continued 

Cell profiles of the C02 and VAG cells on anilox Harper 1, Measured using the 
Veeco interferometer. 
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Appendix Section A6-2 

Gradient measurements made from the cell profiles of the CO2 a nd Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 

The gradient of the cell wall of a C02 cell at measurement point 1x1 
on anilox Harper 1 
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Appendix Section A6-2 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 

The gradient of the cell wall of a CO2 cell at measurement point 2x1 
on anllox Harper 1 
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Appendix Section A6-2 continued 

Gradient measurements made from the cell profiles of the C02 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 

The gradient of the cell wall of a CO2 cell at measurement point 2y2 
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Appendix Section A6-2 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the CO2 and YAG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the C02 and VAG cell 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the C0 2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the CO2 and VAG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-2 continued 

Gradients measurements made from the cell profiles of the C0 2 and Y AG cells 
on anilox Harper 1, Measured using the Veeco interferometer. 
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Appendix Section A6-3 

Calculations for the ellipsoid model used to obtain the r values for use with the 
Wenzel equation. 

A6-3a Calculating r on the C02 band of Harper 1 

The C02 engraving on Harper 1 has a reported cell opening of 38.0 J.U11, a wall width 

of 4.0 J.U11, a cell depth of 10.7 J.U11 and a caring capacity of 4.08 cm3/m2
• 

The C02 engraving approximated to an oblate ellipsoid with radii a = 10.7 J.Ul1 and b 

= 19.0 J.U11. 

For an oblate ellipsoid with radii: a, b, b (a < b) and surface area: S 130 

S = 21& b(b+a arcsinh[be/a]/[be/a]), 

where e = -V(b2 _a2)/b 

e =0.83 

be/a = 1.47 

arcsinh [be/a] == 1.18 

S =2842.85 

S/2 = 1421.42 J.l.m2 The estimate of the surface area of a cell on the CO2 engraving 

using the ellipsoid model. 

The cell wall was assumed to be circular, and the diameter of the land area of the cell 
, 

was assumed to be the cell opening plus the width of the cell wall. This made the 

radius of the cen (38 + 4) / 2 or 21 J.U1l. This gives the flat land area the cell of 

1385.44 J.l.m2 for a C02 cell 

The actual land area is equal to the surface area calculated from the hemi-e:llipsoid 

plus the land area from the wall. 
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Appendix Section A6-3 continued 

Calculations for the ellipsoid model used to obtain the r values for use with the 
Wenzel equation. 

The land area of the wall is equal to the area of the call plus the wall minus the area 

of the cell. The area of the cell is 1t* I C; or 1134.11 J.1m2 

The land area from the wall of the C02 cell = 1385.44 - 1134.11 = 251.33 J.1M2 

The actual area of one cell and its land for the model then becomes 

actual area C02 = 1421.42 + 251.33 = 1672.75 

When the calculated surface area for the hemi-ellipsoid model plus the wall area is 

divided by the flat land area, Wenzel's r factor is obtained. 

For the C02 band on Harper 1 r = 1672.75 11385.44 = 1.2 

A6-3b Calculating r on the Y AG band of Harper 1. 

The YAG engraving has a reported cell opening of 19.1 J.U11, a wall width of2.1 J.Lm. 

a cell depth of 10.6 J.U11 and a caring capacity of3.63cm3/m2
• 

The YAG band was approximated by a prolate ellipsoid with radii a = JO.6 J.U11 and b 

= 9.55 J1m 

The following equations were used to calculate the surface area of the ellipsoid. This 

value was then halved to get the surface area of the hemi-ellipsoid. 

For a prolate ellipsoid with radii: a, b, b (a> b) and surface area: S 130 

S = 2 1t b(b+a arcsin[e]/e), 

where e = -V (a2_b2)/a 

e = 0.43 
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Appendix Section A6-3 continued 

Calculations for the ellipsoid model used to obtain the r values for use with the 
Wenzel equation. 

arcsine{e] = 0.45 

S = 1250.66 

S/2= 625.33 /-1m2 The estimate of the surface area of a cell on the Y AG engraving 

using the ellipsoid model. 

The cell wall was assumed to be circular, and the diameter of the land area of the cell 

was assumed to be the cell opening plus the width of the cell wall (half at each side 

of the cell. The other half assumed to belong to the neighbouring cells). The diameter 

is therefore 19.1 + 2.1 or 21.2. (The radius therefore being half this, ]0.6) The area 

of a circle is given by ~ This gives the flat land area the cell of 352.99 fJ.m2
, 

The actual land area is equal to the surface area calculated from the hemi-ellipsoid 

plus the land area from the wall. 

This land area is equal to the area of the call plus half the wall minus the area of the 

cell. The area of the cell is 1t • (1 9. 1I2i = 286.52 folm2 

The land area from the wall of the YAG cell = 352.99 -286.52 = 66.47 f.Lm2 

The actual area of one cell and its land for the model then becomes 

actual area YAG = 625.33 + 66.47 = 691.90 fJm2. 

When the calculated surface area is divided by the flat land area for the hemi­

ellipsoid model plus the wall area Wenzel's r factor is obtained. 

For the YAG band on Harper 1 r = 691.80/352.99 = 2.0 
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Appendix Section A6-3 continued 

Calculations for the ellipsoid model used to obtain the r-values for use with the 
Wenzel equation. 

A6-3c Calculating r on the bands of Harper 2. 

The C02 and Y AG bands on anilox Harper 2 were both approximated by ellipsoids 
in the same way as described for the Y A G cells of Harper I. 

The C~ band has cells with an opening of 22.0 J.UIl a depth of 7.8 J.UIl and a land 
of 3.0 J.UIl. This approximates to an oblate ellipsoid with radii of7.8, 11.0 and 11.0. 
The slJrface area of the ellipsoid was 1146.49 J.lm2 the surface area of the cell was 
therefore 573.25 J.lm2 

The wall area was calculated to be 110.74 J.UIl2 giving a total area of 683.99 J.lm2 the 
apparent area corresponding to the cell and half the wall was 490.87 J.lm2 

This gave an r-value of 683.99/490.87 r = 1.4 for the C~ band on Harper 2. 

The YAG band has cells with an opening of 19.4 J.UIl a depth of 7.5 J.lm and a land 
of2.lJ.lm. This approximates to an oblate ellipsoid with radii of7.5, 9.7 and 9.7. 
The surface area of the ellipsoid was 956.48 J.UIl2 the surface area of the cell was 
therefore 478.24 J.lm2 

The wall area was calculated to be 67.46 J.UIl2 giving a total area of 545.70 J.UIl2 the 
apparent area corresponding to the cell and half the wall was 363.05 J.UIl2 

This gave an r-value of 545.70/363.05 r = 1.5 for the YAG band on Harper 2. 
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Appendix Section A6-4 

Calculation of the cell volumes predicted by the hemi-ellipsoid model on anilox 
Harper 1. 

The volume of the hemi-ellipsoid was calculated using the fonnula 130 

v = (4/3u*b*c)12 

Where a b and c are the axis of the ellipsoid (for both cells c = b) and were 

expressed in centimetres. The resulting volumes were then divided by the surface 

area of the cell opening (including half the wall) in metres to give values comparable 

to the EVT volume. 

Calculated volumes for the C02 band. volume = 16180.04J.1m3 or 1.61 x 1 0-8 cm3 

Therefore volume ofcen = 1.61xlO-8 
/ 2 or 8.1*10-9 

Cell opening area (from A6-1a) = 1385.44Jll112 or 1.39xlO-9 m2 

Calculated volumes for the YAG band. volume = 4049.S0J.Ull3 or 4.0S*1 0-9 cm3 

Therefore volume of cell = 4.0Sx 1 0-9 
/ 2 or 2.02*10-9 

Cell opening area (from A6-1b) = 352.99 J.1ffi2 or 3.53 *10-10 m2 

Volume in cm3 1 area in m2 is 2.02*10-91 3.53* 10-10 = 5.7 cm3/m2 
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Appendix Section A6-5 

The surface area of the parabolas modelled to fit the cells on anilox rolls Harper 
1 and 2. 

The surface area S of a parabola rotated around the y axis is given by the equation \33 

The equation of the parabola is of the form y = ax2 + b 
The integral in the form of x as a function of y is 

S = f 27t [1+(dxldyit· dy between limits p and q 

dx/dy = ~ a- y. (y-b) -y. so the integral becomes 

S = f 27t [-a-y. (y-brY.] [ (4a{y-b)+l)/{4a(y-b»] y. dy 

Cancelling out the (y-b)Y. terms leaves 

S = 7t / a f (4a(y-b)+ 1)Y. dy 

S = 7t / a [ (1I4a) (2/3) (4a(y-b)+ 1 )312] between limits p and q 

S = 1t /6a2 {(4a(y_b)+1]312} between limits p and q 

This is general formula. Limits p and q relate to the cell depth and terms a and 
b are given by the parabola equations for each cell 

For CO2 cells of Harper 1 the limits ofy are p = 0 and q = ·]0.7 a = 0.0296 and b = 
-10.7 

S = 7t / 6(0.0296)2 [(4(0.0296)(0 + 10.7)+ lil2 - (4(0.0296)(-]0.7+10.7) + 1)312] 

s = 1442.05 Jl.ml This is the surface area of the parabola approximating the 
COl cells on aoUox Harper 1 
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Appendix Section A6-S continued 

The surface area ofthe parabolas modelled to fit tbe cells on anilox rolls Harper 
1 and 2. 

For YAG cells of Harper 1 the limits ofy are p = 0 and q = -10.6, a = 0.117 and b = -
10.6 

S = 1t 16(0.117)2 [(4(0.117)(0 + 10.6)+1)312_ (4(0. 117)(-1O.6+JO.6) +1)312] 

S = 518.40 .... m1 This is tbe surface area of tbe parabola approximating the 
YAG cells on aniioI Harper 1 

For C~ cells of Harper 2 the limits ofy are p = 0 and q = -7.8, a = 0.0645 and b = 
-7.8 

S = 1t 16(O.0645i [(4(0.0645) (0 + 7.8)+1)312 - (4(0.0645) (-7.8+7.8) + 1)3121 

S = 532.18 ",ml This is the surface area of the parabola approximating the COl 
cells on anUoI Harper 2 

For YAG cells of Harper 2 the limits ofy are p = 0 and q = -7.5, a = 0.0797 and b = 
-7.5 

S = 1t 1 6(0.0797i [(4(0.0797) (0 + 7.5)+ 1 il2 - (4(0.0797) (-7.5+7.5) + 1 )312] 

S = 432.29 ",m2 This is the surface area of the parabola approximating the COl 
cells on aniioI Harper 2 
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Appendix Section A6-6 

Calculation of Wenzel r-values from the parabola surface areas. 

A6-7a Calculations of r-values on Harper 1. 

The surface area calculations from the parabola models of the cells on Harper 1 
detailed in Section A6-5 were used to calculate Wenzel's r values by the same 
method detailed in Section A6-3. 

As shown in Section A6-3a, the land area from the wall of the CO2 cell = 25 J .33 J.tm2 

Section A6-6 gives the area of the parabola that approximates the C~ band on 
Harper 1 as 1442.05 J.tm2. 

The actual area of one cell and its land for the parabola model then becomes 
actual area C02 = 1442.05 + 251.33 = 1693.38 J.tm2 

When the calculated surface area for the parabola model plus the wall area is divided 
by the flat land area, Wenzel's r factor is obtained. The flat land area was shown to 
be 1385.44 J.1m2 in Section A6-3a. 

For the C02 band on Harper 1 r = 1693.38/1385.44 = 1.2 

As shown in Section A6-3b, the land area from the wall of the Y AG cell = 66.47 
J.1m2. 

Section A6-6 gives the area of the parabola that approximates the YAG band on 
Harper 1 as 518.40 J.1m2. 

The actual area of one cell and its land for the parabola model then becomes 
actual area YAG = 518.40 + 66.47 = 584.87 J.tm2. 

When the calculated surface area for the parabola model plus the wall area is divided 
by the flat land area, Wenzel's r factor is obtained. The flat land area was shown to 
be 352.99 J.tm2 in Section A6-3b 

For the YAG band on Harper 1 r = 584.87/352.99 - 1.7 
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Appendix Section A6-6 continued 

Calculation otWenzel r-values from tbe parabola surface areas. 

6-7b Calculations of r-values on Harper 2. 

As shown in Section A6-3c, the land area from the wall of the COz cell = 110.74 j.Ull2 

Section A6-6 gives the area of the parabola that approximates the COz band on 
Harper 2 as 532.18 J.Lm2 

The actual area of one cell and its land for the parabola model then becomes 
actual area C02 = 532.18 + 110.74 = 642.92 j.Ull2 

When the calculated surface area for the parabola model plus the wall area is divided 
by the flat land area, Wenzel's r factor is obtained. The flat land area was shown to 
be 490.87 J.Lm2 in Section A6-3 

For the C02 band on Harper 2 r = 642.92/490.87 = 1.3 

As shown in Section A6-3c, the land area from the wall of the YAG cell = 67.46 
J.Lm2

• 

Section A6-6 gives the area of the parabola that approximates the YAG band on 
Harper 2 as 432.29 J.Lm2

• 

The actual area of one cell and its land for the parabola model then becomes 
actual area YAG = 432.29 + 67.46 = 499.75 J.Lm2• 

When the calculated surface area for the parabola model plus the wall area is divided 
by the flat land area, Wenzel's r factor is obtained. The flat land area was shown to 
be 363.05 J.Lm2 in Section A6-3c 

For the YAG band on Harper 2 r = 499.75/363.05 -1.4 
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Appendix Section A6-7 

Using the parabola model to calculate the depth to which a CO2 cell is unwet 
according to the Cassie and Baxter model. 

This example shows the calculation for the CO2 cell on anilox Harper 1. the parabola 
which approximates the cell dimensions is shown below (all other calculations were 
done in the same way using different parabola equations). 

'I axis 

-22 -19 19 22 x axis 

'1=n 

10.7 

The green line is the area of air/water interface. The area interface corresponds to the 
area of the circle with its diameter at y=n 
The red line shows the area of the cell and land in contact with the water. 
The blue line shows the unwet area. 

The surface area was calculated as shown in Section A6-5 using the general formula 

S = 1t / 6a2 {[4a(y_b)+1]3/2} between limits p and q 

This time the surface area of the unwet area was calculated by using the limits of y = 
nand y = -10.7. this was then subtracted from the total area (cell plus land) to get the 
total wet area 

The x value at n was calculated from the equation of the parabola and used to 
calculate the area of air/liquid interface. 

The ratio between the air/liquid interface and solid/liquid interface was calculated. 

An Excel spreadsheet was set up to carry out these calculations so that n could be 
easily varied until the ratio predicted by the Cassie and Baxter equation was found. 

The value ofn that produced this ratio was then used to find the depth of the cell 
which remained unwet. 

In the case of the C02 cellon anilox Harper 1 a value ofn of - 9.4 produced an unwet 
parabola of area of 139. 74J.lm2 this was subtracted from the total cell and land area 
of 1693.38J.lm2 to give 1553.64J.lm2 
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Appendix Section A6-7 continued 

Using the parabola model to calculate the depth to which a COl cell is uowet 
according to the Cassie and Baxter model. 

The total surface area of the interfaces was calculated by summing the area of the 
wet parabola section and the air/liquid interface. In this case the n values of -9.43 
gave a corresponding x value of 6.55 which produced an area of J 34. 79 ~m2 this was 
added to the wet portion of the parabola, already known to be 1553.64 J.Lm2 to give a 
total of 1688.43 ~2. 

The fraction of the total interface area that is soJid/Jiquid interface was given by 
1553.64 / 1688.43 = 0.92 or 92 % (and therefore the airlliquid interface is 8%. 

The spreadsheet was designed so that the terms from the equations of parabolas used 
to approximate engraved cells on the other bands studied could be entered and the 
results generated by the same method as described above. 

The equations and values of n selected and corresponding unwet heights are shown 
below 

Harper 1 YAG band y = 0.1l70x2 -10.6 n =-5.93, unwet height = 4.67Jl111 

Harper 2 C02 band y = 0.0645x2 -7.8 n = -5.73, unwet height = 2.07~m 

Harper 2 Y AG band y = 0.0797x2 -7.S n = -4.06, unwet height = 2.44Jl111 
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Appendix Section A6-8 

Mathematical modelling of the cells on 8niJox Pira 1. 

The cell count is known to be 149 cells per em or 14900 cells per m. 1 cell 
(including its land area) therefore has a width of 6. 7*} 0 ,5 m and an area of 4.5*10.9 

m2
• 

Without the use of an optical measurement device it is impossible to provide an 
accurate figure for the width of the land area between the cells. A figure for the 
percen~e area occupied by the cells of a 450 engraving of 53% was given by the 
DFTA 4 this is close to estimates made from sample photographs of 450 engravings 
made by taking measurements using adobe illustrator. 

53% of 4.5*10'9 m2 is ~.4·10·9 m2 this is the area of the cell opening 

The shape of cell can be approximated to a square based pyramid. with a surrounding 
land area as shown below. The o~ning is therefore square and can be found by 
taking the root of the area. 4.9*} 0,5 m or 49 microns 

n 

Top view of one cell Side view of one cell 

The error in this measurement is uncertain as it is dependent on the accuracy of the 
value 53% to describe the percentage of the roll area taken up by cells. there is also a 
large error involved in approximating the cell to a square based pyramid. 

Cell opening 49 microns 

The volume of the cell can be calculated from the values provided by Pira 
International for the reported volume in cm3/m2

• This is mUltiplied by the area taken 
up by one cell (with wall) to get the volume of one cell. 

For band one 3.3 cml/m2 • 4.S.10·9m2 = l.S.1O·8cml or I.S*IO,14 m1 

For band two 3.8 cml/m2 • 4.S*tO·9m2 = 1.7*10.8 cmlor 1.7*1O'14ml 

For band three 4.4 cm3/m2 * 4's*1O·9m2 = 1.9*10.8 cmlor 1.9* J 0'14m3 
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Appendix Section A6-8 continued 

Matbematical modelling of tbe cells on anilox Pira 1. 

The depth of the cell corresponds to the height of the pyramid. The pyramid height 
was then found by rearranging the fonnula for the volume of a square based pyramid 

V = a2 hl3 to give 

h = 3V la2
, where a is the width of the pyramid (and in this case the cell opening), h 

is the height and V is the volume 

For band one h = 3*1.5*10-14/2.4*10-9 

h = 19 microns 
For band two h = 3* 1.7* 10-14m3/2.4* 10-9 

h = 21 microns 
For band threeh = 3* 1.9* 1O-14m3/2.4* 10-9 

h = 24 microns 
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Appendix Section A6-9 

Calculating the surface area of the pyramid approximation to the cells on anilox 
Pira 1 for the estimation of Wenzel's r-value. 

The surface area of the pyramid model of the cell can be found by adding together 
the area of the four triangles making up the cell walls and the land area surrounding 
the cell. 

The height of the triangular face is found from the right angle triangle m n o. the 
length no is the cell depth which has already been determined as ) 9 microns for band 
one, 21 microns for band two, and 24 microns for band three. The length mo is half 
the cell opening i.e. 49/2 microns. The length mn can be found by using the 
Pythagoras theorem 

The values for the length mn were 

Band one 
Band two 
Band three 

mn = \1'0 <Y+ (49!2i) = 31 microns or 3.1* IO's m 
mn = ...J(212+ (4912i) = 32 microns or 3.2*IO's m 
mn = ...J(242+ (49/2i) = 34 microns or 3.4*)O's m 

~ __________ ~c 

a ~---I'---t----=7 

n 

The area of the four triangular faces is found from four lots of half the base (J/2ab) 
multiplied by the height (no) or 2ab*h. 

For band one 2*4.9*IO's *3.1*10,5 = 3.0*lO'9ml 

For band two 2*4.9* 10'5 *3.2* IO,5 = 3. 1* lO'9m2 

For band three 2*4.9*10,5 *3.4*10,5 = 3.3* 1 O'9m2 

These figures must then be added to the land area. Using the assumption that the 
cell occupies 53% of the total area, which is 4.S*10,9. The remaining 47% or 2.1*10' 
9 m2 is the land area. 

Forbandone 2.1*10,9+3.0*10,9 =S.1*1O·9m3 

For band two 2.1*10,9 + 3.1 *10,9 = S.2*1O·9m3 

For band three 2.1 *10,9 + 3.3*10,9 = 5.4*10'9m3 
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Appendix Section A6-9 continued 

Calculating the surface area of the pyramid approximation to the cells on anilox 
Pira 1 for the estimation of Wenzel's r-value. 

To get the Wenzel r-values the area of a flat sample was assumed to be 4.5. J 0-9 

The values estimated for the true area of the cell are divided by the area of the flat 
sample to get r 

For band one 5.1 * 10-9
/ 4.5* 10-9 = 1. 13 

For band two 5.2*10-9/4.5*10-9 = 1.15 
For band three 5.4* 10-9/ 4.5* 10-9 = 1.20 
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Appendix Section A6-10 

Finding the slope of the pyramid approximation to the cells on anilox Pira 1 for 
use with the Shuttleworth and Bailey equation. 

The height and half the base of the pyramid form a right-angled triangle nmo. The 
angle at the base of this pyramid, angle onm, when added to the angle corresponding 
to the slope of the pyramid, equals 90°. The angle at the base of the pyramid can be 
calculated using simple trigonometry. 

tana = opp/adj 

For band one tana = (49/2) 119 a = 52° 
For band two tana = (49/2) / 21 9 = 49° 
For band threetana = (49/2) 1 24 9 = 46° 
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therefore the gradient = 38° 
therefore the gradient = 41 0 
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Appendix Section A6-11 

Cell profiles of the CO2 and YAG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the C02 and YAG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the CO2 and VAG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the CO2 and YAG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the C02 and Y AG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the CO2 and YAG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the C02 and Y AG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the CO2 and Y AG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-11 continued 

Cell profiles of the C02 and Y AG cells on anilox Harper, Measured using the 
Veeco roll-scope interferometer. 
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Appendix Section A6-12 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 a nd Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the C02 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 
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Appendix Section A6-12 continued 

Gradient measurements made from the cell profiles of the CO2 and Y AG cells 
on anilox Harper 2, Measured using the Veeco roll-scope interferometer. 

5 

. 
J 

'iii 
, 

c 
e • .., 
'E· , 
&. 
_ ·2 
C. 
II) 
C oO 

., 

5 

. 

'iii 
, 

c 
e • .., 
g., 
:; -2 
c. 
II) 

C -3 

.. 

.7 

, . 

, . 

The gradient of the cell wall at measurement point 2y1 on the VAG band 
of anilox Harper 2 

Y = -O.4734x + 30.165 ~ - --.. R2 - 0.9651 --, 
-, 

,- , , 
20 3D ... 50 II) \ 10 II) to ' 00 ". -L,\ ~~ -- - -

-
- -

\ 
--
-- -

Width (microns) 

The gradient of the cell wall at measurement point 2y2 on the VAG band 
of anilox Harper 2 

- -
-

Iv = -O.5225x + 10.91 7] • 

\ R2 = 0.9236 
, , 

"\ 3D ... so III 10 II) "" ". 
,~ 

--

~ 
-

- - -
~ - -

~ --- - -

- -

Width (microns) 

38 1 

-

'1'> 

,~ 



AppendixA7 

Appendix Section A 7-1 

Contact angle data for aniioI Harper 3 measured using tbe FT A instrument and 
water, diiodometbane and formamide as tbe test liquids 

water 

platinum band nonnal CO2 band polished band 

contact 
drop volume contact drop volume 

contact drop volume 
run number angle angle angle 

(degrees) 
(mlcrolitres) 

(degrees) 
(mlcrolltres) (degrees) 

(mlcrolltrea) 

1 86.0 8.7 88.6 9.0 82.2 1.7 

2 86.6 9.5 91.1 8.8 85.6 1.6 

3 85.8 8.7 89.4 9.0 79.1 1.3 

4 86.8 9.1 86.9 9.3 80.9 1.7 

5 83.4 9.2 89.7 9.1 79.7 1.6 

6 88.6 9.1 89.8 9.9 84.6 1.6 

7 87.0 8.7 89.5 9.1 84.3 1.6 

8 86.4 8.9 87.6 8.8 82.7 1.3 

9 87.1 9.1 85.7 9.4 81.4 1.4 

10 86.9 9.5 88.9 9.2 82.3 1.3 

11 87.4 9.2 91.1 8.7 

12 88.2 8.7 89.5 8.7 

13 85.9 9.6 87.9 8.8 

14 85.6 9.3 90.3 9.3 

15 84.7 8.9 89.1 9.0 

16 84.7 8.7 87.6 8.8 

17 83.1 8.5 87.5 8.7 

18 84.3 8.7 86.1 8.0 

19 82.5 8.1 86.8 8.7 

20 87.5 8.5 87.0 8.6 

85.9 8.9 88.5 8.9 
, 

82.3 1.5 mean 

Standard . 1.7 0.4 1.6 0.4 2.1 0.2 
deviation 
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Appendix Section A7-1 continued 

Contact angle data for anilox Harper 3 measured using the FT A instrument and 
water, diiodomethane and formam ide as the test liquids 

diiodomethane 

platinum band nonnal CO2 band polished band 

contact drop volume contact 
dropvo'ume 

contact drop volume 
run number angle angle angle 

(degrees) (microlltres) (degrees) (mlcrolltres) (clegrees) (mlcrolltres) 

1 41.5 1.8 45.9 1.8 46.6 0.4 

2 42.6 1.6 46.3 1.7 49.9 0.4 

3 41.4 1.5 46.5 1.7 48.0 0.4 

4 43.1 1.7 47.4 1.7 49.7 0.3 

5 44.3 1.8 46.7 1.1 44.3 0.3 

6 43.8 1.8 46.9 1.7 47.8 0.3 

7 44.7 1.6 44.3 1.5 47.1 0.3 

8 44.6 1.7 45.5 1.8 49.2 0.3 

9 44.7 1.7 46.0 1.8 46.3 0.6 

10 44.1 1.8 47.7 1.7 47.1 0.3 

mean 43.5 1.7 46.3 1.7 47.6 0." 
Standard 1.3 0.1 1.0 0.2 1.7 0.1 
deviation 

Formamide 

platinum band nonna. CO2 band polished band 

contact 
dropvo'ume 

contact drop volume 
contact drop volume 

run number angle angle ang'e 
(degreesl 

(microlitres) (degrees) (microlftres) (degrees) 
(mlcrolltres) 

1 65.7 4.8 60.4 4.2 77.4 1.1 

2 62.8 4.7 62.9 4.2 79.2 1.0 

3 62.6 4.5 66.4 4.6 85.3 1.0 

4 62.0 4.3 63.6 4.4 77.3 1.1 

5 62.3 4.3 62.7 5.1 79.2 1.0 

6 59.8 2.8 64.2 4.1 76.6 1.0 

7 62.7 4.0 64.0 4.9 78.9 1.1 

8 63.3 3.6 62.9 3.9 78.5 1..1 

9 67.5 4.6 61.7 4.4 79.2 1.1 

10 66.8 3.9 62.4 4.7 80.0 1.1 

mean 63.6 4.2 63.1 4.5 79.2 1.1 

Standard 
2.4 0.6 1.6 0.4 2.4 0.1 

deviation 
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Appendix Section B-1 

Report by Victoria Verona (nee Maxfield) BSc. MSc. London College of 

Printing 

INVESTIGATION INTO THE EFFECT OF SURFACE ENERGY 

AND SURFACE ROUGHNESS ON THE WETTABILITY OF AN 

ANILOXROLL 

BACKGROUND 

The function of the anilox roll is to take up and then release a precisely controlled 

volume of ink: onto the printing plate. Ink is doctored from the surface of the roll and 

held inside engraved cells. To quantify the amount of ink that will be transferred, it is 

necessary to calculate the extent to which the cell will empty on contact with the 

plate. Although research has been carried out on the effect of the wettability and 

roughness of the plate, 1, 2 the effect of the anilox has largely been ignored. The 

extent to which the anilox wets is worthy of consideration. I f the anilox cannot be 

sufficiently wetted, beads of ink form inside the cells, leading to incomplete filling. 

If however the anilox surface is completely wetted, a large amount of work has to be 

done to remove the ink from the surface of the roll and the ink would have a 

tendency to remain in the cell, held by surface tension forces. 

Wettability can be quantified by introducing the concept of surface energy. Surface 

energy is defined as ''the reversible work done in creating' unit area of fresh, flat, free 
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surface.~' 1 Surface energy is a term only applicable to solid surfaces but is analogous 

to the surface tension of a liquid surface. Surface energy is most commonly quoted 

with the units mNm-1
, dynescm-1 or mJm-2

• These have the advantage of being 

numerically equivalent. The most common way of observing wettability and surface 

energy is to measure the contact angles formed by a polar and non-polar liquid at rest 

on the test surface_ If the surface tensions of these liquids are known it is possible to 

calculate polar and non-polar components of surface energy by using equation 1. 4 

Gs d = The dispersive component of the surface energy of the solid 

Q d = The dispersive component of the surface energy of the liquid (known) 

Gsp = The polar component of the surface energy of the solid 

GLP = The polar component of the surface energy of the liquid (known) 

GsL = The surface energy of the liquid (equivalent to the surface tension) 

(known) 

e = The observed contact angle (measured) 

The polar component of the surface free energy of diiodomethane, the non-polar 

solvent, can be regarded as zero, which eliminates the term +2(Gsp GLP fS from the 

equation and allows the calculation of Gsd the non polar surface energy. This value 

is then put into the equation to calculate the polar component of the surface energy. 

The total surface energy of the solid surface is the sum of the polar and non-polar 

surface energies. 
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Wetting characteristics are heavily influenced by surface roughness of the sample. 3 

It is nonnal to consider a smooth flat sample. However, measurement of the wetting 

characteristics of a flat unengraved ceramic sample would not be representative of 

the surface that the ink comes into contact with. The process of engraving produces a 

roughened surface. The effect of surface roughness on the contact angles depends on 

the angles themselves. If the true contact angle is less than 90°, surface roughness 

lowers the observed contact angle. However if the true contact angle is greater than 

90° the observed contact angle is increased by surface roughness. S 

EXPERIMENTAL WORK 

n this investigation, tests were carried out on a banded ceramic anilox provided by 

the Harper Corporation of America. The first test band was unengraved, polished 

ceramic. The second test band was engraved by a C02 laser and the third by a YAG 

laser. The cells were designed to have equivalent cell depths and comparable cell 

volumes. To make engravings comparable in this way it is necessary for them to 

have vel)' different line screens. Table 1 shows the specifications of the engravings 

Table 1. Specification of the banded Harper anilox 

Aniloxband Line screen Line screen Cell volume Cell volume Cell depth Cell opening Cell wall 
(lInes per (lines per (SCM) (cm3/m2

) (microns) (microns) (microns) 
inch) em) 

Polished NlA N/A NlA N/A N/A N/A NlA 

CO2 600 236 2.63 4.08 10.70 38.00 4.00 

YAG 1200 472 2.34 3.63 10.60 19.04 2.11 
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Additional work was carried out on a banded anilox of unknown ceramic origin, 

owned by Pira International. This banded roll was engraved with a C~ laser at a line 

screen of 149 lines per cm (or 380 lines per inch). Each band has different cell 

volume and cell depth. The absolute volumes of these bands were not known but 

estimations made by an ink spreading method gave volumes of3.25cm3m·2 for band 

1 and 3.75cm3m-2 for band 2. 

Contact angle measurements were made using the Micro Absorbency Measurement 

System (MAMS) at Pira International. Every measurement was taken with the roll 

position adjusted to be horizontal and the droplet positioned on the zenith of the roll. 

Experimentation with drop volume showed that a droplet of 5 J.11 was sufficiently 

small to minimise droplet distortion caused by the curvature of the roll. Whilst some 

distortion of the droplet was observed this remained constant for all measurements 

with a given liquid on a given roll. The contact angle data obtained for the Harper 

roll is shown in Table 2. 
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Table 2. Contact angle data for the banded Harper ani lox made by 5 ~I droplet of 

water and diiodomethane 

Water 

Polished Band 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Mean 
st. Dey 

Water 

c~ Band 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Mean 
SI. Dey 

Angle 
(deg) 
57.98 

56.05 

56.67 

55.64 

55.13 

54.01 

52.84 

53.61 

60.36 

52.74 

54.47 

57.18 

59.45 
55.40 

56.45 

56.49 

56.27 

54.24 

57.50 

55.55 

56.10 

2.14 

Angle 
(deg) 

62.84 

66.70 

61 .11 

60.65 

84.98 

62.50 

62.12 

66.89 

61 .21 

63.27 

66.12 

63.07 

62.92 

84.27 

65.21 

63.61 

61.10 

64.07 

63.43 

62.50 

63.63 

2.25 

Radius \/\/Idth Volume 
(mm) (mm) (u11 

1.86 3.18 3.94 

2.09 3.53 5.25 

2.23 

2.10 

2.34 

2.00 

2.43 

2.20 

2.03 

2.46 

2.36 

2.47 

1.92 

1.00 

2.03 

1.92 
1.97 

1.91 

2.00 

1.00 

3.73 

3.47 

3.84 

3.24 

3.89 

3.57 

3.52 

3.92 

3.85 

4.14 

3.29 

3.27 

3.47 

3.41 

3.37 

3.09 

3.37 

3.29 

6.02 

4.78 

6.34 

3.69 

6.31 

4.94 

5.52 

6.36 

6.26 

8.37 

4.39 

3.93 

5.07 

4.59 

4.65 

3.24 

4.53 

4.02 

Radius Width Volume 
(mm) (mm) (~) 

1.86 

1.64 

1.75 

1.85 

1.80 

1.86 

1.87 

in 
1.94 

1.86 

1.65 

1.71 

1.94 

1.84 

1.72 

1.94 

1.91 

1.86 

1.74 

2.22 

3.32 

3.01 

3.06 

3.25 

3.26 

3.30 

3.27 

3.31 

3.39 

3.34 

3.07 

3.06 

3.45 

3.30 

3.21 

3.46 

3.34 

3.33 

3.11 

3.94 

5.05 

4.03 

3.73 

4.46 

4.94 

4.83 

4.56 

5.66 
5.01 

5.14 

4.46 

3.91 

5.56 
4.93 

4.83 

5.62 

4 .84 

4 .81 

4.09 

8.15 
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Dliodomethane 

Polished Band Angle 
(deg) 
18.45 

2 24.33 

3 19.51 

4 18.70 

5 19.46 

6 18.86 

7 19.56 

8 18.45 
9 22.24 

10 17.22 

11 21.40 

12 18.26 

13 21.25 

14 17.07 

15 17.04 

16 22.00 

17 19.13 

18 18.68 

19 19.00 

20 19.06 

Mean 
St. Dey 

18.* 

2.04 

Dllodomethane 

c~ Band 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Mean 
St. Dey 

Angie 
(deg) 

22.55 

17.18 

21.55 

15.98 

14.53 

21.28 

18.90 

20.18 

20.34 

20.56 

21.50 

18.08 

17.46 

19.75 

21.08 

19.55 

19.29 

18.65 

19.00 

19.80 

1$.1$ 

2.14 

Radius \/\/Idth Volume 
(mm) (mm) (ul) 

8.47 

5.11 

6.65 
6.95 

7.11 

7.14 

7.05 

7.00 
8.17 

7.99 

8.17 
8.24 

6.63 

9.41 

8.90 

6.03 

8.41 
8.05 
7.67 

7.99 

5.41 

4.33 

4.00 

5.69 
4.95 

4.32 
4.85 

5.22 
4.64 

5.02 

4.66 

5.38 
4.97 

5.82 

5.51 
4.97 

5.25 

5.44 

5.30 

5.37 

5.18 

3.00 
3.44 

6.85 

4.33 

2.46 

4.02 

4.n 
4.62 

4.04 

3.94 
5.17 

4.78 

6.19 

5.25 
5.30 

4.57 

5.57 

5.27 

5.30 

Radius Width Volume 
(mm) (mm) (J.il) 

6.13 

9.06 

6.69 

9.05 

11.65 

6.95 

7.83 

7.13 

8.45 

6.92 

8.27 

8.15 

6.28 

8.48 
8.56 

7.75 

9.29 

8.28 

8.95 

8.54 

<4.74 
5.45 

4.98 

5.14 

6.01 

5.16 

4.81 

4.97 

4.52 

4.97 

4.63 

5.12 

5.13 

4 .52 

4 .81 

5.34 

5.34 
4.91 

4.71 

4.56 

4.27 

4.94 
4.87 

3.89 

5.63 

5.23 

2.92 

4.39 

3.33 

4.52 

3.79 
428 

4.24 

3.30 

4.20 

5.39 

4.44 

3.54 

3.63 
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Table 2 contintued 

Water Diiodomethane 

YAG Band Angle (deg) Radius Width Volume YAGBand Angle Radius Width Volume 
(mm) (mm) (jJI) (deg) (mm) (mm) (jJI) 

1 83.63 1.45 288 5.30 1 12n 12.00 5.31 3.~ 

2 74.12 1.54 297 4.63 2 14.67 10.63 5.56 4.43 

3 n.~ 1.35 264 3.51 3 13.42 10.67 5.05 299 

4 74.52 1.40 269 3.47 4 19.32 7.62 5.04 4.~ 

5 75.69 1.53 291 4.14 5 10.64 14.8) 5.57 3.22 

6 79.27 1.34 263 3.63 6 15.46 9.12 4.86 3.06 

7 76.49 1.38 2.68 3.59 7 13.76 9.38 4.53 225 

8 79.52 1.37 2.70 3.94 B 16.39 9.06 5.20 4.05 

9 74.40 1.54 297 4.81 9 21 .17 5.91 4.33 3.06 

10 76.22 1.56 3.03 5.16 10 16.26 9.07 5.06 3.71 

11 74.12 1.54 297 4.63 11 15.46 9.12 4.86 3.06 

12 74.63 1.67 3.15 5.11 12 12.70 13.50 5.93 4.56 

13 71 .63 1.59 3.06 5.27 13 11.22 15.53 6.04 4.26 

14 76.73 1.37 2.67 3.61 14 19.39 6.14 5.41 5.36 

15 75.n 1.62 3.21 7.04 15 13.99 11 .12 5.38 3.n 
16 7292 1.73 3.33 6.51 16 10.56 15.59 5.71 3.39 

17 n .73 1.74 3.33 6.38 17 16.32 6.19 4.60 276 

18 74.06 1.59 3.03 4.57 18 11.43 14.97 5.93 4.12 

19 62.93 1.29 2.56 4.32 19 14.31 9.78 4.90 2.97 

20 78.23 1.37 2.75 3.94 20 12.22 12.51 5.55 3.78 

Mean 76.27 Mean 14.59 

St. Dev 3.16 St. Dev 2.96 
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The distribution of contact angle data IS shown below for each test liquid. 
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Under standard conditions, it is usual for the MAMS contact angle analysis to 

produce contact angle data that spreads over a 4-degree range.6 The sample 

roughness and roll curvature however introduce new sources of variation and the 

data spread is increased. The standard deviation did however remain around 2 

degrees for the polished and C02 engraving and 3 degrees for the Y AG engraved 

band. The increased variability seen on the Y AG band is probably due to the 

increased roughness of the YAG engraving. 

Surface energies were calculated from the average contact angle values using the 

standard geometric mean method (Equation I) 

Table 3. Surface energies calculated for the Harper banded anilox 

Polished Band COaBand YAGBand 

Dispersive component of surface energy 47.9 +/·1.1 48.0 +/·1.5 49.2+/·1.5 
(mJm-2

) 

Polar components of surface energy 11.6 +/·1.1 8.0 +/·1.1 3.0 +/.1.6 
(mJm-2

) 

Total surface energy (mJm-2) 59.1 +/-1.1 66.0 +/-1.6 12.2 +/·1.6 

The higher the surface energy of a surface, the easier it is to wet. Therefore the 

findings of this investigation were that the polished ceramic band was the easiest 

band to wet, followed by the C~ band then the Y AG band. 

These surface energy values cannot be regarded as absolute measurements as the 

curvature of the roll and the roughness of the engraving undoubtedly affect the 

contact angle and therefore the surface energy. Because the roll curvature is constant 

for the three bands, comparisons between the bands can be made. 
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Figure 4 shows the variation in the component surface energies across the Harper 

banded anilox. The dispersive or non-polar component of the surface energy is 

reasonably constant across the bands. The drop in total surface energy seen from the 

polished band to the CO2 to the Y AG band is as a result of a drop in the polar 

component of surface energy across the bands. 

Figure 4 Variation in surface energy across the Harper banded anilox 
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Figure 5 demonstrates the contributions to the total surface energy from non-polar 

(dispersive) interactions and polar interactions. All three bands are dominated by 

non-polar interactions. However, due to the chemical nature of printing inks the 

interactions between ink and roller are largely polar. Therefore the polar interactions, 

whilst making up a very small part of the total surface energy, are extremely 

important when considering wetting by printing inks. It is perhaps more useful to 

use contact angle data to predict and characterise wetting. 
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The surface roughness of each band is characterised by the laser power output. The 

Y AG laser produces cells by ablating the ceramic whilst the lower power CO2 laser 

melts then recasts the ceramic to form the cells. This gives rise to cell interiors with 

different roughness characteristics. The land areas between Y AG engraved cells are 

significantly thinner and consequently more fragile than those areas between cells 

made by a CO2 laser. For this reason Y AG engraved cells are not polished after 

engraving as is usual with C02 engraved bands. 

The Y AG band under investigation has a much finer line screen than the CO2 band. 

The test liquids therefore covered a much greater number of cells on the Y AG band. 

The roughness apparent to the test droplets is a combination of the roughness created 

by the laser used to engrave the ceramic and the roughness due to the number of 

cells. Figure 3 shows images taken from actual 20 surface scans of the engraved 

bands made by the Proscan 1000 optical sensor. 
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Figure 3. Roughness of the engraved bands 

VAG 

CO 2 

Roughness of cell interior Roughness due to line screen 

As the test droplets are very large in comparison with the size of the cells it is 

possible that the apparent roughness due to line screen differences may mask the 

effect of cell interior roughness on wetting character. 

As all the observed contact angles are below 90° the effect of surface roughness is to 

lower the true contact angle. 3 Considering line screen as the dominant roughness 

the order of roughness can be regarded as YAG band > C02 band > polished band, 

therefore the contact angle observed for the Y AG band would be the most lowered 

from its true value, followed by the CO2 band, then the polished band. As the 

magnitude of the observed contact angles for the polar liquid (the liquid that 

produced the difference in surface energies) is the same as the order of roughness, 

the effect of compensating for roughness would be to increase the differences In 

contact angle, and therefore in surface energies, between the bands. 
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A further study, using an anilox supplied by Pira, was carried out under the same 

conditions. Three bands were studied, two engraved bands done with a C02 laser 

with constant line screen but varying in volume, and a polished band. The line screen 

was 150 lines per cm (380 lines per inch). The radius of curvature of this roll was 

significantly greater than that of the Harper roll. 

he contact angle data collected for the Pira roll is summarised below. 

Table 4. Contact angles observed on three bands of the Pira anilox 

Water 

Band 1 Band 2 Polished 
band 

Average contact angle 52.06 52.63 49.68 (degrees) 

Standard deviation 2.62 2.50 3.22 

Dliodomethane 

Band 1 Band 2 Polished 
band 

Average contact angle 
16.81 15.42 13.68 (degrees) 

Standard deviation 2.59 1.84 1.40 

These contact angles were used to calculate surface energies for each band using the 

same method as for the previous calculations. 
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Table 5. Surface energies calculated for the Pira banded anilox 

Band 1 Band 2 Polished band 

Dispersive component of surface 48.7 49.0 49.4 
Energy (mJm"2) +/-1.5 +/-1.5 +/- 1.5 

Polar components of surface energy 13.5 13.1 13.1 
(mJm-2

) +/-1_5 +/-1.5 +/- 1.5 
Total Surface Energy (mJm-z) 62.2 62.1 62.5 

+/- 1.5 +/-1.5 +/- 1.5 

The cell volume and depth were seen to have no significant effect on contact angle. 

The contact angles on the polished band of the Pira roll were seen to be different to 

those observed on the Harper roll. 

Table 6. Comparison of data for polished bands 

Contact angle Contact angle with Polar surface Non-polar Total surface 
with water diiodomethane energy (mJ/m2

) surface energy energ~ 
(degrees) (degrees) (mJ/m2

) (mJ/m ) 

Harper 
Pira 

56.1 
49.7 

19.5 
13.7 

11.6 
13.1 

47.9 
49.4 

59.6 
62.4 

Whilst these differences in contact angles do not translate to large differences in 

surface energies, they are significant in terms of the degree of wetting that was 

observed to be taking place. The nature of the ceramic on the Pira roll is unknown. It 

is therefore difficult to determine whether this effect is purely as a result of the 

difference in curvature between the rolls. However, this seems the most probable 

explanation. 
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SUMMARY 

The surface energy of test bands on the Harper anilox was seen to decrease from the 

polished band to the C~ band to the YAG band. This was observed to be due to a 

change in the amount of polar wetting taking pJace, as the non-polar wetting was 

constant across the bands (within the margin of error). The change in surface energy 

and wetting character could be explained by chemical change at the ceramic surface 

during the engraving process. Differences in surface roughness, i.e. differences in 

cell interior roughness and roughness due to different line screens, have an affect on 

the observed contact angles (and therefore the calculated surface energies). However, 

roughness lowers the apparent contact angle, and the contact angles were observed to 

increase between bands of increasing roughness, therefore the differences in surface 

roughness cannot account for the observed trend. 

The effect of line screen on the surface roughness and the contact angle is an 

important variable. In order to study the effect of cell roughness and chemical change 

caused by the laser, the line screen must be fixed as a constant between the engraved 

bands. 

Analysis of the Pira banded anilox showed that cell volume and depth did not affect 

the contact angles made by test liquids and hence had no affect on the surface energy 

or wettability of the roll. However, it is widely accepted that cell depth has an effect 

on the amount of ink released by a cell. There is an established optimum cell opening 

to depth ration of 3: I for C02 engraved cells, 7 but the relationship between cell 

depth and ink release does not hold for YAG engraved cells. 8 The C02 engraved 
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cells are easier to wet, therefore more work has to be done to empty the cell. The 

Y AG cells, being slightly harder to wet do not hold on to the ink as strongly allowing 

the cells to empty to a greater depth and thus reducing the constraint of the opening 

to depth ratio. 

Wetting is the product of the interaction between the surface tension of the ink and 

the surface energy of the roll. The difference in the polar wetting character between 

the C02 and the Y AG engraved bands is particularly significant for assessing the 

potential for ink transfer, especially for those inks having a strong polar component, 

such as water-based inks. If more is known about the surface characteristics of the 

anilox, inks can be tailored to improve transfer out of the anilox cell. 

FURTHER WORK 

In order to determine that the differences in wettability and surface energy are 

produced by the laser, it is necessary to carry out further tests on YAG and C02 

engravings with identical line screens. 

To investigate the effect of roll wettability on ink release, a number of flexo inks of 

different surface tensions, will be tested and the extent to which they wet the anilox 

bands will be recorded. A flexo proofer, with an anilox having the same engraving 

specification, will then be used to study the ink release from the anilox and the 

optimum degree of wetting of the anilox by the ink to produce maximum ink transfer 

will be determined. 
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