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Abstract 

Animation is a multiple graphical view of a process in action. Animation has been 
sueeessfuUy employed in programming for designing, developing and debugging 
programs or monitoring their perfomlanee. 

This paper advocates that many benefits can be accrued from the use of visualisation 
techniques for the purpose of validating conceptual specifications during 
Requirements Engineering. 

To this end, the paper describes a visualisation system which makes use of three 
interrelated conceptual models and their metamodel represented uniformly in a 
repository and an animation algorithm which generates graphical views 
corresponding to the behavinur of an application domain as specified by the 
conceptual models. 

1 Introduction 

The feasibility of implementing a large information system is dependent on the use of a 
pertinent method for identifying the requirements on the target system and to make sure 
that the produced system will actually meet these requirements. Requirements 
Engineering consists of the knowledge acquisition, conceptual modelling and validation 
cycle. The acquisition step has the purpose of abstracting and conceptualising relevant 
parts of the application domain. The modelling step is concerned with the formal 
specification of aspects of the application domain for the purpose of analysis. Validation 
is the process of investigating a model (in this case an IS specification) with respect to its 
user perceptions. 

The purpose of validation in the development of information systems is to ensure that a 
specification really reflects the user needs and statements about the application. Its 
importance is widely recognised by most developers but still there is a lack of formal 
theory for efficiently carrying out validation [33]. In recent years some quality assurance 
tools for systems specifications have emerged. They usually fall in two categories: either 
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one uses design metrics to make judgements of entire designs [11] or one uses heuristics 
to pin-point single problems [34, 24, 8]. 

A key factor to the success of the validation process is improvements in communication 
and understanding among the actors of the system (i.e. managers, developers, etc,). 
Accordingly, a crucial factor is the level of support provided for the interaction process 
between the people involved. Support in this direction has traditionally been provided by 
system development methods in terms of informal techniques such as structured 
walkthroughs or more formally by the development of prototypes. Whilst both techniques 
have their merits, the extent to which an informal approach can be applied to large 
complex specification is questionable. Furthermore, the use of prototyping requires a 
developer to take certain design decisions which fall firmly in the implementation 
domain. 

In order to avoid these shortcomings a more appropriate technique namely that of 
visualisation is put forward in this paper. Visualisation has been applied successfully in 
programming environments in order to provide an indication of the behaviour of the 
program. In the context of conceptual specifications, visualisation involves the animation 
of the behaviour of a system and a visual interface reflecting the results of events upon 
the graphical - and where appropriate the textual - components of the specification. 

The advantage of visualisation over prototyping is that design decisions will not have to 
be made prematurely during Requirements Engineering when things are still vague. A 
requirements specification is likely to change many times before proceeding to design and 
visualisation should help in deriving a succession of specification which are increasingly 
closer to end users' perceptions about the application domain. 

The paper is organised as follows. Section 2 gives a brief historical overview of the use of 
visualisation techniques. Section 3 puts forward an architecture for visualising conceptual 
specifications. Such an architecture has three requirements which are detailed in this 
section: a set of formal conceptual models, a metamodel which integrates the different 
viewpoints expressed by the conceptual models and an animation algorithm for handling 
the behaviour of a system. Section 4 gives an in-depth description of the visualisation tool 
in terms of the algorithm for forming scenarios, the animator and the graphical views. 
Section 5 shows an application of the visualisation tool on a fraction of an-industrial size 
application. Section 6 concludes this paper. 

2 Visualisation - A Historical Perspective 

In the past decade the rapid decline of graphics-related hardware costs has resulted in the 
proliferation of powerful workstations and high resolution graphic displays in most 
information systems environments. This development has made possible the introduction 
and effective use of visual environments. Visual and iconic environments have proved to 
be highly beneficial for human/computer communication in general and for programming, 
in particular. 

Visual environments which explore the use of pictures for all phases of the programming 
process can be divided into two categories, namely visual programming and program 
visualisation environments. 



145 

Visual programming is the use of various two-dimensional or diagrammatic notations in 
the programming process [1]. Program Visualisation uses the technology of interactive 
graphics and the crafts of graphic design, typography, animation and cinematography to 
enhance the presentation and understanding of computer programs [4]. 

Visual Programming 

As defined in [28] a visual programming language is a language which uses some visual 
representations (in addition to or in place of words and numbers) to accomplish what 
would otherwise have to be written in a traditional textual programming language. 

Visual programming languages, that can be found in the literature, differ significantly 
from each other in approaches, design philosophy and appearance, since they have come 
into existence from varied backgrounds and directed for different areas of interest. These 
different approaches however, can be classified into tow broad classes of programming 
languages. Firstly, languages have been designed to handle visual information, to support 
visual interaction and allow programming with visual expressions. Secondly, graphical 
techniques and pointing devices are used to provide a visual environment for program 
conslruction and debugging, for information retrieval and presentation and for software 
design and understanding. 

Examples of visual programming languages in the first category are languages for office 
and business automation [35], for automatic programming [27], for command languages 
[30], for algorithmic programming [10, 13] and for database queries [2]. 

Examples of languages in the second category include those for visualising the structural 
aspects of complex software designs [29], for maintaining software [23], for supporting 
conceptual modelling [14] and for the design software by reusability [21]. 

Program Visualisation 

Program visualisation is used for designing, developing and debugging programs, or 
monitoring their performance. Numerous visualisation environments have been developed 
addressing different areas of interest; for graphics interface development [9], for 
visualising concurrent processes [26], for teaching or research [6]. 

Myers has classified program visualisation systems by whether they illustrate code or 
data, and whether displays are either passive or static [20]. In addition, dynamic displays 
are either passive, such as a videotape, or interactive, such as those found in interactive 
systems running on workstations. 

Typical static displays of program code are flowcharts, scooping diagrams, and module 
interconnections, as well as text itself when enhanced through formatting and typography. 
Systems have been developed to display one or more such diagrams automatically from 
programs coded in high-level procedural languages, and to use the diagrams for editing 
the underlying program. Static displays of program code can be animated automatically 
by highlighting the appropriate parts as the code runs [25]. 
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Program Animation is a form of program visualisation that is concerned with dynamic 
and interactive graphical displays of a program's fundamental operations [5]. A few 
algorithm animation systems have been developed and used for a variety of applications. 
For example, at Brown University, BALSA was used for instruction in computer sciences 
courses and for research in the design and analysis of algorithms [7]. London and 
Duisberg at Tektronix used animated programs for performance tuning and debugging of 
large systems [18], and at Bell Labs, Bentley and Kemighan exploited animated displays 
for algorithm research and for generating sequences of static displays of dam structures 
[3]. 

3 An Architecture for Visualising Conceptual Specifications 

3.1 Overview 

Experiences from the use of visual environments in programming tasks has encouraged 
researchers in Requirements Engineering to make use of similar techniques, normally 
referred to as animation techniques, in assisting the activity of validating conceptual 
specifications [16, 32]. 

Animation of a specification is the process of providing an indication of the dynamic 
behaviour of the system by walking lhrough a specification fragment in order to follow 
some scenario. Animation can be used to determine causal relationships embedded in the 
specification or simply as a means of browsing through the specification to ensure 
adequacy and accuracy by reflection of the specified behaviour back to the user. 

The major reason behind errors detected by validation, is limited knowledge and ad hoe 
use of the selected models [12]. The problem is compounded when, as is almost always 
the case, more than one modelling technique is used (for example using different 
conceptual models for specifying structural and dynamic components). Browsing through 
each model separately, is not of much help for the developer. The developer needs to have 
a better understanding of how the models affect each other, in order to check for any 
contradiction or redundant specification. Therefore, the models should be interrelated and 
these relationships should be formally defined and used in the validation process. 

Integration of different conceptual models can be effectively achieved through the use of 
metamodelling. A metamodel is a conceptual model of a modelling technique. A 
metamodel is specification-independent and time-invariant and contains all the necessary 
knowledge about the constructs and the semantics of the language/model used for 
specifying requirements during the Requirements Engineering process. In essence, it 
provides all the building blocks needed for describing an application model that pertain to 
a given modelling formalism. 

The relationship between application-dependent models and time-invariant metamodels 
within the context of representing and validating a conceptual specification is shown in 
figure 1. 

In the scheme shown in figure 1 both the metamodel and the conceptual specification are 
represented within a single repository. In fact a conceptual specification represents an 
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instantiation of the conceptual model. To this end, an object-oriented representation 
scheme has been chosen as the most appropriate storage mechanism for the repository 
[19]. 

~ APPLICATION 
DOMAIN 

MODELLING 

I 
I 

I 

SPECIFICATION 
CONSISTENCY 

CHECKING 

t vAL'~176 I" 

Figure 1. Conceptual Models, Metamodel and Validation 

3.2 The Conceptual Models 

The conceptual modelling language which is used for the task of application domain 
modelling has been developed within the TEMPORA project i and provides mechanisms 
for three conceptual views namely a structural view, a dynamic view and business rules 
view. These three views are represented by the ERT, PID and CRL models respectively. 
Details of these models can be found in [19]. In summary: 

The semantics of the Entity-Relationship-Time (ERT) model are those of 
the Entity-Relationship model based on the binary approach (entities, 
relationships, values, etc.) [22], extended with generalisation/specialisation 
hierarchies, complex objects and time modelling. This model is described 
in more detail in [31]. 

The Process Interaction Diagram (PID) model provides graphical notation 
for the specification of processes and their interaction. This includes both 
the interaction between the processes at the same level of abstraction and 

1 The TEMPORA project is a collaborative project between: BIM, Bclgitun; Hitec, Greece; 
Imperial College, UK; LPA, UK; SINTEF, Norway; SISU, Sweden; University of Liege. Belgium 
and UMIST, UK. SISU is sponsored by the National Swedish Board for Technical Development 
(STU), ERICSSON and Swedish Telecormn. The project is partly funded by the CEC under the 
ESPRIT programme. 
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An example 

the way processes at any level of abstraction relate to their parent process as 
well as their decomposition. The basic modelling concepts of a PID are: 
processes, external agents, triggers, conditions and ERT views. 

The Conceptual Rule Language (CRL) model provides the means of 
specifying the behaviour of an application domain in terms of rules, the 
model provides facilities for the definition of constraints placed upon the 
elements of ERT and with the derivation of new information based on 
existing information. The model also provides facilities for the 
specification of the conditions under which the actions must be taken, i.e., a 
set of triggering conditions and/or a set of preconditions that must be 
satisfied prior to their execution. 

of the three models is given in figure 2. 

I P6. ReBister Delivery Note ,, i TM 

DELIVERY [ d d i v e ~ _ n o ~ ~ l i  r 

8eht a 
IF CLAIM.Y is_based_.on WHEN Delivery_notes_and_Covering_letter(S,DN) 
DELIVERY_NOTE delivered at IF PosLoffiee.X [has Latest_serialnumber +1 =S] 
POST OFFICE.X THEN CLAIM.Y THEN delivery._notes(DN) 
owned_by POST_OFFICE.X 

Figure 2. Example Conceptual Specification 

3.3 The Conceptual Metamodel 

For the conceptual metamodel the metaclass-class mechanism provides the basic 
structuring mechanism for implementing the metamodel. In this way, a metamodel is 
represented at the metaclass level, whereas an application model is represented at the 
class level. A top level view of the metamodel is shown in figure 3. A key element of this 
view is that the three components of the metamodel which correspond to the ERT, PID 
and CRL models are fully integrated. 
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Figure 3. A Top-Level View of the Metamodel 

In order to utilise the knowledge contained in the metamodel, an object-oriented layer has 
been chosen to act as the common repository of the specification. This choice facilitates 
the storing of both the application models and the knowledge of the modelling formalisms 
in one place. The application models are mapped to the object-oriented layer in terms of 
object classes and this mapping is guided and checked against the metamodel, which is 
also stored in the same layer, but in terms of object metaclasses. These metaclasses 
contain the description of the building blocks of the models, the way that they interrelate, 
constraints that act on them and methods that define the behaviour of the objects. An 
example of metaclasses is shown below: 

object([ 
metaclass: Event action rule, 
isa: CRL_rule, 
slots, 

property : when_part, 
[type = Expression, presence = mandatory], 

property : if_part, 
[type = Expression, presence = optional], 

property : then_part, 
[type = String, presence = mandatory], 

property : parameters, 
[type = List(Undefined), presence = optional, 

constraint : possible_parameters_values, 
[category = invariant, 

card = O-U], 
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definition = (this#parameters is in oneof 
[ERT_class, String,Numeric_expression,Arithmetic_expression])], 

method : action_rule_init, 
[definition = action_init/2, category = Prolog], 

endslots, 
endmetaclass]). 

object([ 
metaclass: Process, 
isa: Metaclass, 
slots, 

property: process has name, 
[type= String, presence = mandatory], 

property: process has ID, 
[type= String, presence = mandatory], 

property: is_decomposed, 
[type= List(Process), presence = optional, card = 0-U], 

property: is_part_of, 
[type= Process, presence = optional], 

property: is_described_by, 
[type= List(PLL Rule], presence = optional, card = 0-U], 

property: has_precondition, 
[type= List(Input), presence = optional, card = 0-U], 

property: process_produces_output, 
[type= List(Output), presence = mandatory, card = l-U], 

property: process_produces_trigger, 
[type= List(Trigger), presence = mandatory, card = l-U], 

property: affects, 
[type= List(ERT_Object), presence = mandatory, card = I-U], 

property: is_controlled_by, 
[type= List(Event_action_rule), presence=optional, card = 0-U], 

method : process_init, 
[definition = proc_init/2, category = Prolog], 

endslots, 
endmetaclass]). 

object([ 
metaclass:Flow, 
isa: Metaclass, 
slots, 

property: flow has name, 
[type= String, presence= mandatory], 

constraint: total involvement of flow, 
[category = invariant, 
definition = (this is in oneof [Input, Output, Trigger])], 

method : Flow_init, 
[definition = flow_init/2, category = Prolog], 

endslots, 
endmetaclass]]. 

Apart from these definitions, the metamodel also contains a set of axioms which must be 
verified in order for every set of specification to be correct, consistent and in accordance 
with the other models. We distinguish two types of axioms (rules): Error rules which are 
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verified to insure correctness of the specifications and warning rules which suggest better 
organisation of the specifications. Examples of such axioms are given below: 

con4: In a uniqueness constraint: <ERT id name> is identified as 
<ERT access> the ERT id name must appear in the ERT access. 

con5: In a relationship disjoint constraint:<set_exp> is_disjoint_from 
<set_exp> the two set expressions must not be identical. 

con6: In the subset relationship and relationship disjoint constraint, 
all the variables of the set expressions involved in the 
constraint must have been instantiated. 

Following the schema of figure 1, every time the application models are mapped to the 
object-oriented layer, they are checked against the information stored in the metaclasses 
and the axioms and when errors or warnings are detected, they are reported back to the 
user for correction. When the mapping succeeds, the specification will be stored in the 
repository in terms of classes which are instances of the metamodel's metaclasses. 
Although this procedure assures the well-formedness of a conceptual specification 
according to the rules of the metamodel, it provides no facilities for an in-depth analysis 
of the specification in terms of the wishes and views of end users. This is a task for the 
validation tools, whose architecture is described in section 3.4 and which makes use of 
the models and metamodel described in sections 3.2 and 3.3 respectively. 

3.4 The Validation Scenarios 

Although, interactive graphics and animation were used successfully in programming, 
these techniques have not been fully applied in conceptual modelling. 

The architecture shown in figure 4 uses the same techniques, with program animation, in 
order to provide an indication of the dynamic behaviour of the specification given in the 
conceptual modelling formalisms. 

Figure 4. An Architccturo for Visualising Conceptual Spccifications 
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Graphic editors would be sufficient in order to browse through each model separately. 
However, during analysis of specification, a more powerful tool is needed, to assist the 
developer. All interrelations between the various conceptual modelling formalisms used 
should be demonstrated in a consistent and easy to understand way. 

One approach is the use of scenarios which could help the user in understanding the 
captured information [15]. For example, starting from the functional model one could ask 
"What If X", that is what would happen if X holds. In the architecture depicted above, the 
component of the visualisation tool which is responsible for forming the scenarios and 
walk through a specification fragment in order to follow the scenario, is the Algorithm of 
Forming Scenarios. The algorithm will start from the functional model and analyse the 
behaviour of the system by checking the interrelationships of the models. It will also 
report any events and conceptual information to the second component of the tool, 
namely the Animator. 

The Animator is responsible for translating the events and conceptual information 
reported by the Scenarios Algorithm, to graphical events and objects respectively. These 
graphical events, along with the graphical objects are repoaod to the Views. 

A View has a window associated with it and methods in order to react to any event or 
graphical information sent by the Animator. More than one View can be used in order to 
visualise the various interrelationships between the conceptual models. Each View is 
responsible for updating its window according to the events, and all Views are updated 
simultaneously. The Views use colour, movement and animation techniques; thus 
providing the developer with multiple animated views of the dynamic behaviour of the 
specifications. A detailed description of the components of this architecture is given in 
section 4. 

4 The Visualisation Tool 

The three conceptual modelling formalisms described in section 3, are strongly 
interrelated and this interconnection is explicitly recognised and represented according to 
the metamodels of these formalisms. This important characteristic is used in visualising 
and validating a developed specification. 

The basic idea, described in [15], was to use the process model as a starting point in order 
to form scenarios that could help the developer in understanding the captured information. 
More specifically, given a trigger (usually an external one), a set of processes are initiated 
and this invocation starts a number of execution paths that change the state of the business 
world. 

Apart from finding these paths, it is possible to demonstrate when each process is going 
to be executed and what are the business objects that are directly affected by it. However, 
the way this information is reported back to the developer is very crucial for 
understanding the dynamic behaviour of the specifications. The Animator and the Views 
use a graphical representation with which the developer is familiar. The graphical 
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representation is similar to the graphical notation used to define the models (i.e. PID 
diagram). 

The three components of the visualisation tool are described in detail in the next 
subsections while an example of the use of the tool is given in section 5. 

4.1 The Algorithm of Forming Scenarios 

The Scenarios Algorithm is responsible for defining the scenarios and starting from the 
models to follow their interrelation links in order to gather all the necessary information 
described previously in this section. The scenario that is currently used is the "what if X", 
and the starting point of the algorithm is the process model. 

Execution Paths 

The driving notion of the algorithm is that of trigger. Triggers are considered in as events 
that take place either in the external world or in the information system itself and cause 
the system to take some actions in order to respond to them. Three different kinds of 
triggers have been identified: external ones that originate from the external world (i.e., 
external agents in the PID model), conditions concerning the business objects (these 
originate from ERT views in the PID model) and flows from processes carrying ERT 
information that invoke other processes. 

In the current implementation of the algorithm, a list of all the triggers that are presented 
in the PID model (or in the WHEN part of the corresponding event-action rules) is shown 
in a separate window and the user is then able to select one of them andfire it. 

After a trigger has been selected and fired, the algorithm finds the set of processes that are 
initiated by the specific trigger. Each one of them constitutes the beginning of an 
execution path that consists of a set of other processes. The path terminates when no other 
processing is required, i.e., when a process either produces a flow that goes to the external 
world, or updates the ERT objects. This implies that each execution path is formed by the 
first process and all those that are fired by an output flow of a process that has been 
already included in the path. It should be pressed here that, since an output flow of a 
process may trigger more than one processes, the result of performing the algorithm will 
be a tree of process paths. 

Linking PID with ERT 

A very important aspect of the approach described in this paper is the interconnection of 
the three models. Although the designer develops three separate models (ERT, CRL, 
PID), there are ways of viewing them as a whole. Actions may be taken in a system and 
rules may hold or be violated, but there is a common basis that binds all these together 
namely, the entities, value classes and their relationships. 

When a trigger invokes an execution path as discussed above, it is very important to 
understand not only what sort of actions are taken, but also how these actions affect the 
ERT model. One way of looking into this is to present to the user the action part of the 
event-action rules that describe the internal processing of each process. But in most 
cases, these rules are quite difficult to be understood by a naive user. Moreover, the user 



154 

does not usually care about a detailed description of a process' internals. It is desirable, 
however, to inspect the effects of every process and a way of accomplishing this is by 
merely finding the set of ERT objects that this process affects. Such a facility would, in 
essence, give a comprehensive summary of the execution of processes, so that the user 
may understand what will be the state of the business after carrying out some actions. 

This idea has been included in the algorithm which, after finding each process and its 
preconditions in the initiated execution path, finds the ERT objects (entities, relationships 
and value classes) that are affected by it. 

Linking ERT with CRL 

The final step that has been considered in this algorithm deals with the connection of the 
ERT model with the constraints and derivations expressed in the CRL. Many ERT 
objects are going to have a number of CRL rules associated with them, which will express 
constraints on their values or associations or the way that they can be derived by using 
information already existing in the model. Since the algorithm finds the ERT objects that 
are affected by the execution of each process, it could be shown what are the constraints 
(or derivations) relevant to them. 

By providing such a facility, the user will be able to inspect the various rules expressed in 
CRL, see how they are connected with the ERT and consequently with the PID model and 
finally concentrate on the way these rules will affect what has been modelled in the two 
other models. This can reveal certain deficiencies of the captured information. If, for 
instance, there is a process that creates instances of the entity class X and a rule that 
constraints the population of this entity, by bringing all these together, the user might 
wonder what will happen if the rule is violated and suggest certain actions to be included 
in the PID diagram in order to tackle such a situation. 

This part of the algorithm has not been implemented yet. However, since the ERT model 
is connected with constraints and derivations expressed in the CRL, the algorithm can 
also find the constraints or derivations relevant to the ERT objects affected by a process. 

Reporting to the Animator 

Finally, the gathered information, should be reported to the user through the Animator 
and the Views. Whenever an interesting event occurs, as the algorithm executes, it is 
reported to the Animator. The notion of interesting events was first used in program 
animation, to describe the events that happen during the execution of a program and are 
interesting for the user to see. The interesting events in the Scenarios Algorithm are: 

�9 the selection of a trigger 
�9 the invocation of a process 
�9 a process affects an ERT object 
�9 a constraint rules restricts an affected object 

When such an event occurs, the Animator is notified and the relevant information is also 
send from the Algorithm to the Animator (for example, the ERT objects affected). 
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4.2 The  Animator  

The Animator translates the conceptual information given by the Algorithm to a graphical 
one. Therefore, the Animator has methods to create graphical objects which correspond to 
a process, an ERT object or a CRL rule given their names, types or description, and a set 
of graphical events that correspond to the interesting events reported by the Scenarios 
Algorithm. 

Conceptual Objects 

Entity class 

Time stampod entity class 

Simple value class 

Complex entity class 

Complex value class 

Relationship 

Timestamped Relationship 

ISA relationship 

Trigger 

Process 

Graphical Objects 

Entity Class Name 

Value_Class NamoJ 

[I Complex_EntityNamr [I 

i[ Complex Value Name J ]  

mal.-•--! b 
m2 

a b 
n~ E r a 2  

Trigger Name 

Figure 5. Concepts and their Corresponding Graphical Objects 

Graphical Objects 

The graphical objects of the Animator, arc one for every concept of the models. For the 
ERT model, there are graphical objects that correspond to an entity, value class, complex 
object, relationship and time stamped classes. For the PID model, there are graphical 
objects for representing a process and a Trigger and for the CRL there is a textual object 
that presents a rule. 
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Figure 5 lists all concepts of the models and their corresponding graphical objects. For 
every graphical object, the Animator has a method to create it (i.e. create process object 
P1). 

Graphical Events 

The Animator also translates the events reported by the Scenarios Algorithm to graphical 
events which can be understood by the Views. For example the event "process P1 is 
initiated" is translated into "draw process object PI", or the event "Entity Class Employee 
is affected by process PI" is translated into "Colour Employee with the colour of PI". 
When all the graphical objects of an interesting event have been created, the 
corresponding graphical event is send to the Views to process. 

4.3 The Views 

A View consists of a window, a set of methods to respond to graphical events sent by the 
Animator. Also a View has a set of general methods in order to automatically re-size or 
re-draw its window at user's request. 

The way a View reacts in a graphical event is by drawing the corresponding graphical 
object in its window, or by changing a graphic attribute (i.e. colour) of a graphical object. 
For example, for the event "draw process PI", the View will automatically calculate the 
position and size of the graphical object P1 and draw it on the window, while for the 
event "colour Employee with the colour of PI", the View will find the right eolour (the 
one that the graphical object P1 has), change the colour attribute of the graphical object 
Employee and re-display it, if necessary. 

A single View can be used to animate all the information reported by the Scenarios 
Algorithm. However, this will result an overloaded View and may confuse the developer 
by reporting too much information at once. In our approach three different Views can be 
used, one for each conceptual modelling formalism. Each View has a method for reacting 
in occurrences of events and for displaying the relevant information. 

All Views have a set of general methods in order to support automatic re-sizing and 
repaint either at user's request or whenever is needed (i.e. a window hiding part of a View 
was moved). 

PID View 

This View is responsible for drawing the execution paths. The events which this View 
recognises are the selection of a trigger and the invocation of a process. The graphical 
objects it uses are the ones representing triggers and processes. 

Whenever a trigger is selected the View reacts by drawing this trigger and whenever a 
process is initiated the View, draws the process with a different colour. The overall result 
of this animation will be the drawing of a tree of execution paths in a depth first manner. 
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ERT View 

This View is responsible for displaying any ERT objects that are affected by the 
execution of a process. The graphical objects which this View uses are the ones 
representing entities, value classes, complex objects and relationships. 

Whenever an ERT object is affected by the execution of a process, the View is updated by 
drawing the corresponding object with the same colour that the process has. This View is 
updated simultaneously with the PID View, that is whenever a new process is displayed 
in the PID View, the ERT that are affected by it, are displayed in the ERT View with the 
same eolour the process has in the PID View. 

CRLV~ w 

This view displays either a CRL rule that constrains an ERT Object affected by the 
initiation of a process, or the event-action rule that invokes a process. The first View links 
the ERT and CRL models, while the latter finks PID and CRL models. Two possibilities 
exist for either Views. One is to always display the CRL View, and another is to allow the 
user explicitly ask for the View. In the latter case it is possible to allow the user to select a 
process by clicking in the PID View and only then the CRL View will appear and display 
the event-action rule, which triggers the selected process. 

4A Implementation Platform for the Visualisation Tool 

The prototype of the visualisation tool, described in the previous subsections was 
implemented using the Algorithm of Forming Scenarios [15] and Jasmine [17]. Figure 6 
shows the internal structure of this prototype. 

Figure 6. Structure of the Animator and of the Views 

The Algorithm of Forming Scenarios was implemented in BIM Prolog, while the 
metamodels and models are stored in a BIM Probe repository. Jasmine formed the basis 
for the Animator and the Views components of the visualisation tool. 
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Jasmine consists of two tools. The first tool is a set of functions to define and manipulate 
simple graphical objects (i.e. boxes, circles, text and lines) or complex ones (i.e. lines that 
connect two objects together) and install them on multiple views and windows. As a 
consequence the user of the tool can create animations of a program without having the 
knowledge of window systems or graphics. The implementation of Jasmine was done on 
SUN workstations running SUN UNIX using C and C++ programming languages and X 
window system. 

The Animator uses Jasmine's set of  functions to create the graphical objects which 
represent the concepts of the models, while the Views use the functions provided by 
Jasmine in order to manipulate the graphical objects. 

5 E x a m p l e  

In order to demonstrate the functionality of the Visualisation tool, an industrial case study 
has been used 2 . Part of the PID model developed for this case study is depicted in figure 
7. 
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- l =  ^ =  
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I - " 1 %  ,%'~ 
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delivery n o ~ ' ~  
line 

Figure 7. Example PIE) from the Sweden Post Case Study 

The Scenarios Algorithm will start from the external trigger Delivery Notes and covering 
Letter, and find all the processes that are initiated by it, process P6.1 in this example. In 

2 This ease study has been used fo all aspects of developing a conceptual specification, using state 
of the art CASE tools as well as representing the specification and metamodel in an object-oriented 
environment. The example given here represents a small subset of the entire case study. 
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the Scenarios Algorithm, all preconditions are considered to be satisfied, therefore 
process P6.1 will "execute" immediately and the Scenarios Algorithm will proceed by 
finding all the affected ERT objects. 

All these events will reported to the Animator as they happen (in real time). The 
Animator will then, using the type of event and the information associated with it, 
translate every conceptual object to its corresponding graphical one, and every event to 
one that the Views will understand and send it to the Views. 

Figure 8. First Snapshot of PID and ERT Views 

The Views will then, update themselves according to the events occurred. For example, 
when the event of lriggcr selection is reported from the Animator to the Views, the PID 
View, will display the graphical representation of the trigger. 
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The PID View is responsible for finding the right position within the Views' window, and 
the right size of the graphical object, so as the name of the trigger can fit in the graphical 
object. In a similar way, the ERT and CRL Views will be updated, when the affected ERT 
objects and tile corresponding CRL rules will be reported by the Animator. Views also 
have a mechanism for re-size and re-draw their corresponding windows, whenever 
necessary. 

In figures 8, 9 and 10 snapshots of the ERT and PID Views are given, for the example 
PID diagram shown in figure 7. In order to produce these snapshots and make the changes 
on the ERT View visible on paper, as well as on a black and white screen, instead of 
colouring, the ERT objects are highlighted when a process affects them and turn to 
normal when the output trigger of this process are displayed on the PID View. 

i ' , . ~ , ~ , ~  ,; = L~..m__~.i ;~ ' = ; , o , r ~ , ~ , . . . ~  j 

Figure 9. Second Snapshot of PID and ERT Views. 
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Figure 10 Third Snapshot of PID and ERT Views. 

6 C o n c l u s i o n  

The process of information systems development can be viewed as a sequence of model- 
building activities. The quality of each set of models depends largely on the ability of a 
developer to extract and understand knowledge about an application domain which needs 
to be acquired from a diverse user population. This implies that developing an 
information system and in particular capturing requirements is a knowledge intensive 
activity which requires appropriate mechanisms for 'knowledge elicitation', 'knowledge 
representation' and 'knowledge validation' about the modelled application domain. 

The requirements engineering paradigm discussed in this paper considers a declarative 
approach to the task of representing functional requirements. The core modelling 
components are those of the objects of the modelled domain and the constraints, both of 
smile and transitional nature, that are associated with these objects. Object modelling is 
carried out using the ERT model whereas rule modelling uses the CRL as a textual 
language for expressing constraints. Due to the limited scope of viewing rules in a textual 
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formal, particularly those concerned with behavioural aspects, a CRL schema can also be 
viewed in terms of the PID model. The ability to view a requirements schema in familiar 
or easily explained terms to end users is regarded by the authors as central to the 
validation process of requirements. This process involves the agreement of many different 
stakeholders and system developers about, amongst other things, the intention of the 
target system. 

This paper also argues that the reviewing process involved in validating specifications 
should involve not only static mechanisms in terms of models that one can reason about 
but also animation of the specification that can provide requirements stakeholders and 
system developers with an early opportunity to observe the functional behavioural of the 
proposed system. Such a mechanism is presented in this paper by animating information 
captured by the three models of ERT, PID and CRL, in a uniform way. A first version of 
the prototype has been implemented and used on a number of case studies. 

The next stage of development will involve a number of important enhancements. Firstly, 
the third part of the algorithm that deals with connecting the CRL model with the ERT 
and PID models will be fully implemented. To achieve this, the CRL metamodel has to be 
studied and possibly changed so as to facilitate easy acquisition of the stored rules. 
Secondly, a set of further enhancements are currently under development in order to 
provide an interactive facility for users for guiding the animator about the possible 
execution of scenarios to be followed. For example it is desirable to involve the user each 
time a precondition is encountered in the process paths. In this way, instead of being a 
passive viewer the user will be able to drive the algorithm and choose possible paths that 
are of interest. 
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