
Software Chroma Keying in an Immersive Virtual Environment

F. van den Bergh†, V. Lalioti‡

†Department of Computer Science, University of Pretoria, South Africa, fvdbergh@cs.up.ac.za
‡Department of Computer Science, University of Pretoria, South Africa, vlalioti@cs.up.ac.za

Abstract

This paper presents a very fast software chroma keying algorithm, requiring at most five integer operations per pixel.
An improvement of more than 300% in performance over HLS based algorithms was achieved. The algorithm has been
developed for use in an immersive virtual environment, which is also described here.
Keywords: Virtual Reality, Immersive Telepresence, Chroma Keying

1 Introduction

Compositing is a technique used when two images are
combined so that some regions of the resulting image come
from the first source image, while the rest comes from the
second source image. Amask, in this context, describes
which part of the first source image should remain. Sev-
eral methods of generating such a mask exist; one that is
often used in television productions is a technique known
asChroma Keying.

With chroma keying the one image is recorded in a
studio where the background is a uniform color, usually
blue. The actor (weatherman, newsreader, etc.), who is
not wearing any blue clothing, can then be distinguished
from the background based on color. For television pro-
ductions a special hardware device then generates a mask
corresponding to the blue part of the image, which can be
used to combine the image of the actor with a different
background, like a computer generated weather map.

For some situations it would be preferable to do
chroma keying in software, as it eliminates the need for
the special (expensive) hardware. The algorithm presented
in this paper is simple, fast and produces very good quality
images when compared to dedicated hardware approaches.

Next, Section 2 will give a brief overview of Immer-
sive Telepresence and chroma keying, followed by a de-
scription of the new chroma keying algorithm in Section 3.
Some results are presented in Section 4, while Section 5
describes an application where the software chroma key-
ing has been used, followed by a discussion of future di-
rections.

2 Background

2.1 Virtual Environments

Projective Display Systems are the state of the art in high
end Virtual Environments. They release the user from the
heavy load and inconvenience related to head-mounted dis-

Figure 1: A model of the Responsive Workbench

plays, and capitalise on the increased resolution and ren-
dering speed of the available hardware [7]. A common
characteristic of the projection-based VE systems is that
they all extend the real space by a virtual space provid-
ing a common world co-ordinate system, where the local
and the remote participants are part of. Projection-based
VR installations allow collaboration between small groups
on the same or in different locations, without the need for
avatar representation through the use of real-time video of
remote participants for Immersive Telepresence.

The mapping of virtual space to real space allows us to
characterize projection-based virtual environments as desk
or room size installations [3]. Currently desk and room
size installations include the Responsive Workbench1, the
Collaborative Responsive Workbench, the CyberStage or
the Teleport [1]. The RWB was developed in 1993 at
GMD and uses the metaphor of a working table in order
to present stereoscopic 3-dimensional virtual data to one
or more users and allow a more natural way of interac-
tion [8] [9] Figure 1. The Collaborative Responsive Work-
bench extends the Responsive Workbench by one vertical
screen, thus enlarging the viewing frustum Figure 2. Each
of the displays is 1.80x1.20m and the viewing frustum is
around 2m by 3m. In this cube the virtual 3d objects can

1RWBTM is a registered Trademark of the German National Research
Center for Information Technology

Figure 2: Collaborative Responsive Workbench

be directly manipulated via a stylus or a data glove or other
input devices such as the Cube. The Collaborative Respon-
sive Workbench, apart from a larger viewing frustum, pro-
vides a better metaphor for remote collaboration, namely
that of working around a table.

CyberStage is a CAVE2 [2] like four-sided room-size
stereo display system installed at GMD, which creates the
illusion of immersion within a computer-generated virtual
environment. Users see large virtual spaces and hear spa-
tially distributed sound. Projection systems like Cyber-
Stage allow direct and body-centered human interaction
within virtual worlds as well as teamwork. Three wall size
rear projection systems are installed orthogonal to the floor
projection, each with a size of 3x3 meters. An SGI 4 pipe
Onyx 2 Infinite Reality generates eight user-controlled im-
ages. The user position is tracked with Polhemus Fastrak
sensors. Crystal Eyes shutter glasses are used for stereo
image perception. The display resolution is 1024 x 768
pixels at 120 Hz for each of the four displays. The eight
channel-surround-sound system is fed by IRCAM’s room
acoustic software Spatilisateur and provides support for lo-
calised sound sources within the virtual environment [4]
[12]. Another innovation of the CyberStage is the acoustic
floor, which allows for the generation of a sense of vibra-
tions.

A first approach in Immersive Telepresence was mak-
ing use of the Collaborative Responsive Workbench and
CyberStage to provide a virtual space where remote and
local participants can meet and collaborate as if face-to-
face. Immersive Telepresence uses live stereo-video, hard-
ware chroma keying and texture mapping in order to inte-
grate the live video into any virtual environment projected
in these installations [11]. In addition, an approach for ad-
justing the left and right images generated from a static
stereo-camera has been implemented for accommodating
moving of participants within such an installation [10].

Chroma-keying is a technique commonly used in vir-
tual studio productions. Actors are located in a uniformly
lit blue room. The hardware device, namely the chroma-
keyer, is then used to separate the image of the actor from

2CAVETM is a registered Trademark of the University of Illinois

the blue background. This is done by adding an alpha-
channel to the original video frames. The video stream
is then merged in real-time with the virtual environment.
The camera parameters are tracked and the virtual environ-
ment is rendered in real-time according to the perspective
of the real camera, thus creating a very realistic impression
of the actors being immersed in the virtual environment
and interacting with the virtual objects as if there were real
[6]. While hardware chroma keying is of the high quality
required for virtual studio productions, its high cost pro-
hibits its use for Immersive Telepresence. Additionally,
the chroma keying requirements of Immersive Telepres-
ence are not as strict as the ones of virtual studios. There-
fore the approach presented in this paper is using software
to achieve chroma keying for the purpose of remote partic-
ipant extraction from a fixed blue background in real-time.

2.2 Chroma Keying: Exact Solutions

A thorough mathematical approach to the problem of
chroma keying is presented by Smith and Blinn [14]. They
define what they call the “Matting Problem” (Matting is
roughly the film industry equivalent for chroma keying),
which is then used to illustrate their new method. Thus,
the matting problem, according to Smith and Blinn:

Given Cf and Cb at corresponding points, and
Ck a known backing color, and assumingC f =

Co + (1� α0)Ck, determineCo which then gives
the composite colorC = Co + (1� α0)Cb at the
corresponding point, for all points thatC f andCb

share in common.

Note that the Ci are vectors of the form
Ci = [Ri Gi Bi αi], where the Ri;Gi and Bi compo-
nents arepremultiplied by theα i value, and thus fall in the
range[0::α i], where 0� α i � 1.

Co is the color representing the foreground object; this
includes the alpha component. This is the value to be de-
termined, given the backing colorCk and the actual color
of the image at that point,C f . This allows for merging the
object with an arbitrary background (represented byC b),
again using the linear interpolantC =Co +(1�αo)Cb

To solve the matting problem, start with a compos-
ite image (like one recorded with a camera), and a known
backing color (e.g. blue). The following system results:

R f = Ro +(1�αo)Rk

G f = Go +(1�αo)Gk

B f = Bo +(1�αo)Bk

where theXf components represent the values recorded by
the camera, and theXk’s represent the background. The
Xo’s would form the solution to this system. Note that there
are four unknowns, and only three equations, resulting in
an under-specified system.

Thus it is impossible to obtain a unique solution to
the chroma keying problem when using this approach. By

placing constraints on the system it becomes possible to
solve it,e.g. by requiring the foreground object to contain
no blue component, resulting in

Co =

h
R f G f 0 1�

B f
Bk

i

Alternatively, restricting the foreground to be shades of
gray, they obtained

Co =

h
R f G f B f �Bk +αoBk

Gf�(B f�Bk)
Bk

i

Smith and Blinn show that a unique, general solution
does exist, but their method requires that the objects be
shot against two different backgrounds which is not a vi-
able method when actors are involved.

2.3 Chroma Keying: Approximations

Much of the work done on chroma keying has been pro-
tected by patents, most of which have expired a few years
ago. Many of these were discovered by Petro Vlahos, who
is also well known for his UltimatteTM equipment. The ap-
proximate solutions to the matting problem needs human
(or maybe intelligent software) intervention to fine-tune
some parameters until the result looks correct.

One of the earliest approximations (credited to Vlahos,
represented in Smith and Blinn’s notation) is of the form

αo = 1�a1(B f �a2G f);

where the values are clamped to [0..1].
For this approximation to work, several assumption

needs to be made,e.g. a blue background is used, actors
will not be wearing blueetc.

The second approach to chroma keying is moread hoc.
The first assumption is that the range of background colors
Ck are localized in a small region in 3D-RGB space and
is disjoint from the colors found in the foreground objects.
Around this region in RGB space several concentric poly-
hedra are constructed, first a small one containing the back-
ground color, with all interior points defined to have anα
value of 0 (completely transparent). The largest polyhe-
dron must be on or just outside the boundary of the colors
found in the foreground objects, so thatα = 1 for all points
outside this polyhedron. In-between these two polyhedra,
several other are constructed, each one representing a sur-
face of constantα, where 0< α < 1.

The PrimatteTM device from Photron Ltd. is based on
this approach, using 128-faced polyhedra. An introductory
discussion of the operation of this system can be found
in the Primatte whitepaper, published on their web site
(http://www.photron.com/WHITEPAPER/kanprie.php3).
Their algorithm was originally published in [13].

Smith and Blinn [14] point out several problems that
remain with this approach. The algorithm presented next
falls into this category of approximations, requiring human
intervention to adjust the parameters until acceptable re-
sults are obtained.

3 The Algorithm

The most important task of a chroma keying algorithm is to
classify a pixel as being of ‘key color’ or not. For compar-
ison a hue-based approach will be discussed first, followed
by the improved approach. The difference between these
two algorithms lies in the way in which the color classifi-
cation is done.

In this paper, the key color is assumed to be blue, since
it is a popular choice of key color as it complements human
skin tones. It has also been found that people prefer work-
ing in a blue room, as opposed to a red or green room.

3.1 Hue-based approaches

Although most computer displays use the RGB (Red,
Green and Blue) color space, this is by far not the only one
in which images can be represented. With a simple trans-
formation the RGB triple can be converted into its HLS
representation, which consists of Hue, Lightness and Sat-
uration components. The geometric representation of HLS
color space is a double-hexcone (RGB is a cube). If the
hexcone is viewed from above, we see a hexagon where
the hue is interpreted as the angle along the edge, measured
from Red which lies at 0Æ. In this arrangement, blue lies at
240Æ (for a more detailed discussion of the HLS model, see
[5]). Thus, to identify a blue pixel, we simply target a sec-
tor of the hue space, say 230Æ

�255Æ. Figure 3 illustrates
such an HLS hexagon, with the shaded sector indicating
the range that will be keyed out. The choice of hue angles
are arbitrary, and should be selected by the user to match
the particular blue screen.

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
��� 0 : Redhue

240 : Blue

Figure 3: A HLS hexagon

While this approach works well, it presents a difficulty
when implemented in software: The image has to be in
HLS color space. If not, it has to be converted first, which
slows down the algorithm significantly.

For comparison (see Section 4) a software HLS imple-
mentation was written. This algorithm was also optimized
for keying blue only, which means that a full HLS conver-
sion was avoided. The core of the algorithm can be seen in
Figure 4. Note that this implementation only has two alpha
levels: opaque and transparent.

// s points to the interleaved RGBA image
unsigned char *rp=s,*gp=s+1,*bp=s+2,*ap=s+3;
int h,l,s;
for (int idx = 0; idx < imgsize; idx++)
{

int max = (*rp > *bp) ? *rp : *bp;
max = max > *gp ? max : *gp;
int min = (*rp < *bp) ? *rp : *bp;
min = min < *gp ? min : *gp;

if (max == min) h = UNDEFINED; else
{
int delta = max - min;
if (*bp == max) h = 240 +

(60*(*rp-*gp))/delta;
else h = 0;
if (h < 0) h += 360;

}

if ((h < hue_max) && (h > hue_min))
*ap = 0;
else *ap = 255;
rp += 4; bp += 4;
gp += 4; ap += 4;

}

Figure 4: C++ code for the HLS algorithm

3.2 An improved approach

If we are provided with an image in the RGB color space, it
is possible to implement a fast algorithm requiring a max-
imum of five operations per pixel. The question that must
be answered is “When is a pixel considered to be blue?”

The first set of criteria to be met are thatB>R andB>

G, whereR;G;B are simply the separate color components
of the image, in the range [0..255] each. In other words, if
the pixel is to appear blue, the blue component must be the
dominant component. However, this is still too broad, for
we could haveB = x; R = x�1 andG = x�1, which is a
shade of gray that will wrongly be classified as blue using
the above criteria. One way to narrow the selection criteria
is to add a distance constraint. Thus, if

d =

q
(B�R)2+(B�G)2

> dmax (1)

then we can say that the pixel will definitely appear to be
blue, and should be keyed out. Multiplication (squaring)
and square root operations are very time consuming, so a
simplified distance measure is used instead:

d = 2�B�R�G (2)

Figure 5 shows an RGB cube containing a skew pyra-
mid OBTPQ (in dashed lines). This pyramid defines the
volume of the cube in whichB� R and B� G.

Figure 6 shows the skew pyramidOBTPQ intersected
by a planeS. The planeS is parallel to the main diagonal
line OP and represents a surface of constantd (as defined
in (2)). Note that (2) is only defined for points inside the
skew pyramid (blue-dominant colors).

B

P
G

R

T

Q

O

Figure 5: An RGB cube showing the skew pyramid
OBTPQ

B

P

S

Q

O

T

Figure 6: An RGB cube showing a planeS intersecting the
skew pyramidOBTPQ

The dark-gray polygon is the intersection surface of
the skew pyramid and the planeS. All the points inside this
polygon correspond to colors in RGB space with a specific
(constant)d value, withd defined in (2). The diagonalOP
is the ‘gray line’ of the cube, as all colors on this line have
equal R, G and B components, thus they are all shades of
gray. The planeS is parallel to the diagonalOP, a fact
that can also be derived from (2). This implies that all the
points in the dark-gray polygon are equally ‘blue’, or in
other words, they are at an approximately equal distance
from their gray values with equal intensity. Thus thed
value of a color inside the skew pyramid can be used to
classify it as being blue or not by selecting a threshold in
d. Note thatd is not a true distance metric, but rather a
computationally efficient approximation.

Visualize the volumeabove the planeS before moving
on to Figure 7.

Figure 7 again shows an RGB cube. In this cube, the
skew pyramid is still visible in dashed lines. Visualize
the figure as a cube with the volume of the skew pyramid
above the planeS having been removed. The two light-
gray triangles are the side walls of the pyramid (visible
above the planeS).

As mentioned before, a color (pixel) can thus be clas-

P

S

G

R

T

Q

O

B

Figure 7: An RGB cube showing a planeS of constantd

sified as lying above the planeS (and inside the skew pyra-
mid), or below the planeS, where the exact position of the
planeS is set by choosing a valuedmax as a threshold pa-
rameter. For each pixel a value ford is then computed,
and a mask is generated according to the outcome of the
comparison of thisd to dmax.

In practice the mask that we generate is not a binary
mask, but rather an 8-bit alpha value. When combining
the foreground and background images (using the mask),
the resulting pixel will be a linear interpolation of the fore-
ground and background pixels with the alpha value acting
as the blending parameter. In this sense, the alpha value
acts as a transparency value for each pixel.

Simple thresholding of the distance measured will
produce a sharp edge around the person (actor) that we are
trying to isolate from the background. Since we have an 8-
bit transparency value it is possible to smooth out the edges
by using semi-transparent pixels on the edges. The algo-
rithm proposed here solves this problem in an elegant way:
The distanced, computed using (2), is used as input to
what we call analpha function. The alpha function returns
a value between 0 (transparent) and 255 (opaque) based on
how far the pixel is from OP in RGB space. Equation 2
returns a value between 0 (for pure gray) and 510 (for pure
blue), asR;G andB all lie between 0 and 255. Two typical
alpha functions are shown in Figure 8.

The reason for showingtwo sample alpha functions
is that the algorithm has adjustable parameters that con-
trol the shape of the alpha function, which is used to cal-
ibrate the algorithm for the particular blue room in which
the video is being filmed. In the code, this alpha function
is treated as a 512-entry look-up table, thusany type of
function can be used. In practice, linear ramps like those
shown in Figure 8 work very well, producing smooth edges
around the actor. The slope of the ramp affects this “edge
smoothness”, while the starting and ending positions of the
ramp selects which shade of blue is keyed out.

Figure 9 lists the core loop of the algorithm. As can
be seen in the listing, only two comparisons and possibly
one lookup is required for each pixel. A lookup requires
an additional three integer operations to calculate the cor-
rect index into the table. This means that non-blue pixels

0

50

100

150

200

250

0 100 200 300 400 500

A
lp

ha
 v

al
ue

d

Alpha function 1
Alpha function 2

Figure 8: Two sample alpha functions

// s points to the interleaved RGBA image
unsigned char *rp=s,*gp=s+1,

*bp=s+2,*ap=s+3;
for (int i = 0; i < imgsize; i++)
{

if (*bp > *rp && *bp > *gp)
*ap = alpha_map[(*bp<<1) - *rp - *gp];

else *ap = 255;
rp += 4; bp += 4;
gp += 4; ap += 4;

}

Figure 9: C++ code for the algorithm

require only two operations, while blue pixels require five.
Depending on the image, this results in between three and
four operations per pixel on average.

4 Results

The improved algorithm is compared to a hardware chroma
keyer in terms of image quality, and in terms of perfor-
mance to an HLS software algorithm.

4.1 Image quality

Several factors can be considered when comparing the im-
age quality of the software algorithm to that of the dedi-
cated hardware device (an Ultimatte 7, in this case) — for
one, the Ultimatte 7 can leave in the shadows, while the
current software implementation keys them out. However,
for our set-up (See Section 5), the removal of shadows was
required. Other than the shadows, the software algorithm
produced comparable if not better images. The difficulty
here is that both the hardware device and the algorithm
have adjustable parameters, so a fair comparison is diffi-
cult. In all the test images used it was always possible
to obtain comparable results with the software algorithm,
within about 2 minutes of fine-tuning.

Given these constraints, a few interesting observations
can be made in Figure 11. By looking closely at the sur-
geon’s left arm (at the right-hand side of the image), one

Figure 10: Original image

Figure 11:a) Hardware keyed,b) Software keyed

can see that the hardware keyer has incorrectly keyed out
a part of the arm (Figure 11a). The software keyer (Fig-
ure 11b) handled this part slightly better. A blow-up of
this region is shown in Figure 12.

In Figure 14 it is once again visible that the software
algorithm produces acceptable results. In fact, the soft-
ware algorithm handled the reflection in the shutter glasses
slightly better. Compare the black (solid) glasses in the
original (Figure 13) to the holes visible in Figure 14a. No-
tice that the glasses appear much more solid in Figure 14b.

Overall, it would be fair to say that the software al-
gorithm presented here produces images that are certainly
good enough for the application (see Section 5) for which
it is intended.

4.2 Performance

For this section, an optimized HLS algorithm was bench-
marked along with the improved algorithm. Testing was
done on an Intel Pentium II processor, running at 450MHz.
In both tests, the algorithms were applied to an image in
main memory, and the Frames Per Second (FPS) rating
was computed based on the time it took to key this image
one thousand times.

Figure 12: Blow-up of elbow region:a) Hardware keyed,
b) Software keyed

Resolution HLS Algorithm Improved Algorithm

720�576 12.02 FPS 43.16 FPS
368�288 50.45 FPS 173.01 FPS
128�256 158.98 FPS 625.00 FPS

Table 1: Software HLSvs Improved Algorithm, FPS

Table 1 shows the results of running the algorithm on
different size images, while Table 2 shows the same data,
but rated in millions of pixels per second. Note that one
would expect the Mpixel/s rating to remain more or less
constant, but the percentage of blue pixels in the image
and the caching efficiency of the machine both influence
the performance of the algorithms.

The improved algorithm shows an increase of 340%
up to 390% in performance, compared to the HLS algo-
rithm.

5 Application

The improved algorithm presented in Section 3 was im-
plemented and tested in a distributed Virtual Environment
system.

Figure 13: Original image

Figure 14:a) Hardware keyed,b) Software Keyed

Resolution HLS Algorithm Improved Algorithm

720�576 4.98 Mpixels/s 17.90 Mpixels/s
368�288 5.15 Mpixels/s 18.34 Mpixels/s
128�256 5.21 Mpixels/s 20.48 Mpixels/s

Table 2: Software HLSvs Improved Algorithm, Mp/s

The system consists of two collaborative responsive
workbenches (as described in Section 2.1). On each work-
bench a stereo camera is mounted so that the person using
the workbench can be filmed. The resulting video streams
are sent to the remote workbench where the images of the
person are integrated into the virtual environment that is
being displayed on that workbench. By carefully position-
ing the two video streams (a stereo pair) the illusion of a
face-to-face meeting can be achieved, as the workbench
has the ability to display stereoscopic images.

Before integrating the image of the person into a vir-
tual environment the background must be removed so that
only the person remains in the video stream. If the back-
ground was not removed the personand the background
would appear in the virtual environment, destroying the il-
lusion of theperson being in the virtual world. The back-
ground is removed using chroma keying; initially with the
help of a hardware chroma keyer. Because of the simplified

domain (e.g. stationary cameras, unvarying lighting con-
ditions) it is now possible to use software chroma keying
instead, which turns out to be much cheaper.

It is also believed that the improved algorithm pre-
sented here is quicker than other approximation methods.
The simple calculation used by the algorithm is almost cer-
tainly faster than testing whether a point lies inside a 128-
faceted polyhedron.

In Section 4.2 it was shown that the software chroma
keyer can achieve real-time frame rates (depending on the
resolution) on inexpensive CPUs. Further optimization is
possible by limiting the region of the image that has to be
keyed. This is made possible by the fact that the person
working at the workbench will not move around much.

6 Future work

The full range of effects that can be achieved by using dif-
ferent alpha functions is not yet completely understood. It
might be possible to preserve shadows by designing the ap-
propriate alpha function, for example by adding a “notch”
in the region of the curve where the shadows lie.

Another interesting project would be the automatic de-
termination of the appropriate alpha function. Currently,
two parameters control the start and stop points of the
“ramp” in the curve, which must be manually adjusted
until the desired keying is achieved. Thus, a simplified
problem would be the automatic determination of good
values for these two parameters as a starting point for in-
teractive calibration.

Lastly, the issue of “blue spill” has not been addressed
yet. This occurs when blueish light reflects off the blue
screen onto white objects, causing them to appear blue.
Currently the object will be partially keyed out if the object
appears “blue enough” to the algorithm. Future work will
attempt to address this issue.

7 Acknowledgements

Figures 1,2, 10 and 13 were provided courtesy of GMD
(German National Research Center for Information Tech-
nology).

References

[1] C. Breiteneder, S. Gibbs, and C. Arapis.
TELEPORT- an augmented reality teleconfer-
encing environment. InProc. 3rd Eurographics
Workshop on Virtual Environments Coexistence &
Collaboration, Monte Carlo, Monaco, February
1996.

[2] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti,
R. Kenyon, and J.C. Hart. The CAVE, audio
visual experience automatic virtual environment.
Communications of the ACM, June 1992.

[3] P. Dai, G. Eckel, M. Goebel, F. Hasenbrink, V. Lali-
oti, U. Lechner, J. Strassner, H. Tramberend, and
G. Wesche. Virtual spaces - VR projection system
technologies and applications. InTutorial Notes of
the 1997 Eurographics Conference, Budapest, 1997.

[4] F. Dechelle and M. DeCecco. The IRCAM real-time
platform and applications. InProc. of the 1995 In-
ternational Computer Music Conference, San Fran-
cisco, 1995.

[5] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes.Computer Graphics: Princi-
ples and Practice 2nd Ed., chapter 13, pages 590–
595. Addison-Wesley, 1992.

[6] S. Gibbs, C. Arapis, C. Breiteneder, V. Lalioti,
S. Mostafawy, and J. Speier. Virtual studios: An
overview. IEEE Multimedia, pages 18–35, January-
March 1998.

[7] H. Haase, F. Dai, J. Strassner, and M. Goebel. Im-
mersive investigation of scientific data.Scientific Vi-
sualization, IEEE Press, 1997.

[8] W. Krueger and B. Froehlich. The responsive work-
bench. IEEE Computer Graphics and Applications,
May 1994.

[9] W. Kruger, C. Bohn, B. Froehlich, H. Schueth,
W. Strauss, and G. Wesche. The responsive work-
bench: A virtual work environment.IEEE Computer,
pages 12–15, May 1994.

[10] V. Lalioti, C. Garcia, and F. Hasenbrink. Virtual
meeting in cyberstage. InACM Symposium on Virtual
Reality Software and Technology, VRST 98, pages 2–
5, Taipei, Taiwan, November 1998.

[11] V. Lalioti, F. Hasenbrink, and C. Garcia.
Meet.Me@Cyberstage: towards immersive telep-
resence. In M Goebel et al, editor,Virtual
Environments’98, pages 90–102, Springer-Verlag
Series, Vienna, Autumn 1998.

[12] E. Lindemann, F. Starkier, and F. Dechelle. The IR-
CAM musical workstation: Hardware overview and
signal processing features. InProceedings of the
1990 International Computer Music Conference, San
Francisco, 1990.

[13] Y. Mishima. A software chromakeyer using poly-
hedric slice. InProceedings of NICOGRAPH 92,
pages 44–52, 1992.

[14] Alvy Ray Smith and James F. Blinn. Blue Screen
Matting. In Proceedings of SIGGRAPH’96, pages
259–268, New Orleans, Louisiana, August 1996.

View publication statsView publication stats

https://www.researchgate.net/publication/2337014

