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Abstract—The particle filter (PF) has been widely studied in
the prognostics’ field due to its ability to deal with nonlinear
and non-stationary systems. However, there is no update of the
model parameters during the prediction, preventing PF to work
in its traditional way to generate accurate long-term predictions.
In order to solve this problem, we put forward an improved PF
that is based on a novel health index (HI) similarity matching
method. This method is employed to search for similar HIs in
the training library and construct an optimal “similar HI” for
the system under study. Finally, the obtained HI is consistently
fed into the PF to deliver precise state-of-health (SoH) estimates.
The effectiveness of the proposed PF was validated on the C-
MAPSS datasets as well as data collected from an operational
reciprocating compressor. We observed that the new similarity
matching method demonstrated excellent performance in finding
suitable HIs for failure time prediction. We also observed that the
proposed PF framework had a superior prognostics performance
over the standard PF. We obtained an averaged predictive
accuracy of 96% (C-MAPSS data) and 92% (compressor data)
when only the first 10% of the degradation data were used.
This work highlights the promise of combining index similarity,
Procrustes analysis and PF for complementing existing prognostic
methods.

Index Terms—Condition monitoring, particle filter, spherical
distance, prognostics.

I. INTRODUCTION

PROGNOSTICS and health management (PHM) generally
involves two major tasks, namely diagnosis and prognos-

tics (Z. Wu, Zhang, Guo, Ji, & Pecht, 2022). While fault diag-
nosis can detect and isolate faults that have already appeared,
prognostics could have more meanings since the failure time
(FT) or remaining useful life (RUL) can be predicted in
advance to facilitate maintenance scheduling, which keeps
machines having a maximum uptime with a minimum effective
maintenance cost. According to recent review paper (Lei et al.,
2018), data-driven FT prediction methods include statistical
model-based methods such as inverse Gaussian process model
and Wiener process model (N. Chen & Tsui, 2013; Paroissin,
2015); Artificial intelligence-based methods such as artificial
neural network and regression tree(Razavi-Far, Chakrabarti,
Saif, & Zio, 2019; Romeo et al., 2020). Data-driven methods
have demonstrated to be effective in taking advantages of
measured condition monitoring data for FT prediction. The
statistical model-based FT prediction methods describe the
degradation process with a mathematical model and update
model parameters with new measured data to predict at future
times the state evolution. Statistical model-based methods
feature strong long-term prediction abilities since they can
make full use of prior knowledge and real-time measurements
(Lei et al., 2018). Among all stastical model-based techniques,
particle filter has been one of the most common and well-
proven approach in the prognostics’ filed due to its advantages
to approximate the future state probability distributions, almost
arbitrary distributions can be represented (Q.-b. Zhang, Wang,
& Chen, 2019). Other advantages of applying PF in the
context of prognostics, according to the literature, include
its strong ability to cope with non-Gaussian and nonlinear
systems(Moghaddasi & Faraji, 2020); its probabilistic outputs
which account for the significant levels of uncertainty inherent

in long-term predictions (Javed, Gouriveau, Zerhouni, & Nec-
toux, 2014); provision of information fusion and its capability
to account for the stochasticity of system degradation (Cui, Li,
Wang, Zhao, & Wang, 2022), etc. Over the past decade, many
PF based prognnostic methods have been applied successfully
in the domain of the reliability and safety of systems (Lim,
Goh, Tan, & Dutta, 2017; Cui, Wang, Wang, & Ma, 2019;
N. Li, Lei, Lin, & Ding, 2015; Qiu, Li, Jiang, & Zhu,
2018). Apart from the aforementioned studies, there are many
nonlinear modeling approaches which proved to be successful
in modeling systems in various fields (HEDREA & PETRIU,
2021; Teo, Tan, Ooi, & Lin, 2015; Hedrea, Precup, Roman,
& Petriu, 2021).

Particle filter recursively updates the conditional probability
distribution over the state space of the system’s evolution to
estimate its degradation level. If PF is to be used for long-term
FT prediction, it is firstly reasonable to allow real-time mea-
surements to be available for a certain duration to enable model
parameter training and updating. This stage is referred to as
the state tracking phase (aka. filtering). After the state tracking
phase, predictions of the state evolution are performed over
the state space without the presence of new measurements.
This stage is referred to as the state prediction phase. The key
challenge lies in the second stage is to find methods that are
capable of accurately projecting at future times the posterior
distribution represented by the current particle population in
the absence of new measurements. To address this challenge,
two types of solutions have been proposed in the literature:
1) project at future times the current particles population
among all possible pathways over the state space; and 2)
”generate” future measurements to extend the state tracking
phase. The first solution is the most commonly used. Examples
of approaches that adopt the particle projection method can
be found in (Baraldi, Cadini, Mangili, & Zio, 2013; Qiu et
al., 2018; Cheng, Qu, & Qiao, 2017; Jha, Dauphin-Tanguy, &
Ould-Bouamama, 2016; X. Li, Yang, Yang, Bennett, Collop,
& Mba, 2019). However, these methods unavoidably involve
enlarged uncertainty intervals and accumulated errors for long-
term FT predictions, which are also considered to be potential
issues for any non-deterministic prediction method (Tang,
Orchard, Goebel, & Vachtsevanos, 2011). This is mainly due
to the fact that the particle weights remain unchanged during
prediction. In other words, there is a lack of methodology
for the provision of a model parameter updating procedure
similar to that appeared in the state tracking phase. To solve
this problem, the second solution which relies on ”generating”
future measurements was proposed. In (Xiongzi, Jinsong,
Diyin, & Yingxun, 2012), a LSSVR model was trained to
predict the water level observation series prediction which
are then used to recursively update the particle weights for
system FT estimation. However, the degradation process of
industrial facilities is highly nonlinear and complex, which
may lead to complex degradation behaviors (e.g. process
noise and nonlinear degradation paths), making it difficult
to accurately track the evolution of measurements in the
context of long-term prediction with a simple machine learning
model. Hence the predictive accuracy of the ”generated”
measurements could not be fully guaranteed. In addition, the
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study assumes only one process variable to be unseen for the
future. Predictably, the computational cost will be unaffordable
when it comes to high-dimensional measurments in industrial
facilities. Constructing a prediction model for each sensor
information in high-dimensional settings would in turn accu-
mulate the total discripency between the true and predicted
measurements, making the method undesirable for real-world
senarios. Nevertheless, the abovementioned methods haven’t
find an optimal solution to provide accurate FT predictions
with high robustness by maintaining an accurate probability
density function through model parameter updates.

The objective of this study is to develop a particle filter
for prognostics that can provide accurate FT predictions by
maintaining an accurate probability density function during the
state prediction phase. This is achieved by developing a new
particle filter in which a novel Spherical and Cosine distance-
based index similarity is proposed to find similar degradation
trajectories from historical measurements, and the selected
degradation trajectories are then treated as ”new measure-
ments” to adjust the probability density function prediction. In
similarity based prognostics, a reference data base is created
with historical failures which are compared with an ongoing
case via distance analysis. This method has attracted increasing
attention in the era of big data since it requires neither a
time-consuming training process nor any hypothesis to build
the fault evolution model. Moreover, it predicts the future
evolution based on the system’s own historical trajectories and
hence the complex degradation behaviors can be well repre-
sented (X. Yang, Fang, Yang, Mba, & Li, 2019). In addition, it
needs only a small amount of historical data to predict the FT
(Y. Liu, Hu, & Zhang, 2019). Therefore, the future trajectories
determined by the similarity-based prognostic method can be
considered as proper ”new measurements” to facilitate the
PF’s state prediction phase. In similarity based prognostics,
Euclidean distance-based similarity received the most attention
and it has been extensively studied. In (Loukopoulos et al.,
2019, 2019), Euclidean distance was employed to facilitate
K-nearest neighbors prognostics. In (Z. Liu, Wang, Song,
& Cheng, 2017; Wang, Yu, Siegel, & Lee, 2008), historical
failures are directly compared with the testing case via Eu-
clidean distance analysis, and the most similar historical case
is considered to have equal FT with the testing case. In a
recent study, the similarity-based health index curve matching
technique was utilized to identify the training instances that
share a similar degradation pattern with the test instance whose
FT needs to be determined (Yu, Kim, & Mechefske, 2020).
But as pointed out by (Y. Liu et al., 2019), the similarity
in the spatial direction is often neglected by researchers due
to its complexity. Spatial distance or Cosine distance which
measures the similarity in the spatial direction is robust to
outliers and noises, hence it has received increasing attention
in more recent studies. Cosine distance was put forward in
(Y. Liu et al., 2019) to improve the FT prediciton of a slotting
cutter and was proved to be better than the sole Euclidean
distance measure. In a more recent study (S.-J. Zhang, Kang,
& Lin, 2021), both Euclidean and Cosine distance was in-
troduced to find historical failures share similar degradation
patterns with the on-site component. However, these distance

analysis techniques didn’t take the weights of similarity at
different time instances into consideration, hence may not be
sufficient for accurate FT prediction as the most reccent data
actually capture the latest degradation trend. To this end, a
novel Spherical and Cosine distance-based index similarity
matching method is preoposed in this study for the first time,
attempting to leverage the advantages of the most recent
Cosine distance method in capturing the spatial distance as
well as the Spherical distance’s ability to take time differences
into consideration. We observed that the proposed method can
provide more suitable HIs for subsequent prognostic analysis
in that the obtained HI shows closer agreement with the failure
time compared with the most widely used Euclidean distance.
Ideally, having more historical run-to-failure data to enrich the
searching library can potentially result in better HIs, thereby
improve the accuracy of failure time prediction. However, it is
possible that the HI found by the similarity matching method
occasionally does not show close agreement with the actual HI,
leading to enlarged FT prediction errors. Therefore, a teaching-
learning-based optimization (TLBO) method (Rao, Savsani,
& Vakharia, 2011), which is a famous method for solving
single-value engineering optimization problems, was further
adopted to perform a Procrustes analysis, aiming at adjusting
the matched HI when needed and reducing the prediction
errors.

To summarize, the new ideas of this manuscript with respect
to the literature are: a) A new particle filter framework was
proposed for FT prediction. Namely, the index similarity
method is proposed to be incorporated into the particle filter
framework to enable model parameter updates during the state
prediction phase, aiming at providing accurate and efficient
PDF estimates in the context of long-term predictions. b)
A novel spherical and cosine distance-based index similarity
matching method was put forward to find proper health indexes
from historical measurements. The proposed PF is presented
by its application to the prediction of fault evolution and FT
of a fleet of turbofan engines and a real-world operational
reciprocating compressor. The main contributions of this work
are summarized as follows:1) By leveraging the strengths
of the novel similarity-based prognostics and particle filter,
the proposed framework offers the promise of improving the
predictive accuracy and uncertainty level of standard PF. 2)
Thanks to the similarity-based prognostics, our method shows
promise in long-term FT estimation, showing a good perfor-
mance at early failure cycles. 3) Unlike existing research, we
put forward a new Spherical-Cosine-distance-based similarity
matching method. 4) We introduce a Procrustes analysis
based on TLBO to complement the proposed similarity-based
prognostic methods, further improving its predictive accuracy.
5) We tested the proposed method on both simulation and
real-world data.

The remainder of this paper is organized as follows. Section
II states the problem to be solved. Section III introduces the
index similarity-assisted PF method. In Section IV and V, two
case studies regarding turbine engine faults and reciprocating
compressor failures are used for validation and comparison.
Finally, some conclusions are given in Section VI.



EXPERT SYSTEMS WITH APPLICATIONS 4

II. PROBLEM STATEMENT

PF involves using a state evolution model to predict the
future state of a system:

xk = g (xk−1, xk−2, . . . , x1) + wk (1)

where g represents the state evolution function, xk denotes the
system state at time k, and wk represents a noise term. In (1)
the system evolution is assumed to be a high-order Markov
process, which is in line with the assumptions appeared in the
literature (C. Chen, Zhang, Vachtsevanos, & Orchard, 2010;
X. Li, Yang, Yang, Bennett, Collop, & Mba, 2019), since a
first-order Markov process may not always be an appropriate
hypothesis (Jouin, Gouriveau, Hissel, Péra, & Zerhouni, 2016)
for fault evolution. PF generates a set of particles (commonly
Gaussian distributed according to (Jouin et al., 2016)) from
the initial state of the system and then implements particle
population propagation as per (1) and updates particle weights
by means of resampling strategies during the state tracking
phase. Several resampling methods exist in the literature,
one of which is the sequential importance resampling (SIR)
method (T. Li, Bolic, & Djuric, 2015). It has the advantages
that the weights are easily evaluated and the density can easily
be sampled. In this way, the posterior distribution of the system
state represented by the particles can be updated in a step-by-
step manner throughout state tracking phase.

To be specific, PF uses a set of random samples with
associated weights {(xj

kπ
j
k); j = 1, 2, 3, ..., N} sampled from

a distribution, q (x) to approximate the posterior marginal
density of the system state:

p (xk | y1:k) ≈
N∑
j=1

πj
kδ

(
xk − xj

k

)
(2)

where N is the number of particles, and
∑N

j=1 π
j
k = 1. When

new measurements become available, particle weights πj
k are

updated accordin to the principle of importance sampling:

πj
k ∝ πj

k−1 ·
p
(
yk | xj

k

)
p
(
xj
k | x

j
k−1

)
q
(
xj
k | x

j
k−1, yk

) (3)

In the context of using PF for prognostics, where the
internal system state is not directly measurable, a canonical
representation of the measurement equation can be used:

yk = xk + vk (4)

where xk represents the true system state, vk is a noise term
and yk denotes a one-dimensional health index derived from
the system’s measurements. (1) - (4) indicate that one can
use dimensionality reduction techniques to compute a health
index, which represents the true system state vk, and then
use particles to approximate the system state’s distribution
under the PF framework. When the system’s measurements
are available, PF implements state tracking during which the
particles and weights are updated continuously. Then the state
prediction phase is implemented to propogate the existing
particles population.

True
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FT
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FT
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Fig. 1: Comparison between traditional PF and the improved
PF in terms of predictive accuracy and uncertainty.

During the state prediction phase, the state evolution
model (1), which was trained using the up-to-date observa-
tions, projects at future times the current particles population
p (xk | y1:k), without the presence of new measurements. This
procedure could be expressed as:

p (xk+h | y1:k)=
∫
. . .

∫ k+h∏
j=k+1

p (xj |xj−1:j−4) p (xk+h |y1:k)

k+h−1∏
j=k

dxj =

N∑
j=1

πj
k+h−1p

(
xk+h | xj

k+h−1:k+h−4

)
(5)

where j = k + 1, k + 2, . . . , k + h represents the future
time instances, p (xj |xj−1:j−4) denotes the state transition
probability and p (xk+h |y1:k) is the h step ahead posterior
distribution.

However, it has been pointed out in the literature (Jouin et
al., 2016; Xiongzi et al., 2012; Tang, DeCastro, Kacprzynski,
Goebel, & Vachtsevanos, 2010; J. Liu, Wang, Ma, Yang, &
Yang, 2012) that when PF is used for long-term prognostics,
it extrapolates the particles population p (xk |y1:k) obtained at
the end of the state tracking phase along different possible
future trajectories, and the following problems may occur:
The prediction results greatly depends on the state particles
estimated at initial prediction step and their parameters are
approximately static (i.e. there is no update of the model
parameters during the prediction), which increases the un-
certainty; Any errors or approximation in the initial pdf can
accumulate and grow over a certain time horizon and can
severely distort the predicted pdf over a long time frame, result
in a large grain of uncertainty. Therefore, our solution is, the
health index found by a similarity matching method will be
treated as ”new measurements” to realize particles, weights
and pdf updates during the state prediction phase. This method
allows the PF model parameters to be updated recursively
according to the accuracy of prediction, and the particles
are regenerated iteratively based on how close they are to
the matched HI. As a result, the aforementioned predictive
uncertainty and pdf distortions caused by long-term error
accumulations can be addressed. Fig.1 illustrates the possible
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Fig. 2: Conceptual illustration of the difference between tra-
ditional PF and the improved PF

deficiencies induced by the PF scheme and the improved
results after applying our proposed solution. The following
section details how the proposed index similarity-assisted PF
can address the aforementioned challenges.

III. METHODOLOGY

This Section describes the improved PF that incorporates
a novel similarity matching method to enable updates of
particles and the associated weights during the prediction
phase (see Fig.2 for illustration).

A. Canonical Variate Analysis for HI Construction and Pre-
diction Start Time Determination

Although fault detection is not the main task of this study, it
is the starting point for prognostics. Canonical variate analysis
(CVA) has been successfully applied to HI construction (X. Li,
Yang, Yang, Bennett, & Mba, 2019; X. Li, Yang, Yang, Ben-
nett, Collop, & Mba, 2019) for prognostic purposes previously.
In this work, CVA is applied to transform the multidimensional
measurements to a single dimensional HI. For further details
on CVA for fault detection and prognostic HI construction,
readers are referred to (X. Li, Yang, Yang, Bennett, & Mba,
2019; X. Li, Yang, Yang, Bennett, Collop, & Mba, 2019; X. Li,
Yang, Bennett, & Mba, 2019).

B. Similarity Matching Based on Spherical Similarity and
Cosine Similarity

The calculated HIs are first stored in a training library. Then
a similarity matching method can be applied to search for HIs
that are similar to the HI of the testing machine. Two similarity
criteria - the Spherical similarity and the Cosine similarity -
are considered in this work.

1) Spherical Similarity: Index similarity can be evaluated at
multiple time stamps, and traditionally the distances calculated
at different time instances are allocated with the same weight.
Assuming two different prediction models, A and B, are
trained using two different portions captured from the same
HI. A is trained using data from the very beginning and B
is trained using a segment near the end of failure (Fig.3 (a)).
Apparently, B is more likely to generate an accurate estimate
of the FT since its training data captures the latest degradation

Fig. 3: (a) Illustration of the effects of training data on
predictive accuracy. (b) Schematic illustrating the Spherical
distance concept.

trend. In comparison, model A’s training data yet to show signs
of severe degradation, and the model error inherent in A will
be propagated over a long time to the predicted FT, causing
inaccurate predictions and large uncertainty. Therefore, when
searching for similar HIs in the library, it is reasonable to
weight the data higher closer to the end of failure since these
data points capture the latest degradation trend and could more
likely end up with a failure time which is close to that of
the testing machine. To aggregate these similarity levels at
different time instances, we define Spherical similarity as a
normalized weighted sum of relative similarity at specific time
stamps. Suppose the training library has been built and the up-
to-date testing HI data ∆Zt = Zt,1, Zt,2, . . . , Zt,N ∈ RN is
given, the Spherical similarity between ∆Zt and the relevant
data in the library ∆Zr = Zr,1, Zr,2, . . . , Zr,N ∈ RN is
defined as

Ds (∆Zt,∆Zr) =

N∑
k=1

wkEk (6)

Ek = ∥Zt,k − Zr,k∥ (7)

wk =
2

π
arccos

(√
µk−1µk +

√
(1− µk) (1− µk−1)

)
(8)

where µk = µl +
k(µh−µl)

N , k = 1, 2, . . . , N , µl and µh are
the lower and higher boundary for determining the Spherical
distance wk, and 0 < µl < µh < 1. Ek represents the
Euclidean distance between the point, Zt,k, on the testing
HI and the point, Zr,k, on the reference (historical) HI. wk

represents the weight being allocated to the distance between
the points Zt,k and Zr,k. Spherical distance was first proposed
in 2009 (Y. Yang & Chiclana, 2009) to create nonlinear
distances with respect to the change of the corresponding fuzzy
membership degrees. As shown in Fig.3 (b), the Spherical
distance between two consecutive points of a HI is expressed
as the spherical distance between their corresponding points
(namely P and Q in Fig.3 (b)) on its restricted spherical surface
representation. When evaluating the similarity between two
HIs, the Spherical similarity adopted in this study assigns
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higher weights to points near the FT and vice versa. For further
details on Spherical distance, see (Y. Yang & Chiclana, 2009).

2) Cosine Similarity: The Cosine distance, which measures
the spatial distances between two vectors, is often neglected
by the similarity-based prognostics community (Y. Liu et al.,
2019). It is defined as

Dc (∆Zt,∆Zr) = cos(φ) =
∆ZT

t ∆Zr

∥∆Zt∥ ∥∆Zr∥
(9)

3) Similarity Matching: A similarity matching method
which is based on Spherical and Cosine similarity is proposed
to predict the future HI of the system. This method searches
for the HI segments ∆Zr ∈ RN , that are similar to the up-
to-date HI data ∆Zt ∈ RN of the testing machine. Each of
the matching HI is assigned with a weight w in relation to its
Spherical and Cosine similarity, and w is claculated as

w = Ds +Dc (10)

Where Dc equals 1/Dc (∆Zt,∆Zr). The HI value at a
future time k + h is then determined by the weighted sum
of all best matching HIs at time k + h (i.e. HIs are merged).
The merged HI can then be continuously fed into the PF
as new “measurements” during the state prediction phase.
The effectiveness of the Spherical-Cosine similarity matching
method will be compared with that of the Euclidean distance-
based approaches later through experiments.

C. Adjust merged HI Based on Teaching-learning-based Op-
timization

While the generated “measurements” offer an opportunity
to update particle population during prediction, the question
arises, whether the merged best matching HI should be consid-
ered as more suitable to represent the fault evolution than the
standard PF? When the historical failure data are abundant and
the merged best matching HI tracks the system degradation
accurately, the improved PF would unsurprisingly be able
to deliver precise FT predictions. However, occasionally the
merged HI could deviate from the actual degradation as shown
in Fig.4. This can be attributed to the lack of similar historical
HIs in the training library. In order to solve this problem, a
TLBO algorithm is adopted in this study to realize a Procrustes
analysis, rotating the imperfect HI to make it closer to the
actual FT. Procrustes analysis is a form of statistical shape
analysis used to superimpose a pair of shape instances through
translation, rotation and scaling (Dryden & Mardia, 2016).
The goal is to find the optimal rotational angle of the merged
HI to realize a closer agreement with the testing HI in that
the Spherical and Cosine distances between both HIs are
minimized.

Let ∆Zm = Zm,1, Zm,2, . . . , Zm,N ∈ RN be the merged
best matching HI up to time k. The pseudocode of the
proposed Procrustes analysis algorithm is provided below.

1) Teaching-learning-based Optimization: TLBO, as a na-
ture inspired optimization algorithm, has been proven to be
more effective than its counterparts due to its fewer setting
parameters and computational efficiency (Rao et al., 2011). It
has been applied to solve industrial optimization problems in

Algorithm 1 Procrustes Analysis

1: for 1 ≤ k ≤ N do
2: x (∆Zm)← ∆Zm,y (∆Zm)← ∆Zm

a

3: x (∆Zt)← ∆Zt,y (∆Zt)← ∆Zt

4: x̄m = mean (x (∆Zm)) , ȳm = mean (y (∆Zm))
5: x̄t = mean (x (∆Zt)) , ȳt = mean (y (∆Zt))
6: tx = (x (∆Zm)− x̄m)× (cos (dθ)− sin (dθ)) + x̄m

b

7: ty = (y (∆Zm)− ȳm)× (sin (dθ) + cos (dθ)) + ȳm
c

8: Ztr
d ← (tx, ty)

9: f (dθ)
e = Ds (∆Zt,Ztr) +Dc (∆Zt,Ztr)

f

10: d̂θ
g = argmin (f (dθ)) , s.t. dθ,l ≤ dθ ≤ dθ,h

h

11: Subsitute d̂θ into steps 6 - 8 to calculate Ztr,d̂θ

i

ax (·) and y (·) denote the projections of a vector on the x and y
coordinates, respectively.

bdθ is the rotation angle to be optimized.
cSteps 6 - 7 realize the rotation of the merged HI ∆Zm according to the
rotational angle dθ .

dZtr stores the projections of the rotated merged HI on x and y coordi-
nates, tx and ty respectively.

ef (dθ) denotes the objective function to be optimized.
fDs (∆Zt,Ztr) and Dc (∆Zt,Ztr) denote the Spherical and Cosine
similarity between the testing and the rotated merged HI, respectively.

gd̂θ is the optimal rotation angle to be approached.
hdθ,l and dθ,h are the lower and higher boundaries of the design variable
dθ .

iZtr,d̂θ
is the rotated/adjusted HI that can be fed into the subsequent PF

analysis.

the field of transportation systems (Tian, Zhou, Li, Zhang,
& Jia, 2016), low-carbon manufacturing (Lin et al., 2017)
and mechanical design problems (Rao et al., 2011), etc.
In this study TLBO is adopted to solve the optimization
problem mentioned in Algorithm 1 in order to achieve fast
determination of the optimal rotational angle d̂θ. It is also the
first known implementation of TLBO in FT prediction.

The process of TLBO consists of a teaching phase and
a learning phase. Each learner in the class is a possible
solution to the optimization problem and the entire class is a
population. Learners learn from the teacher during the teaching
phase and learn from other learners through interaction during
the learning phase. Steps to implement TLBO are detailed as
follows.

a) Objective function and initialization.
As stated in Algorithm 1, the objective function is f (dθ).

Furthermore, the size of the population P (i.e. the number
of learners), the number of generations G and the lower and
upper boundaries of the design variable, dθ,l and dθ,h, need
to be initialized in this step.

b) Teaching Phase.
The best solution in the first iteration will be regarded as

the teacher

dθ,teacher = dθ,f(dθ)=min (11)

At the same time, the teacher will try to shift the population
mean d̄θ towards its own value dθ,teacher. The shifted population
mean is
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d̄θ,s = dθ,teacher (12)

The difference between the old and the shifted mean is
defined as

∆dθ = r
(
d̄θ,s − Tf d̄θ

)
(13)

where the value of r is randomly chosen between 0 and 1,
and the value of Tf is chosen as 1 or 2 (Rao et al., 2011).
This difference is then used to adjust the old mean, and the
finally updated new mean is expressed as

d̄θ,new = d̄θ +∆dθ (14)

d̄θ,new will be accepted if its corresponding objective func-
tion value is smaller than that of the old population mean.

c) Learning Phase. In this step, learners learn from other
learners through randomly mutual interactions. A learner gains
new knowledge if the other learner is better. For each learner
dθ,i (i = 1 : P ) in the population, randomly select another
learner dθ,j (dθ,i ̸= dθ,j), and perform the following calcula-
tion

Algorithm 2 Learning Phase

1: if f (dθ,i) ≤ f (dθ,j) then
2: dnewθ,i = dθ,i + r (dθ,i − dθ,j)
3: elsednewθ,i = dθ,i + r (dθ,j − dθ,i)

where dnewθ,i will be accepted if its corresponding objective
function value is smaller than that of dθ,i.

d) Termination of Iteration.
The iteration will be terminated when the maximum gener-

ation number G is achieved.
TLBO will be employed to determine the optimal rotational

angle that the merged HI needed for the FT compensation.

D. Synthesis and FT Prediction

The CVA approach, which is described in Section III-A,
is applied to compute the HIs for all machines under study.
Then, as described in Section III-B-3), a portion of the testing
HI is compared with all the reference HIs in the training
library using a similarity measure calculated based on the
Spherical and Cosine similarity as described in Section III-
B-1) and Section III-B-2), respectively. Then, a merged HI is
calculated by a weighted average of the similar HIs found in
the library. Subsequently, a TLBO-based Procrustes analysis
is adopted to adjust (rotate) the merged HI such that the points
of the merged HI can best conform those of the testing HI.
This adjustment is achieved through minimizing an objective
function of the Spherical and Cosine distance between the
merged and the testing HIs. The details of the Procrustes
analysis are described in Section III-C. Finally, the adjusted
merged HI is continuously fed into the particle filter as new
“measurements” after the end of the state tracking phase,
and as a result the state prediction phase is implemented in
the same way as the state tracking phase. The merged HI
consistently updates the particles and their weights to restore

Fig. 4: Flowchart of the improved PF FT prediction algorithm.

them back to reasonable values. The concept of the proposed
improved PF FT prediction method is illustrated in Fig.4.
Moreover, Fig. 5 specifies the structure of the proposed particle
filter prognostic model.

E. Modelling Steps

The proposed index similarity-based particle filter frame-
work for prognostics is summarized as follows, which consists
of 4 main steps.

Step 1: Health index construction
Construct health indexes from historical failure measure-

ments as well as the test unit’s most recent available measure-
ments according to the CVA algorithm (X. Li, Yang, Yang,
Bennett, & Mba, 2019; X. Li, Yang, Yang, Bennett, Collop,
& Mba, 2019).

Step 2: Particles initialization
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Fig. 5: Structure of the proposed particle filter prognostic
model

Generate a set of particles to approximate the posterior
distribution of the system state according to the initial value
of the HI as per Equation (2)

Step 3: State tracking
(a) Propagate the distribution of the particles according to

the state evolution model described in Equation (1)
(b) Update each particle’s weight as per Equation (3)
(c) The updated posterior distribution is represented as per

Equation (2)
(d) Repeat steps (a) – (c) at each time instance throughout

the state tracking phase
Step 4: Index assisted state prediction
(a) Evaluate the Cosine-Spherical similarity between the test

unit and past failures’ HIs as per Equations (6) – (10) to find
the best matching HI

(b) Perform statistical Procrustes analysis as per Equations
(11) – (14) and Algorithm 1 to minimize the distance between
the test unit’ HI and the best matching HI

(c) Draw initial population from the state tracking phase
(d) Project at future times the current particle population

without the presence of new observations as per Equation (5)
(e) Update each particle’s weight as per Equation (3)

according to the deviation from the best matching HI
(f) Repeat steps (d) – (e) at each time instance throughout

the state prediction phase
(g) The updated FT posterior distribution is represented as

per Equation (2)

IV. CASE STUDY I: TURBOFAN ENGINE DATASETS

A. Description of Dataset I

In this subsection, data generated from the Commercial
Modular Aero Propulsion System Simulation (C-MAPSS)

program (Ramasso & Saxena, 2014) are presented. The data
can be considered to be captured from a fleet of 100 engines of
the same type. The data contain 100 multivariate data sets. The
engines were operating normally at the start and developed a
fault at some point. The fault grew in magnitude until system
failure. Similar to (Tidriri, Verron, Tiplica, & Chatti, 2019;
Wang et al., 2008), 9 complementary variables among the total
26 variables found in the dataset (corresponding to variables
2, 3, 4, 7, 11, 12, 15, 20 and 21) were selected to construct
the HIs.

B. Description of Dataset I

The CVA technique as proposed in (X. Li, Yang, Yang,
Bennett, Collop, & Mba, 2019; X. Li, Yang, Yang, Bennett,
& Mba, 2019) is applied to calculate the HIs using the
selected complementary variables. A time window covering
the first 30 hours of operation is extracted from each engine,
and theses windows are combined to form the training data
of CVA. In other words, each engine is considered to be
normal for the first 30 samples, which is in line with the
characteristics of the data (Wang et al., 2008). By doing this,
the variations of the fleet of machines are fully accommodated,
thereby avoiding the excessive amount of false alarms which
are frequently encountered by site engineers in practical ap-
plications. The upper control limit is determined using the
Kernel density estimation method (Odiowei & Cao, 2009)
with a 99% confidence level. Similar to (Javed et al., 2014;
X. Li, Yang, Yang, Bennett, & Mba, 2019), a locally weighted
scatterplot smoothing (LOWESS) with a span value of 30%
was employed to smooth the calculated HIs. The prediction
start times are determined when the calculated HI exceeds the
control limit.

C. Whether the HIs Resulted from the Proposed Similarity
Matching Method Are Better Than Those from Other Similarity
Matching Methods?

After the HIs are constructed and the prediction start times
are determined, the similarity matching method as proposed
in Section III-B is used to calculate the merged best matching
HI for each of the testing engines. Euclidean distance-based
similarity and Cosince-similarity has been widely used for
similarity-based prognostics. The question arises, whether the
merged HIs resulted from the proposed combined Spherical
and Cosine similarity should be considered as more reliable
and suitable for prognostics with respect to Euclidean, Spher-
ical and Cosine similarity? To solve this problem, we define
a criterion to evaluate the suitability of the merged HIs for
predicting failure time.

I =
∣∣∣k|d|th − kth

∣∣∣ (15)

In (15), kth is the time when the testing HI reaches its failure
point (i.e. the true failure time(FT)). k|d|th is the time when the
calculated HI reaches the failure threshold, where |d| denotes
the corresponding similarity method. A calculated HI that is
closer to the actual FT kth when it reaches the failure threshold
should be considered as more desirable for RUL prediction.
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Fig. 6: Upper: HI Estimation error over all testing engines.
Lower: Demonstration of HIs obtained using the proposed
similarity and its counterparts. Lower left: engine no. 12;
Lower right: engine no. 42.

The criterion I in (15) indicates how far the “FT” of the HI
(calculated using the corresponding similarity method) is from
the actual FT. I is suitable for RUL prediction when its value is
small. The values of I for all 60 testing engines are illustrated
in Fig. 6 (Upper). It is worth noting that engines no. 1-20,
41-60 and 81-100 (total 60 engines) are randomly and evenly
selected from the 100 units as testing engines. The lower and
upper bound for Spherical distance were determined using grid
search and were set to 0.5 and 0.6, respectively. It is obvious
that for most of the cases studied, the merged HI computed
using the proposed similarity matching method is more suit-
able for FT prediction compared with Euclidean, Spherical and
Cosine similarity, with Euclidean similarity being the worst.
The averaged I value for the proposed combined similarity,
Euclidean, Spherical and Cosine similarity are 3.25, 4.31,
3.31 and 3.4 hour, respectively, meaning that the proposed
similarity is collectively better than its counterparts in terms
of finding the suitable HIs for subsequent PF analysis. We
observed that through parameter tunning, Spherical distance
shows promising resultes for finding suitable HIs for prognos-
tics than other ’model-fixed’ distance measures, mainly due
to its ability to see the similarity at each time point with a
different weight.

Fig. 6 (Lower) demonstrates two exemplary results of the
HIs calculated using the proposed combined similarity and
other similarity methods for case no. 12 and no. 42, respec-
tively. These two examples demonstrate that the combined
similarity leverages the strength of Spherical and Cosine

similarity, yielding collectively better HIs that are closer to
the actual FT when they reache the failure threshold.

D. FT prediction and Discussion
The TLBO-based Procrustes analysis as described in Sec-

tion III-C was utilized to rotate the potentially imperfect
merged HI to best conform its points to those of the testing HI.
In this way, the predictive accuracy of the proposed prognostic
framework can be further improved. The lower and higher
boundaries of the rotational angle dθ, dθ,l, and dθ,hwere set to
0 and 90 degrees respectively (-90 and 0 when the HI needs
to be rotated anticlockwise) because all HIs lie in the first
quadrant of the x-y coordinates. The size of the population P
and the number of generations G were set to 200 and 200,
respectively. Each TLBO was executed for 30 times and the
optimal angle d̂θ was taken as the mean value of the 30 runs.
To ensure a fair comparison, similar to (J. Wu et al., 2018), the
state evolution model was selected as exponential regression
for both the proposed and the standard PF. Fig. 7 (a) upper
subplot is an exemplary result of the TLBO-based Procrustes
analysis where the blue curve shows the original merged HI,
and the red curve shows the actual HI (engine no. 7).

Given the HI values up to time instance FT-28, the TLBO
method finds the optimal rotational angle, moving the “pre-
dicted FT” at least 8 hours closer to the actual FT. Fig. 7
(a) lower subplot demonstrates the resultant FT predictions
for predictions starting at different times. In this case, FT-
60 is the initial prediction start time determined by the CVA
method. Then the data from FT-60 up to the current time
are used to train the prognostic framework following the
steps described in Sections III-B - III-D. The areas between
the dashed black curves denote the one sigma tolerance
interval with particles being assumed normally distributed.
It is observable from the figure that the predictive accuracy
of the standard PF method is lower at the beginning, and
the predicted FT gets closer to the true FT over time. In
comparison, the predicted failure time using the proposed
method is not only centered closer to the actual FT at all times
but also has narrower confidence boundaries, especially at
early degradation stages. Furthermore, using the HI curve from
early cycles yet to exhibit severe performance degradation, we
applied the proposed prognostic approach to precisely predict
the failure time, earning ample time to plan future missions.
The standard PF requires at least 40 hours of training data
before making estimations at a precision comparable to that of
our method. This example highlights the promise of combining
similarity-based prognostics and Procrustes analysis to predict
the behaviour of complex rotating machines. Fig. 7 (b) shows
an exemplary result for the prognostic results of engine no. 60.
The upper subplot shows the testing HI (red) and the adjusted
merged HI obtained through TLBO at time FT-50 (blue). Since
the original merged HI already shows close agreement with
the testing HI, the optimal rotational angle calculated is near
zero after executing the Procrustes analysis. The lower subplot
shows the predicted FT for predictions starting at different time
instances.

Analysis was carried out to assess the prognostic perfor-
mance of the proposed PF on all 60 testing engines in terms
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(a)

(b)

Fig. 7: (a) Exemplary prognostic results for engine no. 7.
Upper: results of TLBO at time FT-28. Lower: failure time
estimation for predictions starting at difference times. (b)
Exemplary prognostic results for engine no. 60. Upper: results
of TLBO at time FT-50. Lower: failure time estimation for
predictions starting at difference times.
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Fig. 8: Performance of the proposed PF on all test instances

of predictive accuracy. As shown in Fig. 8, the proposed PF has
achieved a higher predictive accuracy for most of the testing
engines. We compared our proposed PF (with Procrustes
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Fig. 9: Predictive performance (percentage error) using early-
cycle HI data. (a) C-MAPSS data; (b) Compressor valve data.

analysis) with three other methods: the proposed PF without
Procrustes analysis, the standard PF and the standard PF
with long-short term memory (LSTM). It is worth noting that
LSTM is a famous and powerful prediciton algorithm particu-
larly suitable for time series prediction, and it has previously
been utilized for remaining useful life prediction (J.-Y. Wu,
Wu, Chen, Li, & Yan, 2021; X. Li, Duan, Loukopoulos, Ben-
nett, & Mba, 2018). In the comparison, LSTM was employed
as a predictor to predict the future evolution of HI trajectories.
The number of layers, number of units and learning rate of
the LSTM network were determined through a grid search
process. To numerically assess the results, the averaged MAE
and RMSE over all testing engines were calculated, see Table
I. The errors of the proposed PF but without Procrustes
analysis is higher when compared with the proposed PF with
TLBO-based Procrustes analysis, highlighting the importance
of employing Procrustes analysis to accommodate prediction
errors caused by unexpected imperfect merged HIs. It is worth
noting that, in case study I, the prediction errors of the LSTM
PF are the largest. This is mainly due to the reason that LSTM
was not able to precisely predict the fault evolution relying
on limited training data when compared with our proposed
PF, leading to consistent in accurate HI prediction (see Fig.
10). In Fig.10, the predicted trajectories consisting of particles
generated using LSTM-PF and Spherical-Cosine similarity PF
method were demonstrated, and the predictions were made
at different times. Obviously, LSTM was not able to achieve
an accuracy that was comparable to our proposed method.
Additional analysis was performed to assess the predictive
performance when early-cycle HI data are used. The proposed
PF achieved an averaged accuracy of 96% when only 10% of
the degradation data were used. In comparison, the average
percentage error for the standard PF was 72% (see Fig. 9
(a)). It is worth noting that the error bar, which represents
the one standard deviation of uncertainty, associated with the
proposed PF (0.039) is much smaller than that of the standard
PF (0.201), indicating that our method can reliably provide
more precise FT estimates.

V. CASE STUDY II: COMPRESSOR VALVE FAILURE
DATASETS

The second dataset used in this paper was captured from a
two-stage, four-cylinder, double-acting operational reciprocat-
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Fig. 10: Illustration of the proposed similarity method and
LSTM’s performance on RUL prediction for case no. 81.
Shaded areas consist of particles generated using LSTM PF
and the proposed PF, and predictions were made at different
times.

TABLE I: COMPARISON OF PREDICTIVE ACCURACY

Metrics MAE RMSE
Proposed PF 2.17 2.38
Proposed PF without Procrustes analysis 3.24 3.30
Standard PF 5.89 7.97
LSTM PF 8.04 9.67

∗ All results were averaged across all 60 testing engines.

TABLE II: COMPARISON OF PREDICTIVE ACCURACY

Metrics MAE RMSE
Proposed PF 6.64 7.17
Proposed PF without Procrustes analysis 7.85 8.05
Standard PF 24.2 28.1
LSTM PF 7.61 7.66

∗ All results were averaged across all 11 failure cases.

ing compressor. The machine experienced eleven valve failures
within a period of 18 months with all failures took place at the
fourth cylinder. The root cause of these failures was found to
be improper sealing of the valve due to a missing piece from
the outer structure of valve plate. These failures occurred at
either the head end (HE) or the crank end (CE) discharge
valve. Only temperature measurements were recorded by the
monitoring system. Eight temperature ratios, namely Suction
temperature HE/CE cylinder 1-4 and Discharge temperature
HE/CE cylinder 1-4 were utilized by the site engineer for
monitoring the health status of the valves.

The CVA technique is applied to calculate the HIs using the
eight temperature ratios. Furthermore, a time window covering
the first 10 steps of operation is extracted from each failure
case, and theses windows are combined to calculate the upper
control limit for determining the prediction start time. Fig. 11
illustrates the resultant HIs after the prediction start time was
determined for all 11 failure cases. Since the HIs demonstrate
the highly desirable characteristic of having very similar values

Fig. 11: Fault evolution for failure cases 1-11

at the end of fault evolution, the failure threshold was set to
91.

Failure times demonstrate individual variations between fail-
ure cases highlighting the stochastic nature of fault evolution in
real-world applications. These variations were mainly caused
by the different applications the compressor was used (the
machine compressed various gases). Individual variations and
limited amount of failure cases (11 failure cases in total)
have made forecasting the FT of this machine a complicated
challenge. We thereby use this dataset to test the generality
and superiority of the proposed method.

To ensure a fair comparison, the state evolution model in
this case study was selected as polynomial regression for both
the proposed and the standard PF. The order of the polynomial
regression was determined based on trial and error and was
set to three. A general guide is that the fitted curve should
both captures the global trend and reflects local variations
(Liao, 2013). To appreciate the performance of the proposed
method, sample prognostic results for failure case 2 are shown
in Fig. 12. The upper subplot shows the testing HI (red) and
the adjusted merged HI obtained through TLBO at time FT-
87 (blue). Since the original merged HI already shows close
agreement with the testing HI, the optimal rotational angle
calculated is near zero after executing the Procrustes analysis.
The lower subplot shows the predicted FT for predictions
starting at different time instances. The FT predicted by the
standard PF is seen to be inaccurate when there are only
limited failure data available for training. The resultant FT
predictions centered closer to the actual FT with a later
starting point of prediction. This is due to the amount of
failure data is increasing. In comparison, the FT predicted
using the proposed method is centered closer to the actual
FT at all times. The standard PF requires at least 37 units of
training data before making estimations at an accuracy level
comparable to that of our method. Moreover, the proposed PF
method has narrower confidence boundaries throughout the
entire degradation process, and this is due to the “merged HI”
which acted as true measurements to update the particles and
their weights, thereby reducing the uncertainty of the long-
term prediction made by the PF.

Fig. 13 (a)-(b) demonstrate the MAE and RMSE levels of
the proposed PF method when compared with the standard PF
and LSTM PF for all 11 failure cases. Table II numerically
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Fig. 12: Exemplary prognostic results for failure case 2. Upper:
results of TLBO at time FT-87. Lower: failure time estimation
for predictions starting at difference times.
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Fig. 13: Performance of the proposed PF on 11 failure cases

summarizes the MAE and RMSE averaged across all 11
compressor failure cases. It is evident that the proposed PF
outperforms the standard PF and LSTM PF in terms of
predictive accuracy. This can be attributed to the “adjusted
merged HI” calculated by the novel similarity-based prognosis
method, which not only actually guides the predictions made
at different times towards the true failure time but also allows
continuous update of particles during long-term prediction.
Comparing the first and the second row of Table II, it can be
concluded that the merged HI found by Procrustes analysis
resulted in the predictions that are closer towards the true
failure time when compared with the one without Procrustes
analysis. To assess the predictive performance when early-
cycle HI data are used, we use only the first 10% of the
HI data to train the proposed PF method and achieved an
averaged accuracy of 92%, which is similar to the results that
we obtained from the turbofan simulation data. In comparison,
the average percentage error for the standard PF was only 24%
(see Fig. 9 (b)). The one standard deviation associated with
the proposed PF (2.03) is also much smaller than that of the
standard PF (30.51). The proposed method realized precise
early fault prognosis using limited amount of early cycle data,
which again highlights the promise of combining similarity-
based prognosis and PF to estimate the behavior of real-world

complex systems.

VI. CONCLUSIONS

A new index similarity-based particle filter (PF) method
was proposed for system failure time (FT) prediction. A
novel Spherical and Cosine distance-based index similarity is
incorporated into the PF framework, where degradation trajec-
tories found from historical measurements are used to provide
estimates of RUL in the form of a probability density function
(pdf). To ensure accurate predictions, a Procrustes analysis
based on teaching-learning-based optimization (TLBO) was
put forward to complement the proposed similarity-based
prognostic method when needed. The proposed method was
verified on a widely used C-MAPSS engine failure simulation
dataset as well as monitoring data captured from a compressor
operating in real-world. The advantages of the proposed PF
method are summarized as follows. Due to the model pa-
rameter updates provided by the similarity-based prognostics,
the proposed method offers the promise of improving the
predictive accuracy and uncertainty level of the standard PF.
The proposed method was also compared with its counterparts
in terms of predictive accuracy, and the results showed supe-
rior performance over other prognostic models. Additionally,
owing to the similarity-based prognostics’ ability in assuring
long-term prediction, the proposed method shows promise
in FT estimation with an early starting point of prediction,
making the method a promising tool for early fault prediciton
and early maintenance decision making. When then method
was tested on simulation and industrial data, we obtained a
prognostic accuracy of 96% and 92%, respectively, using only
the first 10% cycles. Collectively, this study highlights the
promise of combining index similarity, Procrustes analysis and
particle filter for developing condition monitoring systems for
complex machines such as turbofan engines and compressors.
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