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ABSTRACT VRST °21: ACM Symposium on Virtual Reality Software and Technology, Dec

Interactive Machine Learning offers a method for designing move-
ment interaction that supports creators in implementing even com-
plex movement designs in their immersive applications by simply
performing them with their bodies. We introduce a new tool, In-
teractML, and an accompanying ideation method, which makes
movement interaction design faster, adaptable and accessible to
creators of varying experience and backgrounds, such as artists,
dancers and independent game developers. The tool is specifically
tailored to non-experts as creators configure and train machine
learning models via a node-based graph and VR interface, requiring
minimal programming. We aim to democratise machine learning
for movement interaction to be used in the development of a range
of creative and immersive applications.
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1 INTRODUCTION

Movement sensor technologies, such as hand and body tracking,
are becoming more widely used in immersive creative work as
they have become more affordable, reliable and with an infras-
tructure that is accessible to creative practitioners such as artists
and dancers [1, 22, 23, 30, 34]. There is a demand for tools and
ideation approaches that enable the design and implementation of
movement interaction for immersive environments.

Although movements that exhibit simple and straightforward
mappings between movement and output in the virtual environ-
ment, such as grabbing and moving virtual objects, can be designed
and implemented with relative ease, designing more complex move-
ments are not well supported by current tools. For artists and
dancers to create movement-based interaction artworks they must
rely on a developer to program a way for their system to understand
a particular movement[29]. Movements that are more performative
or expressive cannot easily be defined mathematically and are hard
or not possible to represent in programmed rules, requiring expert

Figure 1: Artist working with immersive media
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knowledge and often can only be achieved with machine learn-
ing. Interactive Machine Learning (IML) [14], enables creators to
implement movement designs simply by performing them; it also
provides quick feedback to enable a rapid iterative design workflow.

This work presents InteractML !, a tool that allows creators to
use IML to recognise and implement complex movement interaction
designs [7, 16, 27-29]. The development of the tool aims to support
creative practitioners and independent developers in designing
movement interaction for immersive media, by building tools that
allow design by moving and do not require artists or performers to
have a background in computer programming. InteractML has been
designed with a User Centered Design Process based on workshops
and longer residencies with artists, dancers and game designers (as
described in section 3.1). InteractML has been presented in demos
and workshops at several conferences [7, 16, 27-29]. This paper
gives a in more depth description of the design of the tool, describes
the methodology of how the tool has been developed and what
incites have been learnt through case studies of using the tool than
has been presented in previous short papers.

2 BACKGROUND

2.1 Movement Interaction in VR

Movement interaction is increasingly sought after in VR develop-
ment across many different fields and industries. Designing move-
ment interactions for immersive applications that are intuitive,
effective and easy to accomplish is a relevant endeavour as inter-
action styles move towards bodily-based ways of interacting and
as most VR systems come with movement interface devices as
standard.

Movement interaction has been shown to increase the sense
of presence in VR applications, the sense of immersion depend-
ing on sensorimotor contingencies in a virtual world correlated
to those experienced in the real world [33]. Movement interaction
can also increase users’ focus and attention [35]. [20] states that
as our perceptuo-motor system is fundamental in an experience
of cognitive reality, movement interaction in a virtual world is im-
portant to reproducing the cognitive and emotional engagement
the real world. [19] describes ‘reality-based interaction styles’ as
interactions in a virtual world mirroring the interaction we experi-
ence in the real world. Movement interaction is successful as they
replicate the way we know to interact with the real world, such as
interacting with our environment, manipulating objects, our bodies
and other people.

2.2 Examples of Movement Interaction in
Immersive Creative Work

In the creative domain, VR experiences that incorporate movement
interaction can be found in exhibitions, theatres and museums.
Although movement interaction is commonplace in popular VR
games and applications such as Beat Saber and TiltBrush, creative
work that utilises movement interfaces outside of head tracking
remain novel and are produced primarily by teams of artists with a
computing background or by professional creative studios.

Ihttps://interactml.com/ and https://github.com/Interactml/iml-unity
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Mutator VR: Vortex (2016) applies machine learning to generate
abstract worlds in VR. Through movement interactivity users can
mix between smooth and sharp rhythmic changes in the dynamics
and characteristics of abstract shapes and audio in the virtual envi-
ronment. The work was created by artist William Latham alongside
mathematicians and programmers Stephen Todd, Lance Putnam
and Peter Todd [21]. Dream (2021) is an online live performance
based on Shakespeare’s A Midsummer Night’s Dream, created by
the The Royal Shakespeare Company in collaboration with Manch-
ester International Festival, creative studio Marshmallow Laser
Feast and the Philharmonia Orchestra. The virtual play saw ac-
tors performing in motion capture suits where their movements
and voices were animated by virtual avatars in the virtual world
that was live-streamed to audiences. The production used Gestru-
ment technology (Nordin, 2020) to allow performers to control
pre-recorded musical phrases with their movements in real-time.
We Live in an Ocean of Air (2019), another work created by Marsh-
mallow Laser Feast is a multi-person, multi-sensory VR artwork
that uses a tracking system to show the movement of audiences’
hands and heads with red dots in the virtual space. The piece sees
audiences explore a virtual forest evolving into a more abstract,
interacting with moving particles representing the inside of a giant
sequoia tree. Rachel Rossin’s VR work Stalking the Trace (2019)
enables the audiences to use their bodies to manipulate the shifting
of time in scenes of explosions, using forward and backward motion
to scrub forward and back in time and perspective.

3 METHODOLOGY

3.1 User-Centric Design Process

Development of the tool followed an iterative user-centric design
process including our target users at every stage of the development.
Over a two-year period we ran four in-person one-day workshops
and three five-day online hackathons bringing together artists,
dancers, developers and researchers working in immersive media,
of a range of experience levels. These included short sessions that
aimed to facilitate an introduction to InteractML and guidance
on how to use it when developing their creative work. Over each
workshop/hackathon, participants were tasked with producing a
simple prototype of a creative application that used InteractML to
implement movement interaction. We also developed a movement
interaction ideation practise to compliment the IML workflow of
performing movements to train models (see Section 3.2) that was
explored at the beginning of each workshop/hackathon so partici-
pants could use it when designing movement for their prototypes.

We also invited artists to participate in three artist residencies
that took place over 2 months so we could get a better sense of
how creators worked with the tool and ideation method over a
longer period. The artists developed a piece of work which involved
movement interaction using the tool. The residency started with a 5
day hackathon building the beginning prototype. This was followed
by 7 weeks of weekly discussions of how they were using the tool
and any support they needed, as well as an active Discord where
they could ask questions and share their progress. This allowed
us to observe the learning process of the tool and how the use of
the tool develops over time, giving in depth insight into how the
tool might be used in creative practice and best for its design to
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support this. We also mentored other artists from our workshops
to develop their ideas from the workshop/hackathon into their
creative practises.

All workshops sessions and post-workshop interviews with par-
ticipants were video-recorded. Interviews were conducted individu-
ally or in groups as convenient to participants. For the residencies,
interviews and support sessions with artists were conducted weekly,
these were either individually or in groups on alternate weeks. A
demonstration and discussion of the artists work created during
the residency was presented at the end of the residency and post-
residency interviews were conducted individually. All sessions and
interviews were video recorded. All resulting video material was
transcribed. In addition, gestural and movement data annotated as
this was key to this research. The videos were coded directly and
analysed using an open thematic analysis approach[3].

For our user-research we wanted participants from a dance and
artistic practice who were engaged with creating virtual reality in
Unity. For our workshops we aimed to recruit a range of skill level
of programming and Unity experience (43 total, 24 experienced in
Unity, 18 experienced in machine learning). These workshops were
run online using a combination of Microsoft Teams, Rec Room and
Discord. To recruit for the workshops we targeted: InteractMLs
online community (Discord, Twitter, Facebook and mailing lists),
IML and embodied interaction research communities from con-
tacts made from presenting at conferences and several XR industry
groups known to the researchers. We were able to connect with
users across the globe with a range of programming and Unity
experience. For the artist residencies we targeted users with less
experience of programming and Unity as this is who the tool is
targeted at (4 total, 1 experienced in unity and machine learning.

3.2 Movement Interaction Design
Methodologies

In response to immersive media creators using bodily or movement-
based interaction styles in their applications, there are several de-
sign approaches that embrace the affective and embodied dimen-
sions in their processes. The soma-design approach suggests a
framework that encourages a slower process that is actively reflec-
tive of a lived embodied experience. The approach also encourages
movement interaction designers to rely on their first-person tacit
understanding of moving and interacting [18, 32]. These method-
ologies advocate developing movement interaction designs through
physical ‘bodystorming’ or ‘embodied sketching’ by designing by
doing and moving [15, 17, 31] at an early stage of the design process.
Designing by moving enables designers to reflect on the changing
experience of movement over time, through this reflection the activ-
ities supports cycles of reflection and refinement. An important fea-
ture of soma-design is iterative testing and feedback of sociodigital
material, where a creator experiences the correspondence between
their embodied action and the system’s response—this feedback
is important while creators are still in the design process so the
pairing between movement and system response can be properly
explored. However, current practices involve a sharp change when
moving from ideation to implementation. While at the ideation
stage, designers can focus on moving, implementation involves
sitting down at a computer and coding. This breaks the embodied
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thinking that was a key part of the ideation process. InteractML
aims to use machine learning as a way to continue the embod-
ied, movement based process into the implementation phase, by
training learning algorithms with examples of movement.

To compliment the design by moving process that is a key feature
of IML, we adopt the embodied sketching design approach as an
ideation practise when introducing InteractML to users. Following
from [6] the method we share to participants uses an adapted form
of the critical incident technique; a procedure that elicits designers
to recall recently lived memories from their everyday lives to ap-
ply as input for design [11]. Here, the method takes its form as a
‘movement incident’, where participants are instructed to remember,
from the past few days, an atypical situation in which a memorable
movement contributed. This guides the designer towards their own
lived experience, in line with [25] approach of focusing, based on
invoking an awareness of the felt qualities of embodied experience.
We offer this method alongside the IML tool to bridge the design
process from ideation to implementation, allowing for quick cy-
cles between embodied exploration and system feedback from the
immersive application [29].

3.3 Interactive Machine Learning

Interactive machine learning (IML) is a technique originally pro-
posed by Fails and Olsen [8] that allows people to quickly create
and refine supervised machine learning models. In the approach to
IML used in existing movement and real-time interaction design
systems such as Wekinator [10], a user first records a set of training
examples, where each consists of an example input to the machine
learning model (e.g., a person’s movement) paired with the desired
model output (e.g., a label denoting the category of movement, or
a real-numbered value used to control some aspect of the com-
puter’s behaviour). The system then trains a supervised learning
algorithm on these examples, producing a trained model which is
a function capable of outputting new values in response to new
inputs (e.g., producing new labels in response to new movements in
real-time). Critically, IML systems enable users to iteratively evalu-
ate this trained model (e.g., by experimenting with it in real-time
on new inputs) and to modify it by changing the set of training
examples. For instance, if a model does not accurately label certain
variations of a given movement category, the user can add further
examples of this variation to the training set in order to improve the
model’s accuracy. Or, a user could add examples of new categories
of movements to the training set to make the model’s behaviour
more complex.

IML systems often employ algorithms such as shallow neural
networks or nearest-neighbour classifiers which do not require
large numbers of training examples or long training times [10, 12,
36]. This means that the process of recording examples and training
a model can be very fast (e.g., training might take a few seconds
or less on a dataset containing anywhere from a handful to a few
hundred examples). Consequently, IML users can rapidly iterate,
quickly adjusting models to fix mistakes or explore new design
possibilities.

Wekinator [10] was the first tool to employ IML to support the
creation of movement-based interfaces. It was originally developed
to aid in the creation of movement-sound mappings in the design
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of new digital musical instruments, though it has since been used
in designing interactive art and games projects as well. However,
it would take significant adaption to work with any VR creation
software. Other toolkits have been designed to support experi-
enced developers in employing IML in specific application domains
(e.g., GRT [12] and ml.Lib [5] are designed for music programmers)
and/or programming environments (e.g., RapidMix and RapidLib
[36] support C++ and JavaScript development).

4 INTERACTML TOOL

InteractML is a node-based IML tool for designing movement in-
teractions in the Unity 3D game engine [7, 16, 27-29]. Users can
train, modify and run machine learning models in real time, using
real-time gesture demonstrations to create new training examples
and test trained models. InteractML can be used with any input
sensor or numerical data. Users can use transform data from any
virtual object in Unity and choose from the built-in movement fea-
tures or take data directly from a script into an InteractML graph.
This means that users can train the algorithm on the movement of
the headset, controllers, finger positions or any sensor information
brought into Unity. They can then use the model’s output in any
script in Unity, for example to trigger an animation, control the
colour spectrum or any other behaviour desired. Whilst InteractML
is hardware agnostic, it has been designed for use with immersive
technologies, specifically VR. There is a VR module compatible
with Unity’s interaction toolkit including a VR interface for easy
movement design in headset (see Fig 4).

InteractML is a unique tool for designing movement interaction
by enabling

e Embodied design: Users develop their movement inter-
faces through performing the movements, harnessing the
tacit knowledge of movement in the body.

o Fast iterative process for designing movements: Users can
quickly test different movements with different outputs, with
the ability to quickly tweak and change the movement and its
effect simply by adjusting the training examples. It allows for
the experience of interaction to be embedded in the process
of design itself, creating a smoother testing and development
process.

e Low barrier to entry to enable people without expert knowl-
edge of machine learning to be able to design movement
interactions themselves.

e Versatility: It is extremely customisable with regard to the
nature of motions that can be modeled, the types of data that
can be used, the ways that model outputs can be used in a
design and how the code base can be built upon

o VR Interface allows for users to work independently in a
VR headset to control models

4.1 Machine Learning

The machine learning back-end is the RapidLib C++ [36] library.
RapidLib’s implementation mirrors that of Wekinator [10], whose
current choice of algorithms and default parameterisations have
been informed by more than a decade of use by creative practition-
ers, ensuring that they work well off-the-shelf for many IML tasks
involving small training sets and human motion modeling tasks.

Plant and Hilton, et al.

InteractML currently implements three types of machine learning
algorithm: classification, regression and dynamic time warping.
Classification models output one of a finite set of labels for each
input. This is suitable, for instance, for human pose identification,
where a certain pose will create a certain output (e.g., recognising
a “thumbs-up" using the rotations of finger joints). Classification
employs the k-nearest-neighbour algorithm, which can work well
in IML contexts when a designer creates a small training dataset
and uses a data representation that is relatively free from irrelevant
data and noise (e.g., as is the case when using skeleton data for
body or hand tracking) [9]. Dynamic time warping models also
output one of a finite set of labels, but unlike classification, they
take into account movement over a recent period of time. This
algorithm is best suited for dynamic movements which trigger a
certain behaviour, for recognising a movement from a prayer pose
to hands stretched into the sky, then triggering a flower animation
to grow. Regression models output a continuous, unbounded value
in response to an input representing (like classification) data cap-
tured from a single moment in time. Regression can be used for
continuously controlling something as a person moves between
two (or more) poses; for instance, RGB values of an object could
change continuously as a person moves their hand from knee to
shoulder level. In InteractML, regression is implemented using a
multi-layer perceptron neural network with one hidden layer; such
an algorithm does not place undue restrictions on the shape of the
model function to be learned (e.g., functions can be nonlinear) yet
can often be trained effectively on as few as a dozen examples.

4.2 InteractML Process

InteractML enables users to interactively create and modify node
graphs to match their desired use case. This includes choosing
the algorithm, configuring the data capture (including choosing
sensor inputs and configuring movement features—i.e., deciding
which values to compute from these inputs), and specifying how
the model outputs will be used (e.g., what effect they have). Once
they have set up the graph, users can quickly record a training set
by demonstrating a set of example movements and pairing these
with the desired corresponding model outputs, train the model, and
interactively test it by performing gestures and observing whether
the model outputs change in the desired manner. Users can adapt
the computation graph and training data to reach their desired
result. This process is inspired by Fiebrink’s wekinator[10] and is
visualised in figure (See Fig. 2).

Below, we describe in more detail the process a user might em-
ploy to build a working system. For concreteness, we ground each
step in an example application and process, in which a user wishes
to control a particle system according to the speed of their waving
hand.

4.2.1 Configure InteractML Node Graph.

e Choose sensor inputs: The user specifies the game object
or value from the script which provides data related to the
movement of interest. In our given example, the user might
initially choose the left VR controller game object.
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Figure 2: InteractML interactive machine learning process

e Choose Movement Feature: The user specifies which data
they think are most relevant to the movement (i.e., the “fea-
tures” to be sent as inputs to the model). In our example, the
user might choose rotation and the velocity of rotation.

e Choose Algorithm: The user selects the most appropriate
algorithm (classification, regression, DTW). Here, the user
might choose classification.

e Choose Label Datatype: The user specifies the datatype
that should be output by the graph. For the particle system,
the user may choose a Float datatype to match the particle
emission.

e Configure Output Effect The user configures what the
movement will control in the virtual environment. In this
case it will control the rate at which particles are emitted in
the particle system.

4.2.2  Edit Training Data.

e Record Training Examples: The user decides on a pose
or movement and its label then records an example of this,
paired with the desired model output. In the wave example,
imagine the user first records a very fast wave with the label
100, a medium wave with the label 50 and a slow wave with
the label 1.

o Delete Training Data: The user can optionally delete and
edit training data. For example, in the initial training the
user may accidentally record the wrong label for an example
and choose to delete the example.

4.2.3 Train. The user then tells the system to train, building the
model from the training data.

4.2.4 Evaluate.

e Run to Check Output: The user can then run the model,
executing the gesture or pose to check if the correct output
is seen. In our example, the user would wave at different
speeds to see if the output is correct. If the user has followed
the steps above to set up and train the model, the user might
observe fast waves generally output 100, medium wave gen-
erally output 50, and slow waves generally output 1.
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Figure 3: InteractML graph for final clapping example set up

e Observe Effect: The user explores how the output of the
model affects the behaviour in the rest of the system, and
what this experience is like. For the waving example, the
user would observe that the emission rate of the particle sys-
tem jumps suddenly between 1, 50, and 100 as their waving
speed changes. Perhaps this isn’t what they had imagined;
they might therefore choose to edit the graph by choosing
regression rather than classification. They could then retrain
on the data and run the modified model, observing that the
outcome is the desired effect of a smooth transition between
the particle emission rates. However, for certain waves the
output might still be unexpected.

e View Training Examples The user can inspect the training
data to see what values have been recorded. In the wave
example, they might notice that the hand rotation values
do not seem to be related to the speed of their wave; rather,
only the velocity feature is relevant to this modeling task.
The user then might decide to reconfigure the movement
features in the graph then re-record their movements.

4.3 Node-Based Interface

InteractML is a node-based system allowing users to manipulate
pre-programmed modules that make up a machine learning model.
These nodes are connected together inside the InteractML window
in Unity which gives a visual representation of each node. Node-
based programming can enable non-programmers to understand
the basic concepts of a system so that they can successfully utilise
its functionality. It is particularly beneficial in creative applications
where it has been shown to empower creative thinking [4]. For these
reasons is it a prolific design choice in tools for creative practitioners.
For instance, Troikatronix Isadora software? is a node-based tool
used by dancers and other practitioners for real-time manipulation
of digital media in performance. TouchDesigner—used by artists,
performers and creative coders—is a node-based tool for real time
interactive multimedia content.

Node-based programming also allows for flow-based design
which helps users understand the logic of how data moves through
the system. A flow-based node system can help create a mental
model of how a system is working [24]. This is important in IML
where the user needs to have an understanding of how movement
sensors, machine learning algorithms, and training examples inter-
connect to create a model which will give their desired result. All
without needing to grasp the complexities of the machine learning

Zhttps://troikatronix.com


https://troikatronix.com

VRST ’21, Dec 08-10, 2021, Osaka, Japan

algorithms. This design allows for beginners to create simple inter-
actions easily whilst including the functionality and flexibility to
create bespoke, complex machine learning processes. A user can
create a working model with as few as seven nodes. InteractML’s
modular structure is unique for IML, giving users the ability to
create very specific machine learning configurations to match their
individual need. This design supports users to create a working un-
derstanding of how the system works allowing for experimentation.
(See Fig. 3)

4.3.1 Game Object Node. (See A in Fig. 3) represents a game object
in the scene, this for example would be a VR Controller. From
this node users can extract the position and/or rotation of that
object, allowing for users to easily access input movement data
from objects in their application.

4.3.2 Movement Feature Nodes. (See B in Fig. 3) extract data from
a game object to be used as the input for defining a movement or
pose. There are five Movement Feature Nodes: position, rotation
Euler, rotation quaternion, distance to first input and velocity.

4.3.3  Data Type Nodes. (See C in Fig. 3) are used to set the type
and value of an output label, to observe the output value of a system
when running, or any point where the user wants to directly input
data or observe data values. There are six types of Data Type Nodes
that allow for full customisability— such as, a float (floating point
value) or a Vector3 (a Unity specific type of array array storing
3 values— used for example when working with positional x,y,z
values).

4.3.4 Teach The Machine Nodes. (See D in Fig. 3) is where users set
up the data structure and training pairs, record training examples,
edit training data and view training data. There are two types
of Teach the Machine Node: “single” for training classification or
regression, and “series” for training DTW.

4.3.5 Machine Learning System Nodes. (See E in Fig. 3) nodes are
where the user controls the machine learning model, where they
can connect training sets and run the model. There are three types
of Machine Learning Node, one for each algorithm: classification,
regression and DTW.

4.3.6  Script Node. (See F in Fig. 3) is a representation of any script
that the user wants to either send data to from the graph, or retrieve
data from to use in the graph. This allows data to easily transfer in
or out of the graph and for users to easily add custom nodes into
the graph.

4.3.7 Custom Control Nodes. enable users to control the function-
ality of the nodes using inputs such as a VR controller button or
a keyboard button. For example to record examples pull the left
controller trigger or to run to model press the left controller grip.
They enable the user to easily customise how it is triggered in
development or the final built experience.

4.4 Data

Users can import, export and edit their movement data from a JSON
file with full control over when and how this is done. This data will
exist only locally to the Unity project or executable unless the user
chooses to share this data elsewhere. This sets InteractML apart
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from other free machine learning tools as users are in total control
of their data.

5 VRINTERFACE

Feedback from participants building prototypes with InteractML
during early workshop sessions (see section 3.1 highlighted the
importance of offering a way to control events in the system with
a VR interface. There were several reasons for this: without a VR
interface or custom controls (see Section 4.3.7), the training process
can be unwieldy and slow, as users would have to navigate to
the graph view to initiate the data recording, put on the headset
and grab the controllers, then perform the movement, and then
remove the headset to navigate to the graph to stop recording data.
Not only was this cumbersome, but it resulted in the recordings
having extra data that was not part of their movement design.
Participants sometimes worked in pairs to solve this problem, with
one participant operating the graph whilst the other performed the
movements. However, this option was not possible when creators
worked alone.

This problem could not be solved simply by configuring the cus-
tom controls for triggering each node. Often participants would
peer under their headset to see the graph, looking for information
about the system’s state, for instance to see whether the tool was
receiving input from the sensors, whether they were recording
data, or whether their model was trained and running. This demon-
strates that it is also important to provide an indication of system
state within the VR user interface when a user is performing move-
ments to train the system and when running models in the virtual
environment.

Nevertheless, creating a VR user interface to control IML presents
several challenges. It is neither practical nor useful to create a replica
of the whole graph in the headset, nor provide the ability to set
up the graph itself in VR. Rather, users mostly expressed desire to
control the events in the Teach the Machine and Machine Learning
System nodes. Designing a VR interface for this specifically raises
the following questions:"

e How does the VR interface mirror and support the
visual understanding that has been created from the
node-based interface?

e What, specifically, is most important for users to be
able to control in headset?

e How do users select which graph and nodes to control?
Users would need a way to tell the difference between each
graph and node with a mapping of how this relates to their
setup.

e How is the state of the graph communicated to the
user? There are many different aspects of system state that
could be communicated to the users, for instance the num-
ber of training examples, whether the graph is is currently
recording examples, whether the model is trained, whether
the model is running, how many examples the model is
trained on, etc.

5.1 Design

In the VR interface, each graph present in the scene was represented
by an InteractML icon appearing in the virtual environment (see
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figure 4, left). To select a graph the user points and clicks on the icon
using the joystick on the VR controller to bring up a radial menu
(See Fig. 4). Users can either choose to go into “train” mode or “run”
mode. In train mode, the user has access to all the teach the machine
nodes in the graph. By selecting a teach the machine node (i.e.,
the training set), users can record or delete examples by clicking
VR controller buttons (these are customisable from a universal
input setup node in the graph). Once users have recorded examples,
they can go back to run mode to test the model that has just been
trained from those examples. The user can quickly and easily switch
between the modes, recording training data then quickly moving to
run mode to evaluate the models ability to recognise the movement.

The state of the system is reflected both in the colour of the
icon and the centre of the radial menu. This is important as the
radial menu is connected to the controller meaning it may be out
of headset view in some movements. On the radial menu the state
of the model appears as text. In train mode the number of training
examples is displayed as well as whether it is currently recording.
In run mode whether it is currently running and the current output
is displayed. The icon changes colour in reflection of whether there
is a node recording, model trained or model currently running. (See
Fig. 4)

5.2 Recommendations

Participants from later workshop sessions where the tool included
the VR interface felt positive that being able to record, delete move-
ment examples and evaluate models in the virtual environment
streamlined their design process, as it was less interrupted by re-
moving or putting on the VR headset. Users made less mistakes as
they could easily see when they were recording, how many samples
were recorded or when the model was running and so on. Users did
request to be able to edit the label associated with the movement
example they wished to record— as this would further streamline
the process so an entire training set could be recorded without
leaving the virtual environment.

6 CASE STUDIES OF CREATIVE WORK BUILT
USING INTERACTML

InteractML has subsequently been used in a diverse set of creative
work for VR. The following projects show how artists working
with the tool can use a range of input sensors set-ups, for different
types of movements and interacting with different elements within
a virtual environment.
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Figure 5: Artist working with an IMU movement sensor at-
tached to ankle bells. Image courtesy of the artist. Bushra
Burge, 2021

6.1 Performance in VR: Detecting Dance
Phrases from Wearable Sensors

Bushra Burge was interested in using wearable sensors stitched into
costumes worn for traditional Bangladeshi folk dancing. She ex-
perimented with Inertial Measurement Unit (IMUs) sensors, these
devices have built-in accelerometer and gyroscope sensors that
measure velocity and orientation movement data. Being small and
lightweight these devices are a suitable choice for artists or perform-
ers wanting to attach sensors to performers, dancers or audiences to
detect the dynamics of their movements but avoiding constricting
movement with a bulky device or cables. In this case, the artist used
IMUs with InteractML to detect dance phrases from Bangladeshi
folk dancing (See Fig. 5).

Audiences would experience this work through an Oculus Quest
VR headset that presented a Bangladeshi lake scene. The artist con-
figured different dance phrases, such as stamping to a rhythm, to
effect various elements within the virtual environment: including
triggering animations of a model of a Kingfisher bird, the light
intensity in the scene and the dynamics of a cloth that represented
a traditional Sari dress (See Fig. 6). This artist worked individu-
ally, using a Regression algorithm to train the system to recognise
changes in velocity of foot movements. There were some issues in
this process as the data from the IMU sensor was not stable enough
to provide consistent results whilst performing the training move-
ments. To remedy this issue, the InteractML tool provides a way
to input data ranges to train a model manually, in a way which is
quick, straightforward and follows the same workflow as perform-
ing the movements. Once the artist observes the range of values the
IMU sensors was measuring, they could enter the boundary values
with the appropriate output pairing. In their learning process they
adapted example graphs and scripts adapting these for their use
case. As they with most creative coding they find solutions similar
and modify for their work.

InteractML made this possible by allowing the artist to easily
hook-in the IMU sensors into the graph, quickly and easily ex-
periment with using different dance phrases to control different
elements within the scene, all with minimal programming needed.
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Figure 6: Digital rendering of artists virtual Bangledeshi
lake scene showing kingfisher and sari animations. Image
courtesy of the artist. Bushra Burge, 2021

6.2 Interactive VR Artwork: Recognising hand
movements from Oculus Quest controllers

Sara Tirelli and Sergio Bromberg took a unique approach to us-
ing InteractML to recognise movement, the work compares the
audiences movement to a training set of human movements and
artificially produced movement data to determine whether or not
the audience is human or a machine. Here, the artists were inspired
by reflecting on a machinic understanding of human movement
that machine learning captures.

Using the Oculus Quest hand controllers, the audience is prompted
with a graphic of female face asking in a robotic voice to prove that
you are a human by moving (see Fig. 7), each users movements is
then added to the training set of human movements. This approach
lead the artists to experiment with what type of movement feature
better indicated ’human movement’ to a machine learning system.
First the artists considered recording the velocity of the user as they
considered the speed of movement characteristic of dynamics that
might describe expressive movement. The artists also considered
comparing the distance between a human movement and an artifi-
cially recorded movement, stating that if the inputted movement
was too ‘perfect’ then the user must be a machine.

This project was produced by a pair of artists collaborating to use
InteractML, as such the process they used to train their system was
collaborative. One artist taking the role of operating the graph- in-
dicating vocally when they start and stop recording data, the other
artist performs the movement once the operating artists instructs
them they have started recording- this means they were able to get
into the correct position ready for the performance. Many collabo-
rating artists chose to work in this way as it reduced the cognitive
load of the training process, the artists performing the movement
could concentrate on the movement itself while the operating artist
could make sure the system was configured correctly, receiving the
correct data and start and stop the recording accordingly.

The artists configured InteractML to decide whether the audi-
ences movements are human or machine, then used the outputted
decision to drive a state machine from within the Unity game en-
gine to move onto the next appropriate part of the sequence in their
virtual experience (see Fig. 8). These ideas would not be possible
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Figure 7: Digital rendering of artists work using depth cap-
ture and shaders in Unity game engine. Image courtesy of
the artists. Sara Tirelli and Sergio Bromberg, 2021

Figure 8: Artists work from within Unity game engine using
InteractML to drive a state machine. Image courtesy of the
artists. Sara Tirelli and Sergio Bromberg, 2021

without the ability InteractML provides to train machine learning
models within the infrastructure that Unity provides.

6.3 Machine Learning Algorithm Supporting
Different Styles of Movement Interaction
in the Virtual Environment

As we have seen in Section 4.1 the different machine learning algo-
rithms offered by InteractML tend to be better suited to supporting
different types of movements. In addition, although the output val-
ues are completely customisable in data type (for example Floats,
Vector3, Strings), each algorithms output also tends to be better
suited to controlling different elements in a virtual environment.
Some examples of what our users produced for each algorithm are
detailed below.

6.3.1 Regression. Owing to the continuous output values a Regres-
sion algorithm produces, this allows finer controls of elements in a
virtual world, for example granular control of the intensity of light
in a scene. Artists using a Regression algorithm used movement
and output control pairings such as:

e Moving a VR controller from one position or orientation to
another to control properties in sound or music such as the
volume or pitch

e Changing between hand poses to control the properties of
particles systems. Such as the amount of particles, or the
direction and strength of attractive or repulsive forces
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e Changing the velocity of head movements (when wearing a
VR headset) to control material and shader properties such
as colour, opacity and specularity.

6.3.2  Classification and Dynamic Time Warping (DTW). These algo-
rithms are well suited to recognising distinct poses (Classification)
or gestures (DTW) in order to trigger a specific event in a virtual
environment. Artists using a Classification or DTW algorithm used
movement and output control pairings such as:

e Using hand tracking to detect different hand poses to in-
teract with virtual characters by triggering animations of
expressions

o Using Kinect skeleton tracking to recognise dance phrases
to trigger musical phrases

7 RESULTS AND DISCUSSION

7.1 Learning The Tool

We observed that many of the participants did a lot of their learning
through adapting examples. They would edit an example graph to
try to fit into their use case adapting each stage of the graph until
they produced their desired outcome. In interviews and discussion
they would cite these as an integral part of their learning process 'I
don’t think I could have done it without the examples. Now that
I've, like, I've seen a copy of it. I can apply it’. If something went
wrong in the graph rather than referring to the documentation they
would compare their work to these examples sometimes working
backwards from the graph to find where they went wrong. This
behavior was most seen in users from artistic or dance background
with a less experience in programming and Unity. This opportunis-
tic approach [2] is a common way of learning to code and creating
work for many programmers and creative practitioners. Developing
well documented examples with tutorials of more complex set ups
would help in supporting this user group to engage with the tool
and be able to experiment in their creative practice with it.

7.2 Process

Workshops and hackathons gave us a great insight into how users
first encounter the tool and the initial stumbling blocks of its use.
The longitudinal study of the tool through the residencies allowed
for discoveries in how artists used the tool as part of their practice.
This gave us insight into real world use beyond what was just
initial learning problems to what misunderstandings and difficulties
persisted beyond the initial learning phase. Whilst in the workshops
participants sometimes struggled to grasp the machine learning
concepts and the flow of the graph beyond the the initial prototypes,
within weeks the residency artists had developed a solid mental
model of the system which was evident in our weekly interview
with them.

Many of the artists involved in the residency and hackathons
have continued using the tool in their work. We have continued
the community and support on a Discord channel. Through this we
have seen how the tool has influenced how interaction is designed
in their virtual environments and their artistic practice.
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8 CONCLUSION

Advances in sensor and movement tracking technologies are en-
abling full body and movement-based interactivity for immersive
applications. Implementing movement-based interaction designs,
however, is currently complicated, effectively limiting who can cre-
ate immersive applications that use movement-based interaction
techniques. To alleviate this issue, we have presented an IML tool
InteractML, which enables users to rapidly prototype movement-
based interactions in their immersive applications. We believe that
this does not simply show the usefulness of a particular tool, but
of a general approach that uses interactive machine learning that
enables the design and implementation of movement interaction
in an embodied way, i.e. designing by moving[14]. This is particu-
larly relevant for virutal reality because movement interaction is
so common and contributes to the illusions of presence, plausibility
and embodiment[13, 33].

InteractML can also be implemented for training in built expe-
riences meaning users could design custom personal interactions.
InteractML enables users to be included not only in the design of
the interaction but also in the implementation. Its quick iterative
process means custom interaction could be easy to implement. This
has great scope for making immersive technologies more accessible
to more people.

For this version of InteractML, we have built it as a plug-in for
Unity game engine software. Motivated to make IML for movement
interaction in immersive creative work more accessible, particularly
to creators without a programming background, we considered this
software suitable to build InteractML within. Accessible, affordable,
well documented and supported by the developer community and
allows for the creation of fully formed immersive applications with
full control over every aspect of the virtual environment, mostly
without the need to do any scripting (although this option is there
for developers if they wish). More importantly for creative practi-
tioners developing immersive work, there is the possibility to easily
hook in different devices into their projects, such as different VR
systems and movement sensors, it is also possible to bring in virtual
assets from other creative applications, and so serves a range of
users and applications. However, the downside to such customis-
ability is that often set-up times are long and creators working with
InteractML that are not already familiar with Unity are faced with
a steep learning curve to get started.

As a technique, machine learning is currently obscure and even
domain experts have difficulties as they consider methods “black
box”, and have difficulties in interpreting results [26]. In this sense,
creators that are not familiar with machine learning would need
to learn a whole new way of working for designing movement
interaction. Yet, we believe in the ethos and design of InteractML,
alongside the methods and instructional documentation that comes
with it, we have facilitated an easy overcoming of this learning
curve by fundamentally rethinking machine learning in terms of
usability and customisability. In the development of InteractML we
advocate and support a new generation of creators to use machine
learning to design movement interaction in their immersive creative
work.
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