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Abstract: A two-stage sequential pretreatment including caustic mercerization (CM) and liquid
ammonia (LA) treatment was applied to investigate the influence on dyeing performance and handle
of knit cotton fabric, and the relationship between dye size and dyeing properties. Various techniques
were applied to characterize all the treated fabrics. X-ray diffraction (XRD) and Fourier-transform
infrared (FTIR) analyses of the treated fabrics confirmed that both sequential treatments decreased
the crystallinity of cotton fabric more than only the CM or LA treatment. The pattern of cellulose I
was transferred to a mixed configuration of cellulose II and cellulose III after the CM/LA or LA/CM
treatment. Thermal performances measured by thermogravimetric analysis (TGA) and differential
thermogravimetry (DTG) techniques showed that the thermal stability of the treated cotton only
marginally decreased. The wicking height increased after the sequential CM/LA treatment, indicating
that the hydrophilicity of the fabric increased. The dye absorption and color uniformity were better
for the reactive dye with a smaller molecular weight (Reactive Red 2) compared with the one with
a larger molecular weight (Reactive Red 195). The total dye fixation efficiency (T%) increased to
72.93% and 73.24% for Reactive Red 2 dyeings of CM/LA- and LA/CM-cotton fabric from 46.75%
of the untreated fabric, respectively; the T% increased to 65.33% and 72.27% for Reactive Red 195
dyeings of CM/LA- and LA/CM-cotton fabric from 35.17% of the untreated fabric, respectively. The
colorfastness and dye exhaustion and fixation percentages of the samples were enhanced after the
treatments. Furthermore, compared to the single CM or LA treatment, the softness handle properties
were further improved after the fabrics were sequentially treated by CM/LA. The developed pre-
treatment of CM/LA can be used in the textile industry to promote the dyeability, handle, and
mechanical properties of knit cotton fabrics.
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1. Introduction

Mercerization pretreatment by caustic mercerization (CM) or liquid ammonia (LA)
in the textile sector is often employed to improve several characteristics of cotton fabrics,
including luster, tensile strength and dyeability [1,2]. In contrast with CM treatment, the
advantage of LA treatment is cleaner because liquid ammonia is highly volatile and can
be completely recycled after mercerization [3–5]. After CM treatment, the Na+ ions inside
the cotton fiber are hard to wash off, and it critically influences the dyeing performance
without the efficient removal of Na+ ions. It is therefore important to wash the CM-treated
cotton fabric multiple times in both hot and cold water. The defect of LA treatment is its
higher treating cost, compared with that of CM. Another distinction between CM and LA
treatments is the contribution to fabric handle. Liquid ammonia treatment could have an
improved handle and softness [6,7], while caustic mercerization gives the woven fabric a
stiff handle [8,9].

It is known that mercerization by CM or LA decreases the crystallinity of cotton fiber,
i.e., more amorphous regions in fiber are produced, but LA treatment is more effective than
CM [10]. The crystallinity of untreated cotton fiber was 65.7%, and it decreased to 61.4% and
58.6% by CM and LA treatment, respectively [6]. Thus, the dyeability of mercerized cotton
fiber should increase based on the dyeing principle. However, occasional reports from
the dyeing plant claimed that the LA treatment did not enhance the dyeing performance
of the cotton fabric, and even becomes poorer than the untreated one. The phenomena
were confirmed by Wakida et al. research [6]. The woven cotton fabric treated by LA had a
similar dye uptake of Direct Blue 1 dye with that of the untreated fabric. Therefore, there
is a conflict between the crystallinity decrease and the poorer dyeability. This conflict is
explained in that both treatments enlarged the cumulative accessible pore volume, which
expressed an increase of the amorphous region. However, the CM treatment expands the
fiber pores, while the LA treatment compacts the fiber pores. Thus, the LA-treated cotton
fiber only exhibits a poorer dyeability in using big reactive dyes [11].

The influence of a two-step of CM/LA and LA/CM pre-treatment on dyeability and
handle of woven cotton fabric was reported [6,7], which woven cotton fabric was dyed
with direct dye (Direct Blue 1) and the handle was measured by shearing modulus and
bending hysteresis that obtained with a KES instrument. Recently, LA pre-treatment of knit
cotton fabric is a burgeoning market. Meanwhile, in exhaust dyeing of knit cotton fabric,
bi-functional reactive dyes (almost all of the dyes are big molecules) are mainly applied.
The dyeing mechanism of cotton fiber with reactive dye differs from the direct dye. The
former is chemical absorption, while the latter is physical adsorption. Hence, without any
dye fixation post-treatment, the reactive dyed cotton fiber shows a higher colorfastness to
washing and rubbing, compared to direct dyed one. Therefore, it is significant to investigate
the dyeing performance and handle of CM, LA, CM/LA, and LA/CM pre-treated knit
cotton fabric with reactive dye.

In the present work, a treatment process was designed in which knit cotton fabrics
were treated by CM, LA, CM/LA, and LA/CM processes. The fabrics were subsequently
tested for their wicking, dyeing, and handle properties. Two types of dyes, including
Reactive Red 2 (low molecular weight) and Reactive Red 195 (high molecular weight) were
used to determine the relationship between dye size and dyeing properties, based on the
exhaustion, fixation and total dye fixation of reactive dyes. Besides, fabric softness was
directly obtained with a WOOL HandleMeter instrument.

2. Materials and Methods
2.1. Materials

Commercial unbleached 100% knit cotton fabric (160 g m−2) was obtained from TST
Group Holding, Ltd. (Guangzhou, China) Both dyes of Reactive Red 195 (Red 195) and
Reactive Red 2 (Red 2) were supplied by Shanghai Jiaying Chemical Company (Shang-
hai, China), characteristics of which are depicted in Figure 1. Anhydrous Liquid am-
monia was supported by Wuhan Niuruide Gas Company (Wuhan, China). Commercial
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grade 500 Luton non-ionic detergent Luton 500 was purchased from Dalton UK Company
(Shanghai, China).
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Figure 1. Chemical structures and molecular weights of Reactive Red 2 and Reactive Red 195.

2.2. Sequential Treatment

The knit cotton fabrics were treated with tension in all experiments. For the caustic
mercerization (CM) treatment, a piece of knit cotton fabric sample was treated in 250 g L−1

NaOH solution at 23 ◦C for 3 min and then washed by warm water (about 60 ◦C) for 10 min,
followed by cold water, then by HCL with a concentration of 2 g L−1 at 23 ◦C for 10 min,
and finally through cold water again until neutral.

The liquid ammonia (LA) treatment involved immersing knit cotton fabric samples in
anhydrous liquid ammonia at −40 ◦C for 3 min. Subsequently, the sample was dried at
70 ◦C for 20 min. Finally, the residual ammonia was removed by washing with cold water,
followed by 2 g L−1 HCl at 23 ◦C for 10 min, and then by cold water until neutral.

The two-stage CM/LA treatment or the two-stage LA/CM was conducted following
the procedure mentioned above.

2.3. Characterization
2.3.1. XRD Analysis

Using an X-ray diffractometer (Rigaku Ultima III, Tokyo, Japan), the powder XRD patterns
of the untreated and treated fabrics were determined. The crystal phase formation was scanned
from 2θ = 5–60◦ having step size of 0.02◦ with CuKα radiation (λ = 1.54056 Å) [12] source.

2.3.2. FTIR Analysis

Fourier Transformation Infrared (FTIR) spectra of the untreated and treated sam-
ples were evaluated using a Bruker Optik EQUINOX 55 spectrophotometer (Ettlingen,
Germany). The wavenumber range was 4000–400 cm−1. Samples were cut and mixed
with potassium bromide, and then ground to prepare a pellet that was stored at room
temperature (23 ◦C).

2.3.3. Thermogravimetric Analysis

The thermal stabilities were carried out by a thermogravimetric analyzer (TGA/DSC1,
Mettler-Toledo, LLC, Shanghai, China). The curves were observed under nitrogen atmo-
sphere (flow rate of 50 mL min−1) by maintaining a heating rate of 10 ◦C min−1 in the
range of 30–700 ◦C.
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2.3.4. Wicking Height

The knit cotton fabric was prepared to 25 cm (warp direction) × 3 cm (weft direction),
and the liquid bath contained 5% (w/w) of potassium bichromate. Measurements were
made as per the FZ/T 01071-2008 standard with a textile capillary effect tester (YG871,
Ningbo Textile Instrument Factory, Ningbo, China). The liquid wicking height values were
recorded at 1, 5, 10, 20, and 30 min.

2.3.5. Dyeing Process

The dyeing trials of original and treated samples were carried out with a liquor ratio
of 1:20 in a rotary dyeing machine (Automatic Prototype, Model: A-12, AQUA, Guangzhou,
China). The dye fixation temperatures for Red 2 and Red 195 were at 40 ◦C and 60 ◦C
respectively. The dyeing processes are presented in Figure 2. During both dyeing processes,
40 g L−1 of NaCl was added as an electrolyte to promote dye exhaustion, and 10 g L−1 of
Na2CO3 was added for dye fixation. Then, the dyed fabric was soaped in the rotary dyeing
machine using a 2 g L−1 of detergent solution at a liquor ratio of 1:50 for 40 min at 95 ◦C.
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2.3.6. Dyeing Performance

The dye exhaustion percentage (E%), dye fixation rate (F%), and total dye fixation
efficiency (T%) were calculated using Equations (1)–(3) respectively. The light absorbance
value of dye solutions was calculated by a laboratory-scale Cary 100 UV-visible spec-
trophotometer (Agilent Technologies, Mulgrave, Melbourne Australia). The amount of
absorbance was recorded at maximum wavelengths of 540 nm and 542 nm for Red 2 and
Red 195, respectively.

E% =
A0 − A1

A0
×100% (1)

F% = (1 − A2

A0−A1
)× 100% (2)

T% = E% × F% × 100% (3)

where A0 and A1 indicates the light absorbances of the initial dye solution and the residual
dye solution, respectively, and A2 is the light absorbance of the soaped solution.

2.3.7. Color Uniformity

The K/S value (color strength) of the soaped dyed cotton fabrics was measured with a
Datacolor 110 spectrometer (Datacolor International, Rotkreuz, Switzerland) at 20 random
locations. The standard deviation value of the K/S (σ) was used to explore the color
uniformity, and the lower the σ value, the better the color uniformity.

2.3.8. Rubbing Colorfastness and Washing Colorfastness

Colorfastness to dry and wet rubbing and washing of the specimen were achieved as
per ISO 105-X12:2011 with a crockmeter (Y571T, Ningbo Textile Instrument Factory, Ningbo,
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China) and ISO 105-C06:1997 (Test number: C2S) with a launderometer (SW-12, Ningbo
Textile Instrument Factory, Ningbo, China), respectively. The colorfastness to washing was
rated by evaluating the staining of the cotton fiber in the multifiber fabric by comparison
with the ISO greyscale.

2.3.9. Assessment of Fabric Softness

Fabric softness was assessed using a WOOL HandleMeter (Milspec Manufacturing,
North Albury, Australia) [13]. The overall testing process was performed based on the draft
test method. Before the test, each specimen was prepared into a circular shape and laid on
the top surface of an orifice plate. Then, the knit sample was lowered automatically by a
453 g mass plate. Then, the sample was fully pushed through the orifice plate by a force rod.
After that, the numerical values were recorded, and the hard/soft rate was determined,
which ranged from 1 (extremely hard) to 10 (extremely soft).

3. Results and Discussion
3.1. XRD Analysis of Cotton Fabrics

The XRD analysis was employed to investigate crystal allomorph and crystallinity
change of the cellulose after each treatment. The FitYK 1.3.1 program was used to manage
the diffraction background and to determine the area that occupied the peaks in the patterns.
The background was treated in linear mode using stripe function from the program and
the peaks were deconvoluted using the Gaussian peak fitting function. Afterwards, the
crystallinity index (CI) was determined using Equation (4).

CI =
Ic

Ic + Ia
× 100, (4)

where Ic deotes the area of the crystalline domain and Ia for the amorphous domain area.
Table 1 summarizes the CI obtained from diffraction patterns of the original and treated

cotton specimens in different protocols. The original sample consisted of a large volume of
a highly ordered crystalline region with a CI of 78.12%. The CI decreased to 60.34%, and
58.43% after the CM and LA treatments. The CI further decreased to 41.23% and 38.87%
after the sequential CM/LA and LA/CM treatments. It is noteworthy that the LA treatment
offered a better effect on cellulose allomorph conversion than CM, either applied as an
individual treatment or in combination with CM, which was mainly due to its low surface
tension and smaller molecular size (3.11–3.99 Å) [14]. Thus, liquid ammonia was able to
infiltrate crystalline quickly, while penetrating low-order areas and pores [14–16]. However,
compared to alone CM and LA treatments, sequential treatment exhibited a better effect
on the crystallinity modification and forming a high volume of an amorphous region
within the cotton fiber because of their collaborative effect. The decreased crystallinity
of the samples by CM, LA, CM/LA, and LA/CM was most likely due to the microfibril
swelling, crystalline disruption, and the development of a new crystalline structure [16,17].
Following treatment with caustic solution and liquid ammonia, sodium ions and ammonia
molecules penetrated through the microfibrils, leading to hydrogen bond breaking in
both the crystalline and the amorphous regions. This contributed in fiber swelling and
formation of Na-cellulose by CM treatment and NH3-cellulose formation by LA treatment,
respectively [18,19]. The Na-cellulose I has subsequently been converted into Na-cellulose II
and NH3-cellulose I into NH3-cellulose III. The new hydrogen bond networks in amorphous
and crystalline areas with new patterns of cross-linking named cellulose II and cellulose III
respectively were created when the liquid ammonia and NaOH solution had been removed
from the cellulose complexes [19,20]. In addition, the cellulose microfibrils were difficult to
recrystallize, which made for a smaller crystallinity in the treated cotton samples [14].
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Table 1. The crystallinity index data.

Sample Original CM LA CM/LA LA/CM

CI (%) 78.12 60.34 58.43 41.23 38.87

The diffraction patterns were further adopted to study the cellulose allomorph con-
version by the different treatments. Figure 3 compares the diffraction pattern of samples
obtained from the untreated and treated samples. Figure 3a shows a distinctive cellulose
I pattern with intensive peaks of 2θ of 14.7, 16.5, 22.6, and 34.8◦, which corresponds to
the lattice planes (110), (110), (200), and (400) were accordingly exhibited by the untreated
samples [15,21,22]. In addition, the peaks contain a more complex geometry and a higher
intensity, which causes large crystals to be present in the samples [23]. After either CM or
LA treatment, it was found that the resultant diffraction pattern of sample corresponded
to cellulose II or cellulose III allomorphs (Figure 3b,c). The pattern recorded after CM
treatment revealed the peaks of (110), (110), (020), and 004 lattice planes at 12.4, 20.5, 22.0,
and 34.9◦, respectively. These peaks suggest the transformation of cellulose I into cellulose
II [16,18]. After LA treatment, the diffraction pattern exhibited the peaks of cellulose III
allomorph at 2θ = 12.0, 14.9, 21.2, 29.8, and 35.4◦ assigned to the (010), (002), (100/110), and
(023/123) lattice planes, respectively [21,24]. Moreover, the peaks became broader and their
intensities lowered, which suggests that the crystal size in the sample were decreased by
these treatments. Interestingly, the diffraction patterns after either CM/LA or LA/CM treat-
ment presented cellulose II and cellulose III allomorphic mixed lattices (Figure 3d,e) [15,25].
Both sequentially treated sample reveals the homogenously blended peaks of cellulose II
lattice planes (110, 110, 020, and 004) lattice planes and (010), (002), (100/110), and (023/123)
planes cellulose III allomorph, respectively. The peaks became wider and flatter after the
sequential treatments (Figure 3d,e), which are most likely the result of a larger degree of
defects in the cellulose crystal imparted by the combined effect of caustic solution and
LA [15,25]. The changes in the diffraction spectrum have meant that cellulose allomorphs
were converted from cellulose I to cellulose II and finally mixed configuration of cellulose
III and II after CM/LA treatment. In contrast, after treatment with LA/CM, cellulose I
changed into cellulose III and finally formed cellulose II and cellulose III mixed allomorphs.
This ensured that the final samples consisted of both types of cellulose II and cellulose
III allomorphs. The diffraction study suggested that the sequential treatments of CM/LA
and LA/CM exerted a better effect on the new crystalline lattice formation, and decreased
crystallinity than the samples treated with LA and CM independently.
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3.2. FTIR Spectra

The chemical interactions between the untreated and sequentially treated samples
were identified by FTIR spectra, as shown in Figure 4. The untreated, CM-treated, and
LA-treated sample spectra exhibited strong absorbance peaks around 3000–3700 cm−1,
which was attributed to the intramolecular hydrogen bonding between the hydroxyl
groups [26]. However, the combined treatment samples (CM/LA and LA/CM) exhibited
broader stretching vibration bands with higher wavenumbers, implying changes in their
hydrogen bonds and the transformation of cellulose II and cellulose III from cellulose I
after the sequential treatment [27]. A change was also noted in the absorption spectra
from 1750 to 800 cm−1. The CM/LA-treated sample showed a strong absorbance band at
1095 cm−1, suggesting that its crystallinity was lower than the untreated sample. The FTIR
was further applied to evaluate the effect of different sequential treatments on the hydrogen
bonding intensity (HBI) of the cellulose macromolecules. The HBI is a ratio between 3336
and 1336 cm−1, indicating the degree of intermolecular regularity in the highly ordered
crystalline region [28,29]. It was found that the untreated fibers had an HBI of ~1.53, while
after CM and LA treatment, the HBI decreased to ~1.49 and ~1.43, respectively. The HBI of
the samples further decreased to ~1.41 and ~1.34 after CM/LA and LA/CM, respectively.
The decreased HBI values suggested that the highly ordered crystalline region was ruptured
due to the swelling of the fibers and intramolecular irregularity increased because of the
conversion process of the cellulose allomorph from cellulose I to cellulose II and cellulose
III, respectively [30].
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3.3. Thermal Performance

The thermal stability of the untreated and treated samples was determined by mea-
suring the curves of TGA and DTG, as shown in Figure 5a,b. The untreated sample, i.e.,
pure cotton fabric, exhibited onset temperature at an initial stage (Tonset, 356 ◦C), and
the maximum weight loss percentage appeared at 374 ◦C in which the depolymerization
behavior occurred by trans-glycosylation reactions [31]. Interestingly, it could be seen
that the treated samples decompose rapidly at various temperature in comparison with
the original sample. Moreover, the major weight loss begins slowly for both CM and LA
treated cotton fabrics than the untreated sample. These were ascribed to the presence of a
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greater amount of amorphous cellulose, which underwent faster thermal decomposition
than the crystalline phase [32]. All of these data indicate that the LA-treated sample showed
less thermal stability, as confirmed by the TGA and DTG curves, which corresponds to
the previous report [33]. Although the Tmax of untreated cotton fabric was higher among
all samples, the amount of char residue was lower than that of treated fabrics (Table 2).
The percentage char for the LA/CM-treated sample showed highest, meaning that this
sample will have satisfactory flame retardancy properties [34]. Mainly, it was found that
there are no substantial changes observed in their TGA patterns (untreated and treatment)
by applying sequential pre-treatment technologies such as liquid ammonia and caustic
mercerization. However, it must be mentioned that pre-treated samples exhibited a higher
thermal stability compared to the untreated sample; this indicates that these treatments
were efficient in the removal of compounds [35] such as hemicellulose and lignin. Overall,
the necessity of the pre-treatments of mercerization of the cotton fabric before the dyeing
process can be underlined to obtain better physicochemical properties [36].
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Table 2. Thermal stabilities of samples.

Specimen Temperature at Initial
Cleavage (Tonset, ◦C)

Temperature at Maximum
Degradation (Tmax, ◦C)

Char Residue at
700 ◦C (wt.%)

Untreated 356 374 10.91
CM 354 370 10.96
LA 352 365 11.38

CM/LA 347 369 11.05
LA/CM 350 367 12.38

3.4. Wicking Properties

Wicking occurs when a liquid flows through capillary channels in fabrics due to cap-
illary forces [37]. The wicking heights of cotton fabrics treated by CM, LA, CM/LA, and
LA/CM are displayed in Figure 6. After 1 min, the wicking height of the treated samples
became higher than the control sample, and the difference in the wicking heights of the
treated samples was small. Upon increasing the test time, all wicking heights gradually
increased, and the variances between the treated samples expanded. All treatments im-
proved the wicking properties of the fabric within 30 min because the wicking heights
increased from 11.2 cm in the original sample to 12.6, 14.0, 14.9, and 14.3 cm in the CM-,
LA-, CM/LA-, and LA/CM-treated fabrics, respectively. The increase was due to changes
in the hydrophilicity of the cotton fiber [38]. The number of hydroxyl groups in cotton
fibers rose as CM, LA, and their combinations lowered the crystalline zone and improved
the amorphous region. This resulted in an improved cotton fiber hydrophilicity. These
treatments also enlarged the cumulative accessible pore volume [11], which manifested as
increased water adsorption (wicking). Furthermore, the CM treatment expanded the fiber
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pores, but the LA treatment compacted the fiber pores, which decreased the wicking height
of the CM-treated fabric compared with others [39].
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3.5. Treatment Influence on Dyeing Properties

The untreated and treated fabrics were dyed with Red 2 and Red 195, and the E%, F%,
and T% values shown in Figure 7 indicate that all treatments improved the dye exhaustion
percentage. During the dyeing of cotton fabrics, dyes only reach the amorphous region,
which typically means that a larger amorphous region (i.e., lower crystallinity) increases
dye exhaustion [40]. Since all treatments decreased the crystallinity, the E% values increased
after each treatment [41]. An increase in the amorphous region was accompanied by a
higher cumulative accessible pore volume [11], which increased E% because the dyes
migrated from the fiber interior to the surface via pores.
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The dyeings of CM-treated and LA-treated cotton fabrics with Red 2 (Figure 7a)
showed nearly the same E% values, which were 64.25% and 64.33%, respectively. For the
CM/LA treated and LA/CM treated samples, the E% increased to 76.68% and 76.27%, re-
spectively, from 51.30% of the untreated fabric. This indicates that the combined treatments
further improved the dye exhaustion ability of the cotton fabric dyed with Red 2, compared
with the single treatment of CM or LA. In contrast, for the treated cotton fabric dyed with
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Red 195 (Figure 7b), the change in E% was different from the fabric dyed with Red 2. The
E% value of the fabric treated by CM increased to 64.64% from 43.79% (control fabric), but
it was only 54.16% for the fabric treated by LA. This shows that the CM treatment had
better dye exhaustion than the LA treatment when the cotton fabric was dyed with Red
195, which is consistent with the previous research [42]. Moreover, the LA/CM-treated
specimen showed a higher E% (75.25%) than the CM/LA-treated specimen by (68.97%).
The dye exhaustion results of Red 195 are similar to the vales in the paper [10]. This result
implies that the treatment sequence affects the dye exhaustion of cotton fabric dyed with
Red 195.

The pores inside cotton fabrics are categorized as either small, medium, or large [24],
which means that small molecules can enter all pores, but large molecules cannot enter
small or medium pores. The CM, LA, CM/LA, and LA/CM treatments changed the
pore sizes and increased the cumulative accessible pore volume. However, CM treatment
expanded the pore size, while LA treatment contracted the pore size [43]. During reactive
dyeing, the dyes that adsorbed onto the fiber surface migrated inside the fibers through
the pores; thus, the pore sizes and the dye molecular size affected the dye migration and
exhaustion. The molecular weight of Red 2 is 615.32 g mol−1 and Red 195 is 1136.28 g
mol−1. Since Red 195 is larger than Red 2, during the knit cotton fabric dyeing, the E% of
Red 2 was higher than that of Red 195. After the CM treatment, the E% of Red 2 was similar
to the E% of Red 195, but after the LA treatment, the E% of Red 2 was approximately 10%
higher than that of Red 195 because of the smaller pore size [11].

Interestingly, the CM/LA-treated and LA/CM-treated cotton fabrics dyed with Red 2
had the same E% values, because the Red 2 molecule was small enough to migrate through
the small size pore of cotton fiber, which is consistent with the wicking results. However,
different E% values were observed between the CM/LA and LA/CM treatments for the
fabric samples dyed with Red 195. The pore sizes expanded after the first CM treatment,
but some pores contracted to small pores after the second LA treatment, which inhibited
the Red 195 dye exhaustion into the CM/LA-treated cotton fabric. For the LA/CM-treated
fabric, after the first LA treatment, the cumulative accessible pore volume increased, and
the pores contracted; however, the pores expanded after the subsequent CM treatment,
showing a high E% [11].

In general, the combined treatments of LA/CM or CM/LA had better dye exhaustion
than the single treatment of CM and LA in dyeing of cotton fabrics [6]. The sequential
treatments with a final CM process promoted the dye exhaustion rate of the cotton fabrics
dyed with both small and large dyes, but the combined treatments with a final LA process
more effectively promoted the exhaustion of the smaller molecular size dye (Red 2) than
the larger dye (Red 195). The results are coincident with the dyeing findings [11].

Dye fixation is a chemical reaction to form covalent bonds between reactive dyes and
cellulosic fiber. Under their respective fixation conditions, the treated fabrics showed a
higher F% value compared to the untreated fabric. The treatments decreased the cotton
fiber crystallinity and produced more amorphous regions, which means that more hydroxyl
groups were produced [44,45] that could covalently bond with the dyes. The total dye
fixation efficiency (T%) relates the dye exhaustion to fixation and is determined by the
percentage of the fixed dye mass in the fibers to the initial dye mass. Therefore, it is
important to select small molecular size reactive dyes in the dyeing of knit cotton fabric
finally pre-treated by LA process, which can extremely utilize its improved dyeability, i.e.,
saving dye consumption.

3.6. Color Uniformity

In Table 3, the standard deviations of the K/S values (σ) indicate that all dyed samples
have uniform shades. The K/S values and the color uniformity of the LA/CM-treated
cotton fabrics dyed with Red 2 and Red 195 were better than the CM/LA-treated cotton
fabrics. This indicates that the color shade and the color uniformity of the dyed cotton
fabric were influenced by the LA treatment.
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Table 3. K/S and color uniformity values.

Dyed Fabric Index Untreated CM LA CM/LA LA/CM

Red 2
K/S 4.58 5.87 5.99 6.29 6.73

σ 0.0469 0.0539 0.0500 0.0400 0.0922

Red 195
K/S 4.03 5.91 4.90 6.09 6.49

σ 0.0300 0.2179 0.1887 0.2472 0.2425

3.7. Colorfastness to Rubbing and Washing

The colorfastness to rubbing and washing of the treated dyed fabrics are listed in
Table 4. In general, all colorfastness grades were good, which may have been owing to
the building of covalent interactions between the reactive dyes and the cellulosic fibers, in
combination with a thorough washing procedure.

Table 4. Rubbing and washing colorfastness (staining) values.

Treatment
Rubbing Fastness (Dry/Wet) Wash Fastness

Red 2 Red 195 Red 2 Red 195

Original 5/4-5 5/4-5 5 4-5
CM 5/4 5/4 5 4-5
LA 5/4-5 5/4-5 5 4-5

CM/LA 5/4-5 5/4-5 5 4-5
LA/CM 5/4-5 5/4-5 5 5

3.8. Treatments Influence on Fabric Softness

The softness handle of the control and pre-treated cotton fabrics dyed with Red 2
was measured using a WOOL HandleMeter, and the results are shown in Figure 8. The
previous report [9] states that CM treatment on woven cotton fabric brings about a stiff
handle, but it is different on CM treatment of knit cotton fabric. A higher value in Figure 8
indicates that the sample has a softer handle. The softness of the dyed untreated cotton
fabric (dyed control) was 4.1074, and all treated fabrics showed considerably better handle
properties than the dyed control fabric. The fabric treated by CM treatment exhibited
a handle rating of 4.4867, but the enhancement was lower than that of the LA treated
fabric, which exhibited a handle rating of 4.6218, i.e., the treated fabric was soft. After the
combined CM and LA treatments, the treatment order significantly affected the softness
handle. The cotton fabric treated by CM/LA had the highest softness handle, and the
fabric treated by LA/CM showed the lowest softness of these treated cotton fabrics, which
were 4.8051 and 4.3675, respectively. Therefore, it seems that the fabric finally treated by
LA showed a better softness handle, and this conclusion is supported by the published
papers [6,7].

According to the XRD analyses of the cotton fibers, the lower CI values possibly con-
tributed to the improved handle values since all treatments changed the internal structure
of the cotton fibers [10]. The soft handle also tended to increase as the CI value of the
treated cotton fiber decreased, except for the LA/CM treatment; thus, it can be summarized
that the CM/LA-treated cotton fabric exhibited the best soft handle property.
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4. Conclusions

Various physicochemical properties of knit cotton fabrics were enhanced by sequential
liquid ammonia and caustic mercerization pretreatments. The two-stage process changed
the crystallinity of the cellulose with mixed configurations of cellulose II and cellulose III,
and the CI values of the sequentially treated samples decreased. The CM/LA-treated fabric
exhibited considerably more wicking among all samples, and the results also demonstrated
that a larger pore size after CM treatment decreased the wicking. The results showed that
the sequentially treated samples (CM/LA and LA/CM) showed better thermal stability
than the individual treatment. Reactive Red 2 offered better dyeability than Reactive Red
195, although the latter was applied at a much higher temperature, which suggests that
dyes with higher molecular weights are ineffective after liquid ammonia treatment. The
colorfastness was good after the two-stage treatment. Moreover, the soft handle property of
treated fabrics was enhanced compared with the untreated fabric, and the CM/LA treated
fabric exhibited the best soft handle. This research has shown that a two-stage CM/LA
treatment provides a potential treatment method for improving various physicochemical
properties of cotton fabrics. The CM/LA-treated cotton fiber can be used for deep shade
dyeing requirements, accompanied by a mercerization performance, especially with a
soft handle.
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