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color with excellent color fastness properties. Acrylic fiber is also the main precursor for the 

manufacturing of carbon fiber, and 50% of the carbon fibers are commercially made from 

extra pure PAN fibers through carbonization [1]. However, the acrylic fibers used for apparel 

are not pure PAN fibers and one or more other co-monomers, such as ethylene derivatives, 

acrylic acid, methacrylic acid, styrene sulfonic acid and itaconic acid, are added to PAN to 
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time on the color strength, ultraviolet (UV) radiation absorption, surface electrical resistance 

and mechanical properties of the treated fibers were systematically investigated. It was found 

that if the concentration of Ag was less than 1% on the weight of acrylic fibers or the Ag to 

TSC ratio was less than 1:2, no color was produced. The color strength and UV radiation 

absorption capacity of the treated acrylic fibers increased with an increase in the 

concentration of Ag, and Ag to TSC ratio, and also with a decrease in the pH. On the other 

hand, the surface resistance of the treated acrylic fibers decreased with an increase in the 

concentration of Ag and a decrease in the treatment pH. The treated fibers showed excellent 

antibacterial activity, UV radiation absorption capacity, and also very good antistatic 

properties along with an excellent colorfastness to washing. Moreover, the developed 

treatment is highly durable to washing as after 20 washes the treated fibers lost their 

antibacterial activity only marginally. 

 
 

1. Introduction 

 

Polyacrylonitrile fiber (PAN), more commonly known as acrylic fiber, is a popular fiber 

for the manufacturing of apparels as well as rugs because of its softness, tactile feeling, low 

density, adequate elasticity, and excellent thermal insulating properties. They have replaced 

wool fibers for many applications including knitwear apparel and interior textiles. Acrylic- 

made fabrics have excellent resistance to pilling, and also the dyed fabric has brilliance in 
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enhance their dyeability. Copolymerization with anionic monomers introduces anionic groups 

in the fiber’s macromolecular chains and enables dyeing with cationic dyes. 

In the past decade, various investigations have been carried out to increase the range of 

applications of acrylic fibers in technical textiles. Antistatic property is an important aspect of 

technical textiles as acrylic fiber-made apparels are used by the people working in the service 

stations and electronic industries. The electrostatic discharge with sparks and shocks can 

instigate fire if it occurs in a gasoline service station. Static electricity causes an estimated 

US$5 billion/year worth of damage to electronic devices [2]. A range of treatments, including 

metal plating [3], glow-discharge plasma treatment in nitrogen [4] and polyaniline coating by 

vapor deposition polymerization [5], have been investigated to improve the poor antistatic 

properties of acrylic fibers but the success was very limited. It is also known that UV 

radiation can affect human skin, even can cause skin cancer and UV protective textiles can 

protect the wearer from the harmful effect of UV radiation. 

Antimicrobial properties are another important requirements desired by consumers to have 

in their apparel [6], which is not surprising as modern consumers are increasingly concerned 

about their health and wellbeing. A range of treatments including the addition of poly(styrene 

hydantoin) to the spinning dope of polyacrylonitrile followed by chlorination of the spun 

fibers [7], guanidine oligomers to the polyacrylonitrile spinning dope [8], and also the 

treatment with copper and zinc sulfates in combination with a direct dye [9], ionic silver 

treatment [10], and also the incorporation of silver nanoparticles to the spinning dope [11], 

have been investigated with some successes to make acrylic fibers antimicrobial. The 

hydantoin-based treatment is unsuitable for the dyed acrylic fibers as the chlorination 

treatment may degrade the dyes used for the dyeing. 

From ancient time, silver has been used as a broad spectrum antibacterial agent. Silver 

ions accumulate inside cells and bind to negatively charged components in proteins and 
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nucleic acids of the cell causing structural changes in bacterial cell walls, membranes, and 

nucleic acids affecting their viability [12]. Silver nanoparticles show antimicrobial activities 

by the time-dependent release of silver ions, which is directly related to the constant presence 

of free silver ions in the local microbial environment [13]. 

Silver nanoparticles of various sizes and geometric shapes can show various Plasmon 

bands producing different colors ranging from yellow, blue to red, all the trichromatic shades. 

The coloration of textiles with noble-metallic nanoparticles including gold and silver has 

been investigated to produce various colored fibers [14–17]. There are three types of 

coloration methods used for the coloration of textiles with metallic nanoparticles. Colored 

nanocomposite fibers are produced by the addition of metallic nanoparticles in the molten 

spinning dope of fibers, which is used for only the synthetic fibers. However the interactions 

between the polymers and nanoparticles are quite complex, such as the introduction of 

nanoparticles into polymers affects the molecular arrangements of the host polymers 

changing their flow behavior, orientation, crystallinity, toughness, and mechanical properties 

[18]. Similarly, the guest nanoparticles also experience various enthalpic and entropic 

interactions that govern their size and spatial distribution [18]. Various capping agents are 

used to mediate those interactions [19]. In another method, already formed metallic 

nanoparticles are exhausted into the fibers like the dyeing of textiles with pigment dispersion. 

However, the penetration of the nanoparticles is limited only to the outer surface or near to 

the outer surface of the fibers [20,21]. The other method is the exhaustion of metal ions into 

the fibers and in situ formation of metallic nanoparticles within the fibers by using 

appropriate reducing agents. Nam et al. formed silver-cotton nanocomposite fibers by 

exhausting silver ions into alkali-swollen cotton fibers [22] but the color of the fibers was 

only black. Dong and Hinestroza deposited negatively charged metallic nanoparticles of Au, 

Pd, and Pt onto positively charged cotton fibers by electrostatic assembly [21] to produce 
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multicolored fibers. Tang et al. synthesized colloidal silvers of various colors by using TSC 

and polyvinylpyrrolidone as a stabilizer, and sodium borohydride as a reducing agent to 

produce multicolored silk fibers [14]. Kelly and Johnston used TSC as a reducing as well as a 

stabilizing agent to form colored silver nanoparticles in wool fibers [15]. 

As the acrylic fibers are anionic, the cationic silver ions (Ag+) can readily be adsorbed into 

them and silver nanoparticles can be formed in situ, which will make the fibers 

multifunctional, i.e. can make them colored, antibacterial, antistatic, and UV protective, and 

also may improve the durability of the treatment to washing. The effect of AgNO3 

concentration, pH, and Ag to TSC ratio on the shade formed also has not been investigated 

for the in situ formation of silver nanoparticles in textiles. In this work, we are reporting a 

simple method to make acrylic fibers multifunctional by exhausting Ag+ into acrylic fibers 

and then converting them into colored silver nanoparticles by the reduction with TSC. The 

effect of changing the concentration of Ag, Ag to TSC ratio, treatment pH and time on the 

shade change, color strength, UV transmission through the fibers, and also the antibacterial 

and antistatic properties of the acrylic fibers are reported here. 

 
 

2. Experimental methods 

 

 

2.1 Materials 

 

 

Acrylic yarns marketed for knitwear manufacturing were purchased from the Reliance 

Industries Ltd (India). Silver nitrate, trisodium citrate, acetic acid, and sodium acetate were 

purchased from Kanto Chemicals (Japan) and were of analytical reagent grade. Sandoclean 

PC (a non-ionic detergent) and Sandozin MRN (a wetting agent) were purchased from 

Clariant Chemicals (Switzerland). The standard phosphate-free detergent used for the 
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assessment of color fastness to washing of the acrylic yarns was purchased from the Society 

of Dyers and Colourists (SDC), UK. 

 
 

2.2. Coloration with silver nanoparticles 

 

 

The supplied acrylic yarns were scoured with 1 g/l Sandoclean PC and 0.25 g/l Sandozin 

MRN at 90 °C for 30 min to remove any oil and dirt present in them. All Ag nanoparticle 

treatments were carried out in a Hisaka Circular laboratory dyeing machine (Hisaka Works 

Ltd., Osaka, Japan) using a 1:40 materials to water ratio. The bath was dosed with the 

required quantity of AgNO3 and 0.25 g/l Sandozin MRN. The pH of the bath was set at 3, 5 

or 7 with acetic acid and sodium acetate. The temperature of the bath was then raised to 70 

°C at 2 °C/min, and then to 90 °C at 1 °C/min. It was reported that the dry acrylic fiber had a 

Tg of 92 °C, which reduced to 72 °C in wet conditions [23]. Therefore, the peak exhaustion 

temperature selected is well above the Tg of acrylic fiber. The bath was held at that 

temperature for 15 minutes. Then the required quantity of TSC was added and held for 

another 90 minutes. After completion of the treatment, the bath was cooled to 45 °C at 2 

°C/min, the liquor drained and the treated fiber samples were rinsed with cold water for 

several times. They were then dried at 60 °C in an oven for 30 min. The multicoloration of 

PAN fibers were carried out by varying the concentration of silver nitrate in the dyebath on 

the weight of acrylic yarns (owf) used, the ratio of Ag to TSC, pH, and the dyeing time. 

 
 

2.3. Color measurement 

 

 

The color measurements of acrylic yarns dyed with various concentrations of Ag 

nanoparticles were carried out according to a published literature [24]. The reflectance values 
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and K/S values (at the appropriate wavelength of maximum absorption for each dyeing) of the 

dyed samples were measured using a Datacolor Spectraflash 500 spectrophotometer 

interfaced to a personal computer. Samples were measured under illuminant D65, using a 10° 

standard observer with UV component and specular both excluded. Yarns were evenly 

wrapped on a paperboard and four measurements were made at four different places of each 

sample and the average value is reported here. The color difference was 

spectrophotometrically measured by measuring CIE L*, a*, b* color difference (ΔE) between 

two different areas of the same sample under illuminant D65, using a 10° standard observer 

by a Minolta hand-held spectrophotometer (Konica Minolta Corporation, Japan). 

 
 

2.4. Mechanical properties 

 

 

The tensile strength of the control and silver nanoparticle-treated acrylic yarns were 

measured by using an Instron Tensile Testing Machine (Model 4501, Instron Corporation, 

Norwood, USA) at 20±2 ºC and 65±% relative humidity according to the ASTM Test Method 

D2343-02: Standard Test Method for Tensile Properties of Glass Fiber Strands, Yarns, and 

Rovings Used in Reinforced Plastics. The gauge length was 80 mm and the traversing speed 

was 50 mm/min. The samples were conditioned at the above-mentioned temperature and 

humidity for at least 2 days. At least 10 samples were measured for each treatment and the 

averages are reported here. The surface resistance of acrylic yarns was carried out at 20 °C 

and 45% relative humidity by a high resistance meter with a two-point probe (Model 

MEGARESTA Ⅱ-A, Shishido Electrostatic, Ltd., Japan) with SSD-A type probe at an 

applied voltage of 100 V. 

 

 

2.5. UV Absorption and colorfastness 
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The treated acrylic yarns were uniformly mounted on a cardboard with a big hole. Thermo 

Scientific UV-VIS Spectrophotometer (Model: Evolution 200, Thermo Fisher Scientific Inc., 

Waltham, USA) with a Diffuse Reflectance Measurement attachment was used to assess the 

percent transmission of light through the acrylic yarns at wavelength intervals up to 5 nm in 

the 290–400 nm spectral span. The color fastness to washing of the yarns was measured 

according to the ISO Test Method 105-C03 1987: Textiles – Tests for colorfastness – Part 

C03: Color fastness to washing: Test 3 by washing in a Gyrowash (Model 415/8) using the 

phosphate-free standard detergent. In both cases, fastness grades were assessed by comparing 

with the 3M Grey Scale. 

 
 

2.6. Fourier transform infrared spectroscopy (FTIR) 

 

 

The surface of Ag nanoparticle-treated acrylic yarns was characterized by using a 

Shimadzu FT-IR (Model Prestige 21, Shimadzu Corporation, Japan) with an attenuated total 

reflectance (ATR) attachment at a resolution of 4 cm-1 in the range from 650 to 4000 cm-1. 

The ZnSe crystal was used to record the ATR-FTIR spectra. 64 scans were signal-averaged. 

 
 

2.7. Assessment of antibacterial activity 

 

 

The antibacterial properties of acrylic yarns treated with Ag nanoparticles at various 

concentrations were assessed according to the AATCC Test Method 100–1999 (Antibacterial 

Finishes on Textile Materials: Assessment of) against Staphylococcus aureus (ATCC 6538) 

and Klebsiella pneumoniae (ATCC 4352). A bundle of treated acrylic yarns was placed in 

individual sterile Petri dishes. The nutrient broth was prepared with 5 g/l peptone and 3 g/l 
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beef extracts and the pH was adjusted to 6.8±0.1 with 1N sodium hydroxide solution. The 

bacterial culture of appropriate type diluted 100 times was transferred to the nutrient by using 

a 4 mm inoculating loop and was incubated at 37±2 °C for 24 hours. 1.0±0.1 ml inoculum 

was added to the sample in each petri dish. The Petri dishes were then incubated at 37±2 °C 

for 48 h. The number of bacteria before and after the incubation is measured by a colony 

counter and the reduction in bacteria is measured which is expressed in percentage. This 

method provides a quantitative assessment of the antimicrobial performance of antibacterial 

textile materials as it provides a percentage of killing of a particular bacteria. 

 
 

2.8. Surface morphologies 

 

 

The surface morphology of the acrylic yarns coated with in situ formed silver 

nanoparticles was investigated by using the field emission scanning electron microscopy 

(SEM) technique. The treated yarn surfaces were scanned using a JOEL FESEM (Model: 

JSM-7000f, JEOL Ltd., Tokyo, Japan) at an accelerated voltage of 15 kV without any 

conductive coating. The elemental analysis of the Ag nanoparticle-treated acrylic yarns was 

carried out by an energy dispersive X-ray (EDX) using the same model of JEOL SEM at 15 

kV. To examine the cross-sectional surface of acrylic fibers, fiber bundles of straightened 

acrylic fibers were coated with a molten polycaprolactone polymer to form a round-shaped 

composite strand and then slices of fibers were cut perpendicular to the length of the fibers by 

a sharp knife. The cross-sectional area of fibers was scanned by the same FESEM in back- 

scattered mode. 

 
 

3. Results and discussion 
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3.1 CIE L*a*b* values and color strength 

 

 

As shown in Fig. 1, the color of the silver nanoparticle-treated acrylic yarns with various 

Ag concentrations and also at different Ag to TSC ratios is ranged from yellow, greyish green 

to bluish-black as shown in Fig. 1. Table 1 shows CIE L*a*b* values and color strength of 

colored acrylic yarns. 

 
 

3.1.1. Effect of concentration of Ag 

 

The effect of Ag concentration on the shades produced and color strength of acrylic yarns 

was investigated by varying the concentration of Ag from 0.5 to 3.0% owf using the Ag to 

TSC ratio of 1:2, as at this ratio stable Ag nanoparticles are formed [25]. Fig. 1 shows the 

change in color and also the color strength of the acrylic yarns with an increase in the 

concentration of Ag. The color of the yarns turned from bright white for the 0% Ag to very 

pale bluish, violet, light yellowish brown to deep yellowish brown for the 2.0% Ag. The color 

strength of the treated acrylic yarns increased with an increase in the concentration of Ag. 

Table 1 shows the CIE L*, a* and b* values of acrylic yarns treated with various 

concentrations of Ag. It is evident that the lightness value (L*) decreased and the color 

strength increased with an increase in the applied concentration of Ag. It was found that the 

minimum concentration of Ag to produce color in acrylic yarns is 2.0% owf as below than 

that concentration produced no color. At 0.5 % Ag, the inherent color of the acrylic fiber was 

only marginally changed and the produced color strength was only 0.05, which was even, 

lower than the undyed acrylic fiber. At the silver concentration, 1.0% owf produced color 

strength only 0.15 and even at 2% Ag concentration, the color strength produced was only 

1.32 (Fig. 1), which is considerably lower compared to the color strength produced by 
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synthetic dyes at this level of concentration. The produced color was dull, and the intensity of 

the color produced was nowhere near to the color strength of basic dyed acrylic yarns. 

The color, shape and the size of Ag nanoparticles depend on the concentration of Ag+ in 

solution and the size of nanoparticles increases with an increase in the concentration of Ag+ 

ions [26,27]. The increase in the concentration of AgNO3 increases the concentration of Ag 

nanoparticles and therefore the color strength of the treated fabric increased with an increase 

in the concentration of AgNO3. 

 

3.1.2. Effect of Ag to TSC ratios 

 

To know the effect of the increasing ratio of Ag to TSC on the color of the treated fabrics, 

we varied the Ag to TSC ratio from 2:1 to 1:8. Fig. 1 shows the change in color and also the 

color strength of acrylic yarns treated with 2.0% Ag at an increase in the ratio of Ag to TSC 

from 2:1 to 1:8. The treated yarns using Ag to TSC ratios 2:1 and 1:1 are almost colorless. 

The color of the yarns turned to pale brown, deep yellowish brown and bluish-black with an 

increase in the ratios of Ag to TSC up to 1:8. It can be seen that the color strength of acrylic 

yarns treated with 2.0% Ag increased with an increase in the Ag to TSC ratios. The acrylic 

fibers colored with in situ generated Ag nanoparticles using Ag to TSC ratios 2:1 and 1:1 

produced very poor color strength and the produced color was not stable as the produced 

silver nanoparticles were unstable. It can be seen that the value of L* decreased and the color 

strength of the acrylic fiber increased with an increase in the Ag to TSC ratio (Table 1). The 

deepest shade was achieved when the Ag to TSC ratio was 1:8, which is consistent with the 

reflectance and color strength data. It was found that 1:6 is the optimum Ag to TSC ratio as 

increasing the ratio more than 1:6 hardly increased the color strength. 

Kelly and Johnston found that the conversion of Ag+ to Ag nanoparticles are related to the 

concentration of TSC used as a reducing agent and at low concentrations of TSC only partial 
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conversion of Ag+ to Ag nanoparticles took place and increasing the concentration fully 

converted into Ag nanoparticles [15]. It is also known that to stabilize the formed Ag 

nanoparticles, the ratio of Ag to TSC should be at least 1:2. Our results also show that no 

color was produced when the ratio of Ag to TSC was less than 1:2. The increase in the ratio 

of Ag to TSC beyond 1:2 changed the color of the treated acrylic fibers from brown to bluish 

grey indicating that the size of the nanoparticles increased with an increase in the ratio of Ag 

to TSC. Thottoli and Unni also found that in the case of ZnS nanoparticle formation, the size 

of the nanoparticles increased with an increase in the concentration of TSC [28]. 

 

 
3.1.3. Effect of pH 

 

The effect of pH is very important as the pH has an effect on the adsorption of silver into 

acrylic fibers. The effect of pH on color strength was investigated at acidic to neutral pHs (3, 

5 and 7) as acrylic fibers have low resistance to alkali. Table 1 shows CIE L*a*b* values and 

color strength of acrylic fibers colored with silver nanoparticles at various pHs at 2.0% owf 

Ag for 2 hr at 90 °C. The acrylic yarns treated with 2.0% Ag using Ag to TSC ratio 1:2 at pH 

3 produced the deepest color and the one treated at pH 7 produced the lightest color. The 

color strength of the acrylic yarns decreased with an increase in the pH (Fig. 1). It is evident 

that the lightness values (L*) also increased with an increase in the pH. The color strength of 

the acrylic fiber dyed at pH 3, was 1.32, which decreased to 1.07 and 0.8 when the treatment 

pHs was increased to 5 and 7 respectively (Fig. 1). Therefore, pH 3 was the optimum pH for 

the coloration of acrylic with Ag nanoparticles. 

Dong et al. investigated reduction of AgNO3 to Ag nanoparticle at pH from 5.7 to 11.1 

and found that the reduction of the silver precursor (Ag+) was promoted with an increase in 

the pH [29]. They also found that at low pH mainly triangle or polygon shaped Ag 

nanoparticles were formed but at high pH, spherical and rod-like nanoparticles were formed. 
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Zhang et al. found only spherical shaped Ag nanoparticles were formed at pH 2.5 [30]. 

However, we found that the fabric sample treated at pH 3 showed the highest color strength. 

As the fibers are anionic, most of the applied Ag+ should be absorbed into the fiber at that pH 

resulting in the in situ formation of Ag nanoparticles. However, the absorption of Ag+ into 

acrylic fibers decreased with an increase in the pH of the bath resulting in the formation of 

Ag nanoparticles outside the fibers, and they did not absorb into the fibers at the increased 

pHs. Therefore, the color strength of the treated acrylic yarns decreased with an increase in 

the pH. 

 

 
3.1.4. Effect of reaction time 

 

Fig. 1 shows the effect of the dyeing time on the value of L* and the color strength of the 

acrylic fiber 2.0% Ag using the Ag to TSC ratios and at pH 3 for a different time. It is evident 

that the color strength increased with an increase the treatment time. The deepest shade was 

achieved when the treatment time was 120 min. It can be seen that even up to 90 min of 

treatment time the color strength produced was very low, which considerably increased in the 

final 30 min of the treatment. Dong et al. found that at low pH the reduction of AgNO3 to Ag 

nanoparticle is very slow which affects the nucleation and growth of Ag nanoparticles [29]. 

Therefore, the color strength of the treated fabric increased with an increase in the reaction 

time. 

 
 

3.1.5. Colorfastness to washing 

 

Colorfastness to washing grades of acrylic yarns treated with silver nanoparticles using 

various concentrations of Ag, Ag to TSC ratios and treatment pHs are shown in Table 1. It 

can be seen that the overall colorfastness to washing is excellent (grade 4–5) only if the 

applied Ag concentration is 2.0% owf and above and the Ag to TSC ratio is 1:2 and above. 
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Overall, the color fastness to washing of the colored acrylic yarns produced by in situ formed 

silver nanoparticles is reasonably good. 

It is known that Ag nanoparticles release Ag+ ions in an aqueous media and therefore 

fastness of the treatment should decrease with multiple times of washing [31]. It can be 

expected that most of the Ag nanoparticles adsorbed onto the surface of acrylic fibers 

(especially for the treatment carried out at high pH) would be released during washing. 

Therefore, the wool fabric treated at pH 3 should better fastness to washing compared to the 

acrylic fibers treated at pH 5 and 7. Similarly, the fabric treated using Ag to TSC ratio less 

than 1:2 also showed poor washing fastness due to the formation of unstable Ag 

nanoparticles. The good wash fastness indicates that the in situ formation of silver into the 

cationic acrylic fiber enhanced the durability of the treatment to washing. 

 
 

3.2. UV transmission through the fiber 

 

 

UV radiation levels are divided into three zones, UV-A (320–400 nm), UV-B (290–320 

nm) and UV-C (200–290 nm). Only UV-A and UV-B reach earth and therefore protection 

against UV-A and UV-B are important. Fig. 2 shows the effect of applied Ag concentration, 

Ag to TSC ratio and the pH on the UV transmission through the colored acrylic yarns. It is 

evident that the treatments with silver nanoparticles considerably reduced the UV 

transmission through the treated yarns. The UV transmission through the acrylic yarns 

decreased with an increase in the applied Ag concentration and the highest reduction in UV 

transmission was observed for the applied Ag concentration 3% owf and beyond that level, 

no further reduction was observed. The untreated acrylic fibers show low transmission of 

UV-B, which was considerably enhanced with the treatment with silver nanoparticles. At 290 

nm, the undyed acrylic yarns showed UV transmission only 17.72%, which reduced to 8.88% 
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for the yarns treated with 0.5% Ag. The highest reduction in UV transmission was observed 

for the applied Ag concentration 3% as at that concentration the UV transmission reduced to 

only 0.6%. Similarly, UV-A transmission also decreased with an increase in the applied 

concentration of UV-A and at 340 nm, the UV-A transmission reduced to only 1.9% from 

27.2% observed for the control acrylic fiber. It is also evident that the UV-A and UV-B 

transmission decreased with an increase in the Ag to TSC ratios. The ratios 2:1 and 1:1 

showed low UV transmission as they produced unstable silver nanoparticle but 1:2 and 

higher showed an excellent reduction in UV transmission as they produced very stable silver 

nanoparticles. The effect of pH of the treatment on the UV transmission showed that the 

fibers treated at pH 5 and 7 showed very similar UV-B transmission, which was much higher 

compared to the UV transmission observed for the acrylic fibers treated at pH 3. However, 

for the UV-A, the transmission decreased with a decrease in the pH of the treatment. The 

silver nanoparticle-treated acrylic yarns showed excellent UV protection capability. 

 
 

3.3. Surface resistivity 

 

 

The antistatic properties of synthetic fibers are quite important as the synthetic fiber-made 

fabric has a tendency to stick to the body due to static charge development in the fabric. The 

surface resistivity of silver nanoparticle-treated acrylic yarns is shown in Fig. 3. The surface 

resistance shown by the untreated acrylic yarn is very high (1200×109 Ohm/cm), i.e. it does 

not show any antistatic property. On the other hand, acrylic yarns colored with in situ formed 

silver nanoparticles using various concentrations of Ag showed considerably lower surface 

charge compared to the surface charge shown by the untreated acrylic yarns. The surface 

resistivity of the acrylic yarns decreased with an increase in the applied Ag concertation. The 

surface resistivity decreased from 1200×109 Ohm/cm for the control to 9.2×109 Ohm/cm for 
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the 2% owf concentration of silver. On the other hand, the ratio of Ag to TSC showed mixed 

results. The lowest surface resistivity was shown by the acrylic yarn that was treated with 

silver nanoparticles with an Ag to TSC ratio 1:2. It is known that when the Ag to TSC ratio is 

below 1:2, unstable silver nanoparticles are formed. Increasing the Ag to TSC ratio increased 

the surface resistivity. On the other hand, the reaction pH also showed some levels of effect 

on the surface resistivity of the acrylic yarns treated with silver nanoparticles. The surface 

resistivity of the acrylic yarns treated with Ag nanoparticles decreased with a decrease in the 

pH. The isoelectric point of acrylic fiber is 3 [32], i.e. below pH 3 the fiber surface is cationic 

and 3 is anionic. Therefore Ag is better absorbed at pH 3 or below compared to the higher 

pH. Therefore the yarns treated at pH 3 showed lower surface resistivity compared to the 

yarns treated at pH 5 and above. 

 
 

3.4. Elemental analysis by EDX 

 

 

Table 2 shows the elemental analysis of C, O, N, and Ag elements of untreated and silver 

nanoparticle-treated acrylic yarns. The EDX spectra and elemental mapping of C, O, N, and 

Ag are shown in Figs. S1 and S2 respectively (please see Electronic Supplementary 

Material). The control acrylic fibers show no presence of Ag, which is expected. On the other 

hand, for the acrylic yarns treated with various concentrations of Ag, the elemental Ag % 

increased with an increase in the applied concentration of Ag. The highest concentration was 

observed for the 3% owf of Ag and the lowest for the 0.5% of Ag. 

 
 

3.5. Mechanical properties 
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The effect of silver nanoparticle treatment on the tensile strength and elongation at peak of 

unmodified and silver nanoparticle-treated acrylic yarns using various concentrations of Ag, 

AG to TSC ratios and pHs are shown in Fig. 4. It can be seen that the tensile strength and also 

the elongation at peak initially decreased and then increased with an increase in the 

concentration of Ag. The strength decreased from 2.80 kgF for the untreated control to 2.12 

kgF for the applied concentration of 1.0% Ag. After which the tensile strength started to 

increase and reached 2.86 kgF for the 2.0% Ag, which is almost similar to the original 

strength of unmodified acrylic fibers. A similar trend was shown also for the elongation at the 

peak which decreased from 38.5% to 30.9% and then again increased to 36.2% with an 

increase in the concentration of Ag. Probably, Ag nanoparticles formed ionic bonding 

between the macromolecular chains of acrylic as the TSC-capped silver nanoparticles are 

anionic, which reduced the macromolecular chain mobility resulting in a decrease in the 

elongation of acrylic fibers. On the other hand, the increase in the Ag to TSC ratio, the 

strength increased to 2.86 kgF for the Ag to TSC ratio 1:2, which is similar to the strength of 

control acrylic fiber, which then again started to decrease with an increase in the Ag to TSC 

ratio. The elongation at peak also showed a trend consistent with the trend shown for the 

tensile strength. On the other hand, the tensile strength decreased with an increase in the pH 

of the treatment, although the effect was only marginal. It is envisaged that the formation of 

acrylic/Ag nanoparticle composite fiber caused the reinforcement of the acrylic fiber, which 

is consistent with the findings reported by Harifi and Montazer for the polyester fabric treated 

with iron-oxide nanoparticles [33]. 

 
 

3.6. Antibacterial properties 
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It is known that silver nanoparticle-treated textiles show very good antimicrobial 

performance against a wide range of bacteria [34,35]. Fig. 5 shows the durability of the 

antibacterial performance to multiple washing of acrylic yarns multi-functionalized with 

silver nanoparticles using 2% Ag against Staphylococcus aureus and Klebsiella pneumoniae. 

It is evident that the treated yarns showed excellent antibacterial activity against both types of 

bacteria and the excellent antimicrobial activity retained even after 20 washes. Before 

washing, the treated yarns showed 99.8 and 99.0% killing of Staphylococcus aureus and 

Klebsiella pneumoniae respectively. The corresponding values for the 20 washes were 99 and 

98.4% respectively. It can be seen that only marginal reduction of antibacterial activity was 

observed even after 20 times of washing, indicating excellent durability of the treatment. 

It was reported that for textiles treated with Ag nanoparticles unbound or loosely bound to 

textiles by a resin to the fiber surface, sometimes not only silver ions but also silver 

nanoparticles are released into the environment resulting in poor durability to laundering 

[36]. As in the case of acrylic fiber, the Ag nanoparticles were in situ formed and therefore it 

showed better durability to washing compared to non-substantive textiles treated with silver 

nanoparticles. 

 
 

3.7. FTIR 

 

 

Acrylic fibers used by the textile industry contain at least 85% polyacrylonitrile and the 

rests are other copolymers and additives added to polyacrylonitrile to enable their dyeing 

with conventional dyes [36]. Therefore, the FTIR spectrum of acrylic fiber not only contains 

the typical peaks associated with acrylonitrile but also peaks associated with other additives. 

Fig. 6 shows the ATR-FTIR spectra of undyed acrylic fiber and also acrylic fiber dyed with 

silver nanoparticles. The spectrum of undyed acrylic fiber shows typical acrylic fiber peaks at 
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1730 and 2242 cm-1  that are associated with nitrile (C N) and stretching vibration of (C=O) 

ester linkage respectively [37,38]. The carbonyl peak is coming from the carboxyl-containing 

copolymers or additives. The peaks at 1230, 1362, and 1457 cm-1  could be associated with 

the -CH2 wagging, C-H in-plane bending, and the –CH2 bending vibration of the 

polyacrylonitrile macromolecular backbone, respectively [39,40]. The small peaks at 1027 

and 2927 cm-1 are associated with sulfonate groups from possibly acryloamidopropane 

sulfonic acid additive and –CH2 stretching vibration of the polyacrylonitrile molecular chains 

respectively. The small peaks at 1653 and 1542 cm-1 represent the characteristic amide 

absorption bands. The Ag nanoparticle treated acrylic yarns also showed similar peaks but the 

intensity of the some of the peaks slightly decreased. 

 
 

3.8. Surface morphologies 

 

 

The surface of untreated and Ag nanoparticle-treated acrylic fibers was characterized by 

SEM to observe the assembly of silver nanoparticles formed on the fiber surface. Fig. 7 

shows SEM images of acrylic fibers multifunctionalized with in situ generated silver 

nanoparticles. As shown in Fig. 7, an assembly of sphere-shaped silver nanoparticles evenly 

spread on the fiber surface. It is evident that they are strongly bonded to the fiber surface as 

no loosely hold nanoparticle is observed. Some aggregation of silver nanoparticles is evident 

on fiber surface at 2% owf of Ag. There is a possibility that nanoparticles may also form 

inside the fibers. Therefore, to observe the cross-sectional surface of fibers, the cross-section 

of fibers were cut and examined by SEM. The optical micrographs of the cut surface of the 

treated fibers are represented in Fig. 8. It is evident that nanoparticles were mostly formed at 

the outer edge of the fibers, which consistent with the findings of other researchers [22]. 

However, it is evident not only at the outer edge of the fibers but also inside the fiber 
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nanoparticles were formed. The SEM images prove that silver nanoparticles are formed in 

situ in the fibers. 

 
 

4. Conclusions 

 

 

Multifunctional acrylic fibers were produced by treating with silver nanoparticles at 

various Ag concentrations, Ag to TSC ratios, pHs and time. It was found that the colored 

acrylic fibers were produced only if the Ag concentration was at least 1.5% owf and also the 

Ag to TSC ratio 1:2 and the treatment time was 120 min. The produced color varied from 

yellow to brown to bluish black. The color strength increased with an increase in the 

concentration of Ag and also with an increase in the Ag to TSC ratio. The silver nanoparticle- 

treated acrylic yarns showed excellent multifunctional properties as the silver nanoparticle- 

treated yarns showed excellent antimicrobial activity, UV radiation absorption, good 

antistatic property and also produced wash fast colored yarns. The lowest resistance was 

shown by the acrylic fiber dyed with 2.0% Ag with an Ag to TSC ratio 1:2 and treated for 

120 min. The acrylic fibers colored with silver nanoparticles showed excellent antimicrobial 

property against Staphylococcus aureus, and Klebsiella pneumoniae for at least 100 domestic 

washes. The developed treatment method can be used in textile industry to produce 

multifunctional acrylic fibers. 
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Abstract. A single treatment that makes textiles multifunctional is very attractive to the 

textile chemical processors. In this study, multifunctional acrylic fibers were produced by in 

situ forming silver (Ag) nanoparticles at various concentrations of Ag and trisodium citrate 

(TSC). The exhaustion of silver into acrylic fibers and the reduction of Ag to Ag 

nanoparticles were carried out at 90 °C, well above the glass transition temperature (Tg) of 

this fiber in water. The effect of the concentration of Ag, Ag to TSC ratio, pH, and reaction 
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time on the color strength, ultraviolet (UV) radiation absorption, surface electrical resistance 

and mechanical properties of the treated fibers were systematically investigated. It was found 

that if the concentration of Ag was less than 1% on the weight of acrylic fibers or the Ag to 

TSC ratio was less than 1:2, no color was produced. The color strength and UV radiation 

absorption capacity of the treated acrylic fibers increased with an increase in the 

concentration of Ag, and Ag to TSC ratio, and also with a decrease in the pH. On the other 

hand, the surface resistance of the treated acrylic fibers decreased with an increase in the 

concentration of Ag and a decrease in the treatment pH. The treated fibers showed excellent 

antibacterial activity, UV radiation absorption capacity, and also very good antistatic 

properties along with an excellent colorfastness to washing. Moreover, the developed 

treatment is highly durable to washing as after 20 washes the treated fibers lost their 

antibacterial activity only marginally. 

 
 

1. Introduction 

 

 

Polyacrylonitrile fiber (PAN), more commonly known as acrylic fiber, is a popular fiber 

for the manufacturing of apparels as well as rugs because of its softness, tactile feeling, low 

density, adequate elasticity, and excellent thermal insulating properties. They have replaced 

wool fibers for many applications including knitwear apparel and interior textiles. Acrylic- 

made fabrics have excellent resistance to pilling, and also the dyed fabric has brilliance in 

color with excellent color fastness properties. Acrylic fiber is also the main precursor for the 

manufacturing of carbon fiber, and 50% of the carbon fibers are commercially made from 

extra pure PAN fibers through carbonization [1]. However, the acrylic fibers used for apparel 

are not pure PAN fibers and one or more other co-monomers, such as ethylene derivatives, 

acrylic acid, methacrylic acid, styrene sulfonic acid and itaconic acid, are added to PAN to 
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enhance their dyeability. Copolymerization with anionic monomers introduces anionic groups 

in the fiber’s macromolecular chains and enables dyeing with cationic dyes. 

In the past decade, various investigations have been carried out to increase the range of 

applications of acrylic fibers in technical textiles. Antistatic property is an important aspect of 

technical textiles as acrylic fiber-made apparels are used by the people working in the service 

stations and electronic industries. The electrostatic discharge with sparks and shocks can 

instigate fire if it occurs in a gasoline service station. Static electricity causes an estimated 

US$5 billion/year worth of damage to electronic devices [2]. A range of treatments, including 

metal plating [3], glow-discharge plasma treatment in nitrogen [4] and polyaniline coating by 

vapor deposition polymerization [5], have been investigated to improve the poor antistatic 

properties of acrylic fibers but the success was very limited. It is also known that UV 

radiation can affect human skin, even can cause skin cancer and UV protective textiles can 

protect the wearer from the harmful effect of UV radiation. 

Antimicrobial properties are another important requirements desired by consumers to have 

in their apparel [6], which is not surprising as modern consumers are increasingly concerned 

about their health and wellbeing. A range of treatments including the addition of poly(styrene 

hydantoin) to the spinning dope of polyacrylonitrile followed by chlorination of the spun 

fibers [7], guanidine oligomers to the polyacrylonitrile spinning dope [8], and also the 

treatment with copper and zinc sulfates in combination with a direct dye [9], ionic silver 

treatment [10], and also the incorporation of silver nanoparticles to the spinning dope [11], 

have been investigated with some successes to make acrylic fibers antimicrobial. The 

hydantoin-based treatment is unsuitable for the dyed acrylic fibers as the chlorination 

treatment may degrade the dyes used for the dyeing. 

From ancient time, silver has been used as a broad spectrum antibacterial agent. Silver 

ions accumulate inside cells and bind to negatively charged components in proteins and 
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nucleic acids of the cell causing structural changes in bacterial cell walls, membranes, and 

nucleic acids affecting their viability [12]. Silver nanoparticles show antimicrobial activities 

by the time-dependent release of silver ions, which is directly related to the constant presence 

of free silver ions in the local microbial environment [13]. 

Silver nanoparticles of various sizes and geometric shapes can show various Plasmon 

bands producing different colors ranging from yellow, blue to red, all the trichromatic shades. 

The coloration of textiles with noble-metallic nanoparticles including gold and silver has 

been investigated to produce various colored fibers [14–17]. There are three types of 

coloration methods used for the coloration of textiles with metallic nanoparticles. Colored 

nanocomposite fibers are produced by the addition of metallic nanoparticles in the molten 

spinning dope of fibers, which is used for only the synthetic fibers. However the interactions 

between the polymers and nanoparticles are quite complex, such as the introduction of 

nanoparticles into polymers affects the molecular arrangements of the host polymers 

changing their flow behavior, orientation, crystallinity, toughness, and mechanical properties 

[18]. Similarly, the guest nanoparticles also experience various enthalpic and entropic 

interactions that govern their size and spatial distribution [18]. Various capping agents are 

used to mediate those interactions [19]. In another method, already formed metallic 

nanoparticles are exhausted into the fibers like the dyeing of textiles with pigment dispersion. 

However, the penetration of the nanoparticles is limited only to the outer surface or near to 

the outer surface of the fibers [20,21]. The other method is the exhaustion of metal ions into 

the fibers and in situ formation of metallic nanoparticles within the fibers by using 

appropriate reducing agents. Nam et al. formed silver-cotton nanocomposite fibers by 

exhausting silver ions into alkali-swollen cotton fibers [22] but the color of the fibers was 

only black. Dong and Hinestroza deposited negatively charged metallic nanoparticles of Au, 

Pd, and Pt onto positively charged cotton fibers by electrostatic assembly [21] to produce 
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multicolored fibers. Tang et al. synthesized colloidal silvers of various colors by using TSC 

and polyvinylpyrrolidone as a stabilizer, and sodium borohydride as a reducing agent to 

produce multicolored silk fibers [14]. Kelly and Johnston used TSC as a reducing as well as a 

stabilizing agent to form colored silver nanoparticles in wool fibers [15]. 

As the acrylic fibers are anionic, the cationic silver ions (Ag+) can readily be adsorbed into 

them and silver nanoparticles can be formed in situ, which will make the fibers 

multifunctional, i.e. can make them colored, antibacterial, antistatic, and UV protective, and 

also may improve the durability of the treatment to washing. The effect of AgNO3 

concentration, pH, and Ag to TSC ratio on the shade formed also has not been investigated 

for the in situ formation of silver nanoparticles in textiles. In this work, we are reporting a 

simple method to make acrylic fibers multifunctional by exhausting Ag+ into acrylic fibers 

and then converting them into colored silver nanoparticles by the reduction with TSC. The 

effect of changing the concentration of Ag, Ag to TSC ratio, treatment pH and time on the 

shade change, color strength, UV transmission through the fibers, and also the antibacterial 

and antistatic properties of the acrylic fibers are reported here. 

 
 

2. Experimental methods 

 

 

2.1 Materials 

 

 

Acrylic yarns marketed for knitwear manufacturing were purchased from the Reliance 

Industries Ltd (India). Silver nitrate, trisodium citrate, acetic acid, and sodium acetate were 

purchased from Kanto Chemicals (Japan) and were of analytical reagent grade. Sandoclean 

PC (a non-ionic detergent) and Sandozin MRN (a wetting agent) were purchased from 

Clariant Chemicals (Switzerland). The standard phosphate-free detergent used for the 
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assessment of color fastness to washing of the acrylic yarns was purchased from the Society 

of Dyers and Colourists (SDC), UK. 

 
 

2.2. Coloration with silver nanoparticles 

 

 

The supplied acrylic yarns were scoured with 1 g/l Sandoclean PC and 0.25 g/l Sandozin 

MRN at 90 °C for 30 min to remove any oil and dirt present in them. All Ag nanoparticle 

treatments were carried out in a Hisaka Circular laboratory dyeing machine (Hisaka Works 

Ltd., Osaka, Japan) using a 1:40 materials to water ratio. The bath was dosed with the required 

quantity of AgNO3 and 0.25 g/l Sandozin MRN. The pH of the bath was set at 3, 5 or 7 with 

acetic acid and sodium acetate. The temperature of the bath was then raised to 70 °C at 2 

°C/min, and then to 90 °C at 1 °C/min. It was reported that the dry acrylic fiber had a Tg of 92 

 

°C, which reduced to 72 °C in wet conditions [23]. Therefore, the peak exhaustion temperature 

selected is well above the Tg of acrylic fiber. The bath was held at that temperature for 15 

minutes. Then the required quantity of TSC was added and held for another 90 minutes. After 

completion of the treatment, the bath was cooled to 45 °C at 2 °C/min, the liquor drained and 

the treated fiber samples were rinsed with cold water for several times. They were then dried 

at 60 °C in an oven for 30 min. The multicoloration of PAN fibers were carried out by varying 

the concentration of silver nitrate in the dyebath on the weight of acrylic yarns (owf) used, the 

ratio of Ag to TSC, pH, and the dyeing time. 

 
 

2.3. Color measurement 

 

 

The color measurements of acrylic yarns dyed with various concentrations of Ag 

nanoparticles were carried out according to a published literature [24]. The reflectance values 
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and K/S values (at the appropriate wavelength of maximum absorption for each dyeing) of the 

dyed samples were measured using a Datacolor Spectraflash 500 spectrophotometer 

interfaced to a personal computer. Samples were measured under illuminant D65, using a 10° 

standard observer with UV component and specular both excluded. Yarns were evenly 

wrapped on a paperboard and four measurements were made at four different places of each 

sample and the average value is reported here. The color difference was 

spectrophotometrically measured by measuring CIE L*, a*, b* color difference (ΔE) between 

two different areas of the same sample under illuminant D65, using a 10° standard observer 

by a Minolta hand-held spectrophotometer (Konica Minolta Corporation, Japan). 

 
 

2.4. Mechanical properties 

 

 

The tensile strength of the control and silver nanoparticle-treated acrylic yarns were 

measured by using an Instron Tensile Testing Machine (Model 4501, Instron Corporation, 

Norwood, USA) at 20±2 ºC and 65±% relative humidity according to the ASTM Test Method 

D2343-02: Standard Test Method for Tensile Properties of Glass Fiber Strands, Yarns, and 

Rovings Used in Reinforced Plastics. The gauge length was 80 mm and the traversing speed 

was 50 mm/min. The samples were conditioned at the above-mentioned temperature and 

humidity for at least 2 days. At least 10 samples were measured for each treatment and the 

averages are reported here. The surface resistance of acrylic yarns was carried out at 20 °C 

and 45% relative humidity by a high resistance meter with a two-point probe (Model 

MEGARESTA Ⅱ-A, Shishido Electrostatic, Ltd., Japan) with SSD-A type probe at an 

applied voltage of 100 V. 

 

 

2.5. UV Absorption and colorfastness 
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The treated acrylic yarns were uniformly mounted on a cardboard with a big hole. Thermo 

Scientific UV-VIS Spectrophotometer (Model: Evolution 200, Thermo Fisher Scientific Inc., 

Waltham, USA) with a Diffuse Reflectance Measurement attachment was used to assess the 

percent transmission of light through the acrylic yarns at wavelength intervals up to 5 nm in 

the 290–400 nm spectral span. The color fastness to washing of the yarns was measured 

according to the ISO Test Method 105-C03 1987: Textiles – Tests for colorfastness – Part 

C03: Color fastness to washing: Test 3 by washing in a Gyrowash (Model 415/8) using the 

phosphate-free standard detergent. In both cases, fastness grades were assessed by comparing 

with the 3M Grey Scale. 

 
 

2.6. Fourier transform infrared spectroscopy (FTIR) 

 

 

The surface of Ag nanoparticle-treated acrylic yarns was characterized by using a 

Shimadzu FT-IR (Model Prestige 21, Shimadzu Corporation, Japan) with an attenuated total 

reflectance (ATR) attachment at a resolution of 4 cm-1 in the range from 650 to 4000 cm-1. 

The ZnSe crystal was used to record the ATR-FTIR spectra. 64 scans were signal-averaged. 

 
 

2.7. Assessment of antibacterial activity 

 

 

The antibacterial properties of acrylic yarns treated with Ag nanoparticles at various 

concentrations were assessed according to the AATCC Test Method 100–1999 (Antibacterial 

Finishes on Textile Materials: Assessment of) against Staphylococcus aureus (ATCC 6538) 

and Klebsiella pneumoniae (ATCC 4352). A bundle of treated acrylic yarns was placed in 

individual sterile Petri dishes. The nutrient broth was prepared with 5 g/l peptone and 3 g/l beef 
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extracts and the pH was adjusted to 6.8±0.1 with 1N sodium hydroxide solution. The bacterial 

culture of appropriate type diluted 100 times was transferred to the nutrient by using a 4 mm 

inoculating loop and was incubated at 37±2 °C for 24 hours. 1.0±0.1 ml inoculum was added 

to the sample in each petri dish. The Petri dishes were then incubated at 37±2 °C for 48 h. The 

number of bacteria before and after the incubation is measured by a colony counter and the 

reduction in bacteria is measured which is expressed in percentage. This method provides a 

quantitative assessment of the antimicrobial performance of antibacterial textile materials as it 

provides a percentage of killing of a particular bacteria. 

 
 

2.8. Surface morphologies 

 

 

The surface morphology of the acrylic yarns coated with in situ formed silver 

nanoparticles was investigated by using the field emission scanning electron microscopy 

(SEM) technique. The treated yarn surfaces were scanned using a JOEL FESEM (Model: 

JSM-7000f, JEOL Ltd., Tokyo, Japan) at an accelerated voltage of 15 kV without any 

conductive coating. The elemental analysis of the Ag nanoparticle-treated acrylic yarns was 

carried out by an energy dispersive X-ray (EDX) using the same model of JEOL SEM at 15 

kV. To examine the cross-sectional surface of acrylic fibers, fiber bundles of straightened 

acrylic fibers were coated with a molten polycaprolactone polymer to form a round-shaped 

composite strand and then slices of fibers were cut perpendicular to the length of the fibers by 

a sharp knife. The cross-sectional area of fibers was scanned by the same FESEM in back- 

scattered mode. 

 
 

3. Results and discussion 
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3.1 CIE L*a*b* values and color strength 

 

 

As shown in Fig. 1, the color of the silver nanoparticle-treated acrylic yarns with various 

Ag concentrations and also at different Ag to TSC ratios is ranged from yellow, greyish green 

to bluish-black as shown in Fig. 1. Table 1 shows CIE L*a*b* values and color strength of 

colored acrylic yarns. 

 
 

3.1.1. Effect of concentration of Ag 

 

The effect of Ag concentration on the shades produced and color strength of acrylic yarns 

was investigated by varying the concentration of Ag from 0.5 to 3.0% owf using the Ag to 

TSC ratio of 1:2, as at this ratio stable Ag nanoparticles are formed [25]. Fig. 1 shows the 

change in color and also the color strength of the acrylic yarns with an increase in the 

concentration of Ag. The color of the yarns turned from bright white for the 0% Ag to very 

pale bluish, violet, light yellowish brown to deep yellowish brown for the 2.0% Ag. The color 

strength of the treated acrylic yarns increased with an increase in the concentration of Ag. 

Table 1 shows the CIE L*, a* and b* values of acrylic yarns treated with various 

concentrations of Ag. It is evident that the lightness value (L*) decreased and the color 

strength increased with an increase in the applied concentration of Ag. It was found that the 

minimum concentration of Ag to produce color in acrylic yarns is 2.0% owf as below than 

that concentration produced no color. At 0.5 % Ag, the inherent color of the acrylic fiber was 

only marginally changed and the produced color strength was only 0.05, which was even, 

lower than the undyed acrylic fiber. At the silver concentration, 1.0% owf produced color 

strength only 0.15 and even at 2% Ag concentration, the color strength produced was only 

1.32 (Fig. 1), which is considerably lower compared to the color strength produced by 
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synthetic dyes at this level of concentration. The produced color was dull, and the intensity of 

the color produced was nowhere near to the color strength of basic dyed acrylic yarns. 

The color, shape and the size of Ag nanoparticles depend on the concentration of Ag+ in 

solution and the size of nanoparticles increases with an increase in the concentration of Ag+ 

ions [26,27]. The increase in the concentration of AgNO3 increases the concentration of Ag 

nanoparticles and therefore the color strength of the treated fabric increased with an increase 

in the concentration of AgNO3. 

 

3.1.2. Effect of Ag to TSC ratios 

 

To know the effect of the increasing ratio of Ag to TSC on the color of the treated fabrics, 

we varied the Ag to TSC ratio from 2:1 to 1:8. Fig. 1 shows the change in color and also the 

color strength of acrylic yarns treated with 2.0% Ag at an increase in the ratio of Ag to TSC 

from 2:1 to 1:8. The treated yarns using Ag to TSC ratios 2:1 and 1:1 are almost colorless. 

The color of the yarns turned to pale brown, deep yellowish brown and bluish-black with an 

increase in the ratios of Ag to TSC up to 1:8. It can be seen that the color strength of acrylic 

yarns treated with 2.0% Ag increased with an increase in the Ag to TSC ratios. The acrylic 

fibers colored with in situ generated Ag nanoparticles using Ag to TSC ratios 2:1 and 1:1 

produced very poor color strength and the produced color was not stable as the produced 

silver nanoparticles were unstable. It can be seen that the value of L* decreased and the color 

strength of the acrylic fiber increased with an increase in the Ag to TSC ratio (Table 1). The 

deepest shade was achieved when the Ag to TSC ratio was 1:8, which is consistent with the 

reflectance and color strength data. It was found that 1:6 is the optimum Ag to TSC ratio as 

increasing the ratio more than 1:6 hardly increased the color strength. 

Kelly and Johnston found that the conversion of Ag+ to Ag nanoparticles are related to the 

concentration of TSC used as a reducing agent and at low concentrations of TSC only partial 
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conversion of Ag+ to Ag nanoparticles took place and increasing the concentration fully 

converted into Ag nanoparticles [15]. It is also known that to stabilize the formed Ag 

nanoparticles, the ratio of Ag to TSC should be at least 1:2. Our results also show that no 

color was produced when the ratio of Ag to TSC was less than 1:2. The increase in the ratio 

of Ag to TSC beyond 1:2 changed the color of the treated acrylic fibers from brown to bluish 

grey indicating that the size of the nanoparticles increased with an increase in the ratio of Ag 

to TSC. Thottoli and Unni also found that in the case of ZnS nanoparticle formation, the size 

of the nanoparticles increased with an increase in the concentration of TSC [28]. 

 

 
3.1.3. Effect of pH 

 

The effect of pH is very important as the pH has an effect on the adsorption of silver into 

acrylic fibers. The effect of pH on color strength was investigated at acidic to neutral pHs (3, 

5 and 7) as acrylic fibers have low resistance to alkali. Table 1 shows CIE L*a*b* values and 

color strength of acrylic fibers colored with silver nanoparticles at various pHs at 2.0% owf 

Ag for 2 hr at 90 °C. The acrylic yarns treated with 2.0% Ag using Ag to TSC ratio 1:2 at pH 

3 produced the deepest color and the one treated at pH 7 produced the lightest color. The 

color strength of the acrylic yarns decreased with an increase in the pH (Fig. 1). It is evident 

that the lightness values (L*) also increased with an increase in the pH. The color strength of 

the acrylic fiber dyed at pH 3, was 1.32, which decreased to 1.07 and 0.8 when the treatment 

pHs was increased to 5 and 7 respectively (Fig. 1). Therefore, pH 3 was the optimum pH for 

the coloration of acrylic with Ag nanoparticles. 

Dong et al. investigated reduction of AgNO3 to Ag nanoparticle at pH from 5.7 to 11.1 

and found that the reduction of the silver precursor (Ag+) was promoted with an increase in 

the pH [29]. They also found that at low pH mainly triangle or polygon shaped Ag 

nanoparticles were formed but at high pH, spherical and rod-like nanoparticles were formed. 
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Zhang et al. found only spherical shaped Ag nanoparticles were formed at pH 2.5 [30]. 

However, we found that the fabric sample treated at pH 3 showed the highest color strength. 

As the fibers are anionic, most of the applied Ag+ should be absorbed into the fiber at that pH 

resulting in the in situ formation of Ag nanoparticles. However, the absorption of Ag+ into 

acrylic fibers decreased with an increase in the pH of the bath resulting in the formation of 

Ag nanoparticles outside the fibers, and they did not absorb into the fibers at the increased 

pHs. Therefore, the color strength of the treated acrylic yarns decreased with an increase in 

the pH. 

 

 
3.1.4. Effect of reaction time 

 

Fig. 1 shows the effect of the dyeing time on the value of L* and the color strength of the 

acrylic fiber 2.0% Ag using the Ag to TSC ratios and at pH 3 for a different time. It is evident 

that the color strength increased with an increase the treatment time. The deepest shade was 

achieved when the treatment time was 120 min. It can be seen that even up to 90 min of 

treatment time the color strength produced was very low, which considerably increased in the 

final 30 min of the treatment. Dong et al. found that at low pH the reduction of AgNO3 to Ag 

nanoparticle is very slow which affects the nucleation and growth of Ag nanoparticles [29]. 

Therefore, the color strength of the treated fabric increased with an increase in the reaction 

time. 

 
 

3.1.5. Colorfastness to washing 

 

Colorfastness to washing grades of acrylic yarns treated with silver nanoparticles using 

various concentrations of Ag, Ag to TSC ratios and treatment pHs are shown in Table 1. It 

can be seen that the overall colorfastness to washing is excellent (grade 4–5) only if the 

applied Ag concentration is 2.0% owf and above and the Ag to TSC ratio is 1:2 and above. 
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Overall, the color fastness to washing of the colored acrylic yarns produced by in situ formed 

silver nanoparticles is reasonably good. 

It is known that Ag nanoparticles release Ag+ ions in an aqueous media and therefore 

fastness of the treatment should decrease with multiple times of washing [31]. It can be 

expected that most of the Ag nanoparticles adsorbed onto the surface of acrylic fibers 

(especially for the treatment carried out at high pH) would be released during washing. 

Therefore, the wool fabric treated at pH 3 should better fastness to washing compared to the 

acrylic fibers treated at pH 5 and 7. Similarly, the fabric treated using Ag to TSC ratio less 

than 1:2 also showed poor washing fastness due to the formation of unstable Ag 

nanoparticles. The good wash fastness indicates that the in situ formation of silver into the 

cationic acrylic fiber enhanced the durability of the treatment to washing. 

 
 

3.2. UV transmission through the fiber 

 

 

UV radiation levels are divided into three zones, UV-A (320–400 nm), UV-B (290–320 

nm) and UV-C (200–290 nm). Only UV-A and UV-B reach earth and therefore protection 

against UV-A and UV-B are important. Fig. 2 shows the effect of applied Ag concentration, 

Ag to TSC ratio and the pH on the UV transmission through the colored acrylic yarns. It is 

evident that the treatments with silver nanoparticles considerably reduced the UV 

transmission through the treated yarns. The UV transmission through the acrylic yarns 

decreased with an increase in the applied Ag concentration and the highest reduction in UV 

transmission was observed for the applied Ag concentration 3% owf and beyond that level, 

no further reduction was observed. The untreated acrylic fibers show low transmission of 

UV-B, which was considerably enhanced with the treatment with silver nanoparticles. At 290 

nm, the undyed acrylic yarns showed UV transmission only 17.72%, which reduced to 8.88% 
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for the yarns treated with 0.5% Ag. The highest reduction in UV transmission was observed 

for the applied Ag concentration 3% as at that concentration the UV transmission reduced to 

only 0.6%. Similarly, UV-A transmission also decreased with an increase in the applied 

concentration of UV-A and at 340 nm, the UV-A transmission reduced to only 1.9% from 

27.2% observed for the control acrylic fiber. It is also evident that the UV-A and UV-B 

transmission decreased with an increase in the Ag to TSC ratios. The ratios 2:1 and 1:1 

showed low UV transmission as they produced unstable silver nanoparticle but 1:2 and 

higher showed an excellent reduction in UV transmission as they produced very stable silver 

nanoparticles. The effect of pH of the treatment on the UV transmission showed that the 

fibers treated at pH 5 and 7 showed very similar UV-B transmission, which was much higher 

compared to the UV transmission observed for the acrylic fibers treated at pH 3. However, 

for the UV-A, the transmission decreased with a decrease in the pH of the treatment. The 

silver nanoparticle-treated acrylic yarns showed excellent UV protection capability. 

 
 

3.3. Surface resistivity 

 

 

The antistatic properties of synthetic fibers are quite important as the synthetic fiber-made 

fabric has a tendency to stick to the body due to static charge development in the fabric. The 

surface resistivity of silver nanoparticle-treated acrylic yarns is shown in Fig. 3. The surface 

resistance shown by the untreated acrylic yarn is very high (1200×109 Ohm/cm), i.e. it does 

not show any antistatic property. On the other hand, acrylic yarns colored with in situ formed 

silver nanoparticles using various concentrations of Ag showed considerably lower surface 

charge compared to the surface charge shown by the untreated acrylic yarns. The surface 

resistivity of the acrylic yarns decreased with an increase in the applied Ag concertation. The 

surface resistivity decreased from 1200×109 Ohm/cm for the control to 9.2×109 Ohm/cm for 
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the 2% owf concentration of silver. On the other hand, the ratio of Ag to TSC showed mixed 

results. The lowest surface resistivity was shown by the acrylic yarn that was treated with 

silver nanoparticles with an Ag to TSC ratio 1:2. It is known that when the Ag to TSC ratio is 

below 1:2, unstable silver nanoparticles are formed. Increasing the Ag to TSC ratio increased 

the surface resistivity. On the other hand, the reaction pH also showed some levels of effect 

on the surface resistivity of the acrylic yarns treated with silver nanoparticles. The surface 

resistivity of the acrylic yarns treated with Ag nanoparticles decreased with a decrease in the 

pH. The isoelectric point of acrylic fiber is 3 [32], i.e. below pH 3 the fiber surface is cationic 

and 3 is anionic. Therefore Ag is better absorbed at pH 3 or below compared to the higher 

pH. Therefore the yarns treated at pH 3 showed lower surface resistivity compared to the 

yarns treated at pH 5 and above. 

 
 

3.4. Elemental analysis by EDX 

 

 

Table 2 shows the elemental analysis of C, O, N, and Ag elements of untreated and silver 

nanoparticle-treated acrylic yarns. The EDX spectra and elemental mapping of C, O, N, and 

Ag are shown in Figs. S1 and S2 respectively (please see Electronic Supplementary 

Material). The control acrylic fibers show no presence of Ag, which is expected. On the other 

hand, for the acrylic yarns treated with various concentrations of Ag, the elemental Ag % 

increased with an increase in the applied concentration of Ag. The highest concentration was 

observed for the 3% owf of Ag and the lowest for the 0.5% of Ag. 

 
 

3.5. Mechanical properties 
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The effect of silver nanoparticle treatment on the tensile strength and elongation at peak of 

unmodified and silver nanoparticle-treated acrylic yarns using various concentrations of Ag, 

AG to TSC ratios and pHs are shown in Fig. 4. It can be seen that the tensile strength and also 

the elongation at peak initially decreased and then increased with an increase in the 

concentration of Ag. The strength decreased from 2.80 kgF for the untreated control to 2.12 

kgF for the applied concentration of 1.0% Ag. After which the tensile strength started to 

increase and reached 2.86 kgF for the 2.0% Ag, which is almost similar to the original 

strength of unmodified acrylic fibers. A similar trend was shown also for the elongation at the 

peak which decreased from 38.5% to 30.9% and then again increased to 36.2% with an 

increase in the concentration of Ag. Probably, Ag nanoparticles formed ionic bonding 

between the macromolecular chains of acrylic as the TSC-capped silver nanoparticles are 

anionic, which reduced the macromolecular chain mobility resulting in a decrease in the 

elongation of acrylic fibers. On the other hand, the increase in the Ag to TSC ratio, the 

strength increased to 2.86 kgF for the Ag to TSC ratio 1:2, which is similar to the strength of 

control acrylic fiber, which then again started to decrease with an increase in the Ag to TSC 

ratio. The elongation at peak also showed a trend consistent with the trend shown for the 

tensile strength. On the other hand, the tensile strength decreased with an increase in the pH 

of the treatment, although the effect was only marginal. It is envisaged that the formation of 

acrylic/Ag nanoparticle composite fiber caused the reinforcement of the acrylic fiber, which 

is consistent with the findings reported by Harifi and Montazer for the polyester fabric treated 

with iron-oxide nanoparticles [33]. 

 
 

3.6. Antibacterial properties 
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It is known that silver nanoparticle-treated textiles show very good antimicrobial 

performance against a wide range of bacteria [34,35]. Fig. 5 shows the durability of the 

antibacterial performance to multiple washing of acrylic yarns multi-functionalized with 

silver nanoparticles using 2% Ag against Staphylococcus aureus and Klebsiella pneumoniae. 

It is evident that the treated yarns showed excellent antibacterial activity against both types of 

bacteria and the excellent antimicrobial activity retained even after 20 washes. Before 

washing, the treated yarns showed 99.8 and 99.0% killing of Staphylococcus aureus and 

Klebsiella pneumoniae respectively. The corresponding values for the 20 washes were 99 and 

98.4% respectively. It can be seen that only marginal reduction of antibacterial activity was 

observed even after 20 times of washing, indicating excellent durability of the treatment. 

It was reported that for textiles treated with Ag nanoparticles unbound or loosely bound to 

textiles by a resin to the fiber surface, sometimes not only silver ions but also silver 

nanoparticles are released into the environment resulting in poor durability to laundering 

[36]. As in the case of acrylic fiber, the Ag nanoparticles were in situ formed and therefore it 

showed better durability to washing compared to non-substantive textiles treated with silver 

nanoparticles. 

 
 

3.7. FTIR 

 

 

Acrylic fibers used by the textile industry contain at least 85% polyacrylonitrile and the 

rests are other copolymers and additives added to polyacrylonitrile to enable their dyeing 

with conventional dyes [36]. Therefore, the FTIR spectrum of acrylic fiber not only contains 

the typical peaks associated with acrylonitrile but also peaks associated with other additives. 

Fig. 6 shows the ATR-FTIR spectra of undyed acrylic fiber and also acrylic fiber dyed with 

silver nanoparticles. The spectrum of undyed acrylic fiber shows typical acrylic fiber peaks at 
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1730 and 2242 cm-1  that are associated with nitrile (C N) and stretching vibration of (C=O) 

ester linkage respectively [37,38]. The carbonyl peak is coming from the carboxyl-containing 

copolymers or additives. The peaks at 1230, 1362, and 1457 cm-1  could be associated with 

the -CH2 wagging, C-H in-plane bending, and the –CH2 bending vibration of the 

polyacrylonitrile macromolecular backbone, respectively [39,40]. The small peaks at 1027 

and 2927 cm-1 are associated with sulfonate groups from possibly acryloamidopropane 

sulfonic acid additive and –CH2 stretching vibration of the polyacrylonitrile molecular chains 

respectively. The small peaks at 1653 and 1542 cm-1 represent the characteristic amide 

absorption bands. The Ag nanoparticle treated acrylic yarns also showed similar peaks but the 

intensity of the some of the peaks slightly decreased. 

 
 

3.8. Surface morphologies 

 

 

The surface of untreated and Ag nanoparticle-treated acrylic fibers was characterized by 

SEM to observe the assembly of silver nanoparticles formed on the fiber surface. Fig. 7 

shows SEM images of acrylic fibers multifunctionalized with in situ generated silver 

nanoparticles. As shown in Fig. 7, an assembly of sphere-shaped silver nanoparticles evenly 

spread on the fiber surface. It is evident that they are strongly bonded to the fiber surface as 

no loosely hold nanoparticle is observed. Some aggregation of silver nanoparticles is evident 

on fiber surface at 2% owf of Ag. There is a possibility that nanoparticles may also form 

inside the fibers. Therefore, to observe the cross-sectional surface of fibers, the cross-section 

of fibers were cut and examined by SEM. The optical micrographs of the cut surface of the 

treated fibers are represented in Fig. 8. It is evident that nanoparticles were mostly formed at 

the outer edge of the fibers, which consistent with the findings of other researchers [22]. 

However, it is evident not only at the outer edge of the fibers but also inside the fiber 
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nanoparticles were formed. The SEM images prove that silver nanoparticles are formed in 

situ in the fibers. 

 
 

4. Conclusions 

 

 

Multifunctional acrylic fibers were produced by treating with silver nanoparticles at 

various Ag concentrations, Ag to TSC ratios, pHs and time. It was found that the colored 

acrylic fibers were produced only if the Ag concentration was at least 1.5% owf and also the 

Ag to TSC ratio 1:2 and the treatment time was 120 min. The produced color varied from 

yellow to brown to bluish black. The color strength increased with an increase in the 

concentration of Ag and also with an increase in the Ag to TSC ratio. The silver nanoparticle- 

treated acrylic yarns showed excellent multifunctional properties as the silver nanoparticle- 

treated yarns showed excellent antimicrobial activity, UV radiation absorption, good 

antistatic property and also produced wash fast colored yarns. The lowest resistance was 

shown by the acrylic fiber dyed with 2.0% Ag with an Ag to TSC ratio 1:2 and treated for 

120 min. The acrylic fibers colored with silver nanoparticles showed excellent antimicrobial 

property against Staphylococcus aureus, and Klebsiella pneumoniae for at least 100 domestic 

washes. The developed treatment method can be used in textile industry to produce 

multifunctional acrylic fibers. 
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Fig. 1. The effect of the applied concentration of Ag, Ag to TSC ratio, pH, and treatment time 

on the color strength of acrylic fiber multi-functionalized with silver nanoparticles. Ag conc. 

= 2.0% owf; Ag to TSC ratio = 1:2; pH = 3; and treatment time = 120 min. 



 

 
 

Fig.2. The effect of the concentration of Ag, Ag to TSC ratio, and pH on the UV transmission 

through the acrylic yarns multifunctionalized with silver nanoparticles. Ag conc. = 2.0% owf; 

Ag to TSC ratio = 1:2; pH = 3; and treatment time = 120 min. 



 

 
 

 

Fig. 3. Effect of the applied concentration of Ag (a), Ag to TSC ratio (b), pH (c) and 

treatment time (d) on the surface resistance of acrylic fiber multifunctionalized with silver 

nanoparticles. Ag conc. = 2.0% owf; Ag to TSC ratio = 1:2; pH = 3; and treatment time = 120 

min. 



 

 
 

Fig. 4. Effect of the applied concentration of Ag (a), Ag to TSC ratio (b), and pH on the tensile 

strength and elongation at peak of the acrylic yarns multifunctionalized with silver nanoparticles. 

Ag conc. = 2.0% owf; Ag to TSC ratio = 1:2; pH = 3; and treatment time = 120 min. 
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Fig. 5. The effect of multiple washing on the antibacterial activity of acrylic yarns multi- 

functionalized by treating with 2% owf Ag using Ag to TSC ratio 1:2 at pH for 120 min. 
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Fig. 6. ATR-FTIR spectra of untreated acrylic yarns and also acrylic yarns multifunctionalized 

with silver nanoparticles (0.5 and 2.0% owf of Ag) for 120 min using Ag to TSC ratio 1:2 at pH 3. 



 

 

 
 

 

Fig. 7. FESEM images of control acrylic yarns (top) and also acrylic yarns treated with 2.0% owf 

of Ag using Ag to TSC ratios of 1:6 (middle) and 1:8 (bottom) at pH 3 for 120 min. 



 

 
 

Fig. 8. Back-scattered cross-sectional SEM images of in situ formed silver nanoparticles 

inside wool fibers using the Ag concentration of 2.0% (owf) at Ag to TSC ratios 1:2, 1:4, and 

1:8 at pH 3 for 120 min. 



 

Table 1. 

 

CIE L*a*b* values and colorfastness to washing of acrylic yarns multifunctionalized with Ag 

nanoparticles at various conditions. 

 

Sample 

ID 

Concentration 

of Ag (% owf) 

Concentration 

of Ag (owf) 

Treatment 

time (min) 

Ratio 

of Ag 

to TSC 

pH L* a* b* Colorfastness 

to washing 

ratings 
Control 2.0 2 120 - - 80.68 1.92 1.95 0 

At different Ag concentrations 

Sam A 0.5 0.5 120 1:2 3 80.96 1.57 3.56 4 

Sam B 1.0 1 120 1:2 3 72.65 5.89 10.05 4 

Sam C 1.5 1.5 120 1:2 3 62.55 3.63 5.11 4 

Sam D 2.0 2 120 1:2 3 49.4 7.31 19.65 4-5 

 3.0 3 120 1:2 3     

At different TSC concentrations 

Sam E 2.0 2 120 2:1 3 76.24 3.3 6.6 2-3 

Sam F 2.0 2 120 1:1 3 72.37 4.1 15.77 2-3 

Sam G 2.0 2 120 1:2 3 52.51 5.91 18.14 4-5 

Sam H 2.0 2 120 1:4 3 49.4 7.31 19.65 4-5 

Sam I 2.0 2 120 1:6 3 46.43 5.84 21.98 4-5 

Sam J 2.0 2 120 1:8 3 38.53 2.56 9.11 4-5 

At different pH 

Sam K 2.0 2 120 1;2 3 49.4 7.31 19.65 4-5 

Sam L 2.0 2 120 1:2 5 57.16 5.28 17.61 4 

Sam M 2.0 2 120 1:2 7 60.31 5.28 18.18 4 

At different reaction time (min) 

Sam N 2.0 2 30 1:2 3 79.6 1.90 1.93 Not measured 

Sam O 2.0 2 60 1:2 3 73.45 4.76 3.50 Not measured 

Sam P 2.0 2 90 1:2 3 64.30 4.21 8.90 Not measured 

Sam Q 2.0 2 120 1:2 3 62.70 3.82 5.45 Not measured 



 

Table 2. 

 

EDX elemental analysis of untreated and multifunctionalized acrylic yarns with Ag 

nanoparticles using various concentrations of Ag. 

 

Concentration of silver Mass of elements (%) 

 

(% owf) C N O Ag 

0 63.03 30.9 4.85 0 

0.5 62.31 34.01 3.43 0.25 

1.0 61.66 35.51 2.45 0.38 

1.5 61.31 32.96 5.25 0.54 

2.0 62.58 32.87 3.61 0.93 

3.0 61.93 32.3 4.45 1.32 
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Fig. S1. EDX spectra of undyed acrylic yarns and also acrylic yarns treated with various 

concentration of Ag (% owf) using the Ag to TSC ratio of 1:2 for 120 min at pH 3. 



 

 

 

Fig. S2. Elemental distribution of C, N, O, and Ag in the acrylic yarns multifunctionalized by 

treating with 0 (a), 0.5 (b), 1.0 (c), 1.5 (d), 2.0 (e) and 3.0% (f) of Ag using Ag to TSC ratio 

1:2 for 120 min. 


