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Abstract 

We report a functional imaging study of drawing cartoon faces. Normal, untrained participants 

were scanned while viewing simple black and white cartoon line-drawings of human faces, 

retaining them for a short memory interval, and then drawing them without vision of their hand or 

the paper. Specific encoding and retention of information about the faces was tested for by 

contrasting these two stages (with display of cartoon faces) against the exploration and retention 

of random dot stimuli. Drawing was contrasted between conditions in which only memory of a 

previously viewed face was available versus a condition in which both memory and simultaneous 

viewing of the cartoon was possible, and versus drawing of a new, previously unseen, face. We 

show that the encoding of cartoon faces powerfully activates the face sensitive areas of the 

lateral occipital cortex and the fusiform gyrus, but there is no significant activation in these areas 

during the retention interval. Activity in both areas was also high when drawing the displayed 

cartoons. Drawing from memory activates areas in posterior parietal cortex and frontal areas. 

This activity is consistent with the encoding and retention of the spatial information about the face 

to be drawn as a visuo-motor action plan, either representing a series of targets for ocular fixation 

or as spatial targets for the drawing action. 

Keywords: functional imaging; face processing; spatial processing; visuo-

motor control; spatial memory 
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Introduction 

Drawing is a complex voluntary visuo-motor task that is performed by most adults, even if rather 

infrequently. In most people it is a stable long-maintained skill, with little or no active learning 

component, because we typically learn to draw during childhood and rarely try to improve in later 

life. Drawing therefore represents an interesting cognitive task to understand, and can be readily 

studied in the laboratory or in a functional brain scanner.  

Drawing also comprises a number of key cognitive processes that are still poorly understood. 

These can be functionally divided into the processes necessary to capture the target visual 

image, hold this in memory while transferring gaze and the pencil to the paper, execute of a 

drawing action, and visually inspect the drawn line. Our aim is to understand these steps in more 

detail. First the object to be drawn must be examined and decisions made about what features 

are to be drawn. For an artist drawing a face from life, this can be a highly complex decision 

process, as there are few clear contours or boundaries on the face other than, as examples, the 

hairline around the forehead, or the edges of the eyes or mouth. Hence the graded changes in 

depth, texture or contrast around the nose, for example, must be abstracted from the image on 

the retina. This decision process leads to selection of a few carefully chosen lines, which when 

drawn by a skilful artist can beautifully capture a likeness (Miall and Tchalenko 2001), or can 

exaggerate features to aid identification (Benson and Perrett 1994). The decisions about what to 

draw will change as the drawing progresses, so that at a trivial level features already drawn once 

are not duplicated. But at a more complex level, the judgements about what lines remain to be 

drawn are likely to be based on how the drawing is evolving, with new lines being chosen to 

compliment those already drawn, or so that drawn lines may be strengthened, extended or 

erased to ensure the likeness is captured well.  

Second, there must be a mental retention of the chosen features in some form, even if only for a 

few seconds, as the artist looks away from the model’s face to the paper and executes the next 

stage of drawing. It is not clear what form of representation might be used at the stage. 

Possibilities are that a mental visual image of the whole face or of a selected feature is retained, 
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perhaps by maintaining ongoing activity within the brain’s visual processing areas. Previous 

functional imaging work has shown that when visual imagery is employed, there is activation of 

primary and secondary visual cortical areas (Chen et al. 1998b; Ganis et al. 2004b; Ishai et al. 

2002a; O'Craven and Kanwisher 2000b). However, it may be that the short term memory is 

spatial rather than visual (Graziano and Gross 1998; Kakei et al. 2003). For example, it may be 

stored as one or more allocentric locations with respect to the rest of the scene or with respect to 

the progressing drawing on the page. These spatial locations might be used as reference 

positions for the planned line on the paper, and might include higher level abstractions such as 

some representation of the desired line length, orientation, curvature etc (De Winter and 

Wagemans 2006; Flanders et al. 2006a). Alternatively, it is possible that the information is stored 

as a motor plan, either encoded as future fixation points for the eyes or of the required hand 

action to produce the chosen line on the paper (Snyder 2000). This representation would also 

include spatial locations, but would be expected to be held within areas of the brain closely 

coupled to the voluntary control of eye and/or hand (Jeannerod and Decety 1995; Sirigu and 

Duhamel 2001). 

Finally, having chosen the line and its position, the artist executes the drawing on the paper, and 

in normal drawing conditions would use visual, proprioceptive and haptic signals to carefully 

guide the pencil’s motion, so that each new line adds a small piece to the developing drawing. 

The artist then either returns their gaze to the model to capture further features, or examines the 

drawing to monitor its progress before returning to the model. This cycle continues until the 

drawing is complete (Konecni 1991; Miall and Tchalenko 2001; Tchalenko et al. 2003).  

The aim of this paper is to decompose the drawing process into these separate steps (visual 

encoding, memory, and execution), and to record the functional activity in the brain during their 

performance. To simplify the task, and to allow easier comparisons with other brain-imaging 

studies, we have studied the copying of simple line drawings of cartoon faces by participants who 

are untrained in fine drawing. The cartoon faces were displayed on a screen in front of the eyes, 

but participants had no direct vision of either the paper or the pencil in their hands, allowing us to 

separate out the process of visual capture of the image from visual guidance of the hand. We 
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also separated the task into discrete blocks, with stages of visual encoding, memory and 

execution, so that standard block analyses of the functional data were possible. Finally, we 

challenged the participants to draw from memory in one condition, to directly copy without 

memory in another, and we allowed both memory and vision in a third condition, in order to test 

for functional differences in activity if the drawing is executed with or without memory. This design 

also allowed us to direct test the memory stage by comparing functional activation during a 

memory interval after viewing a face against an interval without memory of a cartoon face.   

 

 

Methods 

Participants  

Thirteen subjects including the authors RCM and EG took part in this study, after giving written 

informed consent. The study was approved by our local ethical review board and complied with 

the Declaration of Helsinki. Subject ages ranged from 18 to 50; 8 were male, and all were right-

handed. None of the subjects reported any unusual history of drawing, and they were not 

selected for drawing ability. 

The task involved viewing black and white line drawings of cartoon faces in profile (Figure 1), and 

drawing these faces on a hand held pad of paper using a short graphite pencil. The visual display 

screen was vertically positioned behind the subject’s head, viewed in a rear-view mirror with a 

viewing distance of approximately 60 cm, and subtended a horizontal and vertical visual angle of 

approximately 25x20 degrees. Subjects held the drawing pad with their left hand, partly supported 

on a pillow across their lap, but were not able to view the pad or pencil.  

A remote eye-tracker (ASL-504) was used to record left eye gaze position in 6 subjects but due to 

technical difficulties good quality gaze position was only available for 4 subjects. Limited analysis 

of the eye records have been attempted, mainly to confirm fixation during the required periods. 

Qualitative description of eye movement for all 6 subjects was possible during scanning by 
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observing either the image from the eye-camera or from the scene camera, which showed the 

gaze position superimposed as a cursor on an image of the display screen. 

 

 

FIGURE 1 NEAR HERE 

Tasks 

The experiment consisted of a block design with 8 different conditions which comprised a matrix 

of 3 different trial types and five blocks within each trial (Figure 2). The main design used two 

different encoding conditions (with or without a cartoon face to encode) and hence two 

subsequent retention conditions, but we included three drawing conditions in order to test drawing 

from memory without an on-screen image, drawing a new face without memory and a 

combination of these consisting of drawing a memorised face that was redisplayed on-screen. All 

trials had a common page turning condition. When presented as series of 5 related conditions, 

these constituted three different tasks, namely to draw a newly seen face without prior encoding 

to memory (NewDraw; Figure 2A), to encode and draw a cartoon face when seeing the face 

during encoding and drawing (CombinedDraw, Figure 2B), and to encode a face but draw it from 

memory (MemoryDraw, Figure 2C). Instruction cues about each block were provided on screen, 

just above the visual stimuli. The first block in each trial was a control or baseline condition 

designed to block visual imagery of any previously viewed faces and to block any rehearsal of 

face drawing; we have therefore used a challenging high-level baseline rather than the more 

common low-level resting baseline. As the functional activation in all the conditions of interest 

was measured relative to this baseline, we expect in some conditions some areas would have 

activity lower than the baseline. This is not to be interpreted as negative or inhibitory activity, but 

simply as lesser activation than in the deliberately cognitively challenging baseline condition. 

Hence in the baseline “Subtract” condition, two 4-digit random numbers between 1000 and 9999 

were presented on screen, the greater number above the smaller one, and participants were 

instructed by the cue “Subtract” to mentally subtract the smaller from the larger (Figure 2i). After 9 



TPIRCSUNAM DETPECCA

ARTICLE IN PRESS
Drawing Faces – FINAL REVISION Miall, Gowen & Tchalenko 15-10-07 7 

seconds, the screen was replaced by the cue phrase “Turn page and answer”, and they were 

instructed to attempt to write as much of the answer as they had calculated (Figure 2ii). This 

condition was necessary both to confirm that they were attempting the mental arithmetic, and was 

to provide the next blank page of the book, but is not of further interest. We define it as a 

separate condition to allow separation of the functional activity involved in the motor actions of 

turning the page and preparing the pencil from the previous mental arithmetic and from the 

subsequent face encoding and drawing tasks. After a further 6 seconds, the screen was replaced 

with either a cartoon face or by 39 randomly positioned black dots, and the cue words “Encode” 

or “Explore” respectively. Subjects were instructed to visually explore either image, with the 

intention to memorize the face for later drawing, or to gaze at each of the randomly positioned 

dots. Pilot studies in the laboratory had suggested that subjects typically made 2.6 fixations per 

second when encoding these faces for drawing, so the 39 dots ensured approximately equal 

numbers of fixations in both conditions. After 15 seconds, the screen was replaced with the single 

central cue “Fixate”, and subjects were instructed to fix their gaze on this word. This fixation 

period was designed as a short-term retention interval, in which the information about the viewed 

face was retained for subsequent drawing. Note that in both MemoryDraw and in CombinedDraw, 

the subjects were aware that the remembered cartoon was to be drawn, but they did not know 

whether or not it would be redisplayed on screen which only happened in CombinedDraw. After a 

further 15 seconds, the screen was replaced with either the same cartoon as previously displayed 

(CombinedDraw), with a new, unseen, cartoon (NewDraw), or with a new set of 39 random dots 

(MemoryDraw), with the on-screen instruction “Draw”. They were instructed to carefully draw the 

face, using the full 15s to complete the drawing, and would therefore either draw the same 

cartoon seen in the previous encoding stage and now redisplayed on screen (CombinedDraw), 

draw the previously encoded face while only seeing a set of random dots (drawing from memory, 

MemoryDraw), or draw a new face not seen before, having previously seen only the random dots 

(drawing without memory, NewDraw). These three drawing conditions were pseudo-randomly 

ordered and counterbalanced across subjects. The combined condition (drawing a previously 

encoded and currently redisplayed face) had been included to test for graded memory-dependent 
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activation across the three tasks, but as this was not evident, this condition is not reported in any 

detail in the current work. 

Before scanning, participants were given a printed sheet of instruction, and were trained in all 

conditions lying within a mock scanner of identical bore size to the MR scanner, and with an 

identical head coil, mirror, projection screen and support of their drawing pad. Verbal instruction 

was also given in the mock scanner, at the start of this practise session, as they went through the 

first one or two blocks of stimuli. Practise took 15 minutes, and used a set of left profiles of 

cartoon faces not used in the main experiment. In the main experiment a different set of cartoon 

faces were shown in right profile. After practise, subjects were then prepared for the main 

experiment, and two scanning runs were performed, each of 15 minutes duration. The sets of 

cartoon faces for each of the two runs were again different. 

 

Scanning protocol 

Functional MR imaging used a 3T Philips Achieva with 8-channel parallel head-coil and a Sense 

factor of 2.0. Fast echo planar T2*-weighted images were acquired with 49 interleaved axial 

slices and an acquisition matrix of 96 x 96 voxels (FOV=240×240×147mm) with each voxel 

subtending 2.5x2.5x3 mm (TE=35ms, flip angle=85, TR=3.0s). After 4 dummy volumes, 360 

volumes were acquired with scan duration of 18 minutes. The subject was then questioned to 

ensure task compliance, the pad of paper was replaced with a new pad, and the second scan 

was begun. Afterwards, a high resolution sagittal orientation 1x1x2 mm T1-weighted structural 

image was acquired in 4.5 minutes, and then the subject was brought out of the scanner and 

debriefed. 

 

Data analysis 

The functional data were analysed in Feat v5.64, using the FSL software library from FMRIB, 

Oxford (http://www.fmrib.ox.ac.uk/fsl). The initial four dummy volumes of each functional data 
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collection run were discarded to ensure T1 saturation had been achieved. Next, slice timing was 

corrected and the functional image series was motion corrected to the middle image of the set, 

using the MCFLIRT linear registration algorithm. Mean head motion with respect the reference 

image, averaged across all voxels, ranged from 0.22-1.02 mm (median 0.45 mm, n=26). The 6 

dimensional motion correction parameters calculated by MCFLIRT were saved to be used as 

additional covariates within the GLM model. The data were then filtered with a spatial low-pass 

filter using a Gaussian kernel with 5mm FWHM, and a Gaussian-weighted high-pass filter with a 

100s window. Next the brain was extracted from the structural image using the automatic brain 

extraction tool (BET), in order to register the functional data to the MNI-152 standard image, with 

7 DoF affine transform between the average functional image and the structural image, and a 12 

DoF affine transform between the structural image and the MNI standard. 

A GLM model was constructed using 8 explanatory variables (EVs) and the 6 motion parameters 

of no interest which were orthogonalized with respect to one another and all other EVs. The EVs 

represented the 8 conditions firstly: TurnPage (EV1), and the 7 conditions of interest, 

EncodeFace (EV2), ExploreDots (EV3), RetainFace (EV4), RetainDots (EV5), MemoryDraw 

(EV6), NewDraw (EV8), and CombinedDraw (drawing a displayed face that was previously 

encoded into memory, EV7). The mental arithmetic condition (Subtract) was the un-modelled 

baseline. The 8 EVs and their time derivatives were convolved with a gamma-derived 

haemodynamic response function (standard deviation of 3s, mean lag of 6s); the 6 motion EVs 

were not convolved. Within each individual functional imaging session, contrasts testing the 

relative activation of encoding faces versus exploring dots (EV2 – EV3), remembering faces 

versus dots (EV4 – EV5), and the activation of all three drawing conditions were calculated (EV6, 

EV7, EV8 versus baseline). In addition drawing from memory was contrasted with drawing 

without memory (EV6 – EV8) and visa versa (EV8 – EV6). 

At the second level of the analysis, contrasts from all 26 first level analyses were combined using 

FLAME (FMRIB's Local Analysis of Mixed Effects) stage 1 only (i.e., without the final MCMC-

based stage) (Beckmann et al. 2003; Woolrich et al. 2004). Z (Gaussianised T/F) statistic images 

were thresholded using clusters determined by Z>2.3 and a (corrected) cluster significance 
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threshold of P=0.05 (Worsley et al. 1992). Conjunctions of the two drawing contrasts (EV6 – EV8 

and visa versa) with the encoding of faces contrast  

(EV2 – EV3) were achieved by calculating the geometric mean of the two cluster-thresholded z-

statistic maps.  

Identification of the anatomical location of clusters used comparisons between the AAL (Tzourio-

Mazoyer et al. 2002) voxel labelled atlas, the Brodmann voxel-labelled atlas from MRIcro 

(http://www.sph.sc.edu/comd/rorden/mricro.html) and two neuro-anatomical reference atlases 

(Duvernoy 1999; Schmahmann et al. 2000). Group average activation levels for the local maxima 

within these clusters were compared across the 8 active conditions using the Featquery tool 

(FMRIB, Oxford). Target voxels were identified as those of highest statistical significance 

observed in the mean group data of specific contrasts between conditions, or of contrasts of 

individual drawing conditions against baseline; Featquery then inverts the transformation used to 

register each individual’s brain into the MNI standard space in order to locate the coordinates 

within the individual brain corresponding to the target coordinate from the group average, and 

determines the mean parameter estimate (percentage change in BOLD signal) across all subjects 

and both sessions for each subject. 

 

Results 

Overall performance  

All subjects correctly performed all conditions. Following each scanning session, the drawing 

pads were recovered from the subjects, and checked for completion of the drawings in relation to 

the instructed series. We also checked that they had attempted an answer to each subtraction 

question. There were considerable between-subject differences in the accuracy of answers, but 

there were no missing attempts. We cannot easily identify if or when the subjects were fatigued, 

but we found no overt evidence that their performance of any parts of the tasks were affected by 

fatigue. We visually inspected the head motion parameters, and found little evidence of greater 
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movement as the experiment progressed. Finally, subjectively, the later drawings appeared to be 

as complete at the end of the experiments as the earlier ones. 

 

Eye movement  

Detailed analysis of the gaze path, temporal pattern of fixations and the hand’s drawing 

movements made during these tasks is provided in the accompanying paper (Tchalenko and 

Miall 2007). In that study participants performed closely related tasks involving direct copying of 

the same the cartoon faces and viewing the faces both for a recognition task and for a retention 

task requiring subsequent reproduction of the drawing. The data for the latter condition are still 

under analysis. In Figure 3 we show the same face viewed and drawn by two subjects, one in the 

fMRI scanner and one in the laboratory. The pattern of fixations is remarkably similar, and we 

saw qualitative similarities in most cases. Hence we suggest that the overall pattern of eye 

movements was little different between the fMRI scan sessions and the laboratory sessions.  

All subjects whose eye movements were monitored maintained fixation during the retentions 

interval, as requested. Numbers of saccades made during encoding of faces and during 

exploration of the random dots was, as intended, equivalent. However, numbers of saccades 

made in the three drawing conditions were unbalanced. When drawing from memory, with 

random dots on the screen, they tended to make only a few saccades and some subjects fixated 

on only one or a few of the dots. In comparison, when drawing while viewing a displayed cartoon 

face, subjects made systematic eye movements, closely coupled to the execution of the drawing 

itself, as also seen in the laboratory and discussed in the companion paper (Tchalenko and Miall 

2007).  

 

Drawing – general observations 

Drawing within the scanner was of reasonable quality in most subjects, given the difficulties 

caused by having to hold a drawing pad across the lap, to draw without vision of the hand or the 
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paper, and with restricted lateral elbow motion because of the scanner bore. The main effect of 

these constraints was that drawings tended to be small, typically about 5-8 cm in extent (Figure 3, 

top row), and the spatial location of some drawn parts was inaccurate (e.g. the ear or eye might 

be misplaced within the outline of the face, Figure 3C).The drawings shown on the top part of 

Figure 3, performed during successful eye-tracking, were some of the better drawings produced 

in the scanner. As expected, drawing from memory (Figure 3A) was noticeably less accurate than 

when drawing the displayed face in either the combined drawing condition or the new drawing 

condition (Figure 3C). However in almost all cases, the drawings were recognisable, and key 

features of each cartoon were normally identifiable, for example the hairline, nose or chin, which 

were often the most characteristic features (Figure 1). Curiously the two drawings from memory 

shown in Figure 3A (drawn by different participants, one in the scanner and one in the laboratory) 

have the same mistake, as the hair quiff has been reversed; the eyebrow is also missing from the 

upper drawing.  

 

FIGURE 3 NEAR HERE 

Functional activations 

Analysis of the functional activation patterns used the high level task of mental arithmetic as the 

baseline condition. Hence we expected to find some conditions evoked lesser activity than the 

baseline, and indeed this was the case. However, our key results are made from comparisons 

between conditions, for example between encoding faces versus dots, and the negative activity 

relative to baseline is irrelevant in such comparisons. 

1. Encoding faces 

Contrasting the condition in which subjects viewed a new face and encoded it into memory for 

subsequent drawing (EV2) versus exploration of a field of random dots (EV3) lead to strong 

activation of extrastriate areas, including the bilateral lateral occipital cortex (Figure 4A) and 

fusiform face area (FFA, (Grill-Spector et al. 2004c)). There was also significant activation of right 
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superior parietal lobe (BA7), left inferior parietal cortex (BA 40), and bilateral ventral and dorsal 

premotor cortex including the frontal eye fields (Table 1). The activation pattern across all test 

conditions in the left face-sensitive region of the lateral occipital cortex (LO-faces) is shown in 

Figure 4C. While identified by the significant difference between the EncodeFaces and 

ExploreDots conditions, this area was active in all three conditions when the cartoon face was 

displayed on screen, i.e. EV2, 7 and 8. Very similar activation data was found for right LO-faces. 

Figure 4B,D shows the activation pattern in right premotor cortex (Cluster 2, Table 2), again 

showing high relative activity (less negative % signal) for all three conditions with the displayed 

face. The left superior parietal cortex, BA7, also demonstrated the same strong difference 

between the two encoding conditions (EV2 versus EV3; see Figure 6D) but also showed high 

activity during all three drawing conditions when active control of the right drawing hand was 

needed. Activation of the right FFA appears to overlap the anterior lobe of the cerebellum, and 

whether there is a clear secondary activation within the cerebellum was not certain for this 

comparison. 

 

FIGURE 4 NEAR HERE 

TABLE 1 NEAR HERE 

 

2. Retention of faces 

No significant differences were found for the retention interval, comparing the interval that 

followed encoding of faces versus the interval that followed exploration of random dots (EV4 – 

EV5). However, the activity in the lateral occipital cortex seen in encoding faces, while greatly 

reduced during retention (Figure 4C), was actually significantly lower than during retention of the 

random dots. Hence there is no evidence of any residual activation of LO or of FFA contributing 

to the memory of the face to be drawn. 
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3. Drawing 

The three active drawing conditions (drawing from memory, drawing without memory, and 

combined drawing with both memory and vision) showed grossly similar overall patterns of 

activation, including the left sensory motor cortical areas, supplementary motor area, premotor 

and parietal areas, and activation of right anterior and posterior lobes of the cerebellum. Thus the 

drawing task activated most of the dorsal stream areas considered to control and guide the hand, 

as well as frontal areas concerned with planning the sequence of hand actions. For the two 

drawing conditions in which there was a cartoon face on screen, CombinedDraw and NewDraw, 

there was no significant activation of the early visual areas, but strong activation was seen of the 

extrastriate areas including MT/MST and the lateral occipital face area (eg Figure 4C). The lack of 

significant additional activity in the primary visual cortex in these contrasts compared to baseline 

is thought to be because of the high levels of visual processing within the baseline mental 

arithmetic condition in which subjects were viewing the displayed numbers that were to be 

subtracted. 

 

3.1 Drawing from memory 

Comparison of the drawing from memory condition (EV6) versus drawing a face seen for the first 

time (EV8) identified activation differences due to drawing from memory. Any processes common 

to both tasks, such as execution and guidance of the hand movements, would not be seen in this 

contrast. Activity was found in dorsal and ventral prefrontal cortex, in the anterior cingulate cortex, 

and in the left inferior parietal cortex (Table 2).  

 

FIGURE 5 NEAR HERE 

TABLE 2 NEAR HERE 
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In order to identify areas involved in encoding and recall of the memory of the cartoon faces, in 

other words areas showing increased activation both during encoding of the faces (without active 

drawing) and during the subsequent recall of these encoded memories (during the active drawing 

stage, without on-screen display of the cartoon) we performed a conjunction analysis. This was 

the conjunction (Figure 6, yellow clusters) of the positive activation difference for encoding of 

faces versus dots (EV2-EV3; Figure 4) with the positive activation difference for drawing from 

memory versus drawing new (EV6-EV8; Figure 5) and identified common activation only in the 

left inferior parietal cortex (BA 40) and premotor cortex (BA44).  

 

FIGURE 6 NEAR HERE 

 

3.2 Drawing from vision 

Comparison of the condition of drawing a face seen for the first time (EV8) versus drawing from 

memory (EV6) identified activation differences due to active use of vision to guide the concurrent 

production of the unseen drawing on paper. As before, processes common to both drawing tasks, 

such as execution of the hand movements, would not be contribute to this contrast. There was, 

as expected, strong activation of bilateral visual areas including the fusiform face area, bilateral 

posterior parietal cortex and the frontal eye fields (Figure 7, Table 3). The latter may reflect 

uneven ocular-motor activity in the drawing from vision condition compared to drawing from 

memory. There was also very noticeable bilateral activation in the fusiform cortex (FFA) 

overlapping with a cluster in the anterior lobe of the cerebellum (as identified by an apparent 

second local maximum with the cerebellar volume, lobule VI) and a separate cluster within the 

posterior vermis, lobule VIII. There was also activation of the precuneus.  

 

FIGURE 7 NEAR HERE 

TABLE 3 NEAR HERE 
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To identify areas showing significant increased “on-line” processing of faces, in other words with 

activation both during viewing of faces during the encoding phase and during the subsequent 

drawing of the faces from the on-screen display, we performed a second conjunction analysis. 

This was the conjunction (Figure 6, blue clusters) of the positive activation difference for drawing 

new versus drawing from memory (EV8-EV6, Figure 7) with the positive activation for encoding of 

faces versus dots (EV2-EV3, Figure 4), and identified common activation in bilateral lateral 

occipital cortex (the LO-faces area), in the fusiform face area (FFA) and in superior parietal cortex 

(BA 7). As before, the cluster in the FFA appears to overlap with a cluster in the anterior lobe of 

the cerebellum.  

 

 

Discussion 

We aimed to decompose the process of copying a visual image of a face into several component 

steps: the encoding of a visual image into short-term memory, the retention of this memory, and 

the subsequent drawing of the memorized face. We therefore contrasted encoding of cartoon 

faces versus the visual scanning of a random field of dots, tested for differences in the ensuing 

retention interval, and contrasted drawing of the memorized images against drawing a newly 

presented image. The main results that have emerged are, first and as expected, that encoding of 

the visual image of a cartoon face involves considerable activation of extrastriate visual areas in 

the lateral occipital cortex as well as in the fusiform face area, consistent with the participants 

treating the image as a representation of a face. Second, we found no overt face-specific 

activation of occipital areas during the memory retention interval. This suggests that the visual 

information is not retained as continued activation within these visual face processing areas, but 

is instead converted into more refined visuo-motor or spatial signals in order to guide the 

subsequent drawing actions. Third, our data suggest that the act of drawing “blind” without direct 

vision of the hand or the paper is still a strongly visually guided action, dependent on visual input, 
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with powerful activation of the extrastriate visual cortex, parietal and premotor cortices and of the 

cerebellum. Finally, we found that there is activation of frontal cortical and anterior cingulate 

areas during drawing that we suggest contributes to planning and self-monitoring of the on-going 

drawing process, because the pencil and paper cannot be seen and thus monitoring is needed to 

correctly position lines on the page and to avoid repetition of component of the drawing that have 

been completed. In addition by performing a conjunction analysis we identified areas that were 

active in both encoding and in drawing from memory, which we suggest may be areas concerned 

with the short-term store and recall of the planned drawing actions. A second conjunction 

identified areas active in encoding and in drawing without memory, and may be areas concerned 

with processing the visual image, but not in storage. 

To discuss these processes in more detail, we start with the activity during initial encoding, The 

fusiform face area has been identified on the basis of its selective activation by faces over and 

above responses to other visual stimuli (such as cars, houses etc; (Grill-Spector et al. 2004b; 

Kanwisher et al. 1997). In the encoding phase, in which we contrast the activity when visually 

exploring the cartoon faces each seen for the first time against activity when exploring a randomly 

positioned set of random dots, we did see preferential activation of the FFA, but the activation 

was strongest in the lateral occipital cortex, in areas corresponding to the region which is 

sometimes known as LO-faces (Grill-Spector et al. 2004a). There was also broad activation 

across much of extrastriate visual cortex, and we suggest this is in part because our task involved 

active exploration of the display, with on average about 40 fixations across the scene. The effect 

of eye movement was balanced across the encoding faces and exploring dots conditions, but the 

motion across the retina of the more complex multiple line stimuli in each cartoon, compared to 

the dot stimuli, could not be controlled for. Interestingly, we also found significant activation of 

premotor areas (dorsal and ventral premotor cortex) and in the frontal eye fields. Assuming our 

control for the number of gaze shifts per second was approximately correct, these increased 

signals suggest that the process of encoding the face information involved higher motor and 

oculomotor areas concerned with planning actions of hand and eyes. It may therefore suggest 

that the facial information is encoded as a motor plan. 
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In the retention interval, when participants were fixating a cue on an otherwise empty screen, and 

were retaining the facial information for subsequent drawing, we had hypothesised that the short-

term memory trace might be seen as retained signal within the face-processing areas, in analogy 

to the activation in visual cortical areas when performing visual imagery (Chen et al. 1998a; Ganis 

et al. 2004a; Ishai et al. 2002b; O'Craven and Kanwisher 2000a). However, this was not found, 

and in fact the activation in the lateral occipital regions was depressed relative to the activation 

after the random dots (Figure 4C, EV4 vs 5). No significant retention activation was seen 

elsewhere in the brain. This negative result may reflect insufficient statistical power, with subtle 

activation at some locations in the visual brain being present but not strong enough to be 

identified as significant cluster activity. However, our scan protocol included 36 minutes of 

functional imaging per subject on a modern 3T scanner. In comparable experimental periods we 

have been able to detect very strong task related signals. Hence while lack of evidence of a 

BOLD signal is not evidence for no signal, we do not believe a positive activation during the 

retention period has been missed due to lack of statistical power. Having explored the relative 

signal strengths at all the maxima and at many local maxima within clusters that were identified in 

the other comparisons between conditions, we have found no evidence for any regions in the 

occipital cortex being more active in the interval after encoding faces than after encoding dots. 

Two frontal lobe regions were more active, albeit not identified as statistically significant clusters. 

These were in the right insula (x=40, y=24, z=-4) and right premotor cortex (x=56, y=34, z=16), 

again suggesting that the facial information was transformed and stored within motor areas, as 

planned actions. Thus we suggest the facial information is captured through a series of gaze 

fixations that locate features of the cartoon that are important for its subsequent rendering as a 

drawing. The gaze pattern during encoding of a cartoon face, under instructions that it must be 

later drawn, is quite different from the pattern of gaze fixations seen if participants are instructed 

to identify the face (Tchalenko and Miall 2007). It implies that shifting the gaze during the 

encoding processes stores the face as spatial locations for subsequent eye and hand actions. If 

correct, then we might not see any visual cortical activity associated with the retention of the 

“mental image”, as the image is already transformed into a plan of actions. 
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The suggestion of no pronounced occipital activity associated with the retention of faces was then 

reinforced by the comparison between drawing from memory, without an on-screen displayed 

face, versus the drawing of a newly seen face, without memory. Here significant activation was 

largely in frontal, premotor and parietal areas (Figure 5; Table 2). The activation in left inferior 

parietal cortex (BA 40) was highest when drawing from memory or when writing and page turning 

(Figure 5E), and was also higher when encoding faces than encoding dots. We suggest that 

these parietal and premotor areas are activated because the encoding process converts the 

spatial information gained while viewing the faces into a series of intended motor actions or as 

spatial targets for motor actions; we cannot separate these alternatives in this experiment. This 

interpretation is in line with the general theme of vision for action (Goodale and Milner 1992) and 

would invoke activity in dorsal stream areas of the brain. It is therefore interesting that the 

conjunction between activity seen in encoding and activity seen when drawing from memory, as 

shown in the yellow areas in Figure 6, was restricted to two regions, in premotor and parietal 

cortex. Both are involved in visually guided actions (Battaglia-Mayer et al. 2003; Caminiti et al. 

1999). Another area strongly activated during drawing from memory was the anterior cingulate 

(Figure 5D). This region was activated relatively highly during the retention interval and during 

drawing from memory, and was not active when drawing from displayed faces (EV7, EV8). We 

suggest this area may therefore be involved in planning and monitoring the drawing actions 

(Rushworth et al. 2007), in part to ensure that the sequence of lines drawn from memory is not 

repeated or skipped over. 

Drawing from visually displayed cartoon faces, not surprisingly, powerfully activated occipital 

visual areas, as the visual face information would be needed to guide the unseen drawing action 

of the hand. Interestingly, the activation in LO was greater in the new drawing condition than in 

the initial encoding stage (Figure 4C, EV8 vs EV2), suggesting that the need for active use of the 

visual face information, as well as potentially enhanced attention to vision, drives this area 

strongly. We also saw activation of cerebellar vermis (Figure 7B), superior parietal cortex, and 

premotor and supplementary motor areas, areas that would be necessary to control the hand 

actions. One interpretation of this motor activity is that it reflects the use of efference copy signals 
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of the hand (and/or) eye movements during the drawing action. This efference copy signal would 

be expected to help predict the outcome of the actions (Miall et al. 1993), and Land (Land 2006) 

has suggested that visual input might be stored in a buffer to help control the subsequent actions 

(Wilmut et al. 2006). This implies that visual inputs are available for a short period after each eye 

gaze, and this indicates that even though the hand is not seen, it is functionally guided by visual 

information. The same process is very likely to guide hand actions in other tasks, for example 

when we visually locate an object to be grasped, or a target on which to place a held object, but 

then turn our gaze away before the grasping or placing action is performed. Thus “visual 

guidance” might be thought to be a process that uses visually gathered information to guide hand 

action, even in the absence of direct visual control of the action, probably through a visuo-motor 

transformation in which the visual data defines the desired hand path (Flanders et al. 2006b; Miall 

et al. 2001; Miall and Reckess 2002; Reina and Schwartz 2003; Sergio and Scott 1998). There is 

also a growing literature that suggests that apparently uninformative visual input, which may even 

be limited to gazing at an obstructing panel blocking view of the hand, can improve manual 

performance (Newport et al. 2002), and this implies that the gaze position is used to help control 

manual actions, with or without concomitant visual information reaching the retina. 

In the conjunction of drawing without memory with the activity when encoding faces, we found 

common activation of the face sensitive areas in lateral occipital and fusiform cortex and in the 

superior parietal cortex (blue clusters, Figure 6). Again this suggests that the encoding process 

may be converting the displayed face into a series of spatial loci or as a series of planned actions 

(Andersen et al. 1997; Buneo and Andersen 2006). When drawing new, each identified line on 

the cartoon is captured and drawn in turn; when encoding for subsequent drawing, the same 

process may take place, but the intended action is delayed until the later drawing phase 

(Andersen and Buneo 2002). In the companion paper (Tchalenko and Miall 2007), we show that 

the gaze paths during encoding and drawing are often strikingly similar and hence seem to follow 

along the same sequence of chosen landmarks. However, when drawing from memory in the 

scanner, we displayed a random field of dots in order to attempt to balance the visual input. One 

consequence of this was that the participants’ eyes were often fixated on one or more dots for 
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long periods during the drawing phase (Figure 3B top). In contrast, in the laboratory conditions in 

which a blank sheet obstructed view of the hand, preliminary analyses indicate that the eyes 

sometimes moved in sequence to locations that approximately matched the drawn lines. Thus in 

some but not all participants the gaze movements offered a window onto the unfolding plan of the 

drawing from memory. Further work will be needed to explore this both in the laboratory and in 

the scanner. 

Like any imaging study, there are compromises that must be made in taking a behavioural task 

into the functional imaging environment. First, to reduce the overall duration, we decided to make 

the mental arithmetic and page turning conditions shorter than the others. This may have the 

effect of weakening the statistical comparisons  (Birn and Bandettini 2005), but in a complex 

design such as this one, where the baseline is contrasted with several other EVs, it is not clear 

what effect, if any, such relative changes in block duration would have. Moreover, the 

comparisons of most importance were between conditions of equal length, controlling only the 

factor of face or dot processing. Next, choice of a baseline condition is always problematic 

(Gusnard et al. 2001; Shulman et al. 2007). Most of the activations we report are less than the 

baseline. However, a simple, empty, rest condition would have allowed subjects to remember the 

faces from the preceding trial and given the strong task relevance of face processing we felt it 

quite likely that they would, given the chance during rest, actively recall these images. Hence we 

decided to use a demanding, visually based task that would conflict with visual face processing 

and would require working memory resources, in order to “wipe the slate clean” of any face 

processing. The fact that this is a demanding condition is irrelevant to the analysis, as it simply 

means the “baseline” is high, and hence the signal in some of the blocks of interest is negative 

with respect to this arbitrary level. As above, the most interesting results come from comparisons 

of encoding faces and dots, so the absolute level of signal is not considered. There could also be 

order effects which are unavoidable, as the encoding must always precede the retention stage, 

etc. Any temporal overlap from the PageTurn to the immediately following Encode condition, or 

between other condition pairs, is not a serious issue as we are only concerned with the relative 

differences in activation between, for example, encoding faces and encoding dots. They both 
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have a common time relation to the preceding Turn Page condition, and so any functional overlap 

from TurnPage to Encode would be common to both. Finally, the Retention period, in which we 

saw very little signal might be though of as a null condition, in which subjects were not on-task. 

However, they were explicitly instructed to remember the faces, and hence we hypothesised 

differential working memory during the retention of faces and the “retention” of the explored dots. 

Moreover, they did not know which trial type they were in; the presentation of faces in the encode 

stage could be followed by either the same face again (CombinedDraw) or by the dots 

(DrawMemory). Hence they had to memorise the face in both conditions. In the DrawNew 

condition the dots did cue them about the subsequent drawing condition, but they would not know 

what face they would subsequently see, as a new cartoon face was used in every trial.  

In summary, we have shown that the process of viewing a simple cartoon of a face, with the 

intention to subsequently reproduce the drawing, has a number of key elements. First, the facial 

information is captured through a task-specific pattern of gaze fixations on features of the 

cartoon, different from those made to identify the face (Tchalenko and Miall 2007) and, we 

suggest, this implies that shifting the gaze stores the face as spatial locations for subsequent eye 

and hand actions. Second, we could not identify visual areas concerned with retention of the 

signals, although there is a further hint that the premotor cortex is a possible site of retention as a 

motor plan. Subsequently, the drawing process recreates these planned actions as the eye and 

hand are guided by the retained visuo-motor information and the drawing proceeds under 

executive control from higher frontal areas. Finally we see this work as evidence that we can use 

functional imaging, in combination with eye and hand tracking, to decompose apparently complex 

visuo-motor tasks into functional stages. We are now in a position to combine simultaneous 

functional imaging with eye-tracking and 3-D tracking of the hand; more work will follow. 
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Figure 1: a selection from the 48 cartoons used in the study. 

 

Figure 2:  Task sequences. Each trial type (columns A-C) consisted of 5 blocks (rows i-v). 

The baseline Subtract condition (i) and TurnPage conditions (ii) were common across all 

trials albeit with different numbers on every trial. In the NewDraw trials (A) they were 

followed by an ExploreDots block (A,iii); hence the subsequent RetainDots block (A,iv) had 

no face memory component and was followed by the NewDraw condition (A,v) in which a 

new cartoon was displayed for immediate drawing. In the CombinedDraw trials (B), the 

same cartoon face was shown before (B,iii) and after (B,v) the retention condition, with a 

new cartoon on each trial. In the MemoryDraw trials (C) the cartoon was shown only once 

(C,iii) and the subsequent drawing performed from memory while only random dots were 

displayed on screen (C,v). The correspondence between conditions and the 8 explanatory 

variables used in the GLM model of the data is indicated by the labels EV1-8; the Subtract 

condition was the unmodelled baseline. 

 

Figure 3: Comparison of eye gaze patterns and drawings produced by two different 

subjects, one in the scanner (top row) and one in the laboratory (bottom row). The left 

columns in panels A and C show the cartoon images and the eye scan paths; the right 

columns show the produced drawings. Panel A was for the drawing from memory condition, 

in which the cartoon was viewed and then removed from vision. The drawings in the 

scanner (panel A, top) were produced while viewing a random field of dots; the drawing in 

the laboratory were with a blank easel.  Eye scan-paths during the drawing-from-memory 

phase shown in panel A are shown in panel B. Panel C shows cartoon faces draw without 

memory (while the cartoon was viewed for the first time, or “direct blind copying” as 

described in (Tchalenko and Miall 2007). The sizes of the circles on the scan-paths in all 

three panels indicate the duration of each fixation; durations were greatest when fixating 

the random dots. 

 

 Figure 4 Encoding faces: Panels A, C: functional activation identified by contrast of 

encoding of cartoon faces versus exploration of a field of randomly positioned dots. A: The 

cross-hairs are located in the face sensitive area of the lateral occipital (LO-faces) at x=-42, 

y=-86, z=-4 mm. B: right premotor cortex, coordinates x=40, y=0,z=42 mm (Table 1). 

Panels C,D: Mean activation levels (+/- 1SE, n=13) across the 8 task conditions (EVs 1-8), 
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for local maximum identified by the contrast shown in panels A, B respectively. EV1: 

TurnPage; EV2: EncodeFace; EV3: ExploreDots; EV4: RetainFace; EV5: RetainDots; EV6: 

MemoryDraw; EV7 CombinedDraw; EV8: NewDraw. The contrasts in panel A and B 

corresponds to the difference between the grey bars, EV2-EV3.  
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Figure 5 Drawing from memory versus drawing without memory. Functional activation 

identified by contrast of drawing of cartoon faces from memory (MemoryDraw) versus 

drawing new faces with on-screen display (NewDraw). The cross-hairs are located at A: 
x=-40, y=-48, z=32 mm; B: x=40, y=24, z=-4 mm; C: x=-46, y=6, z=18 mm; D: x=-4, y=34, 

z=26 mm (Table 2). Panels E and F: Mean percentage signal change (+/- 1SE, n=13) for 

local maxima shown in panels A and D;  the contrast in panel A corresponds to EV6-EV8; 

see Figure 4 for details of each EV. E: left inferior parietal cortex, ar coordinates shown in 

panel A; F: Anterior cingulate, at coordinates shown in panel D. 

 

 

Figure 6 Conjunction of encoding faces and drawing. Functional activation identified by 

conjunction between the activation seen during of drawing of cartoon faces from memory 

versus drawing new faces with on-screen display (EV6 – EV8; Figure 5) and the activation 

seen during encoding of faces versus exploration of dots (EV2 – EV3; Figure 4) is shown in 

yellow. Clusters are located in the premotor cortex, BA44 (A: x=-48, y=12, z=22 mm) and 

the inferior parietal cortex, BA 40 (B top: x=-38, y=-52, z=42 mm).  

The opposite conjunction between the activation seen during of drawing new faces with on-

screen display versus drawing of cartoon faces from memory (EV8 – EV6; Figure 7) and 

the activation seen during encoding of faces (EV2 – EV3; Figure 4) is shown in blue. 

Bilateral clusters are located in the faces sensitive LO-area, extrastriate cortex, BA 19 (A 
bottom), superior parietal cortex, BA 7 (B top) and in the fusiform face area, BA 37 (B: 
x=+/-40, y=-50, z=-20 mm). 

 

 

Figure 7 Drawing new versus drawing from memory. Functional activation identified by 

contrast of drawing of new faces with on-screen display (NewDraw) versus drawing cartoon 

faces from memory (MemoryDraw). The cross-hairs are located at A: x=-40, y=-48, z=32 

mm; B: x=-20, y=62, z=56 mm (Table 3). Panels C and D: Mean percentage signal 

change (+/- 1SE, n=13) for local maxima identified in this contrast, corresponding to EV8-

EV6; see Figure 4 for details of each EV. C: left SMA, BA 6, at coordinates x=-4, y=-22, 

z=54 mm (Table 3). D: Left superior parietal cortex, at coordinates shown in panel B (see 

also Table 3). 
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Cluster 
Vol cc 

Cluster 
P 

Z-
MAX 

X 
(mm)

Y 
(mm)

Z 
(mm)

BA Anatomical locus 

236.7 <0.00001 5.82 -42 -86 -4 19 Lateral Occipital L

  5.37 -44 -50 -24 FFA/Cerebellum Lobule VI L 

  5.32 36 -86 -10 19 Lateral Occipital R 

6.3 0.0004 4.04 40 0 42 6 Premotor cortex R

  3.73 30 6 44 6 Dorsal Premotor cortex R

  3.61 30 2 56 8 Frontal Eye Field R

  3.44 44 -2 38 6 Ventral Premotor cortex R

5.8 0.0008 4.51 54 -30 52 2 Somatosensory cortex R

  3.50 56 -24 40 3 Somatosensory cortex R

  3.49 62 -24 38 1 Somatosensory cortex R

 

 

Table 1: Comparison of functional activation during encoding of faces versus the 
exploration of a series of randomly positioned dots. Three clusters identified based on 

a z-score threshold of z=2.3 and a corrected cluster probability of p=0.05 are reported by 

volume and cluster-level probability. Local maxima within each cluster are identified by 

coordinates in the MNI-space, Broadman’s area number, and anatomical locus. 
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Cluster 
Vol cc 

Cluster 
P 

Z-
MAX 

X 
(mm)

Y 
(mm)

Z 
(mm)

BA Anatomical locus 

21.4 <0.00001 3.94 -46 6 18 6 Ventral premotor L

  3.90 -38 16 26 48 Frontal Inf Tri 
Ventral premotor L

  3.66 -54 10 2 48 Ventral premotor L

19.0 <0.00001 4.07 -4 34 26 32 Ant cingulate L

  4.03 0 30 36 24 Frontal Sup Medial

  3.93 -2 14 52 6 Supp Motor Area L 

  3.88 -2 26 30 24 Cingulum Mid L 

5.1 0.0036 3.60 40 24 -4 47 Frontal Inf Orb R
Insula

  3.28 52 14 12 44 Frontal Inf Oper_R

4.7 0.0064 3.44 -40 -48 32 40 Parietal Inf L

  3.21 -36 -56 40 40 Angular L

  3.19 -64 -38 38 40 SupraMarginal L

 

 

 Table 2: Comparison of functional activation during drawing faces from memory, 
without simultaneous display of the face versus drawing without memory, from a 
previously unseen simultaneous display. Clusters identified based on a z-score 

threshold of z=2.3 and a corrected cluster probability of p=0.05 are reported by volume and 

cluster-level probability. Local maxima within each cluster are identified by coordinates in 

the MNI-space, Broadman’s area number, and anatomical locus. 
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Cluster 
Vol cc 

Cluster 
P 

Z-
MAX 

X 
(mm) 

Y 
(mm) 

Z 
(mm) 

BA Anatomical locus 

274.4 <0.00001 6.22 -44 -86 -4 19 Occipital Inf L

  6.00 -30 -66 -20 - FFA/Cerebellum Lobe 
VI L 

  5.92 26 -88 -12 18 Occipital Inf R

  5.75 44 -60 -22 37 Fusiform R

  5.72 46 -82 -6 19 Occipital Inf R

19.0 <0.00001 4.09 0 52 -20 11 Rectus

  3.98 14 68 12 10 Frontal Sup R

  3.95 4 70 2 10 Frontal Sup Medial R

  3.93 -6 60 24 10 Frontal Sup Medial L

  3.85 -2 48 -14 11 Frontal Mid Orb L

  3.85 -16 58 30 9 Frontal Sup L

14.4 <0.00001 4.16 -20 -62 56 7 Parietal Sup L

  3.70 -38 -12 48 6 Precentral L

6.4 0.0006 3.65 -4 -22 54 6 Supp Motor Area L

  3.38 -10 -26 46 ? Cingulum Mid L

6.1 0.0011 3.32 56 -6 -20 21 Temporal Mid R

 

 

Table 3: Comparison of functional activation during drawing new, from a previously 
unseen displayed cartoon, versus drawing faces from memory without simultaneous 
display. Clusters identified based on a z-score threshold of z=2.3 and a corrected cluster 
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probability of p=0.05 are reported by volume and cluster-level probability. Local maxima 

within each cluster are identified by coordinates in the MNI-space, Broman’s area number, 

and anatomical locus. 
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