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Abstract: The Synchro-Extracting Transform technique (SET) can capture the changing dynamic in a 

non-stationary signal which can be applied for fault diagnosis of rotating machinery operating under 

varying speed or/and load conditions. However, the time frequency representation (TFR) of a signal 

produced by SET can be affected by noise contained in the signal, which can largely reduce the accuracy 

of fault diagnosis. This paper addresses this drawback and presents a new extraction operator to improve 

the energy concentration of the TFR of a noise contaminated multi-component signal by using an adap-

tive ridge curve identification process together with SET. The adaptive ridge curve extraction is deployed 

to extract the signal components of a multi-component signal via an iterative approach. The effectiveness 

of the algorithm is verified using one set of simulated noise-added signals and two sets of experimental 

bearing and gearbox defect signals. The result shows that the proposed technique can accurately identify 

the fault components from noise contaminated multi-component non-stationary machine defect signals. 

Keywords: nonstationary signal; time-frequency analysis; synchroextracting transform; ridge curve 

identification; fault diagnosis 

1. Introduction  

Critical components in the power transmission system of machinery such as rolling element bearings 

and gearboxes are prone to mechanical vulnerability under harsh continuous operation condition, which 

can lead to unexpected machine breakdown and associated financial losses [1, 2]. Condition monitoring 

(CM) techniques are an effective means to monitor, predict and alleviate unexpected machine failure. 

However, due to changing speed and load conditions during the machine operation, CM data/signals 

often demonstrate amplitude modulated (AM) and/or frequency modulated (FM) characteristics, which 

pose a challenge in the signal analysis for an accurate fault diagnosis using the traditional time or fre-

quency analysis techniques [3, 4]. 

Time-frequency analysis (TFA) techniques are effective tools to characterize the time-varying fea-

tures in a non-stationary signal [5]. Linear TFAs, such as short-time Fourier transform (STFT) and wave-

let transform (WT), are characterized by the inner product between a signal and a moving time window 

function or kernel functions. However, restricted by Heisenberg uncertainty principle, STFT and WT 

cannot produce an accurate resolution in both time and frequency domains simultaneously. To overcome 
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this limitation, Daubechies et al. [6] proposed a synchrosqueezing transform based on the wavelet trans-

form framework, termed as the SWT technique. An alternative synchrosqueezing transform (SST) tech-

nique was latter proposed by Thakur et al. [7] based on a STFT framework which can effectively extract 

the instantaneous frequencies (IFs) from a multi-component AM-FM signal. However, it has been 

pointed out by Iatsenko et al. [8] that synchrosqueezing transform (SST) can result in leakage of TF 

energy into other frequencies in the form of spiky TF support, and the noise contained in the signal can 

also be reassigned into the TFR of the signal.  

Inspired by the success of SST, Yu et al. [9] proposed a so-called synchroextracting transform (SET) 

technique to extract the TF coefficients directly from the estimated IF so that the transform can retain the 

signal reconstruction ability of the STFT while removing the low-energy noise interference. Nonetheless, 

SET implicitly assumes that the signal is a slow time varying signal. This implies that the technique is 

not effective when dealing with strong non-stationary signals. A multi-synchrosqueezing transform 

(MSST) [10] was then proposed to overcome the diffused energy problem in a TFA by employing a 

multiple iterative process together with SST. MSST reassigns the TF coefficients of SST to the TF tra-

jectories to produce an energy concentrated TFR, though the noise in the signal would also be squeezed 

and becomes severe after several iteration processes leading to a low readability of TFR. Yu et al. [11] 

further introduced a local maximum synchrosqueezing transform (LMSST) to generate a high energy 

concentrated TFR. The algorithm uses the TF energy matrix of the local maximum positions instead of 

the estimated IF to suppress the noise interference and to improve the readability of TFR [12]. A draw-

back of the algorithm is that the assignment operator in the transform is based on the local maximum 

energy coefficient in the TF energy matrix which needs prior knowledge. 

Ridge curve identification is an effective technique in dealing with noisy signals by extracting the 

components of interest individually from a multi-component signal [13-20]. For instance, Peng et al. [16] 

combined the ridge curve identification with polynomial chirplet transform (PCT) to improve the TF 

energy concentration and established an iterative termination condition using the Rényi entropy. Whereas 

in Refs. [21] and [22], the instantaneous frequencies (IFs) were estimated by time-frequency peak detec-

tion, the spline chirp transform and the generalized warbler transform respectively. The general paramet-

ric TFA technique proposed in Ref. [23] also uses a similar approach to estimate the instantaneous fre-

quencies for the corresponding parameter estimation. However, manual intervention is still required in 

the instantaneous frequency estimation process of multi-component signals using methods presented in 

the above-mentioned works. This has prompted the development of an adaptive algorithm presented in 

this paper. 

An adaptive signal analysis technique based on ridge curve identification and SET is proposed in this 

paper as an automated approach to signal analysis of noise contaminated multi-component non-stationary 

signals without the pre-requisite knowledge of the signals. The remainder of the paper is organized as 

follows: In Section 2, the theoretical base of SET technique is reviewed. Section 3 elaborates the detailed 



procedure of the proposed method and the framework. Numerical and experimental validations are pro-

vided in Sections 4 and 5, respectively. Conclusions are drawn in Section 6. 

2. An improved synchroextracting transform 

The main motivation of the proposed improved synchroextracting transform is to construct a new 

extraction operator via the ridge curve identification. The construction of the new operator is determined 

by adaptive ridge curve identification. The adaptive ridge extraction algorithm does not need to artifi-

cially determine the number of ridge extraction and can reduce interference items as far as possible on 

the premise of ensuring effective signal information. The flow chart of the ISET algorithm is shown 

below (see Fig. 1): 

 
Figure 1. The flowchart of the proposed adaptive algorithm. 
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2.1 A theoretical background of the synchroextracting transform 

For a given signal 𝑠𝑠(𝑢𝑢) ∈ 𝐿𝐿2(𝑅𝑅), the STFT of the signal considering an additional phase shift e−i𝜔𝜔𝜔𝜔 

is [9]: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) = � 𝑔𝑔(𝑢𝑢 − 𝑡𝑡)𝑠𝑠(𝑢𝑢)e−i𝜔𝜔(𝑢𝑢−𝑡𝑡)d𝑢𝑢,
+∞

−∞
(1) 

where 𝑔𝑔(𝑢𝑢 − 𝑡𝑡) is a moving time window; 𝜔𝜔 is the angular frequency. 

Let 𝑔𝑔𝜔𝜔(𝑢𝑢) = 𝑔𝑔(𝑢𝑢 − 𝑡𝑡)ei𝜔𝜔(𝑢𝑢−𝑡𝑡), according to Parseval’s theorem, Eq. (1) can be re-expressed in the 

frequency domain as 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) =
1
2π

� 𝐺𝐺𝜔𝜔∗ (𝜉𝜉) ∙ 𝑆𝑆(𝜉𝜉)d𝜉𝜉,
+∞

−∞
(2) 

where * denotes a complex conjugation, 𝐺𝐺𝜔𝜔(𝜉𝜉) and 𝑆𝑆(𝜉𝜉) are the Fourier transform of 𝑔𝑔𝜔𝜔(𝑢𝑢) and 𝑠𝑠(𝑢𝑢) 

respectively. Then, we can have: 

𝐺𝐺𝜔𝜔(𝜉𝜉) = � 𝑔𝑔(𝑢𝑢 − 𝑡𝑡)ei𝜔𝜔(𝑢𝑢−𝑡𝑡)e−i𝜉𝜉𝜉𝜉d𝑢𝑢.
+∞

−∞
(3) 

Let 𝑢𝑢 − 𝑡𝑡 = 𝜏𝜏 , Eq. (3) can be rewritten as: 

𝐺𝐺𝜔𝜔(𝜉𝜉) = e−i𝜉𝜉𝜉𝜉 � 𝑔𝑔(𝜏𝜏)e−i(𝜉𝜉−𝜔𝜔)𝜏𝜏d𝜏𝜏
+∞

−∞
= e−i𝜉𝜉𝜉𝜉𝐺𝐺(𝜉𝜉 − 𝜔𝜔), (4) 

where 𝐺𝐺(𝜉𝜉 − 𝜔𝜔) is the Fourier transform of the moving time window 𝑔𝑔(𝑢𝑢 − 𝑡𝑡). Substituting Eq. (4) into 

Eq. (2), the STFT of 𝑠𝑠(𝑢𝑢) can be re-expressed as: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) =
1
2π

� 𝐺𝐺(𝜉𝜉 − 𝜔𝜔) ∙ 𝑆𝑆(𝜉𝜉) ∙ ei𝜉𝜉𝜉𝜉d𝜉𝜉.
+∞

−∞
(5) 

Noting that the Fourier transform of a purely harmonic signal 𝑠𝑠(𝑡𝑡) = 𝐴𝐴 ∙ ei𝜔𝜔0𝑡𝑡 is: 

𝑆𝑆(𝜉𝜉) = 2π𝐴𝐴 ∙ δ(𝜉𝜉 − 𝜔𝜔0). (6) 

Substituting Eq. (6) into Eq. (5), we have: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) = 𝐴𝐴 ∙ 𝐺𝐺(𝜔𝜔 − 𝜔𝜔0) ∙ ei𝜔𝜔0𝑡𝑡 . (7) 

By differentiating (7) with respect to time to have: 

𝜔𝜔0(𝑡𝑡,𝜔𝜔) =
∂𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔)
i𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) , (8) 

where 𝜔𝜔0 is the estimated two-dimensional instantaneous frequency (IF). 



SET extracts the TF coefficients of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) only at the IF trajectory 𝜔𝜔 = 𝜔𝜔0 by using a synchro-

extracting operator 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) = δ�𝜔𝜔 − 𝜔𝜔0(𝑡𝑡,𝜔𝜔)� together with STFT as: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) ∗ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔). (9) 

2.2 An improved synchroextracting transform based on ridge curve identification 

The transform operator 𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) can effectively suppress the noise interference by retaining only 

the TF coefficients at 𝜔𝜔0 in the STFT. However, it has been pointed out in Ref. [24] that the SET operator 

cannot produce an accurate estimate of the IFs if the signal is characterized by strong frequency modu-

lation or the signal is contaminated by strong noise. In contrast, a ridge curve identification is robust 

against the noise contamination in the IF estimation. As a result, this study binds the ridge curve identi-

fication with SET, and proposes a new extraction operator n𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) as follows: 

𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) = δ�𝜔𝜔 −�𝑅𝑅𝑘𝑘

𝐾𝐾

𝑘𝑘=1

� , (10) 

where ∑ 𝑅𝑅𝑘𝑘𝐾𝐾
𝑘𝑘=1  is the estimated IF by ridge curve identification from the TFR calculated using STFT, K 

is the number of components to be extracted.  

Using the new extraction operator, an improved synchroextracting transform can be obtained: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡,𝜔𝜔) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑡𝑡,𝜔𝜔). (11) 

A dynamic path optimization-based ridge detection (DPORD) algorithm [13] is adopted in this study 

to extract the ridge components of a multi-component signal adaptively, which is implemented in two 

major steps. In the first step, it extracts the peaks in the 𝑇𝑇𝑇𝑇(𝑡𝑡,𝜔𝜔) of the signal using the following: 

�
𝑚𝑚𝜈𝜈(𝑡𝑡): �

[𝜕𝜕𝜔𝜔|𝑇𝑇𝑇𝑇(𝑡𝑡,𝜔𝜔)|]𝜔𝜔=𝑚𝑚𝜈𝜈(𝑡𝑡) = 0
[𝜕𝜕𝜔𝜔2 |𝑇𝑇𝑇𝑇(𝑡𝑡,𝜔𝜔)|]𝜔𝜔=𝑚𝑚𝜈𝜈(𝑡𝑡) < 0

𝑄𝑄𝜈𝜈(𝑡𝑡) = �𝑇𝑇𝑇𝑇�𝑡𝑡,𝑚𝑚𝜈𝜈(𝑡𝑡)��       �𝜈𝜈 = 1,2, … ,𝑁𝑁𝑝𝑝�
, (12) 

where 𝑚𝑚𝜈𝜈(𝑡𝑡) denotes the frequency at the peak position for each time instant, 𝑄𝑄𝜈𝜈(𝑡𝑡) represents the am-

plitudes of 𝑇𝑇𝑇𝑇�𝑡𝑡,𝑚𝑚𝜈𝜈(𝑡𝑡)�, and 𝑁𝑁𝑝𝑝 is the total number of peak points in the entire TF domain.  

In the second step, the locations of the actual ridge points at each discrete time are identified from 

the peak points 𝑁𝑁𝑝𝑝 based on the following process. Curve extraction selects a sequence of peak points 

corresponding to each individual component from all possible trajectories judging by a cost function 

which forms a specific ridge curve [13]. Specific median function, med(𝑓𝑓(𝑡𝑡)) and interquartile range 

function, IQR(𝑓𝑓(𝑡𝑡)) of an arbitrary function 𝑓𝑓(𝑡𝑡) are defined in Ref. [13] to construct the cost function 

according to the signal characteristics as:  

med(𝑓𝑓(𝑡𝑡)) = perc0.5[𝑓𝑓(𝑡𝑡)], (13) 

and 

IQR�𝑓𝑓(𝑡𝑡)� = perc0.75[𝑓𝑓(𝑡𝑡)] − perc0.25[𝑓𝑓(𝑡𝑡)], (14) 
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where perc𝑝𝑝 denotes the 𝑝𝑝th quantile of 𝑓𝑓(𝑡𝑡). The cost function is then constructed as: 

𝐹𝐹[… ] = log𝑄𝑄𝜈𝜈(𝑡𝑡𝑛𝑛) − α �
∆𝑚𝑚𝜈𝜈(𝑡𝑡𝑛𝑛) − med(∆𝑚𝑚𝜈𝜈)

IQR(𝑚𝑚𝜈𝜈) � − 𝛽𝛽 �
𝑚𝑚𝜈𝜈(𝑡𝑡𝑛𝑛) − med(𝑚𝑚𝜈𝜈)

IQR(𝑚𝑚𝜈𝜈) � , (15) 

where α and β are the adjustable parameters to suppress the atypical variation of the frequency difference 

between two subsequent peak positions of the ridge [13], ∆𝑚𝑚𝜈𝜈(𝑡𝑡𝑛𝑛) = 𝑚𝑚𝜈𝜈(𝑡𝑡𝑛𝑛) −𝑚𝑚𝜈𝜈(𝑡𝑡𝑛𝑛−1),𝑛𝑛 = 1, … ,𝑁𝑁. 

Thus, the ridge 𝑅𝑅𝑘𝑘 can be constructed using the following: 

𝑅𝑅𝑘𝑘 = argmax
{𝑚𝑚1 ,𝑚𝑚2 ,   … ,𝑚𝑚𝑁𝑁}

�𝐹𝐹[𝑡𝑡𝑛𝑛,𝑄𝑄𝑚𝑚(𝑡𝑡𝑛𝑛),𝑚𝑚𝜈𝜈(𝑡𝑡𝑛𝑛), med(𝑚𝑚𝜈𝜈), IQR(𝑚𝑚𝜈𝜈), med(∆𝑚𝑚𝜈𝜈), IQR(∆𝑚𝑚𝜈𝜈)]
𝑁𝑁

1

, (16). 

DPORD can effectively overcome the noise interference to accurately extract the ridges from a multi-

component signal. However, the construction of the 𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡,𝜔𝜔) requires the prior knowledge of the 

component number K to be extracted from the signal, which is usually unknown for signals acquired 

from practical industrial sources. This then prompts the development of an adaptive algorithm to be 

presented in the next section.  

2.3 An adaptive ridge curve identification for multi-component signals 

Ridge curve identification algorithm extracts components from a multi-component signal in sequence 

where the ridge having the maximum cost function value is extracted first, which will then be subtracted 

from the original signal to yield a residual signal for the next ridge extraction process. The process will 

terminate when the last component is extracted from the signal. Thus, a prior knowledge of the compo-

nent number contained in the signal is essential for the process. Nevertheless, such information is usually 

unavailable for data from industrial sources. To overcome this practical restraint, this work proposes an 

adaptive algorithm based on the permutation entropy of the signal. Permutation entropy is an average 

entropy parameter measuring the complexity of a time series data where a higher entropy indicating a 

more complexity of the time series [25].  

The detailed process of the adaptive algorithm is elaborated below: 

Step1: Calculate the kurtosis value of a signal to determine whether it contains fault induced impulse 

components: 

𝐾𝐾𝐾𝐾𝑟𝑟 =
E(𝑠𝑠(𝑡𝑡) − 𝑢𝑢)4

𝜎𝜎4
, (17) 

where E represents the expectation operator, 𝑠𝑠(𝑡𝑡) is the input signal; 𝑢𝑢 is the mean value of the signal 

𝑠𝑠(𝑡𝑡); and 𝜎𝜎 is the standard deviation of the signal.  

Step 2: Judge whether a signal contains fault induced impulses using the following condition [26]: 

𝐾𝐾𝐾𝐾𝑟𝑟 > 3. (18) 



Step 3: Extract the first (dominating) component 𝐶𝐶1(𝑡𝑡) from the signal using the ridge curve identifica-

tion algorithm, and then subtract the component from the original signal to form a subtracted signal 

𝑠𝑠(1)(𝑡𝑡) for the next extracting process.  

Step 4: Reconstruct the signal 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑡𝑡) using the extracted component from the kth ridge extraction: 

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑡𝑡) = � 𝐶𝐶𝐾𝐾(𝑡𝑡)

𝐾𝐾=𝑘𝑘

𝐾𝐾=1
. (19) 

Step 5: Calculate the permutation entropy [25, 27] 𝑝𝑝𝑝𝑝𝑘𝑘 of the reconstructed signal 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑡𝑡). A phase 

space reconstruction can be performed for 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑡𝑡), resulting in the following matrix [25]: 

⎣
⎢
⎢
⎢
⎢
⎡ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (1) 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (1 + 𝛵𝛵)

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (2) 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (2 + 𝛵𝛵)
⋯

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (1 + (𝑚𝑚 − 1)𝛵𝛵)
𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (2 + (𝑚𝑚 − 1)𝛵𝛵)
⋮ ⋱ ⋮

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑗𝑗) 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (𝑗𝑗 + 𝛵𝛵)
𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (𝑀𝑀) 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑀𝑀 + 𝛵𝛵)

⋯
𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (𝑗𝑗 + (𝑚𝑚 − 1)𝛵𝛵)
𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (𝑀𝑀 + (𝑚𝑚 − 1)𝛵𝛵)⎦
⎥
⎥
⎥
⎥
⎤

, (𝑗𝑗 = 1,2,3, … ,𝑀𝑀), (20) 

where 𝑚𝑚 and Τ are the embedding dimension and delay time respectively, 𝑀𝑀 = 𝑛𝑛 − (𝑚𝑚 − 1)𝛵𝛵. Each 

row of the matrix can be regarded as a reconstructed signal component, and the 𝑚𝑚 vectors in the 𝑗𝑗th row 

are rearranged in an ascending order, i.e., [𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑗𝑗 + (𝑖𝑖1 − 1)𝛵𝛵) ≤ 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(𝑘𝑘) (𝑗𝑗 + (𝑖𝑖2 − 1)𝛵𝛵 ≤ ⋯ ≤

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) (𝑗𝑗 + (𝑖𝑖𝑚𝑚 − 1)𝛵𝛵], where 𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑚𝑚 correspond to the position of each element in the row. Ac-

cording to Ref. [25], a preferrable range of 𝑚𝑚 = 3~7 was suggested since a smaller value of m in the 

phase space reconstruction matrix will reduce its ability in detecting the mutability of the signal, while a 

larger m will substantially increase the computation time. As a result, after a few errors and trials, 𝑚𝑚 = 6 

and 𝛵𝛵 = 3 (the delay time) are chosen in this work. Thus, any row vector yields a set of symbolic se-

quence: 

𝑆𝑆(𝑗𝑗) = [𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑚𝑚]. (21) 

Step 6: Calculate the probability distribution 𝑃𝑃1, 𝑃𝑃2, … ,𝑃𝑃𝑔𝑔, ∑ 𝑃𝑃𝑔𝑔𝑚𝑚!
𝑔𝑔=1 = 1 for all symbolic sequences, 

where 𝑃𝑃𝑔𝑔 is the probability of occurrence of symbolic sequence obtained after the reconstruction of the 

time-domain signal 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
(𝑘𝑘) .The permutation entropy of a time series is defined as: 

𝑝𝑝𝑝𝑝𝑘𝑘 = −�𝑃𝑃𝑔𝑔In𝑃𝑃𝑔𝑔

𝑚𝑚!

𝑔𝑔=1

. (22) 

Step 7: The termination condition for the ridge extraction iteration is given as follows: 
Condition �

𝑝𝑝𝑝𝑝𝑘𝑘 − 𝑝𝑝𝑝𝑝𝑘𝑘−1
𝑝𝑝𝑝𝑝𝑘𝑘−1

� < ϵ,                              𝑘𝑘 = 2,3,4, … ,𝑛𝑛 (23) 

where 𝜖𝜖 is a very small number. 

The iteration stops when the permutation entropy result obtained from Step 6 satisfies the termination 

condition, otherwise Step 2 - Step 6 will be repeated on the subtracted signal to extract the next signal 

component until the termination condition is met. The term in the new extract operator as given by Eq. 

(10), ∑ 𝑅𝑅𝑘𝑘𝐾𝐾
𝑘𝑘=1 , can be calculated from summation of the ridges extracted from the multi-component sig-

nal. 
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3. Numerical validation  

A 5-component varying speed signal as given below is simulated in this study to examine the validity 

of the proposed adaptive algorithm: 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑠𝑠1(𝑡𝑡) = 3cos �2𝜋𝜋 �20𝑡𝑡 + 20𝑡𝑡2 −

20
3
𝑡𝑡3�� ,

𝑠𝑠2(𝑡𝑡) = 2.5sin �2𝜋𝜋 �40𝑡𝑡 + 40𝑡𝑡2 −
40
3
𝑡𝑡3�� ,

𝑠𝑠3(𝑡𝑡) = 2 sin[2𝜋𝜋(60𝑡𝑡 + 60𝑡𝑡2 − 20𝑡𝑡3)] ,

𝑠𝑠4(𝑡𝑡) = 1.5sin �2𝜋𝜋 �80𝑡𝑡 + 80𝑡𝑡2 −
80
3
𝑡𝑡3�� ,

𝑠𝑠5(𝑡𝑡) = sin �2𝜋𝜋 �100𝑡𝑡 + 100𝑡𝑡2 −
100

3
𝑡𝑡3�� ,

𝑠𝑠(𝑡𝑡) = 𝑠𝑠1(𝑡𝑡) + 𝑠𝑠2(𝑡𝑡) + 𝑠𝑠3(𝑡𝑡) + 𝑠𝑠4(𝑡𝑡) + 𝑠𝑠5(𝑡𝑡).

(24) 

The amplitudes of the five signal components 𝑠𝑠1(𝑡𝑡)、𝑠𝑠2(𝑡𝑡)、𝑠𝑠3(𝑡𝑡)、𝑠𝑠4(𝑡𝑡)、𝑠𝑠5(𝑡𝑡) are in decreasing 

order to test the effectiveness of the proposed algorithm under the influence of noise contamination. The 

simulated signal is assumed to be sampled at a rate of 500 Hz and lasts for 2 seconds. The time waveform 

of the simulated signal is shown in Fig. 2(a), its frequency spectrum is shown in Fig. 2(b). 

 
Figure 2. The simulated signal, (a) time waveform, and (b) frequency spectrum. 

The simulated signal is analyzed first using the proposed ISET and SET for comparison, and the 

extracted IFs by the two techniques are shown in Fig. 3(a) and Fig. 3(b) respectively. It is shown the 

proposed ISET algorithm can effectively extract the IFs from the signal, whilst some interference terms 

are presented in the extracted IFs by SET, which can affect the clarification of the TFR. The situation 

can become much worst when there is noise presented in the signal.  
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Figure 3. The extracted TFs from the simulated multi-component signal, (a) by ISET, (b) by SET. 

To evaluate the effectiveness of the proposed algorithm under the noise interference, Gaussian white 

noise with different levels (2 dB, 0 dB, -2 dB and -4 dB) of signal-to-noise ratio (SNR) is added in 

sequence to the simulated signal in the following analysis until the largest signal component 𝑠𝑠1(𝑡𝑡) will 

also submerged under the added noise. The noise added signal having a SNR = 2 dB and its frequency 

spectrum are shown in Fig. 4. The extracted IFs using the proposed adaptive ISET algorithm is shown in 

Fig. 5. It is illustrated that except for the weakest component, 𝑠𝑠5(𝑡𝑡), the IFs of the other four largest 

components can all be clearly extracted.  

 
Figure 4. The noise added multi-component signal having a SNR = 2 dB, (a) the time waveform, (b) 

the frequency spectrum. 
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Figure 5. The extracted IFs of the noise added signal having SNR = 2 dB, (a) by ISET, (b) by SET.  

Figure 6 compares the extracted IFs of the noise added signal having SNR=0 dB using both ISET and 

SET algorithms. It is shown in Fig. 6(a) that the two weakest signal components (i.e., 𝑠𝑠4(𝑡𝑡) and 𝑠𝑠5(𝑡𝑡)) 

have been submerged under the noise floor when the SNR of the added noise is 0 dB whilst the remaining 

three larger amplitude components are clearly detected using the proposed ISET. On the contrary, the 

useful signal components from the TFA result of SET are largely contaminated by the noise which are 

difficult to identify for a clear fault diagnosis as shown in Fig. 6(b). 

 

 
Figure 6. The IFs extracted of the noise added signal having SNR = 0 dB, (a) by ISET, (b) by SET. 

Figure 7(a) displays the extracted IFs of the noise added signal having a SNR = −2 dB using the 

proposed ISET. It is found that only the two largest components 𝑠𝑠1(𝑡𝑡) and 𝑠𝑠2(𝑡𝑡) can still be extracted, 

the other components are all submerged under the interference of strong added noise. Similar to that of 

Fig. 7(b), the TFA result using SET is severely affected by the noise interference where the extracted 

TFs are hard to discern. Whereas Fig. 8(a) shows the extracted IFs of the noise added signal having 

SNR = −4 dB using ISET. It is found that only the largest signal component can still be detected using 

the proposed algorithm. When the SNR level of added white Gaussian noise is increased further, all the 



signal components would be submerged under the noise floor and would not be detected from the anal-

ysis.  

 

 
Figure 7. The IFs extracted of the noise added signal having SNR = −2 dB, (a) by ISET, (b) by SET. 

 

Figure 8. The IFs extracted of the noise added signal having SNR = −4 dB, (a) by ISET, (b) by SET. 

Figure 9 compares the TFR results of the noise added signal having SNR = 0 dB using SET and 

ISET. The result demonstrates that the proposed ISET can adaptively extract the TF energy at the esti-

mated IFs to produce a better time frequency result for a more accurate fault diagnosis of rotating ma-

chinery under the noise interference.  

 

 
Figure 9. The TFR of the noise added signal having SNR = 0 dB, (a) SET, and (b) ISET. 
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To exemplify the effectiveness of the ISET in the analysis of noise contaminated non-stationary sig-

nals, the computation times of the technique in the analysis of signals with different SNRs are listed in 

Table I. 

Table I A comparison of the computation time for different SNRs 

SNR (dB) 2 0 -2 -4 

Computation time (s) 0.95723 0.977415 0.994152 1.049082 

4. Experimental validation 

4.1 An evaluation using a non-stationary bearing defect data 

The bearing data used in this analysis was acquired from an in-house Spectra Quest bearing fault 

simulator using a data acquisition system as shown in Fig.10. The type of the faulty bearing is an Er-16k 

bearing which is located at the righthand side of the test rig which structural parameters are listed in 

Table Ⅱ. A graphical illustration of the defect bearing used in the experiment is shown in Fig. 11. The 

characteristic defect frequencies of the bearing are given in Table Ⅲ. A B&K type 4370 accelerometer 

was installed on the top of the housing of the faulty bearing for the data acquisition as shown in the 

figure. A compound bearing fault including an outer ring defect, and inner ring defect and a defect on 

one of the rolling elements was simulated in the bearing experiment. The sampling frequency used in the 

experiment is 10 kHz, and the data length for each sample is 3 seconds. The motor speed during the 

experiment was varied from 1490 RPM to 1800 RPM and then back to 1490 RPM within the 3 seconds. 

The speed profile of the shaft during the experiment is shown in Fig. 12(a). The time waveform and the 

frequency spectrum of the bearing defect signal are shown in Figs. 12(b) and 12(c) respectively.  

 

 

Figure10. The Spectra Quest bearing fault simulator. 
 



 

Figure 11. A graphical illustration of the defect rolling element bearing used in the experiment. 

Table Ⅱ Structural parameters of the Er-16k bearing 

Inner raceway  
diameter/(𝐦𝐦𝐦𝐦) 

Pitch diameter 
/(𝐦𝐦𝐦𝐦) 

Rolling element 
diameter  
/(𝐦𝐦𝐦𝐦) 

Number of roll-
ing elements 

Contact angle 
/(°) 

25.4 38.5 7.94 9 9.08 

Table Ⅲ Rolling element bearing characteristic frequencies 

Inner ring (𝒇𝒇𝒊𝒊) Outer ring (𝒇𝒇𝒐𝒐) Rolling element (𝒇𝒇𝒃𝒃) 

5.43𝑓𝑓𝑟𝑟 3.572𝑓𝑓𝑟𝑟 2.322𝑓𝑓𝑟𝑟 

  

 
Figure 12. An illustration of the bearing experimental signal, (a) the shaft speed variation profile, (b) 

the time waveform of the bearing defect signal, and (c) the frequency spectrum. 

The proposed ISET algorithm is then applied to analysis the time varying non-stationary bearing 

defect signal and the result is shown in Fig. 13(a) together with those using other commonly employed 

time-frequency algorithms such as SET, SST, RM and STFT for comparison.  
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Figure 13. A comparison of TFR results using different time frequency analysis techniques, (a) ISET, 

(b) SET, (c) SST, (d) RM, and (e) STFT. 

It is shown that the time frequency trajectories of all the defect frequency components (i.e., 𝑓𝑓i, 𝑓𝑓o and 

𝑓𝑓b) are clearly shown in the result produced by the proposed ISET. Whereas there is noise interference 

in the TFR result using the other time frequency analysis techniques which may hinder the bearing fault 

diagnosis. A major advantage of the proposed adaptive ISET algorithm is that it can effectively eliminate 



the noise interference contained in a condition monitoring data of unknown sources through the ridge 

curve extraction, and detect the defect signal component when its signal energy is higher than the back-

ground noise. This prospect thus inches the technique a step further towards the industrial application.  

4.2 An evaluation using a non-stationary planetary gearbox data 

In this experiment, the defect data is acquired from an in-house HOUDE METERS HD-CL-05 plan-

etary gearbox test rig as shown in Fig. 14. The test rig has two electric motors at each end of the rig, one 

as the main power source and the other as the load motor. The rig also has a planetary gearbox and a 

fixed axis gearbox for the gear fault experiment. There are two compound torque and speed sensors 

installed on the rig as shown in Fig. 14. The speed of the motor is controlled through a speed controller 

in the electronic control cabinet. A missing tooth fault of the sun gear as shown in Fig.15 is simulated in 

the experiment. The structural parameters of the planetary gearbox and the characteristic defect fre-

quency of the sun gear are shown in Table Ⅳ and Table Ⅴ.  

 

 
Figure 14. A graphic description of the planetary gearbox test rig. 

 

Figure 15. A graphic illustration of the faulty sun gear with a missing tooth. 
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Table Ⅳ Planetary gearbox configuration parameters 

Sun Gear (Number 

of Teeth) 

Planet Gear (Num-

ber of Teeth) 

Gear ring (Number 

of Teeth) 

Number of Planet 

Gear 

28 28 84 4 

Table Ⅴ Planetary gearbox characteristic frequencies 

motor speed (𝒇𝒇𝒓𝒓) Sun gear rotation fre-
quency (𝒇𝒇𝒔𝒔𝒓𝒓) 

Sun gear localized 
fault frequency (𝒇𝒇𝒔𝒔) 

21-30Hz 𝑓𝑓𝑟𝑟 3𝑓𝑓𝑟𝑟 

 
A B&K4370 accelerometer is mounted on the casing of the planetary gearbox to acquire the vibration 

signal which was sampled at a sampling frequency of 10 kHz and a sampling length of 3 seconds. The 

speed of the motor shaft increases from 1260 RPM to 1800 RPM within the 3 seconds. The time wave-

form of the vibration signal from the experiment and the corresponding frequency spectrum are shown 

in Fig. 16.  

 
Figure 16. The vibration signal for the sun gear fault experiment, (a) the time waveform, (b) the fre-

quency spectrum.  

The proposed ISET technique is employed to extract the characteristic defect frequencies associating 

with the simulated sun gear fault, and the result is shown in Fig. 17 together with those from SET, SST, 

RM and STFT. It is shown that the ISET can extract both the fundamental sun gear defect frequency and 

its higher harmonics as well as the shaft rotating frequency and its higher harmonics adaptively to pro-

duce a clear readable TFR for an accurate fault diagnosis of planetary gearbox. On the other hand, results 
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obtained using the four comparative time-frequency analysis techniques are either contaminated by noise 

interference or having diffused energy distribution leading to inaccurate fault diagnosis.  

 

 

 

 
Figure17. A comparison of the TFR results for planetary gear fault diagnosis using different time fre-

quency analysis techniques, (a) ISET, (b) SET, (c) SST, (d) RM, and (e) STFT. 

5. Conclusion 

In this study, we proposed a novel adaptive time frequency analysis algorithm for the analysis of non-

stationary multi-component defect signals of rotating machinery under varying speed conditions. The 

effectiveness and robustness of the algorithm was validated using a set of noise added simulated multi-
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component, non-stationary signals having different SNRs, and two sets of experimental data, one for a 

compound bearing defect and one for a planetary gearbox fault.  

A main advance of the proposed algorithm is that it can effectively extract strong and weak compo-

nents adaptively from a multi-component signal without the prior knowledge of the signal characteristic. 

It can also produce a clear readable time frequency representation from a noise contaminated non-sta-

tionary signal for an accurate fault diagnosis of a varying speed machine. The advantage of the proposed 

algorithm comparing to the commonly employed time frequency analysis techniques is clearly demon-

strated in the analysis results presented in this work. A major limitation of this work is that the proposed 

technique has only been tested using either simulated or experimental data, its effectiveness needs to be 

examined in practical industrial applications, which constitutes to the future work. 
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