
xC
oA

x
20

23
 1

1t
h
Co

nf
er

en
ce

 o
n

Co
mp

ut
at

io
n,

 C
om

mu
ni

ca
ti

on
,

Ae
st

he
ti

cs
 &

 X

20
23

.x
Co

Ax
.o

rg
We

im
ar

,
Ge

rm
an

y

29

Creative coding has been gaining momentum within Art Schools
over the past two decades. However, as a discipline within Art
Schools it is still relatively new as a creative pathway. As the use
of code as a material for creative expression becomes increasing-
ly prevalent, the methods for teaching creative coding within Art
Schools have also begun to diversify. This paper presents a range of
alternate	teaching	examples	that	emphasise	reflective	problem	solv-
ing through error when teaching creative coding within Art Schools.
The paper will review how these examples are implemented, the
impact they have on student comprehension, and the future educa-
tional tools they support.

Keywords: Creative Coding, Functional Errors, Problem Solving, Art,
Design.

Jennifer Sykes

j.sykes@arts.ac.uk

Creative Coding Institute,

University of the Arts, London, England

Mick Grierson

m.grierson@arts.ac.uk

Creative Coding Institute,

University of the Arts, London, England

Rebecca Fiebrink

r.fiebrink@arts.ac.uk

Creative Coding Institute,

University of the Arts, London, England

DOI 10.34626/xcoax.2023.11th.29

Seeing Programming
Seeing: Exploring the
Pedagogical Values of
Functional Errors in
Creative Coding

https://doi.org/10.34626/xcoax.2023.11th.29

30

1. Introduction

The approaches to teaching creative coding within Art Schools has
often	combined	various	methods	from	Computer	Science,	ranging	
from didactic lectures, peer coding and problem-solving activities.
In more recent times, steps have been taken to explore “how aesthet-
ic production or critical thinking can be cultivated and developed
through learning to code” (Soon & Knotts 2019).

A common teaching method for creative coding is delivery of fun-
damental programming concepts via constructing creative exam-
ples or templates. In doing so, a student follows instructional steps,
constructing their own copy of said creative output. An emphasis is
placed on understanding basic concepts via screen-based outputs
that contextualise a certain method for the student. However, a
challenge of this approach is students are presented with a friction
point when deviating from and iterating upon these examples inde-
pendently for their own creative outcomes.

This paper discusses the use of mistakes and error as mechanisms
that facilitate existing pedagogical methods when teaching the fun-
damentals of creative coding. In teaching students how to identify
and edit Functional Errors in creative applications of code, this
method lays the foundation for a broader range of practical, educa-
tional research tools that critically analyse teaching methodology
within creative coding and expanding to Physical Computing.

1.1. Functional Errors

Functional Errors refers to instances of code that, although compil-
ing	without	software	compiler	errors,	result	in	different	outputs	than	
the users intended. Functional Errors can be found in both screen-
based and physical computing environments. However, the purpose
of this paper will focus on the context of screen-based graphical
outputs.

This area of research is particularly relevant in an Art School envi-
ronment, where creative coding practices exist within curricula of
other established disciplines such as Fine Art or Visual Design. In
mixing	multi-disciplinary	approaches	to	working,	students	often	
face	“conflicted	situations	of	practice”	(Schön	1994)	where	a	desired	
objective in code does not match the conceptual objective and vice
versa.

As such it is noticeable that a Functional Error is also the result of a
conceptual misunderstanding between a familiar material and new
creative	material	(often	code).	“When	teaching	novices	program-
ming, misconceptions can occur” (Hermans et al. 2018) and when
students are unfamiliar with the terminology in programming, it can

31

often	be	difficult	to	identify	the	source	of	an	error	when	using	de-
scriptive language more common place in other disciplines.

In framing Functional Error examples thematically within Art and
Design vernacular it is hoped this can bridge a familiar language
and new, unfamiliar language for students. In identifying and un-
derstanding Functional Errors the objective is the language used to
explain an issue is developed in tandem with problem solving skills.
This	research	aims	to	facilitate	a	reflective	framework	to	recognise	
both	technical	and	conceptual	misunderstandings	in	students’	prac-
tice-based Art School education.

2. Background

2.1. Existing Methods

The creative coding curriculum within Art Schools is undergoing a
shift	away	from	traditional	lecturer-centered	instructional	methods,	
towards a more contextually and thematically integrated approach
to programming. There has been an acknowledgement of those

“who prefer to work improvisationally, instead of following formulas;
and aim to create things that are expressive rather than utilitarian”
(Buechley 2012).

An important component to conceptualising creative coding activ-
ities has been incorporating “Active Learning” (Bonwell & Eison
1991) strategies. These activities not only engage students, but also
enhance their comprehension skills by encouraging them to actively
participate in “doing things and thinking not just listening” (Jung et
al. 2021).

Whilst Active Learning strategies promote more doing things and
thinking, rather than simply imposing content on a learner through
direct instruction, the retention of crucial information may still be
limited	to	the	specific	context	in	which	it	is	learned.	In	adopting	a	
more Constructionist position emphasis can be placed on how “the
laws of learning must be about how intellectual structures grow out
of one another and about how, in the process, they acquire both logi-
cal and emotional form” (Papert 1980).

When transitioning from Constructivists to Constructionist method-
ology the application of visual programming environments has facil-
itated a move towards a high-level understanding of programming
structure via modular building blocks. In his analysis of the Turtle,
Papert compares the building blocks of “Learning Math by talking to
Turtles is like learning dancing by dancing with people while learn-
ing math by doing pencil and paper sums is like learning dancing by
rote memory of pencil and paper diagrams of dancing steps” (Papert
1976).

32

The building blocks of Visual programming environments have been
found to enhance the cognitive association between programming
terminology	and	their	associated	operations.	However,	they	often	
do not answer the issues that “pertain to their inability to help users
build a skillset that can be transferred to other programming envi-
ronments and paradigms and their inability to be extended through
new components” (Hansen 2019). As such visual blocks can fall
short in addressing the conceptual structure of code, leading to the
need	for	additional	supplementary	material	for	effective	learning.	
The purpose of incorporating Functional Errors into the education-
al process is not to supersede such pedagogical tools, but rather to
augment them, creating further steps and pathways that support
students	in	their	learning	journey	encouraging	self-reflection	and	
evaluation.

2.2. Problem Solving

The teaching of problem-solving skills is an integral part of com-
puter science in promoting a deeper understanding of fundamen-
tal concepts. Studies have revealed that a lack of such approaches
resulted in students limiting their understanding and “rather than
getting the big picture of computer science, they narrow their focus
to getting this program to run” (Allan & Kolesar 1996). This holds true
not	only	in	the	field	of	computer	science	but	equally	when	creatively	
working with code in adjacent disciplines. Given that students in the
field	of	creative	coding	often	approach	the	subject	as	novice	pro-
grammers yet possess university-level knowledge in their accompa-
nying	disciplines,	there	is	significance	in	including	repetition	allow-
ing students to “actively engage with the content, work through it
with others, relate to it through an analysis” (Fee & Holland-Minkley
2010). By incorporating teaching examples that intentionally in-
clude such problem-solving strategies, it encourages creative agency
and support future self-exploration.

2.3. Reflection

As	Schön	identifies,	often	students	“can	deliver	without	being	able	
to say what (they) are doing” (Schön 1987, 23). In providing prac-
tical	programming	examples	for	Reflection	In	Action	it	enables	a	
dialog between student and process that helps them identify where
misconceptions, error and miscommunication have occurred. The
Functional Error examples are disseminated via a website that in-
cludes embedded, interactive programming sandboxes. Graphical
preview	windows	offer	visual	feedback	of	the	code	that	students	edit	
offering	real-time	prompts	to	reflect	upon	each	practical	step	they	
have	undertaken.	In	doing	so,	the	examples	draw	influence	from	
Schön’s	theory.

33

A designer sees, moves, and sees again. The designer sees what
is “there” in some representation of a site, draws in relation to it,
and sees what he or she has drawn, thereby informing further
designing. This process of seeing-drawing-seeing is one kind of
example	of	what	I	mean	by	designing	as	a	reflective	conversa-
tion with the materials of a situation. (Schön 1991, 133)

3. Non-Linear Process

Art School education centres on the Studio based, practice driven
culture with a focus on learning through process-driven methods
encouraging an “experimental attitude, precisely of making trials,
of learning from experience by prompting problems and failures”
(Schnapp & Shanks 2009). It is important to frame the use of Func-
tional Errors within this context. In shaping lessons around Func-
tional	Errors	the	mode	of	delivery	supports	cyclical	reflection	foster-
ing future abilities to explore and experiment independently.

“Project-based learning is a key pedagogical approach in the arts”
(Brain & Levin 2021, 6), encouraging students to explore far greater
expressive adaptability. However, the integration of context within
creative	coding	templates,	the	delivery	of	teaching	exercises	often	
remains centered around the original intended outcome. The abil-
ity	to	re-frame	linear	paths	and	identify	why	navigating	left,	right,	
forwards, and backwards causes a change in outcome can become
difficult	for	students	when	developing	their	own	creative	coding	
work. In discussing Casual Creators Compton and Mateas observe

“many creative tools exist to support task-focused creativity, but in
recent	years	we	have	seen	a	flourishing	of	autotelic	creativity	tools,	
which privilege the enjoyable experience of explorative creativity
over task-completion” (Compton & Mateas 2015).

The	acquisition	of	creative	flexibility	in	the	artistic	process	often	
requires years of practice. It can be challenging to foster these skills
during the initial stages of programming, when the foundations are
still being established. Turkle compares the experiences of those
learning to program to “those of the bricoleur scientist or mathema-
tician. Bricoleurs construct theories by arranging and rearranging,
by negotiating and renegotiating with a set of well-known materi-
als” (Turkle 1990). In pairing creative disciplines with the computer
sciences, Art Schools are encouraging the development of distinct
knowledge and understanding across specialisms.

4. Study Method

The series of Functional Error examples are intended to provide
diagnostic	and	reflective	dialogue	of	observing,	programming	and	
observing again (i.e., seeing — programming — seeing). The purpose
of this approach is to uncover patterns within the examples enabling

34

students to broaden their conceptual understanding of earlier, lim-
ited	templates.	In	equipping	students	with	interfaces	for	reflecting	
upon mistakes, this study explores the relationship between whether,
in	using	of	Functional	Error	examples,	does	this	enhance	students’	
troubleshooting	confidence,	and	ultimately	lead	to	greater	flexibility	
in their creative practices?

The method this study undertook focused on prescribing three
graphical examples that explore the concept of Functional Errors
within the programming language P5JS. P5JS is a JavaScript library
designed to support creative coding “with a focus on making coding
accessible and inclusive for artists, designers, educators and begin-
ners” (McCarthy 2014).

In this study we utilise the P5JS	web	editor	which	offers	an	integrated	
sandbox environment for programming with minimal set-up. The
web-editor	offers	participants	a	user-friendly	interface	that	facil-
itates real-time code editing while synchronously previewing the
graphical	output	produced	as	a	result	of	any	modifications	made	to	
the text. The editor is embedded into a general teaching webpage
providing information that is easy to disseminate, thereby removing
the	barrier	of	installation	and	configuration	[Fig.	1].	The	primary	ob-
jective of this study is understanding and examining each Functional
Error that reiterates programming methods students have already
encountered in previous classes.

Participants consisted of 14 adults (7 Female, 3 Male, 2 Non-Binary
and 2 undeclared) who were enrolled in a year-long Diploma in cre-
ative	computing.	Participants	had	two	previous	years’	experience	in	
an adjacent Art and Design discipline. These participants had prior
experience in a related discipline in Art and Design and had com-
pleted a module in creative coding in the three months leading up to
the study. It is noteworthy that prior to the start of the Diploma pro-
gram six months ago, the participants had limited to no program-
ming experience. Therefore, this group provides an opportunity to
evaluate	their	retained	knowledge	in	the	field	of	creative	computing.

4.1. Examples

The three examples were selected through a systematic observation
of the recurring Functional Errors made by students while teaching
creative coding across various higher education institutions.

Each participant was presented with two animated visual outputs
per Functional Error; the intended visual outcome and the actual
visual outcome containing the Functional Error. The participants
were presented with a web-editor containing the Functional Error
and	were	then	challenged	to	resolve	each	instance	so	that	it	reflected	
the intended visual outcome.

Figure 1: P5JS sandbox editor.

35

The three Functional Error examples consisted of:

A. Drawing: A common scenario students face when approaching
programming from a Visual Design background is a familiarity with
the	affordances	and	signifiers	of	animation.	An	understanding	of	
timelines	and	editing	workflows	can	often	result	in	assumptions	of	
how a graphical output is generated. In this example, participants
are presented with code that takes mouse position as an input con-
trol for the movement of a graphical square. The square refreshes
every positional change and thus visually mimics animation. Par-
ticipants have the task of modifying this code [Fig. 2] so that the
animated graphical square leaves a trail of its movements on the
screen, mimicking the act of drawing on paper [Fig. 3]. Important-
ly, neither version is syntactically wrong. However, the conceptual
meaning and intended outcome of the graphical representation may
differ	based	on	the	students’	intentions.	In	resolving	this	Functional	
Error, students achieve an understanding of the setup() and draw()
functions within the P5JS language, which are core components in
understanding the structure and running order of code.

Figure 2: Example A: Drawing. The
web-editor code interface participants
interact with.

36

B. Iteration: The second example presents a visual output resem-
bling a solid rectangular shape. However, the title and intended
output	indicate	the	shape	should	reflect	several	squares	spaced	out	
visually on the canvas [Fig. 4]. Participants are presented with code
comprised of for loops, not necessarily required for drawing one
singular rectangle as the present visual displays. Participants are
required to decipher 1) why a for loop may be required and 2) why
several iterative shapes are not displayed on the canvas. In resolving
this Functional Error, participants gain an understanding for con-
cepts such as conditions within for loops and mathematical iteration.

C. Order: Lastly, the third example presents a visual representation
of two graphical squares. The objective of the intended output is to
display three squares, each with a distinct coloured outline. However,
the actual outcome demonstrates three squares with the same solid
colour. Participants are presented with the challenge of identifying
how to modify the code to distinguish between the solid colour of
each shape and the outline colour [Fig. 5]. In doing so, participants
begin to understand the programming order and sequence. This
concept	is	often	misunderstood	by	Art	and	Design	students,	who	
tend to reverse the order, drawing parallels with layer manipulation
in creative production tools.

Figure 3: Example A: Drawing.

Figure 4: Example B: Iteration.

37

When	presented	with	each	of	the	three	modifiable	examples,	partic-
ipants	were	asked	to	reflect	and	answer	to	themselves	in	their	own	
descriptive language (not necessarily programming terminology):

— Can you describe what you are seeing?
— What would you like to see happening?
— Why might it not be doing that?
— Where do you think the issue is?
— Can you identify what to change to make the visual display as
desired?

— Why did that resolve it?
— Can you say in technical terminology what and why the change
worked?

In allowing participants to verbally answer questions themselves
in descriptive language they are comfortable with, it allows them
to navigate towards to the correct answer without the barrier of
not	knowing	if	they	are	using	correct	terminology.	After	partici-
pants	have	identified	they	are	on	the	correct	path	the	final	question	
prompts them to narrow their language to technical terminology
cementing the foundations of the P5JS language constructs and the
functions they may use in editing the example code.

Prior to undertaking this study, data was captured via a question-
naire [Table 1] that gathered information assessing their demo-
graphics,	self-efficacy	in	creative	coding,	troubleshooting,	creating	
conceptual art and creating computational art. Each participant
self-assessed	their	self-efficacy	before	and	after	the	workshop	on	
5-point	scales	(from	(1)	unconfident	to	(5)	confident).	Alongside	this	
analysis, participants were asked to assess the usefulness of using
the Functional Error examples in their educational experience both
quantitively on 5-point scales (from (1) not at all to (5) a lot) and
qualitatively in written responses.

Figure 5: Example C: Order.

38

Question Questions asked before study

Q1 How	confident	are	you	in	using	P5JS?

Q3 How	confident	are	you	in	troubleshooting	code?

Q5 How	confident	are	you	in	creating	conceptual	Art	and	Design?

Q6 How	confident	are	you	in	creating	Computational	Art	and	Design?

Q7 What do you anticipate the biggest challenge of working with cre-
ative coding to be?

Question Questions asked after study

Q8 How	confident	are	you	in	using	P5JS?

Q11 How	confident	are	you	in	creating	conceptual	Art	and	Design?

Q12 How	confident	are	you	in	creating	Computational	Art	and	Design?

Q13 Has your biggest anticipated challenge changed from before the
workshop and if so, what is it now?

Q14 Do	you	find	the	Graphical	Functional	Error	examples	useful?

Q15 How	confident	are	you	in	troubleshooting	code?

Q20 Do you have any additional comments regarding Functional Errors
and this teaching method?

5. Results

5.1. Quantitative Results

Prior to undertaking this study, the results indicate a relatively low
level	of	self-assessed	confidence	among	participants	in	level	across	
programming and troubleshooting (Questions 1 and 3). The mean
score	for	participants’	confidence	in	programming	P5JS was 2.85
with	38.5%	electing	a	score	of	2	(indicating	a	little	unconfident)	and	
46.2%	scoring	a	3	(rating	themselves	fair	in	confidence).	Only	a	small	
number of participants, 2 individuals, rated themselves as a little
confident	or	confident	in	programming	P5JS.

These	initial	quantitative	results	align	with	the	participants’	limit-
ed programming experience in only partaking in one introductory
module	in	creative	coding	prior	to	this	study.	These	findings	provide	
support for the notion that, despite having practiced these skills,
there is a potential disjunct between the absorption of knowledge
and the application of it in practice.

Analysis of question six reveals participants demonstrated a high
level	of	confidence	in	their	abilities	to	create	conceptual	Art	and	
Design (mean = 4.08) [Table 2] with an interesting observation that
no participants rated themselves below fair in this area [Figure 6].
Participants	scored	marginally	lower	level	of	confidence	in	question	
seven when asked about creating computation Art and Design (mean

= 3.69). However, it is worth mentioning that 82.3% rated themselves
as fair or above in this area. These results correlate with the partici-
pants’	existing	knowledge	obtained	in	their	respective	Art	and	De-
sign specialisms.

Table 1: Study Questionnaire
Questions. (the questionnaire included
questions for a broader evaluation of
Creative Computing tools and as such
these questions and question numbers
have been omitted from this table)

39

Figure 6 illustrates the distribution of ratings per question, as a per-
centage, prior to the initiation of the study. Table 2 shows the mean
scores for each question.

Q1 Q3 Q5 Q6 Q8 Q11 Q12 Q14 Q15

Mean 2.85 3.00 4.08 3.69 3.15 4.00 3.92 4.31 3.31

N 13 13 13 13 13 13 13 13 13

Std. Deviation .899 1.080 .862 .947 .801 .816 .954 1.182 1.032

Following	the	study,	participants	assessed	their	confidence	in	trou-
bleshooting code (question 15), with a slight increment from their
pre-study evaluation. The majority of participants rated themselves
as	fair	(mean	=	3.0)	followed	by	23.1%	as	a	little	unconfident	and	
7.7%	unconfident.	

Figure 7 illustrates the distribution of ratings per question, as a per-
centage,	after	the	initiation	of	the	study.	The	results	post	study	indi-
cated	a	general	increase	in	participants’	confidence	in	both	question	
8 regarding P5JS programming (mean = 3.15) and question 15 regard-
ing troubleshooting code (mean = 3.31) with a positive reduction of
the	proportion	of	participants	who	self-assessed	their	confidence	
as	a	little	unconfident	to	unconfident.	Falling	from	38.5%	to	15.4%	
when	asked	to	self-assess	confidence	in	programming	P5JS. Similar-
ly,	the	proportion	of	participants	in	the	lower	confidence	categories	
for troubleshooting code fell from 30.8% to 15.4% with the majority
(84.6%)	now	rating	themselves	fair	to	confident.

Figure 6: Stacked Bar Chart Results of
Questions asked before the study.

Table 2: Mean Statistics of quantitative
question results.

40

Understandably,	the	results	revealed	the	confidence	rating	in	creat-
ing	conceptual	Art	was	unchanged	after	the	study	as	this	aspect	was	
not addressed in the content. However, there was a small improve-
ment	in	participants’	confidence	when	creating	computation	Art	and	
Design, as indicated by the increase in the mean score from 3.69 to
3.92. An interesting impact was observed among participants who
previously rated themselves as fair, now rating themselves as a little
confident	to	confident.	This	observation	aligns	with	the	results	of	
question	fourteen	as	illustrated	in	Fig.	8;	how	useful	did	you	find	us-
ing the graphical Functional Error examples? Participants rated the
examples overwhelmingly useful (mean = 4.31) with a substantial
majority (84.6%) rating the examples as a little to very useful.

5.2. Thematic Results

The quantitative data was accompanied by a set of thematic ques-
tions [Table 3] aimed at supplementing the statistical results.

Figure 7: Stacked Bar Chart Results of
Questions	asked	after	the	study.

Figure 8: Stacked Bar Chart Results of
Questions	asked	after	the	study.

41

Participant
ID

What do you anticipate
the biggest challenge of
working with creative
coding to be?

Has your biggest antici-
pated challenge changed
from before the work-
shop and if so what is it
now?

Do you have any addition-
al comments regarding
Functional Errors and
this teaching method?

P1 Getting the visuals to
behave how I envision
it to.

No n/a

P2 p5.js p5.js, feels less natural
to me than Arduino

n/a

P3 Technical problems Technical problems
and There is very little
growth in computer art
about art.

Add some training on
the aesthetic aspects of
computing. Teaching
methods should be
more diverse and not
just	teaching	software	
alone

P4 Translating ideas to
code

It is still the code but
understanding how
to simplify it has
increased

n/a

P5 Making something
work the way you in-
tended, trail and error
and	finding	solutions

Nope This teaching meth-
od was very useful in
understanding the code
and how it works.

P6 processing p5js n/a

P7 The coding frame of
mind is a lot more rigid
than the freeform art
mind. It takes some
adapting to learn the
different	principles	of	
coding.

No. I think that my
biggest perceived
challenge is something
that takes some time to
change and overcome.

Functional errors
re-frames coding in a
different	way,	to	be	a	
different	kind	of	puzzle,	
providing	a	different	
perspective.

P8 Feeling	the	difference	
between searching for
the answers and code
and thinking of the
code	myself	and	figur-
ing out my errors

Slightly, my way of
thinking about it did

Maybe have two tutors
around as the time is
short and lots of us
need help

P9 Applying my con-
cept-based art practice
to displaying creative
comp work

I think my horizons
on what I could expect
when conceptualising
creative computing
displays have been
broadened.

n/a

P10 Learning to code Not really as it was only
1 session, but I feel
having a whole term of
these would making me
A	LOT	more	confident	
with doing code

I think it was really
great compared to the
lessons I have had, I
felt like I learned a lot
more in one lesson
than I did in multiple
lessons previously.

P11 My code not running
and not knowing how
to	fix	it

I would still be worried
about not being able to
fix	the	code	but	I	would	
at least attempt to do so
myself	first

I thought working
through the p5js prob-
lems was really useful

P12 Technology Technology n/a

P13 Realising where certain
creative	code	would	fit	
in a project

No n/a

Table 3: Thematic qualitative
questionnaire answers.

42

One of the questions posed to participants prior to the study was
what did they anticipate the biggest challenge of working with cre-
ative	code	to	be?	A	selection	of	responses	from	participants	reflects	
the discursive arguments in this paper:

— “Translating ideas to code.” (P4)
—	“Feeling	the	difference	between	searching	for	the	answers	and	
code	and	thinking	of	the	code	myself	and	figuring	out	my	errors.”	
(P8)
— “Making something work the way you intended, trial and error and
finding	solutions.”	(P5)	

When participants were asked if their biggest anticipated challenged
had changed post workshop, the majority of thematic responses
remained within the context of troubleshooting P5JS code. However,
a	small	number	answered	differently,	expanding	upon	this	context,	
and providing additional insights:

— “It is still the code but understanding how to simplify it has in-
creased.” (P4)

— “I feel having a whole term of these would making me A LOT more
confident	with	doing	code.”	(P10)	

Lastly, participants were asked to respond if they had any additional
comments regarding the use of Functional Errors as teaching meth-
ods. A selection of answers included:

— “I felt like I learned a lot more in one lesson than I did in multiple
lessons previously.” (P10)
—	“Functional	errors	reframe	coding	in	a	different	way,	to	be	a	differ-
ent	kind	of	puzzle,	providing	a	different	perspective.”	(P7)	

— “This teaching method was very useful in understanding the code
and how it works.” (P5)

6. Discussion

Often	code	that	results	in	Functional	Errors	is	opaque	in	its	nature,	
making	it	difficult	for	students	to	identify	the	underlying	cause.	In	
providing students with classroom opportunities to explore patterns
of	programming	structure	that	produce	different	conceptual	intend-
ed	and	unintended	visuals	it	offers	a	basis	for	developing	confidence	
in their own understanding and communication skills.

The	participants’	thematic	answers	support	a	hypothesis	that	partic-
ipants	require	supportive	pathways	to	effectively	utilise	code	in	an	
autonomous direction. The approach to teaching the fundamentals
of	programming	structure	through	reflective	acceptance	of	mistakes	
and error encourages process and pattern observation within exist-
ing	task	specific	examples.	In	doing	so,	this	iterative	learning	pro-

43

cess replicates a material investigative approach familiar to students
in Art School and facilitates their navigation of current aesthetic and
contextual project templates.

Early thematic analysis pointed towards the disconnection between
applying creative coding methods independently when no longer in
the	context	specific	to	a	technical	example.	The	positive	impact	on	
participants’	confidence	from	those	who	rated	themselves	low	and	
those	who	already	felt	a	little	confident,	demonstrates	this	reflective	
teaching	method	was	beneficial	in	facilitating	understanding	for	all	
parties. The thematic answers regarding the use of the Functional
Error teaching examples support the speculation that the use of
this diagnostic approach to teaching has a positive impact on the
relationship between disseminating knowledge and its practical
application.

The current collection of examples encompasses both thematic titles
(e.g.: Drawing) and descriptive titles (e.g.: Iteration). The drawing ex-
ample establishes a clear relationship to presumptions derived from
workflows	of	analogous	disciplines,	whilst	identifying	the	differenc-
es in computing. Future implementations aim to adapt similar the-
matic approaches that align with the relational contexts commonly
found	in	the	fields	of	Art	and	Design.

The focus of this study was primarily on the implementation of
creative coding in screen-based visual environments. However, the
presence of Functional Errors spans a range of programming ap-
plications.	The	field	of	physical	computing	represents	a	significant	
potential source for miscommunication in the visual programming
environment, electric circuitry, and physical capabilities of compo-
nents. Considering this, future research is aimed at developing the
practical	representation	of	Functional	Errors	in	the	field	of	Physical	
Computing.

7. Conclusion

This preliminary study was relatively small in its scope. Further re-
search is needed to broaden the participant population and increase
the	sample	size,	thereby	bettering	our	understanding	of	the	benefits	
of this pedagogical approach. The limited sample size of the current
study	hinders	the	ability	to	establish	a	statistically	significant	cor-
relation between pre- and post-study quantitative results. Whereas
an expanded study would allow for the implementation of A/B test-
ing, where participants would be divided into groups, some utilis-
ing Functional Errors and some not. This would facilitate statistical
analysis, such as Mann Whitney U tests, and provide a more robust
evaluation of the Functional Error examples. That been said, early
indications	suggest	the	implications	of	using	reflective	and	trouble-

44

shooting techniques in the initial stages of teaching programming
holds positive potential.

References

Allan, Vicky. H., M. V. Kolesar. 1996. Teaching
Computer Science: A Problem Solving Approach
that Works. National Science Foundation,
Arlington, VA.
Bonwell, Charles. C., James. A. Eison.1991.
Active Learning: Creating Excitement in the
Classroom. 1991 ASHE-ERIC Higher Education
Reports. ERIC Clearinghouse on Higher
Education. The George Washington University,
One Dupont Circle, Suite 630, Washington, DC
20036-1183.
Buechley, Leah. 2012. Expressive Electronics;
Sketching, Sewing and Sharing (lecture
wats:ON? Festival, Carnegie Mellon University,
Pittsburgh, PA).
Compton, Kate, Michael Mateas. 2015.
Casual Creators: Expressive Intelligence Studio.
University of California, Santa Cruz.
Fee, Samuel B., Amanda M. Holland-Minkley.
2010. Teaching Computer Science through
Problems, not Solutions. Computer Science
Education, 20, 129-144 (2010).
Hansen, Stig Møller. 2017. Deconstruction/
Reconstruction: A Pedagogic Method for
Teaching Programming to Graphic Designers.
Department of Digital Design and Information
Studies, Aarhus University, Denmark.
Hansen, Stig Møller. 2019. Danish University
Colleges public class Graphic_Design implements
Code { // Yes, but how? } an investigation towards
bespoke Creative Coding programming courses
in graphic design education. Aarhus University.
Hermans, Felienne, Alaaeddin Swidan,
Efthimia Aivaloglou, Marileen Smit. 2018.
“Thinking Out of the Box: Comparing Metaphors
for Variables in Programming Education.” In
Proceedings of the 13th Workshop in Primary
and Secondary Computing Education (WiPSCE
‘18). Association for Computing Machinery,
New York, NY, USA, Article 8, 1–8. https://doi.
org/10.1145/3265757.3265765

Jung, Andrew, Zhuojun Duan, Ingrid Russell.
2021. “Active Learning Strategies: A Computing
Course for Undergraduates.” 16th International
Conference on Computer Science & Education
(ICCSE).
Levin, Golan, Tega Brain. 2021. Code as a
creative Medium A handbook for Computational
Art and Design. The MIT Press.
McCarthy, Lauren. 2014. P5JS mission
statement. https://p5js.org/
Papert, Seymour A. 1976. Some Poetic and
Social Criteria for Education Design.
Papert, Seymour A. 1980. The Gears of My
Childhood. Mindstorms; Children, Computers,
and Powerful Ideas. Basic Books.
Schön, Donald A. 1987. Educating the Reflective
Practitioner. USA: John Wiley and Sons.
Schön, Donald A. 1991. The Reflective
Practitioner: How Professionals Think in Action.
Taylor & Francis Group.
Schnapp, Jeffrey T., Michael Shanks. 2009.
Artereality (Rethinking Craft in a Knowledge
Economy: Art School Propositions for the 21st
Century). The MIT Press.
Soon, Winnie, Shelly Knotts. 2019. “Aesthetic
Coding: Exploring Computational Culture
Beyond Creative Coding.” International
Symposium on Computational Media Art (ISCMA)
2019. School of Creative Media City University of
Hong Kong.
Turkle, Sherry. 1990. “Epistemological
Pluralism: Styles and Voices within the
Computer Culture.” Signs: Journal of Women in
Culture and Society. 16, No. 1, From Hard Drive
to Software: Gender, Computers, and Difference.
(Autumn, 1990), pp. 128-157.
Young, David. 2021. “Theorising
while() Practising: A Review of Aesthetic
Programming.” Computational Culture 8.
Royal Holloway University of London. http://
computationalculture.net/theorising-while-
practising-a-review-of-aesthetic-programming

https://doi.org/10.1145/3265757.3265765
https://doi.org/10.1145/3265757.3265765
https://p5js.org/
http://computationalculture.net/theorising-while-practising-a-review-of-aesthetic-programming
http://computationalculture.net/theorising-while-practising-a-review-of-aesthetic-programming
http://computationalculture.net/theorising-while-practising-a-review-of-aesthetic-programming

