30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture

Computational Culture

a journal of software studies

Software Studies,
Revisited. A Roundtable on
the Software Studies Series
at MIT Press

ARTICLE INFORMATION

¢ Author(s): Wendy Hui Kyong Chun, Winnie Soon, Noah Wardrip-Fruin,
Jichen Zhu

o Affiliation(s): Simon Fraser University, Aarhus University, University
of California Santa Cruz, IT University of Copenhagen

¢ Publication Date: 9th May 2022, as pre-print

e Issue: 9

¢ Citation: Wendy Hui Kyong Chun, Winnie Soon, Noah Wardrip-Fruin,
Jichen Zhu. “Software Studies, Revisited. A Roundtable on the
Software Studies Series at MIT Press.” Computational Culture 9 (9th
May 2022, as pre-print). http://computationalculture.net/software-
studies-revisited/.

ABSTRACT

The Software Studies series launched in 2009, under
the guidance of editors Matthew Fuller, Lev Manovich,
and Noah Wardrip-Fruin. For over a decade, the series
was dedicated to publishing the best new work that
tracks how software is substantially integrated into the
processes of contemporary culture and society through
the scholarly modes of the humanities and social
science, as well as in the software creation/research

computationalculture.net/software-studies-revisited/ 1/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
modes of computer science, the arts, and design.
Important books published under the tenure of Fuller,
Manovich, and Wardrip-Fruin include (among others)
Nick Montfort et al.’s collaborative treatise on the single
line of code, 10 PRINT CHR$ (205.5 + RND (1)), :
GOTO 10;! Benjamin Bratton’s comprehensive overview
of an accidental megastructure, The Stack;2 and
Annette Vee's argument for a computational mentality
in Coding Literacy.?

Each book in the series began with the following
introduction:

Software is deeply woven into contemporary life—
economically, culturally, creatively, politically—in
manners both obvious and nearly invisible. Yet while
much is written about how software is used, and the
activities that it supports and shapes, thinking about
software itself has remained largely technical for much
of its history. Increasingly, however, artists, scientists,
engineers, hackers, designers, and scholars in the
humanities and social sciences are finding that for the
qguestions they face, and the things they need to build,
an expanded understanding of software is necessary.
For such understanding they can call upon a strand of
texts in the history of computing and new media, they
can take part in the rich implicit culture of software,
and they also can take part in the development of an
emerging, fundamentally transdisciplinary,
computational literacy. These provide the foundation
for Software Studies.

Software Studies uses and develops cultural,
theoretical, and practice-oriented approaches to make
critical, historical, and experimental accounts of (and
interventions via) the objects and processes of
software. The field engages and contributes to the
research of computer scientists, the work of software
designers and engineers, and the creations of software
artists. It tracks how software is substantially

computationalculture.net/software-studies-revisited/ 2/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
integrated into the processes of contemporary culture
and society, reformulating processes, ideas,
institutions, and cultural objects around their closeness
to algorithmic and formal description and action.
Software Studies proposes histories of computational
cultures and works with the intellectual resources of
computing to develop reflexive thinking about its
entanglements and possibilities. It does this both in the
scholarly modes of the humanities and social sciences
and in the software creation/research modes of
computer science, the arts, and design.

The Software Studies book series, published by the MIT
Press, aims to publish the best new work in a critical
and experimental field that is at once culturally and
technically literate, reflecting the reality of today’s
software culture.

In 2021, a new set of editors—Wendy Hui Kyong Chun,
Winnie Soon, and Jichen Zhu—have joined Noah
Wardrip-Fruin and reshaped the vision for the series.
The revamped series will publish books that focus on
software as a site of societal and technical power, by
responding to the following questions: How do we see,
think, consume, and make software? How does
software—from algorithmic procedures and machine
learning models to free and open-source software
programs—shape our everyday lives, cultures,
societies, and identities? How can we critically and
creatively analyze something that seems so ubiquitous
and general—yet is also so specific and technical? How
do artists, designers, coders, scholars, hackers, and
activists create new spaces to engage computational
culture, enriching the understanding of software as a
cultural form? We are especially interested in
contributions that move beyond broad statements
about software and integrate a wide range of disciplines
—from mathematics to critical race theory, from
software art to queer theory—to understand the social

computationalculture.net/software-studies-revisited/ 3/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
and cultural implications of software. We seek work that
addresses the plurality of practice—from participatory
design to critical art—and that draws on knowledge
from media, visual, game, cultural and literary studies;
history; decolonial theory; new materialism; artistic
and critical design practices; and electronic literature
and narrative. Ultimately, we seek to explore the vast
possibilities, histories, relations, and harms that
software encompasses.

To officially relaunch the series, we've come together as
a roundtable to share our vision, as we revise and
respond to the original series. For this piece, each
editor has first offered their vision of why software
studies is still necessary and then posed a question for
the group about the future of the series. Finally, we've
responded to these questions to clarify where we see
the series going and to invite authors to join our
project.

Wendy Hui Kyong Chun Without doubt, the software
studies series in 2009 was radical and necessary. Given
the ubiquity and importance of software, it is mind-
boggling that it took until then for such a series to
emerge. Since its launch, there has been a virtual
avalanche of books, book series, and journals dedicated
to software in its various forms: from platforms to
infrastructure, from big data to machine learning. So,
why do we still need such a series, and what do we
propose to do with it?

Software studies is still so important because software
is so nebulous: it exceeds the categories listed in the
above categories; it touches and reshapes—and is
touched and reshaped by—almost everything. Software
studies enables us to think in broad and/or
interconnected terms, to move beyond, between, and
beside the various layers and programs. This is no
accident. As I wrote in Programmed Visions: Software

computationalculture.net/software-studies-revisited/ 4/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
and Memory (published in this series in 2011)# software
seems to help us grapple with the Tower of Babel that
is new media by allegedly allowing us to see the
invisible whole that generates the sensuous parts. To
know software has become a form of enlightenment—a
way to comprehend an invisible yet powerful whole—
and this conception of software grounds its appeal.
Software has become a metaphor for the mind, for
ideology, and for the economy: cognitive science
comprehends the brain/mind in terms of
hardware/software; molecular biology conceives of DNA
a series of genetic “programs”; and culture itself has
been posited as a form of “software” in opposition to
nature, which is “hardware.”

At the same time, software is, or should be, a
notoriously difficult concept—the clarity offered by
software as metaphor should make us pause, because
software also engenders a profound ignorance. Who
really knows what lurks behind our smiling interfaces,
behind the objects we click and manipulate? Who
completely understands what one’s computer is doing
at any given moment? Software as metaphor for
metaphor troubles the usual functioning of metaphor,
that is, the clarification of an unknown concept through
a known one. For, if software illuminates an unknown, it
does so through an unknowable (software). This
paradox—this drive to grasp what we do not know
through what we do not entirely understand—does not
undermine but rather grounds software’s appeal. Its
combination of what can be seen and not seen, can be
known and not known—its separation of interface from
algorithm, of software from hardware—makes it a
powerful metaphor for everything we believe is invisible
yet generates visible effects, from genetics to the
invisible hand of the market, from ideology to culture.

Crucially, software was not planned in advance. Its
existence is accidental: the engineers building high-

computationalculture.net/software-studies-revisited/ 5/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
speed calculators in the mid-1940s did not plan or see
the need for software. At first, software encompassed
everything that was not hardware, such as services.
The term soft is gendered. Grace Murray Hopper claims
that the term software was introduced to describe
compilers, which she initially called “layettes” for
computers; J. Chuan Chu, one of the hardware
engineers for the ENIAC, the first working electronic
digital computer, called software the “daughter” of
Frankenstein (hardware being the son). Software, as a
service, was initially priced in terms of labor cost per
instruction. Software’s emergence as a thing in its own
right has everything to do with business models and
profound changes to copyright and patent laws, which
moved software from something uncopyrightable and
unpatentable to something that is both. Business
models have again driven its transformation into a
service once more. Further, programs existed first in
biology and, as I argue in Programmed Visions, these
failed eugenic visions to program the future informed
the emergence of computational programs.

Software’s changes thus index profound economic,
political, and cultural changes. Historically unforeseen,
barely a thing, software’s ghostly presence produces
and defies apprehension, allowing us to grasp the world
through its ungraspable mediation.

The most exciting work in software studies, as
evidenced by my fellow editor Winnie Soon’s Aesthetic
Programming: A Handbook of Software Studies,” works
in and through software’s capaciousness and engages
work in queer theory, critical race studies, and software
arts. As the above description makes clear, software
has always dealt with issues of gender, race, and
sexuality. As this series “reboots,” we will take on these
central concerns with work that is as experimental as it
is theoretical.

computationalculture.net/software-studies-revisited/ 6/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
My question to the group thus is: How do we deal with
what’s "soft” in software? Again, first defined as
everything that was not hardware, software has moved
from "“layettes” and plug configurations to things to
contracts. How can this series address the seemingly
chameleon-like nature of software and its relation to
changes in gendered- and raced-labor practices?

Winnie Soon

let refresh = °
2 #refresh: Software Studies Manifesto (2022) </br></br>

This is called refresh() </br>
5 The refresh() method refers to the arguments of multiplicities and pluralities </br>
The refresh() method expresses global, local, decolonized and queer variables </br></br>

3
4 Software Studies requires to hold down Ctrl while pressing R </br>
5

9 Software Studies reloads its repository </br>

The repository coordinates multi-dimensional axes </br>
The repository pushes the boundaries of normativity </br>
The repository merges malleable practices </br></br>

14 Software Studies declares software as a site of societal and technical power </br>
5 this.site recognizes the discrepancy of What You See Is NOT What You Get </br>

16 this.site questions the (in)visibility of systems </br>

this.site inits new repositories

3

document.body.insertAdjacentHTML(‘'afterbegin', '<div id="stage"></div><div

id="manifest">X'+refresh+'</div>")

1 document.getElementById("manifest").style.cssText = °

2 display: block; position: fixed; z-index: 199;

23 animation: skew 6s infinite; transform: skew(20deg); animation-direction: alternate;

1 width: 750px; height: 380px;

5 top: 20%; left: 20%;

margin: 0 auto; padding: 20px 0;

font-size: 16px; color:#FFFFFO;

28 line-height:normal; text-align: center;

29 border: 4px solid transparent; border-radius: 6rem lrem;

30 background:

31 linear-gradient(to right, rgba(0,0,0,0.9), rgha(0,0,0,0.96))

32 linear-gradient(to bottom right, #b827fc 0%, #2c90fc 25%, #b8fd33 50%, #fec837 75%,
#fd1892 100%);

2 background-clip: padding-box, border-box; background-origin: padding-box, border-box;

H
let makeChange = document.createElement("style");
36 makeChange.innerText = °
@keyframes skew {
0% {transform: skew(30deg, 20deg);}
3 100% {transform: skew(O@deg, Odeg);}
0}

5
12 document.head.appendChild(makeChange);
13 document.getElementById("stage").style.cssText = °
display: block; position: absolute; z-index: 198;
4 top: 0; left: 0;
46 height: 100%; width: 100%;
17 background-color: rgba(0, 0, 0, 0.6);

48 °;
19 document.getElementById("perform").style.cssText = *

50 float: right; padding-right: 10px; padding-top: -18px;
5 cursor: pointer;

document.getElementById("stage").style.display = ‘none';

i
2
53 document.getElementById("perform").onclick = function() {
1
5 document.getElementById("manifest").style.display = 'none’;
;

56 };

Figure 1: The source code of #refresh: Software
Studies Manifesto—refresh.js, 2022.

The above computer source code (refresh.js) is
considered a piece of codework, referring to the genre
of experimental writing that queers computer and

computationalculture.net/software-studies-revisited/

7129

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
natural languages for both humans and machines to
read and perform. Writing a manifesto like this is also
writing a piece of software that is expressive,
performative, and executable. This draws attention to
the argument that code consists of nonneutral
commands, not taking for granted any syntax,
namings, or even punctuation. Using web-based
technologies including HTML, CSS, and JavaScript, web
browser extension allows a small piece of software that
adds features and functions to a browser. Presenting
the work that utilizes the dynamic font type from the
browsing site (see figure 2), #refresh: Software
Studies Manifesto can be read, run, and executed as a
browser extension® that intervenes in navigating any
web pages.

<« ¢ @ © | @ https://mitpress.mit.edu/software-studies B | e

Software Studies Manifesto (2022)

Figure 2: #refresh: Software Studies Manifesto, web
browser extension (on MIT Press website), 2022.

The piece contains two files: manifest.json (see figure
3) and refresh.js (see figure 1). "manifest.json” is a
standardized file name and file format for web
extensions, specifying some basic metadata, such as
name, version, homepage URL, description, and which
JavaScript source files to execute. The naming of this
file “manifest” has a specific usage in the area of web
technologies, in which it contains startup parameters
and information, as a contextualization and a profile, of
web applications. Such a web app manifest should be

computationalculture.net/software-studies-revisited/ 8/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
accessible to any web browser or web crawler. As a
verb, manifest is about “showing or demonstrating
something through signs or actions”.” “refesh.js”
involves the content, customization, styling and
interaction of the pop up (as a manifesto). As a noun,
manifesto refers to a written statement declaring and
distributing publicly across networks about the
intentions and motives of us—we as editors hope to
create new spaces to engage with software practices
and computational cultures.

“manifest_version": 2,
"name": "#refresh: Software Studies Manifesto",
"version": "2.4",
"homepage_url": "https://gitlab.com/siusoon/refresh/",
"description": "#refresh: Software Studies Manifesto - Part of Software Studies, Revisited",
"content_scripts": [
{
"matches": [
"https://*/*",
“http://x/*"
1,
"js": ["refresh.js"]
¥
]
+

Figure 3: The source code of #refresh: Software
Studies Manifesto—manifest.json, 2022.

My question to the group is: What excites you about
Software and Software Studies? Since a piece of
software can be highly technical, how can we negotiate
the space between software technicity and the wider
planetary scale of software culture for critical inquiry?

Jichen Zhu It seems that we have never been better

at making software. From augmented reality, deep
neural networks, and virtual assistants to blockchains,
face ID, and GAN art, software today routinely dazzles
users with new capabilities or higher performance than
what was barely thinkable only years before.
“Intelligent” systems grew “Deep” and “Big.” The
Internet of Things and non-fungible tokens continue to
blur the boundary between the physical and digital,
hardware and software.

computationalculture.net/software-studies-revisited/ 9/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
At the same time, we know increasingly less about the
software we make. The software stack necessary to run
an application grows thick; each layer obfuscates what
is actually happening beneath. Rule-based symbolic
artificial intelligence gave way to statistical machine
learning models trained from enormous datasets. As a
result, even technical experts struggle to fully make
sense of these black boxes. Economic interests, rising
geopolitical cyber threats, and nationalistic
protectionism all exert pressure on software developers
to make software ecosystems more closed.

While we can theoretically make software do anything,
in practice we become less confident about what to
make. New waves of human-computer interaction are
shifting away from well-defined communities of practice
and the traditional engineering culture it inherited.
Researchers remark on the “ontological uncertainties,
epistemological diffusion and ethical conundrums” 8
that the field currently faces. For example, focusing
only on immediate user satisfaction has contributed to
widespread long-term concerns such as the Filter
Bubble. How do we evaluate software products to
account for longitudinal implications and societal
effects? Autonomous cars already actualized the ethical
Trolley Problem into a realistic scenario; how should
designers of the cars’ control software approach these
decisions?

What are our desirable technological futures? This is a
technical design question as much as a philosophical,
ethical, and political one. It requires critical analysis of
existing software practices as well as constructive
reimaginations of future possibilities.

Coders, UX designers, HCI practitioners, and all makers
of software: this is why you need software studies.

computationalculture.net/software-studies-revisited/ 10/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
The most important question for me is: How can this
book series help to extend insights from software
studies to inform critical making and design of
software?

Noah Wardrip-Fruin I believe our best hope for

grappling with software is radical intellectual
promiscuity.

To understand the specific dangers of algorithmic
policing requires delving into software that can be
understood only by integrating disciplines such as
mathematics and critical race theory. To understand
how social networks shape communities, identities,
conspiracies, and hate speech, we need to combine
tools from areas such as sociology, psychology, and
human-computer interaction with tools from areas such
as network analysis and artificial intelligence. To
understand the possibilities and ideologies embedded in
algorithmic media forms, such as computer games and
interactive narratives, we must draw on knowledge
from areas such as media, visual, and literary studies
while also examining the tower of contingent
abstractions upon which such media’s mechanisms and
assumptions are inscribed. To find new ways to make
software, we must bring together ways of working,
from participatory and critical design to activist and
free software communities, with new ways of
understanding our projects and evaluating our work—
which are more likely queer and decolonial than
Taylorist.

The only problem, of course, is that we have organized
the world to be inhospitable to such ways of thinking
and making. For example, we have a paucity of degree
programs, intellectual gatherings, and exhibition and
publication venues that would welcome (or even
tolerate) such work. My hope is that the reimagined
Software Studies series can serve as another home,

computationalculture.net/software-studies-revisited/ 11/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
and support, for those pursuing an understanding of
the specifics of software with the undisciplined, eclectic
approaches our world needs now.

For me, the most important question is: How do we find
and support such authors, or teams of authors? How do
we help shape circumstances so that it is more possible
for people, especially junior researchers, to take the
time and risks that such work demands?

Xk >k

Questions and Responses

Question: How do we deal with what’s “"soft” in
software? Again, first defined as everything that was
not hardware, software has moved from "“layettes” and
plug configurations to things to contracts. How can this
series address the seemingly chameleon-like nature of
software and its relation to changes in gendered- and
raced-labor practices?

Responses

WS: Many historical (or even contemporary)
technological categories are gendered and hierarchical.
Beyond the division of soft/hard, other categories such
as master/slave are clearly not neutral—language or
metaphor engenders particular ways of seeing and
knowing. The historical and gendered concept of the
“soft” in software exemplifies the ways in which cultural
and technical conceptions affect one another.
“Soft”ware is often linked to procedures, instructions,
execution, and programming notations that are not
easily “seen.” The ENIAC, the first programmable digital
computer built in the 1940s, was programmed not by
typing symbolic syntax but rather by the physical
movements—wiring and switching—of women laborers.
Thus, to understand software, we need to address not
only the technical procedures of wiring and plugging

computationalculture.net/software-studies-revisited/ 12/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
but also the cultural and social conditions under which
software has evolved, developed, and been understood
over time.

In terms of the historical evolution of software from a
service to a “thing” (and now back to a service), we are
now observing a different type of service operating in
computational culture. Cloud-based services are
commonly used by corporations, in which services are
delivered through a network of remote servers and
infrastructure. The shift of downloadable and installable
software to remote access to software services is
changing business models, the role of users, and their
relationships with computers. But to return to the issue
of gendered- and raced-labor practices, we can also see
how the programming profession has been gradually
transformed into “a high-status, scientific, and
masculine discipline” 2 which is very different from the
1960s where many women entered the tech job market
without prior coding experience as they had on-the-job
training.19 Therefore, understanding the conditions of
software from historical, gender, societal, and class
perspectives is important to our ability to see software
as a site of societal and technical power.

NWEF: "Software” has a rich life as a metaphor, but we
don’t have to deal with it only metaphorically. Digging
into the specifics of how it operates; of the labor
practices (that are raced, classed, and gendered)
through which it is created, tested, maintained, and
updated; of the ways it is received and interacted with;
of the ways it is used within, and substitutes for, legal
frameworks; of the ways it exerts power and breaks
down—how these ground and exceed our common
metaphorical frames—this is work I find immensely
important and still too rare.

To put it another (metaphorical) way, software is soft in
that it is always taking on new shapes: it flutters in the

computationalculture.net/software-studies-revisited/ 13/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
wind; it moves away when we try to put pressure on it.
But that doesn’t mean our work should end with
observing these aspects of it. We should run our fingers
over its texture; we should trace the supply chains,
labor practices, and environmental impacts of its
manufacture and sale; we should pull and bunch and
twist and cut and sew, to reveal more about it and turn
it to new ends.

JZ: Indeed, the software industry has relied on
metaphors to describe functionality as well as to signal
its values. For instance, today’s software is often “big”
(data) and “deep” (learning). These metaphors can be
studied both culturally and technically. For instance,
Agrell identified that, to achieve “intelligence,” classic
Al metaphorically connects the vernacular and technical
meanings of key terms such as “planning” and
“learning.” Mateas declared that every software
contained an intertwined code machine and a rhetoric
machine.? What is “soft” in software thus can also be
the narratives and interpretations people develop about
software’s operation.

Underneath the metaphors of the “big” and “deep” is a
narrative of what Meredith Broussard has called
Technochauvinism.13 Their technical foundations rely on
opaque “neural network” models, industry-scale
processors, and enormous data sets. To make sense of
these, one needs to investigate issues such as gender,
race, and corporate power. Who is creating and
cleaning these data sets? What are their working
conditions? How much energy do the tensor processing
units (TPUs) consume? What is the environmental cost
of cooling the data centers?

WHKC: Thank you for these insightful answers, which
range from examining the role sexism plays in making
things invisible to calls to examine the environmental

costs of software services, from the inherent plasticity

computationalculture.net/software-studies-revisited/ 14/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
of software to the impact of metaphor on our
conceptions of technology. I think that our collective
interests in supply chains, labor, and environmental
costs will push the series in new directions and broaden
the range of both the readers and authors. I see us
publishing more books that bring together technical and
social infrastructures, along the lines of Tung Hui Hu's A
Prehistory of the Cloud,'* Meredith Broussard'’s Artificial
Unintelligence 1>, or Mar Hick’s Programmed
Inequality,1® as well as philosophical ruminations such
as Yuk Hui’s Recursivity and Contingency!’. I think the
biggest gap so far in the series has been books that
bring together critical race theory and software studies
—issues addressed so insightfully by so many authors,
including members of the Center for Critical Race and
Digital Studies (Andre Brock, Safiya Noble, Charleton
Mcllwain, among others).18 I look forward to working
with authors taking on these issues and expanding the
scope of software studies.

Question: What excites you about Software and
Software Studies? Since a piece of software can be
highly technical, how can we negotiate the space
between software technicity and the wider planetary
scale of software culture for critical inquiry?

Responses

WHKC: I think that what excites me most about
software and software studies are their incredible
breadth—and how they challenge us to think about
what'’s visible (interfaces, content, etc.) and what’s
invisible (hardware, infrastructures, economics, etc.) at
the same time. Software, as I elaborate in my response
to the next question, can’t be grasped using one
method or approach. Negotiating the space between
technicity and culture is hard—but it's exactly what we
need to do. To do so, we have to realize that no one
completely understands software. I'm trained as an

computationalculture.net/software-studies-revisited/ 15/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
engineer, and I can tell you what my computer is doing
at many levels theoretically, but I can’t tell you exactly
what it’s doing right now. Even though I'm also trained
as a humanist, I don’t know what any given human is
doing or thinking. These are both enabling gaps in
knowledge—and if we obsess too much about what's
unknown (as though everything should be transparent
and that “seeing through” something means “seeing it
truthfully”), then we miss the importance of what'’s
unknowable. For me, we need to bring technical,
cultural, and social science methods together so we can
map the productive force of the unknowable, and thus
try to understand how we construct knowledge and its
impacts.

NWF: When you think about making software, one
important aspect of its technicity is that you're not
always starting over. If you learn to program in Lisp,
you don’t start over when you learn Scheme. If you
learn to program in Java (a horrible idea, BTW), you
don't start over when you learn C#. You don’t start
over in learning how syntax coloring helps, or how IDEs
or versioning systems help, or in learning debugging
techniques. You don’t even start over at the level of
building software: you reuse a lot of existing design
patterns, libraries, frameworks, game engines, and
statistical models.

That is, when you’re making software, you can think
analogically to transfer the experience, knowledge, and
tools from one context to another. Part of what excites
me about software studies is that I believe we can do
this with a critical understanding of software as well.
Through books, journal articles, blog posts, and social
media bon mots, we can begin to build a set of
understanding that will let people move more quickly
and easily to critically examining the next software they
encounter.

computationalculture.net/software-studies-revisited/ 16/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
In doing this, I think it’s particularly powerful to work
with legible examples. By this I mean work like Minh
Hua’s and Rita Raley’s “Playing with Unicorns: Al
Dungeon and Citizen NLP.”1° In this case, there’s
legibility on two levels. First, while there are many
examples one could choose for writing critically about
large language models (in this case, the GPT series) by
selecting a game, with iterative audience input and
amusing system-generated output, Hua and Raley can
illuminate what is going on in prompt engineering in a
more engaging and revealing way than if their
examples were the kinds of decontextualized “Look, it
generated this!” results that Open AI and other
language model creators generally select. Second, their
example, AI Dungeon,?? itself is being examined as a
kind of legible example, one that allows community
exploration and reflection on prompt engineering for
such models and what it can reveal about the biases in
the data and the contours of the generative space.

In other words, I think at least some of our attention in
software studies should be on interactive, audience-
oriented works—because their legibility makes them
particularly powerful in building up critical literacies
about software. These literacies help us to examine
such works themselves, which are a pervasive part of
culture, as well as at least partially transfer our
understanding to new software contexts.

JZ: As software grows increasingly opaque and
complex, the space between studying its technicality
and investigating its cultural ramifications has grown
further. Contemporary deep neural networks have such
incredibly low interpretability that even their engineers
struggle to make sense of it entirely. If we look at the
current discourse around AI, with a few exceptions, the
technical community and the social sciences are still
looking for common ground to build on. It is hugely
exciting to me that software studies research,

computationalculture.net/software-studies-revisited/ 17129

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
especially work that actively engages in both software
technicality and culture, can provide that missing link.

WS: Thank you for all your responses. It is already
exciting to hear your points of view and insights in
terms of the need for, and how to do, software studies.
One of the shared concerns/interests is the
unknowability of software, from concrete technical
operations, narrative structures, and audience
experiences to wider cultural implications and
significance, in which this is clearly relevant to many
scholars, users, engineers, programmers, artists, and
various communities in the society. Making software
and producing knowledge may be similar, where there
are many ways to build on and understand them, such
as deconstructing and analyzing existing
games/software/models, collaborating with social
scientists and engineers with mixed methods, and
producing critiques and practice-based artifacts, among
others. It is important to cultivate the multiplicities of
critical and creative approaches in unpacking,
conceptualizing, examining, speculating, and making
software, a cultural object that is not often apparent to
our immediate registers but which has significant
effects and consequences. As the editorial collective,
we are interested not only in the question of what
software is about but also in how to study software and
its related communities, organization, culture, and
practices.

Question: How can this book series help to spread the
insights from software studies to other communities of
practices around software?

Responses

WS: There have been a lot of makers, coders, and
designers, but it's true I also feel the link is somehow
missing regarding software/computational practitioners

computationalculture.net/software-studies-revisited/ 18/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
and the field of software studies. One of the ways to
bridge this may require unlearning the assumptions and
normative practices in doing and developing software
beyond just serving or prioritizing neoliberal demands.
This, perhaps, starts with software as a site of playful
experimentation and aesthetic/critical inquiry, which
involves not just functionally solving problems but also
posing them to allow new forms of knowledge to
emerge. For me, this question is about fundamentally
changing or expanding how we normally approach
software, creating new spaces and challenging the way
we might make software otherwise.

NWEF: I tend to think that engineering and art are
pretty similar—they’re ways of making things (and of
course those things can be conceptual or ephemeral).
That’s not the internal conception of a lot of
engineering institutions. As Winnie suggests, they think
engineers are “solving problems” and only incidentally
making things along the way to solutions. And despite
the spread of software to many disciplines, engineering
institutions are still where most people learn to make
and think about software. In the institutional
engineering view of the field, which many people have
internalized, the important questions become (1) how
the problems to be solved are defined and (2) how we
know when we have a solution, or a “better” solution.

It's in these places I see a lot of dissatisfaction among
software makers. The problems have been defined
incorrectly at Facebook and YouTube, if they boil down
to "How do we maximize engagement, no matter how
misleading and hateful?” The metrics have been defined
incorrectly in much published engineering research, if
they boil down to "I made it more efficient, without
ever interrogating why my corporate or military funder
wanted it that way.”

computationalculture.net/software-studies-revisited/ 19/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
The questions and incentives have even been defined
incorrectly in areas with little funding. For example,
faculty and graduate students in my own software
research area (interactive narrative) don’t have much
incentive to actually make the things we say we're
trying to discover new possibilities for (interactive
narratives). Instead, we mostly produce technical
frameworks and studies of other people’s work—in part
because it's unclear what problem is being solved by
making a complete work. And it's hard to measure
success for something as complex as a meaningful
work of fiction. You don’t necessarily get more peer-
reviewed publications out of a complete project. The
landmarks in our field are almost all experimental
interactive narratives, but we have organized things so
that most dissertations and major projects in the field
do not produce one.

All that said, many people are looking for different
conceptions of making software. And many people
working to develop such conceptions—such as Winnie’s
suggestion that software can be considered a way of
posing problems. I think these people are doing
software studies. Perhaps the term and the series can
help those who are seeking and producing new
conceptions to find each other.

WHKC: Your question raises two excellent, more
general questions: How do we work together across
disciplines? And how do we address the apparent gap
between theory and practice?

To work effectively across disciplines, we need to take
on an issue that one discipline or group can’t on its
own. Software—given its ubiquity, diversity, and
multivalence—is clearly such an issue. Some
approaches focus on technical structures, while others
drill down on its economics; some privilege its visible
aspects—interfaces and content—while others claim

computationalculture.net/software-studies-revisited/ 20/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
that what really matters can’t be seen—infrastructure,
code, etc. Software studies is so important because it
brings together all these approaches because one alone
is insufficient. Software affects so many of us: from
workers whose actions are tracked and ruthlessly
“optimized” to students whose actions are also
surveilled via educational technology; from would-be
social media micro-stars who see every real-world
moment in terms of their feed to migrants who use cell
phones to negotiate perilous journeys.

How, though, can we get multiple communities of
practice to join in the dialogue? One way is to refuse
the divide between theory and practice. Crucially,
theory and practice weren’t always opposed. As Wlad
Godzich explains, “theory” derives from the Greek
theoria, a term that described a group of officials whose
formal withessing of an event ensured its official
recognition. Its opposite was aesthetics, which was the
seeing of women and slaves. Theory from its very
beginning was performative or productive, but also
troublingly exclusive. To move beyond its elitism, we
need to engage both what’s been excluded—aesthetics
—and communities that have been excluded as forms
of witnhessing and event-making. How might we bring
together various users and practitioners by focusing on
how our engagements with software foster different
experiences, narratives, and witnesses?

JZ: Thank you for these insightful responses. A
common theme is that software studies are an essential
component of critical technical practice. 2! From
Winnie’'s vision of alternative modes of software making
to Noah’s observation of the dominant engineering
culture, we see the field of software studies as an
intellectual toolset for software makers. It can empower
them to identify better problems and explore more
socially responsible evaluation metrics. Wendy's
argument highlights software studies as an inherently

computationalculture.net/software-studies-revisited/ 21/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
interdisciplinary field that pushes back the traditional
boundary between theory and practice. We can imagine
a wide range of software studies projects that bridge
different disciplines to inform, question, and expand
what we currently think of as software making and
software culture. We encourage new work that connects
critical theory and practice. As coeditors of this series,
we also need to further raise the visibility of software
studies and build alliances, especially with relevant
communities who may not be fully aware of the exciting
work here.

Question: How do we find and support such authors, or
teams of authors? How do we help shape circumstances
so that it is more possible for people, especially junior
researchers, to take the time and risks that such work
demands?

Responses

NWF: I'm in part thinking of I AM ERROR, my favorite
book in the Platform Studies series.?2 (It's my favorite
because it’s not only critically insightful in the way it
grapples with technical specifics, it also turns its critical
attention to the underlying assumptions of platform
studies as a project.) The book came about through
early-stage support from the series editors, before
Nathan Altice (the author) had definitively settled on a
dissertation topic. That support opened the way to a
dissertation that was pretty unusual, but the prospect
of an MIT Press book coming out of the process
produced a lot of goodwill. This support from the
editors was a bit of happenstance—it started with Altice
giving a conference talk, which one of the other series
authors saw, which then led to contact with the editors
and the press.

I'm wondering if there are ways beyond happenstance
that we can help open the way for software studies

computationalculture.net/software-studies-revisited/ 22/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture

work.

WS: One of the important aspects around finding and
supporting authors is creating a safe and welcoming
space, which is something I have learned from open
source communities, especially p5.js.23 We need to
make it explicit that we welcome early-career
researchers, as well as people with different ways to
queer software beyond Western traditions and big tech
normalization to account for other forms of knowledge
production.

Software studies is still a field required to think about
the specificity of software and how that might differ or
connect to other technologies such as platforms, data,
and the internet. Accessibility is another issue: what
are the entry points for people to start engaging with
the field? People may not consider the Software Studies
book series is something for them. It will require some
effort to actively look for, engage, and support
emerging researchers to work across disciplines and to
push the boundaries of how software could be made or
studied differently.

WHKC: This is such a crucial and difficult question.
The example you bring up is amazing—but it also raises
so many questions about the “professionalization” of
graduate students and the dwindling job prospects for
them. Writing a dissertation is tough; trying to write a
dissertation that will launch an academic career is
almost impossible, especially since one never knows in
advance where the field will be once you're done. (This
is of course true for any book-writing adventure.)
Having said this, your question is: what can we as
editors do to support emerging scholars in the face of
everything I've written above? I think that being there
for younger researchers is absolutely key—reaching out
to them, encouraging them, and giving them a sense of
what impact their work can have. Participating in

computationalculture.net/software-studies-revisited/ 23/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
workshops for PhD students about publishing;
attending conference panels with PhD students and
reaching out to them afterward about the series;
helping PhD students apply for postdocs that will
expand their projects and help them see their
dissertations as books. These are three of many things
we should and will do.

JZ: We need to better support researchers who
undertake interdisciplinary work. As we discussed
earlier, it is particularly challenging to produce work
that can deeply engage the technicality as well as
cultural implications of software. It is risky for authors
to create such works because it takes time to develop
competency in more than one discipline. It takes even
longer to reconcile the different value systems and
methodological differences between disciplines. Yet,
such works are so critically needed in software studies.
In addition to Winnie’s and Wendy’s excellent points of
mentoring young researchers and fostering a safe
space, raising awareness at the institutional level to
recognize and support interdisciplinary work can also
help.

NWF: Thanks all for these thoughtful answers. I'm
intrigued by Winnie’s parallel with community-
developed software. Connecting with some of Wendy'’s
thoughts: can we imagine workshops with PhD students
that aren’t just forums for giving advice and asking
questions, but collaborations in which we make
something together? There’s certainly precedent for
collaborative work in the series, such as the ten-author
book 10 PRINT CHR$(205.5+RND(1)); : GOTO 10,
24which began in the context of online discussion
through the Critical Code Studies Working Group. 2°It
also reminds me of group collaborations on critical
Wikipedia editing interventions, such as those
organized by Art+Feminism.2® And that brings me to
Jichen’s thoughts: it is difficult and time-consuming to

computationalculture.net/software-studies-revisited/ 24/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
develop cross-disciplinary expertise—and even
traditional, disciplinary graduate study is already
fraught with dangers such as imposter syndrome.
Perhaps frameworks and contexts for collaborative
making could also help address this aspect of the
challenges of doing software studies.

Xk %

To conclude, it's been more than a decade since the
original launch of the Software Studies series. In that
time, as software and its influences have pervaded
more of the world’s cultures and economies, as big
software companies have stumbled in their attempts to
integrate “ethics” (whether with internal researchers or
outside boards) and scrambled to defuse and deflect
discrimination lawsuits and unionization, as the
humanities and social sciences have struggled with how
to address the workings of software and the
technocultural and infrastructural assemblages through
which it is produced and operates, and as the arts have
sought some way to engage constructs such as deep
learning and large language models beyond producing
promotional images and toys, the need for the work of
software studies has only grown. In relaunching the
series in @ mode that is both broader in its view of
software and more pointed in its approaches, the new
editorial group looks forward to being both venue and
support for the urgent work of software studies.

Bibliography

Agre, Philip E. Computation and Human Experience.
Cambridge, UK: Cambridge University Press, 1997.

Altice, Nathan. I Am Error: The Nintendo Family
Computer / Entertainment System Platform.
Cambridge: MIT Press, 2015.

computationalculture.net/software-studies-revisited/ 25/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
Bratton, Benjamin H. The Stack: On Software and
Sovereignty. Cambridge: MIT Press, 2016.

Broussard, Meredith. Artificial Unintelligence: How
Computers Misunderstand the World. Cambridge: MIT
Press, 2019.

Chun, Wendy Hui Kyong. Programmed Visions:
Software and Memory. Cambridge: MIT Press, 2013.

Ensmenger, Nathan. “"Making Programming Masculine.”
In Gender Codes: Why Women are Leaving Computing,
edited by Thomas J. Misa. Hoboken, NJ: John Wiley,
2010.

Frauenberger, Christopher. "Entanglement HCI the next
wave?.” ACM Transactions on Computer-Human
Interaction (TOCHI), no. 27.1 (2019), pp.1-27.

Hicks, Mar. Programmed Inequality: How Britain
Discarded Women Technologists and Lost Its Edge in
Computing. Cambridge: MIT Press, 2018.

Hu, Tung-Hui. A Prehistory of the Cloud. Cambridge:
MIT Press, 2016.

Hui, Yuk. Recursivity and Contingency. London:
Rowman & Littlefield International, 2019.

Mandel, Lois. "The Computer Girls.” Cosmopolitan (April
1967) pp.52-56.

Mateas, Michael. “Expressive Al: A semiotic analysis of
machinic affordances.” 3rd Conference on
Computational Semiotics for Games and New Media,
vol. 58. (2003).

Montfort, Nick, Patsy Baudoin, John Bell, Ian Bogost,
Jeremy Douglass, Mark C. Marino, Michael Mateas,

computationalculture.net/software-studies-revisited/ 26/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
Casey Reas, Mark Sample and Noah Vawter. 10 Print
Chr$(205. 5+rnd(1)). Cambridge: MIT Press, 2014.

Raley, Rita and Minh Hua. “Playing With Unicorns: Al
Dungeon and Citizen NLP.” Digital Humanities Quarterly,
no. 14.4 (June 2021).

Soon, Winnie, and Geoff Cox. Aesthetic Programming:
A Handbook of Software Studies. London: Open
Humanities Press, 2020.

Vee, Annette. Coding Literacy: How Computer
Programming is Changing Writing. Cambridge: MIT
Press, 2017.

Footnotes

1. Nick Montfort, Patsy Baudoin, John Bell, Ian Bogost,
Jeremy Douglass, Mark C. Marino, Michael Mateas,
Casey Reas, Mark Sample, and Noah Vawter, 10
PRINT CHR$ (205.5 + RND (1)); : GOTO 10;
Cambridge, MA: The MIT Press, 2012 €

2. Benjamin Bratton, The Stack, Cambridge, MA: The
MIT Press, 2016 €

3. Annette Vee, Coding Literacy, Cambridge, MA: The
MIT Press, 2017 €

4. Wendy Hui Kyong Chun, Programmed Visions:
Software and Memory. Cambridge, MA: The MIT
Press, 2011 €

5. "Winnie Soon and Geoff Cox, Aesthetic
Programming: A Handbook of Software Studies,
London: Open Humanities Press, 2020. See also,
https://aesthetic-programming.net/” €

6. Download the web browser extension with
instructions here:
https://gitlab.com/siusoon/refresh/ €

7. Cambridge Dictionary, Cambridge University Press,
https://dictionary.cambridge.org/ €

computationalculture.net/software-studies-revisited/ 27129

30/01/2026, 10:49

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

Christopher Frauenberger, “Entanglement HCI The
next wave?” ACM Transactions on Computer-Human
Interaction. vol.27. iss. 1, pp.1-27, 2020. €

. Ensmenger, Nathan. “"Making Programming

Masculine.” In Gender Codes: Why Women are
Leaving Computing, edited by Thomas J. Misa.
Hoboken, NJ: John Wiley, 2010. €

Lois Mandel, “The Computer Girls.” Cosmopolitan
(April 1967) pp.52-56. €

Philip Agre, <Computation and Human Experience,
Cambridge: Cambridge University Press, 1997. €
Michael Mateas, “"Expressive Al: A semiotic analysis
of machinic affordances.” 3rd Conference on
Computational Semiotics for Games and New Media,
vol. 58. (2003). €

Meredith Broussard, Artificial Unintelligence: How
Computers Misunderstand the World, Cambridge
MA: The MIT Press, 2018. €

Tung Hui Hu, A Prehistory of the Cloud, Cambridge
MA: The MIT Press, 2015 €

Broussard, op cit €

Mar Hicks, Programmed Inequality: How Britain
Discarded Women Technologists and Lost Its Edge in
Computing, Cambridge MA: The MIT Press, 2018. €
Yuk Hui, Recursivity and Contingency, London:
Rowman and Littlefield International, 2019 €

The Center for Critical Race & Digital Studies,
https://criticalracedigitalstudies.com/ €

Minh Hua and Rita Raley, "Playing With Unicorns: AI
Dungeon and Citizen NLP”, Digital Humanities
Quarterly, Vol. 14 No.4, 2020
http://digitalhumanities.org/dhq/vol/14/4/000533/0
00533.html/ €

AI Dungeon, https://play.aidungeon.io/ €

Philip Agre, op cit €

Nathan Altice, I Am Error: The Nintendo Family
Computer / Entertainment System Platform,
Cambridge MA: The MIT Press, 2015 €

p5.js, https://p5js.org/ €

computationalculture.net/software-studies-revisited/

Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture

28/29

30/01/2026, 10:49 Software Studies, Revisited. A Roundtable on the Software Studies Series at MIT Press — Computational Culture
24. Nick Montford et al, op cit €
25. Critical Code Studies Working Group,
https://wg.criticalcodestudies.com/ €
26. Art + Feminism, https://artandfeminism.org/ €

%= COMMENT, ISSUE NINE

This journal is powered by WordPress | Website Design and Production

computationalculture.net/software-studies-revisited/ 29/29

