
Examining Student Coding Behaviours in Creative Computing
Lessons using Abstract Syntax Trees and Vocabulary Analysis

Matthew Yee-King
Goldsmiths, University of London

London, UK

Louis McCallum
Goldsmiths, University of London

London, UK

Maria Teresa Llano
Goldsmiths, University of London

London, UK

Vit Ruzicka
Creative Computing Institute,

University of the Arts
London, UK

Mark d’Inverno
Goldsmiths, University of London

London, UK

Mick Grierson
Creative Computing Institute,

University of the Arts
London, UK

ABSTRACT
Creative computing is an approach to computing education which
emphasises the creation of interactive audiovisual software and an
art-school influenced pedagogy. Given this emphasis on Dewey’s
"learning by doing”, we set out to investigate the processes students
use to develop their programs. We refer to these processes as the
students’ ‘coding behaviour’, and we expect that understanding
it will provide us with valuable information about how students
learn in our creative computing classes. As existing metrics were
not sufficient, we introduce a new set of quantitative metrics to
describe coding behaviours. The metrics consider factors such as
students’ vocabulary use and development, how fast and how much
they alter the functionality of code over time and how they iterate
on their code through text insert and delete operations. Many of
our lessons involve providing students with demonstrator code
which they use as a base for the development of their programs,
so we use demo code as an entry point to our dataset. We look at
programs students have written through developing the demo code
in a dataset of over 16,000 programs. We clustered the demo code
using the set of descriptive metrics. This lead to a set of clusters
containing programs which are associated with distinct coding
behaviours. Four was the ideal number of clusters for cluster density
and separation. We found that the clusters had distinct behaviour
patterns, that they were associated with different instructors and
that they contained demo programs with different lengths.

CCS CONCEPTS
•Human-centered computing→Human computer inter-

action (HCI); Usability testing; Heuristic evaluations.
KEYWORDS

Demonstrator Code; Creative Computing; MOOCs; Automated
Code Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE ’20, June 15–19, 2020, Trondheim, Norway
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6874-2/20/06. . . $15.00
https://doi.org/10.1145/3341525.3387408

ACM Reference Format:
Matthew Yee-King, Louis McCallum, Maria Teresa Llano, Vit Ruzicka, Mark
d’Inverno, and Mick Grierson. 2020. Examining Student Coding Behaviours
in Creative Computing Lessons using Abstract Syntax Trees and Vocabulary
Analysis. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’20), June 15–19, 2020,
Trondheim, Norway. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3341525.3387408

1 INTRODUCTION
Creative computing is a branch of computing that emphasises
the development of software that generates interactive, audio and
graphical output. It embraces an arts-inflected pedagogical ap-
proach which encourages students to engage in Dewey‘s ‘learning
by doing’[7].

An important element of creative computing pedagogy is the
idea that students experiment with code, driven by technical and
aesthetic goals. The process of creating programs is therefore critical,
and this inspired us to create a set ofmetrics that allow us to describe
and examine that process.

When we are teaching creative computing we often use demon-
strator code. Demonstrator, or demo code is code that illustrates a
technical or aesthetic concept, for example, an audio demo program
showing how to load and play a drum sound, or an audiovisual
program showing how to visualise the audio signal detected by a
microphone.

Many of our creative computing lessons involve showing stu-
dents demo code, then instructing them to take that code and adapt
it in different ways, but we currently have no way of determining
the types of student learning behaviours occurring following these
lessons. Does our demo code allow students to set off and explore?
Are they able to develop it into new programs, different from the
original? Investigating this is made harder if the teaching is done
via Massive Open Online Courses (MOOCs) with a large, remote
community of students and creators.

We investigate this problem by looking in detail at what students
do with our demo code after we give it to them. We can do this
because we have created a browser-based, creative coding platform
which thousands of our students have used to develop code, and
which contains a dataset of about 25,000 programs, from which we
analyse 16,245 in this paper. We developed the platform to support
our teaching needs. The platform allows us to rapidly share code

Session: Creative Computing ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

273

https://doi.org/10.1145/3341525.3387408
https://doi.org/10.1145/3341525.3387408
https://doi.org/10.1145/3341525.3387408
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3341525.3387408&domain=pdf&date_stamp=2020-06-15

Figure 1: The browser-based coding platform. On the left is
the visual output of the program. On the right is the code
editor.

with students who can then make copies or forks of the code. Later
we can reconstruct coding sessions to analyse them.

Creative computing has its own set of teaching approaches and
learning outcomes distinct from other forms of computer science
education so finding metrics that can identify different student
coding behaviours in this context provides its own set of challenges.
If we can overcome these challenges and develop a set of descriptive
metrics, we can use them to improve our teaching. For example,
we can analyse how students work with our lesson materials to see
if they are able to explore and expand them in the way we expect,
or we might develop automatic marking systems that can identify
students who carry out an effective creative computing process.

With this in mind, to analyse the patterns of use on the coding
platform, we have developed a set of metrics based on automatic
analysis of how demonstrator code is iteratively forked and edited
by students. We have selected the metrics to describe some of the
kind of learning activity often displayed in creative computing
contexts. The metrics measure aspects of coding behaviour such as
the speed and amount at which the program functionally changes,
how the coder uses existing and new vocabulary and how they
experiment via insert and delete operations.

In the analysis presented here, we take demo code as an entry
point to the dataset. We can then associate the coding behaviours
we identify with particular examples of demo code. The demo
code from which students developed their programs is only one
aspect of the context in which the coding took place though. Other
contextual elements include the instructor giving the lesson, the
style of teaching and the learning objectives.

We find that our metrics can be used to identify different clusters
of coding behaviours, each associated with different characteristics
relating to how the demonstrator code is taken and edited by stu-
dents. Interestingly, these coding behaviours seem to be associated

with specific instructors, some of whom authored the code with
distinct pedagogical intentions for a particular context.

In the following text, we present our approach to identifying stu-
dent coding behaviours from a large dataset of creative computing
programs derived by students from demonstrator code.

2 RELATEDWORK
2.1 Teaching with Demonstrator Code in

Computer Science Education
Demonstrator and example code provides a resource for learning
about new programming concepts and libraries [19] and is often
the starting point when developers start new projects [4]. Brandt
et. al describe the approach of opportunistic programming, where
already existing code snippets are scavenged and reused by devel-
opers, often via copy-and-paste actions [5]. Demonstrator code may
be authored and presented with a variety of different intentions
for how students will develop it to engage with the learning out-
comes of a particular class. One strategy that is often encouraged in
creative computing is a STEAM approach, where students take an
active, exploratory approach to lessons [23]. This is also seen more
widely in the general teaching of programming where, following
on from Dewey’s ‘learning by doing’ [7], much research has been
conducted into the benefits of this approach to learning involving
trial and error, hacking and building things without necessarily
knowing exactly how they work [1, 8, 15, 17, 20].

For example, in a task developing virtual soccer playing robots,
Berland et. al find that students often undertook an "explore, tinker,
refine" approach, successfully using trial and error in an environ-
ment designed to allow quick evaluation and low risk failure to
arrive at solutions [2]. Yee-King et al. have also found that encour-
aging an exploratory approach when teaching creative computing
has positive effects on student experience and that students par-
taking in such tasks edit their programs in particular, identifiable
ways [23]. Further, in a study of Scratch projects, Dasgupta et. al
demonstrate that the more users remix projects, that is, take an
existing project as a base for building a new project, the larger
their programming vocabulary [6], and that when computational
concepts are presented in the context of remixing, users are more
likely to use them in future.

2.2 Automated Analysis of Student Code
Code analysis is a broad research area with many different applica-
tions, for instance, protecting intellectual property, predicting code
errors, debugging function calls, identifying undocumented code
and identifying semantic similarities between two pieces of code. In
this work we are interested in automated analysis of students’ code.
Two prevalent themes of research in the area are clustering similar
submissions together and modelling a student’s code trajectory
over time. Whilst neither of these aligns directly with our specific
aim, both provide useful metrics by which we might characterise a
demo, or by which we might track its evolution over time.

MOOCs have motivated some recent work analysing student
code. Due to the volume of submissions and the low cost of the
courses, it can be beneficial to cluster similar coding assignments
together and to provide group feedback. Yin et al. [24], for instance,
use a measure of Tree Edit Distance (TED), calculated from Abstract

Session: Creative Computing ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

274

Figure 2: Relationship between items in the fork tree where
circles represent programs on the platform. 1) a is the root
of all nodes 2) b forks a, d forks b. 3) b,c,d,e and f are descen-
dants of a. 4) d,b and a are ancestors of f. 5) b, not a or d is
the most important ancestor of f as it is the oldest and has
the most forks.

Syntax Trees (ASTs), and t-distributed stochastic neighbor embed-
ding (t-SNE) to cluster and visualise similar pieces of code. Huang
et al. [12] specify different types of similarities, namely functional
and syntactic. Functional similarity comes through comparing out-
put vectors of unit tests, while syntactic similarity is measured by
comparing tree edit distance for ASTs.

More sophisticated approaches, such as that of Glassman et al’s
OverCode system [11], not only cluster similar submissions, but
are also able to generate a summary code representative of each
cluster, allowing for instructors to view more submissions and get
a better feel for the breadth and variety of their content. Having
a general understanding of the spectrum of solutions provided by
students not only facilitates instructors’ marking but also enables
them to provide better feedback.

A further motivation for automatic code analysis is to track stu-
dents’ progress over time. Piech et al. [18] log the code at each
compilation and analyse the student’s trajectory by constructing
Hidden Markov Models based on bag-of-words, difference in API
calls and AST change severity features. They then use dynamic time
warping to align records, identifying students with similar trajecto-
ries by clustering the HMMs. Following on from this, Blikstein et al.
[3] found that it was the change in programming patterns over time,
rather than any particular programming pattern, that was most
predictive of the final grade. Studying informal learning in Scratch,
Yang et al. studied the learning trajectories of students across mul-
tiple projects, using clustering to find 4 separate approaches [22].
Xie and Ableson tracked the progression of individual learners
using a different online block-based programming environment
and reported the way users added new blocks to their vocabulary
changed as they made more projects [21].

3 METHOD
In this section we will describe the dataset and the coding behaviour
metrics we have extracted from it. We will then explain how we
went about clustering and examining the coding behaviours.

3.1 The Dataset
We gathered the dataset analysed in this study from our browser-
based coding platform, the interface of which is shown in Fig 1.
We had initially developed the platform to meet our teaching re-
quirements for a creative computing BSc curriculum as existing
platforms such as codepen.io1 and JSFiddle2 could not meet these
requirements at the time. The key features of the platform include
JavaScript-based development, with built-in support for audiovi-
sual signal processing libraries, document sharing, code forking,
collaborative code editing and live-coding.

The platform is underpinned by an operational transform engine[9].
As a consequence, every edit (transformation) of the program by
the user is recorded, in order. Collecting data this way allows us to
reconstruct the programming process step by step.

Several different cohorts of students have used the platform, in-
cluding MOOC learners, on-campus university students and those
attending in-person short course workshops with all the courses
broadly based around themes of audiovisual processing and cre-
ative computing. We also used the platform as a way to share new
libraries developed in research projects with communities of public
users. In total, the platform contains around 25,000 programs.

3.1.1 Selecting programs for analysis. In our lessons, we often share
demonstrator code with students, and they make copies of this code
which they continue to develop. We call the copies forks, and we
call the tree of forked programs following on from a particular
demo code item the fork tree (see Figure 2).

In the analysis presented here, we selected every program on the
platform with at least five descendants made by other users in its
fork tree. This process yielded 304 root programs, which we refer to
as demo programs. Then we compute the metrics described below
over the 304 demo programs’ fork trees, which involved analysing
a further 16,245 programs.

The rationale was that we considered these items to be clear
starting points for code development by others, and thus a key
element of the context in which that coding took place. Thus we can
examine if that context, i.e. the demo code itself has characteristics
which enable (or inhibit) certain coding behaviours.

While forking was encouraged by instructors and is a crucial part
of the platform, we accept that our fork tree analysis method does
not necessarily capture certain learning approaches. For example,
students might copy-paste code from other documents into a fresh,
unforked program as a method of exploring the lesson content, as
opposed to forking. Our method does represent copy-paste opera-
tions within forked code though. We acknowledge that the method
of analysing coding behaviours does not explicitly take account
of other aspects of the lesson context besides the demo code, for
example, which instructor taught the lesson, the learning objec-
tives, if it was online or face to face teaching, and so on. However,
in our analysis, we do show how we can map back from coding
behaviours to other contextual elements by correlating instructors
with clusters. The mapping from clusters to instructors is described
more in the Section 4.

1https://codepen.io
2https://jsfiddle.net

Session: Creative Computing ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

275

3.2 Coding behaviour metrics
We shall now describe the metrics we extracted from the code
editing sequences in our dataset.

3.2.1 Forks by other users. This metric is the average number of de-
scendants per user created by users other than the original program
creator. It tells us how much other people re-use a program. The av-
eraging per user allows comparison between programs shared with
different sized cohorts. Higher forks per user indicate potentially
greater re-use.

3.2.2 Code editing rate. We calculate the rate of code editing in
each document as operations per hour, ignoring periods of inactivity
longer than five minutes. An operation is an insertion or deletion
in the code, including copy/cut and paste operations within the
document. We then traverse the fork tree and compute the average
rate over all the documents, only considering documents created
by other people. Higher scores indicate higher code editing rates.

3.2.3 Code editing amount. We calculate the total number of edit
operations per document in the fork tree, then take the average per
document, only considering documents created by others. Higher
scores indicate higher numbers of edits.

3.2.4 Insert to delete ratio. We calculate the ratio between insert
operations (adding code to a document) and delete operations (re-
moving code from a document), then take the average over docu-
ments in the fork tree. We use a 1:1 ratio as a proxy for exploratory
coding, or ‘tinkering‘ as described by Papert[15].

3.2.5 Syntax tree change rate. This metric makes use of an AST rep-
resentation of the program. AST diffing allows a more meaningful
comparison of two programs at a functional level than regular text
diffing does. AST diffing can detect moved and renamed elements
as well as the more obvious inserted and deleted elements.

For each document, we reconstruct a chronological sequence
of executable snapshots of the program code. We compare each
snapshot to its previous snapshot in the AST domain and use the
Gumtree diffing algorithm to compute a difference score [10]. From
this, we can calculate the diff rate, ignoring periods of inactivity
longer than five minutes. We compute the mean diff rate per hour
over the fork tree.

We adjust the AST diff rate by dividing the code editing rate by
it to prevent large copy-paste operations which induce very rapid
AST change from out-ranking smaller, handmade code edits. This
biases the metric to rate small, exploratory or iterative edits over
copy-past edits.

3.2.6 Syntax tree change amount. Syntax tree change amount is the
total amount of AST change observed in the lifetime of a document,
from when the user forked it, to its last edit. We average this over
documents in the fork tree.

3.2.7 Vocabulary re-use. We define the vocabulary used in a pro-
gram as the set of unique function calls. Vocabulary re-use is when
the function call appears more times in the descendant than in the
ancestor - the user used that function again. We compare descen-
dants to their most important ancestor instead of the root. The
most important ancestor is the ancestor with the most forks, then
the oldest in case there are more than one with the same number

Figure 3: Davies-Baudin score for different values of k

of forks, as illustrated in figure 2. We use this instead of the root
ancestor because often in our teaching we will fork all of our ex-
amples from a starter program, then share the forks with students,
and we are most interested in comparing student code with the
actual examples given out in class, not just the root of all examples.
We average this metric over all documents in the fork tree to avoid
rewarding documents shared with large classes over documents
shared with small classes.

3.2.8 New vocabulary. New vocabulary is the set of function calls
that appear in the descendant but not in the ancestor, where the
user added new function calls to the program. We average over the
documents in the fork tree.

3.2.9 Fine-tuning. Having first defined the metrics, we then began
iterating back to fine-tune them as we observed quirks in the data.
For example, we noticed a document with high AST change rate
also had very few edit operations, and concluded it involved lots
of copy-paste instead of fine-grained editing. To correct this we
implemented a normalised AST diff rate. This is not to say that
large copy-paste operations are not necessarily a useful indicator of
coding behaviours, merely that this metric was intended to capture
fine-grained editing as opposed to large copy-paste operations.

3.3 Clustering demo code
To identify specific coding behaviours, we used the above metrics
to cluster the 304 demonstrator programs (programs with 5 or more
descendants) by extracting the metrics from the 16,245 descendants
of that demo code and calculating the mean metrics per demo
program.

After reducing the dimensionality of the features from 8D to
2D using a Principle Component Analysis (PCA), we used the K-
means++ algorithm from the scikit-learn library [16] to cluster the
programs with k = 4.

This value of k was chosen because of its low Davies-Baudin
score, representing a better separation between the clusters [14],
after which it starts to rise again (see Fig 3). We then take the
clusters and look at the mean values for each metric, the percentage
of programs written by particular known, prolific instructors and
the overall length to try and characterise the types of programs
present in each and their associated coding behaviours.

Session: Creative Computing ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

276

Figure 4: Clusters of programs, centers denoted by black X

Figure 5: Mean values for normalised usagemetrics for each
cluster

4 RESULTS
4.1 Clustering and code behaviours
Fig 4 shows the results of using the K-Means++ algorithm to cluster
the coding metrics extracted from the descendants of 304 demon-
strator programs using k=4. The clustering achieved a silhouette
score of 0.39, demonstrating a successful clustering with a mod-
erate density of clusters (scores closer to 1 represent high-density
clusters).

Fig 5 shows the mean value for each cluster and metric. We
normalised the metrics for easier comparison. While some metrics

Metric Cl 1 Cl 2 Cl 3 Cl 4
forks by others + - + -
code edit rate + -
code edit total + - + -
AST edit rate
AST edit total + - + -
vocab reuse - - + +
new vocab + -
insert to delete ratio - +

Table 1: Correlations between clusters andmetrics at p <0.05,
with positive correlations shown by + and negative by -

Figure 6: Lengths of the programs in each cluster

do not display much variance between the clusters, there are some
apparent differences for others.

Following the approach used in [13], to characterise each cluster,
we correlated the clusters (dummy coded) with the metrics using a
point biserial correlation. Table 1 shows the results for significant
positive and negative correlations. From this we can summarise the
clusters in the following way: Cluster 1 has high overall change to
code, with a favouring of picking up new vocab instead of reusing
functions from the demonstrator program. Cluster 2 shows low
overall change, both functionally and with the inclusion of new
and seen vocab, however, these small changes were done quickly.
Cluster 3 shows a high overall change, reusing the functions seen
in the demonstrator code. Finally, Cluster 4 also sees high reuse
though it combines this with small changes to the code in general.
Clusters 1 and 3 showed high forking by other users, unlike Clusters
2 and 4.

4.2 Program authors and program length
We identified the three most prolific authors creating demonstra-
tor code, all having either generated projects for multiple taught
courses, or large numbers of examples for a specific research project.
Instructor A conducted a large creative computing MOOC, as well
as a similarly themed summer school focusing on the teaching of
creative computing using a STEAM pedagogy. Instructor B used

Session: Creative Computing ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

277

the platform to teach a different MOOC, as well as using it for in-
lesson teaching at a university. Instructor C made several examples
for teaching and encouraging use of a particular javascript library
aimed at end-user machine learning, often in a creative context.
The final set contains all other contributors; these may be students
or other creators using the platform.

Performing a Pearson’s chi-squared test, we found that clusters
are significantly different from each other in respect to the four
author categories (Instructor A, Instructor B, Instructor C, Other)
(chi-square = 242.856, p<0.05). Cluster 1 has a higher proportion of
programs authored by Instructor A; Cluster 3 is over-represented
by Instructor C, and Cluster 4 has a larger than normal amount of
documents from non-instructors (students or other contributors).

We conducted a Kruskal-Wallis test to examine the variation in
program length between clusters, in terms of the number of lines
of code. We found significant differences (Chi-square = 78.42, p <
0.05, df = 5) among the groups, indicating that the length of the
program might be associated the types of coding behaviours seen
in students. Fig 6 shows that Clusters 1 and 2 tend to have shorter
programs, whereas Cluster 3 contains some much larger ones.

5 DISCUSSION
5.1 Coding Behaviours
Some pedagogical approaches used in creative computing encour-
age active learning through exploration and as such, characterising
the process through which students develop their code is a promis-
ing investigative approach. Following the cluster analysis, our re-
sults demonstrate that students show several distinctly different
types of coding behaviour.

We see from analysis of Cluster 1 that the demo programs were
short and often authored by Instructor A. Students made large
changes to the code, both in terms of edit operations and changes
to the structure of the code, including introducing new vocabulary.
Cluster 3 shows a similar pattern, except students tended to reuse
vocabulary, as opposed to expanding it. This small cluster also con-
tains all the programs from a specific instructor, and the programs
are long and developed examples for a specific software library and
research project.

Clusters 1 and 3 also showed high forking by others, meaning
that people on average tended to go back and re-fork the code
multiple times. But the higher incidence of new vocabulary in
Cluster 1 indicates development towards a different application
than the original whereas forks from Cluster 3 tended to re-use
the same vocabulary, suggesting a more limited set of applications,
closer to the originals. This appears to be inline with expectations,
given the intention of some of the programs in the latter set.

Cluster 4 contains a disproportionate amount of programs by
non-instructors where users comparatively edit the documents
less. It seems possible that authors of non-instructor code have not
designed it and have not used it for teaching purposes, so it is not
surprising that its ongoing usage patterns are different to those
for code that was designed for teaching. It would be interesting to
investigate further why this code appears to be so popular.

Cluster 2, the largest cluster, has the most similar proportions of
authors to those in the dataset as a whole, i.e. most authors seen
in the other clusters are represented. Cluster 2 is characterised by

limited amounts of code editing. The code was certainly used by
students, as it was forked multiple times, but they did not edit it
very much.

A correct interpretation of the limited editing that we observed
in Cluster 2 depends on information about the context in which
the code editing took place. Sometimes, instructors set simple tasks
which only require a small amount of editing. For example, the
instructor might show a technique to the students, ask them to
experiment with the parameters in a demo program quickly, then
move onto another technique. Further examination of the example
programs is needed to establish the context. It is interesting that
this cluster contains demo code from all the instructors, indicating
that the limited code editing behaviour is likely neither lesson con-
text nor instructor specific. Perhaps these demonstrator programs
were just too uninspiring! Further work is required to explain this
interesting variation.

6 CONCLUSION
Over the last five years, the authors have developed and delivered
many arts and music-based computer science courses both online
and in-person. We have developed and used a browser-based pro-
gramming platform to support the delivery of our teaching, and
it enables us to analyse how students develop code in our lessons.
Many of our students begin by forking an existing program on the
platform, and these demo programs are either explicitly designed
course materials made by an instructor or created by other students
using the platform.

Having some insight into how creative computing students en-
gage with our demonstrator code is useful to creative computing
tutors as it allows us to check if students are expressing the coding
behaviours expected by the lesson. We can also uncover potentially
unknown coding behaviours within a student population that can
help inform tutors when giving feedback or designing new sessions.
Knowing how students work on their code can aid the designing of
new material and the refinement of pedagogical approaches. Being
able to examine coding behaviours across large cohorts of students
is especially useful as more of our courses involve online and dis-
tance learning, and we need effective, scalable ways to evaluate
teaching which involves creative, open-ended tasks [23].

As such, we have presented a battery of metrics aimed at high-
lighting coding behaviours associated with learning creative com-
puting concepts. We have analysed how the coding behaviours we
have observed are indicative of different ways students approach
learning to program and how we can connect these coding be-
haviours back to the context in which they occurred. We think the
observations we have presented, and the approach for clustering
coding behaviours represent valuable contributions to the learn-
ing analytics community and computer science educators more
generally.

7 ACKNOWLEDGEMENTS
The work reported in this paper was supported by the Arts and Hu-
manities Research Council under grant number AH/R002657/1, and
the Higher Education Funding Council England Catalyst Scheme
under grant number PK31.

Session: Creative Computing ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

278

REFERENCES
[1] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph

Lawrance, Alan Blackwell, and Curtis Cook. 2006. Tinkering and gender in end-
user programmers’ debugging. In Proceedings of the SIGCHI conference on Human
Factors in computing systems - CHI ’06. ACM Press, Montréal, Québec,
Canada, 231. https://doi.org/10.1145/1124772.1124808

[2] Matthew Berland, Taylor Martin, Tom Benton, Carmen Petrick Smith, and Don
Davis. 2013. Using Learning Analytics to Understand the Learning Pathways of
Novice Programmers. Journal of the Learning Sciences 22, 4 (Oct. 2013), 564–599.
https://doi.org/10.1080/10508406.2013.836655

[3] Paulo Blikstein, Marcelo Worsley, Chris Piech, Mehran Sahami, Steven Cooper,
and Daphne Koller. 2014. Programming Pluralism: Using Learning Analytics
to Detect Patterns in the Learning of Computer Programming. Journal of the
Learning Sciences 23, 4 (2014), 561–599. https://doi.org/10.1080/10508406.2014.
954750

[4] Joel Brandt, Mira Dontcheva, Marcos Weskamp, and Scott R. Klemmer. 2010.
Example-centric programming: integrating web search into the development
environment. In Proceedings of the 28th international conference on Human factors
in computing systems - CHI ’10. ACM Press, Atlanta, Georgia, USA, 513. https:
//doi.org/10.1145/1753326.1753402

[5] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R. Klemmer.
2009. Writing Code to Prototype, Ideate, and Discover. IEEE Software 26, 5 (Sept.
2009), 18–24. https://doi.org/10.1109/MS.2009.147

[6] Sayamindu Dasgupta, William Hale, Andrés Monroy-Hernández, and Ben-
jamin Mako Hill. 2016. Remixing as a Pathway to Computational Thinking.
In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing - CSCW ’16. ACM Press, San Francisco, California, USA,
1436–1447. https://doi.org/10.1145/2818048.2819984

[7] John Dewey. 1916. Democracy and Education: An Introduction to Philisophy of
Education. Macmillan.

[8] Brian Dorn and Mark Guzdial. 2010. Learning on the job: characterizing the
programming knowledge and learning strategies of web designers. In Proceedings
of the 28th international conference on Human factors in computing systems - CHI
’10. ACM Press, Atlanta, Georgia, USA, 703. https://doi.org/10.1145/1753326.
1753430

[9] C. A. Ellis and S. J. Gibbs. 1989. Concurrency Control in Groupware Systems
(SIGMOD ’89). Association for Computing Machinery, New York, NY, USA, 399–
407. https://doi.org/10.1145/67544.66963

[10] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,
Vasteras, Sweden - September 15 - 19, 2014. 313–324. https://doi.org/10.1145/
2642937.2642982

[11] Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C.Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Transactions on Computer-Human Interaction 22, 2,
Article 7 (2015), 35 pages. https://doi.org/10.1145/2699751

[12] Jonathan Huang, Chris Piech, Andy Nguyen, and Leonidas J. Guibas. 2013. Syn-
tactic and Functional Variability of a Million Code Submissions in a Machine

Learning MOOC. In Proceedings of the Workshops at the 16th International Con-
ference on Artificial Intelligence in Education AIED (CEUR Workshop Proceedings),
Erin Walker and Chee-Kit Looi (Eds.), Vol. 1009. CEUR-WS.org.

[13] Blair Lehman, Sidney K. D’Mello, Amber Chauncey Strain, Melissa Gross, Allyson
Dobbins, PatriciaWallace, KeithMillis, andArthur C. Graesser. 2011. Inducing and
Tracking Confusion with Contradictions during Critical Thinking and Scientific
Reasoning. In Artificial Intelligence in Education, Gautam Biswas, Susan Bull,
Judy Kay, and Antonija Mitrovic (Eds.). Vol. 6738. Springer Berlin Heidelberg,
Berlin, Heidelberg, 171–178. https://doi.org/10.1007/978-3-642-21869-9_24

[14] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. 2010. Un-
derstanding of Internal Clustering Validation Measures. In 2010 IEEE Interna-
tional Conference on Data Mining. IEEE, Sydney, Australia, 911–916. https:
//doi.org/10.1109/ICDM.2010.35

[15] Seymour Papert. 1980. Mindstorms: Children, computers, and powerful ideas. Basic
Books, Inc.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[17] Marian Petre and Alan F. Blackwell. 2007. Children as Unwitting End-User
Programmers. In IEEE Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC 2007). 239–242. https://doi.org/10.1109/VLHCC.2007.52 ISSN:
1943-6106.

[18] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling How Students Learn to Program. In Proceedings of the 43rd ACM
Technical Symposium on Computer Science Education (SIGCSE ’12). ACM, 153–160.
https://doi.org/10.1145/2157136.2157182

[19] Martin P. Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16, 6 (Dec. 2011), 703–732. https:
//doi.org/10.1007/s10664-010-9150-8

[20] Sherry Turkle and Seymour Papert. 1990. Epistemological Pluralism: Styles and
Voices within the Computer Culture. Signs: Journal of Women in Culture and
Society 16, 1 (1990), 128–157. https://doi.org/10.1086/494648

[21] Benjamin Xie and Hal Abelson. 2016. Skill progression in MIT app inventor.
In 2016 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, Cambridge, United Kingdom, 213–217. https://doi.org/10.1109/
VLHCC.2016.7739687

[22] Seungwon Yang, Carlotta Domeniconi, Matt Revelle, Mack Sweeney, Ben U.
Gelman, Chris Beckley, and Aditya Johri. 2015. Uncovering Trajectories of
Informal Learning in Large Online Communities of Creators. In Proceedings of
the Second (2015) ACM Conference on Learning @ Scale - L@S ’15. ACM Press,
Vancouver, BC, Canada, 131–140. https://doi.org/10.1145/2724660.2724674

[23] Matthew John Yee-King,MickGrierson, andMark d’Inverno. 2017. Evidencing the
value of inquiry based, constructionist learning for student coders. International
Journal of Engineering Pedagogy (iJEP) 7, 3 (2017), 109–129.

[24] Hezheng Yin, Joseph Moghadam, and Armando Fox. 2015. Clustering Student
Programming Assignments to Multiply Instructor Leverage. ACM, New York,
NY, USA, 367–372. https://doi.org/10.1145/2724660.2728695

Session: Creative Computing ITiCSE ’20, June 15–19, 2020, Trondheim, Norway

279

https://doi.org/10.1145/1124772.1124808
https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.1080/10508406.2014.954750
https://doi.org/10.1080/10508406.2014.954750
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1145/1753326.1753402
https://doi.org/10.1109/MS.2009.147
https://doi.org/10.1145/2818048.2819984
https://doi.org/10.1145/1753326.1753430
https://doi.org/10.1145/1753326.1753430
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/2699751
https://doi.org/10.1007/978-3-642-21869-9_24
https://doi.org/10.1109/ICDM.2010.35
https://doi.org/10.1109/ICDM.2010.35
https://doi.org/10.1109/VLHCC.2007.52
https://doi.org/10.1145/2157136.2157182
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1086/494648
https://doi.org/10.1109/VLHCC.2016.7739687
https://doi.org/10.1109/VLHCC.2016.7739687
https://doi.org/10.1145/2724660.2724674
https://doi.org/10.1145/2724660.2728695

	Abstract
	1 Introduction
	2 Related Work
	2.1 Teaching with Demonstrator Code in Computer Science Education
	2.2 Automated Analysis of Student Code

	3 Method
	3.1 The Dataset
	3.2 Coding behaviour metrics
	3.3 Clustering demo code

	4 Results
	4.1 Clustering and code behaviours
	4.2 Program authors and program length

	5 Discussion
	5.1 Coding Behaviours

	6 Conclusion
	7 Acknowledgements
	References

