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Background: Visual exploration in autism spectrum disorder (ASD) is characterized by attenuated social attention.
The underlying oculomotor function during visual exploration is understudied, whereas oculomotor function during
restricted viewing suggested saccade dysmetria in ASD by altered pontocerebellar motor modulation. Methods:
Oculomotor function was recorded using remote eye tracking in 142 ASD participants and 142 matched neurotypical
controls during free viewing of naturalistic videos with and without human content. The sample was heterogenous
concerning age (6–30 years), cognitive ability (60–140 IQ), and male/female ratio (3:1). Oculomotor function was
defined as saccade, fixation, and pupil-dilation features that were compared between groups in linear mixed models.
Oculomotor function was investigated as ASD classifier and features were correlated with clinical measures.
Results: We observed decreased saccade duration (ΔM = �0.50, CI [�0.21, �0.78]) and amplitude (ΔM = �0.42, CI
[�0.12, �0.72]), which was independent of human video content. We observed null findings concerning fixation and
pupil-dilation features (POWER = .81). Oculomotor function is a valid ASD classifier comparable to social attention
concerning discriminative power. Within ASD, saccade features correlated with measures of restricted and repetitive
behavior. Conclusions: We conclude saccade dysmetria as ASD oculomotor phenotype relevant to visual
exploration. Decreased saccade amplitude and duration indicate spatially clustered fixations that attenuate visual
exploration and emphasize endogenous over exogenous attention. We propose altered pontocerebellar motor
modulation as underlying mechanism that contributes to atypical (oculo-)motor coordination and attention function
in ASD. Keywords: Eye tracking; pupillometry; visual attention; biomarker; brainstem; cerebellum; locus coeruleus.

Introduction
Visual exploration describes free viewing of stimuli
and characterizes how we distribute our visual
attention in complex environments (Itti & Koch,
2001). Oculomotor function is the underlying eye
muscle movement that motorically bounds visual
exploration (Corbetta, 1998). In autism spectrum
disorder (ASD), visual exploration is characterized by
attenuated attention to social stimuli (Frazier et al.,
2017), which has been established as predictor of
ASD diagnosis (Jones et al., 2016). This different
visual exploration in ASD has been explained by a
theory of ‘low social motivation’ (Chevallier, Kohls,
Troiani, Brodkin, & Schultz, 2012), although empir-
ical evidence is inconsistent (Bottini, 2018). Alterna-
tively, different visual exploration in ASD might be
determined by aberrant oculomotor function (John-
son, Lum, Rinehart, & Fielding, 2016).

In ASD, it is largely unknown whether oculomotor
function is different during visual exploration
because oculomotor function has been predomi-
nantly investigated during restricted viewing, which

refers to experimentally manipulated gaze behavior.
A meta-analysis on restricted viewing described that
ASD participants were less able to inhibit (pro-)
saccades in the antisaccade task (SMD = 1.71;
Johnson et al., 2016), showed increased variation
in saccade accuracy during visually guided (pro-)
saccades (SMD = 0.88), and decreased saccade-to-
target accuracy during smooth pursuit
(SMD = 1.35–1.87). These findings were interpreted
as saccade dysmetria, that is, ASD individuals are
less able to adapt their saccades to visual targets
(Mosconi et al., 2013). However, restricted-viewing
paradigms evoke oculomotor function that is uncom-
mon (e.g., antisaccades, smooth pursuit) during
visual exploration, whereas visual exploration does
not provide unambiguous visual targets to quantify
impaired accuracy. Thus, restricted-viewing findings
might not be translatable to naturalistic visual
exploration.

Oculomotor function during visual exploration has
been investigated in limited ASD samples. Infants at
risk for ASD showed shorter fixation duration (Wass
et al., 2015) and increased reorienting to previously
fixated areas (Gliga, Smith, Likely, Charman, &
Johnson, 2015) on static images of faces and
objects. ASD adults with average IQ showed less
fixations per second, longer saccade duration, and
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attenuated saccade velocity on naturalistic static
images (Wang et al., 2015). Those oculomotor-func-
tion studies in ASD suggested attenuated visual
exploration of static images, which is supported by
gaze pattern analysis and has been associated with
restricted and repetitive behaviors (RRBs; Manyakov
et al., 2018). However, these findings may not
generalize to the ASD population as contributing
effects of cognitive ability and age are unexplored.

In addition, those studies did not conclusively
replicate saccade dysmetria, which might be due to
the application of static stimuli. In a seminal paper
(Chevallier et al., 2015), attenuated social attention
only occurred in ASD children/adolescents during
naturalistic videos of interacting children compared
to static images and face-versus-object videos. In a
corresponding meta-analysis, attenuated social
attention in ASD was emphasized by stimuli that
resembled human social situations (Frazier et al.,
2017). In contrast, ASD oculomotor function – as
motor boundary of visual exploration – would be
independent of human content. Thus, ASD oculo-
motor function that translates to naturalistic visual
exploration needs to be explored during naturalistic
videos with and without human content.

Oculomotor function can further inform about
underlying neuronal networks (see Figure 1). Sac-
cade production has been attributed to the fron-
toparietal attention networks including
temporoparietal junction (TPJ; Corbetta et al.,
1998). These cortical attention networks output
attention-target information, which is converted to
a topographic map within the superior colliculi, and
executed as saccade via pontine and brainstem
oculomotor neurons (PBON; Johnson et al., 2016).

Fixation production has been attributed to a corti-
copontocerebellar network (Munoz & Everling, 2004)
that also includes PBON and fastigial oculomotor
nucleus (FON) both related to saccade inhibition
execution. This pontocerebellar network sets corre-
sponding peak velocity for a saccade to a cortically
defined visual target (Nakamagoe, Iwamoto, &
Yoshida, 2000) and has been associated with rapid
transitions in ASD motor execution (Blakemore,
Cook, & Press, 2013). A disproportionate setting of
peak velocity led to an over- or undershooting of
saccades (Guerrasio, Quinet, B€uttner, & Goffart,
2010; Johnson et al., 2012) and could be observed
during visual exploration as altered saccade dura-
tion or amplitude. In ASD, altered pontocerebellar
motor modulation has been proposed to explain
decreased saccade duration and amplitude during
restricted viewing (Mosconi et al., 2013; Takarae,
Minshew, Luna, & Sweeney, 2004).

Altered pontocerebellar motor modulation could
further contribute to behavioral findings of attenu-
ated visual exploration (Wass & Smith, 2014) and
delayed peripheral orienting (Landry & Parker,
2013). A decreased saccade duration and amplitude
bound visual exploration to spatially clustered fixa-
tions (Gliga, Bedford, et al., 2015; Wang & Munoz,
2015). This could relate saccade dysmetria in ASD to
attenuated visual exploration and propose ponto-
cerebellar motor modulation as shared underlying
mechanism.

The present study investigates ASD-specific ocu-
lomotor function during free viewing of naturalistic
videos in comparison with matched neurotypical
controls. We assess a large and heterogenous sample
to identify findings generalizable to the ASD

Figure 1 Neural networks underlying oculomotor function. Boxes describe associated function of neural network nodes (oval) relevant to
oculomotor function. Abbreviations: AI, anterior insula; FEF, frontal eye fields; FON, fastigial oculomotor neurons; IPS, intraparietal
sulcus; LC, locus coeruleus; PBON, pontine and brainstem oculomotor neurons; SC, superior colliculi; TPJ, temporoparietal junction;
vmPFC, ventromedial prefrontal cortex
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population. We apply naturalistic videos with and
without human content, as oculomotor function
should be independent of stimulus content. ASD-
specific oculomotor function is operationalized as
group differences in saccade, fixation, or pupil-
dilation (PD) features. Features of oculomotor func-
tion that are less frequent during free viewing (e.g.,
smooth pursuit) are not investigated. We expect
ASD-specific oculomotor function that relates to
previous restricted-viewing findings of saccade dys-
metria. Thus, we hypothesize decreased saccade
duration and amplitude during visual exploration.
Previous literature also indicated fewer and shorter
fixations to social stimuli, which we do not expect in
ASD-specific oculomotor function independent of
stimulus content. Further, we exploratively investi-
gate PD during visual exploration, as an altered
pupillary light reflex has recently been outlined as
predictor of ASD symptoms (Nystr€om et al., 2018).
We assume oculomotor function to be an informative
ASD classifier that correlates with ASD clinical
screening and symptom measures.

Methods and materials
Sample

The final study sample (ASD: n = 142, typical development
[TD]: n = 142) was part of the EU-AIMS LEAP study (see
Figure 2; Charman et al., 2017). In contrast to the original
study, we additionally excluded ASD participants that scored
below clinical cutoff (Gotham, Pickles, & Lord, 2009; Autism
Diagnostic Observation Schedule [ADOS-2] Calibrated Sever-
ity Score < 4, n = 105) and participants with substantially
deviating IQ scores (IQ < 60|IQ> 140; ASD: n = 5; TD: n = 6).
Remaining participants with sufficient data quality (see data
preprocessing; ASD: n = 194, TD: n = 217) were matched
within age subgroups for full scale IQ, age, gender distribu-
tion, and eye-trackers’ sampling rate (see procedure) by
nearest neighbor method with 0.1 SD tolerance. Matching
excluded 28 children (ASD: n = 9, TD: n = 19), 53 adolescents
(ASD: n = 31, TD: n = 22), and 46 adults (ASD: n = 12, TD:
n = 34). Matched groups were comparable concerning pre-
and postprocessing data quality, but differed on the inatten-
tiveness subscale of the Attention Deficit Hyperactivity Disor-
der (ADHD) rating scale (Kessler et al., 2005), which is
unsurprising given elevated ADHD co-occurrence in ASD
(Simonoff et al., 2008). All sample descriptive variables (see
Table 1) were considered in the statistical analysis. Clinical
characterization suggested ASD symptom heterogeneity (see
Table 2).

Procedure

The full EU-AIMS LEAP assessment protocol has been
outlined elsewhere (Loth et al., 2017). All participants and
their caregiver provided written informed consent. Ethical
approval for this study was obtained through ethics commit-
tees at each site (see Table S1). Assessments were done at six
site-specific eye-tracking laboratories with luminance that is
adapted for optimal eye detection (Lux: m = 164, SD = 109).
Oculomotor function was recorded by remote eye-trackers
(Tobii T120 or TX300, Stockholm, Sweden) with a target
distance of 65 cm, while heads could be moved freely. Nine
naturalistic videos were presented without a specific task (see
Table S2). Videos were presented in pseudo-random order on

17- or 23-inch displays with a fixed display area of
345 9 259 mm. Videos were of two content conditions (4
human, 5 nonhuman), varied in duration (10 s–124 s), and
were displayed with audio, although no speech was involved –
that is, human interactions were either nonverbal or speech
was superimposed by ambient sounds – to ensure compara-
bility across multinational sites.

Remote eye-trackers limited sampling rates compared to
restricted-viewing studies that usually require head restraints
to reduce noise (Schmitt, Cook, Sweeney, & Mosconi, 2014).
This was not feasible in our child/adolescent samples and
would have contrasted the naturalistic visual exploration
rationale. Thus, our lower temporal resolution introduced
larger temporal measurement errors. However, simulations
demonstrated that this is compensated by our large number of
saccade measurements per participant (120 Hz: m = 445,
SD = 249; 300 Hz: m = 594, SD = 282), which did not differ
between groups (ts < 1) and is well above suggested cutoffs
(Andersson, Nystr€om, & Holmqvist, 2010).

Data preprocessing

We assessed eye-tracking datasets of 672 individuals (see
Figure 2). Raw-data quality was estimated on four quality
dimensions (Flicker, Precision, Accuracy, and Binocular Dis-
parity), which were derived from principal component analysis
on quality related metrics (Radach, Deubel, Vorstius, &
Hofmann, 2017; see Table S3). Based on these four quality
dimensions, raw datasets were clustered in four preprocessing

Figure 2 Flow Chart: Study Sample. Top part: Data reduction
described in ‘data preprocessing’ section. Bottom part: Sample
matching described in ‘sample’ section

© 2020 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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data quality clusters (cluster label [ASD/TD]: Good [125/126],
Medium [136/78], Flicker [108/59], Insufficient [29/11]). We
dropped the ‘insufficient’ cluster from further analysis (n = 40).
A total of 632 raw datasets were preprocessed by GraFIX
software (de Urabain, Johnson, & Smith, 2014), which esti-
mated fixations and saccades by a velocity-based identification
algorithm (see Table S3). PD was provided by the raw data. We
created a postprocessing data quality variable (see Table 1) to
check whether preprocessing delivered sufficient data quality,
which was defined as percentage of successful fixation/
saccade identification per video. Five participants (n = 5) with
deviating postprocessing data quality – less than 97% – were
excluded and additional participants with a sampling rate
smaller than 120 Hz (n = 8). Additional datasets were excluded
as demographic data was incomplete (n = 92).

Oculomotor features

Seven oculomotor features (OFs) were selected based on
previous literature and calculated in the preprocessed data.
This includes fixation duration (Wass & Smith, 2014),
fixations per second (Auyeung et al., 2015), relative pupil
dilation (Mill, O’Connor, & Dobbins, 2016), that is, absolute
pupil dilation corrected for per-participant mean, saccade

duration (Schmitt et al., 2014), saccade amplitude (Mosconi
et al., 2013; Wass et al., 2015), and peak saccade velocity
(Schmitt et al., 2014; Takarae, Minshew, Luna, & Sweeney,
2004). We further included velocity main sequence as coef-
ficient of peak saccade velocity and saccade amplitude
(Bahill, Clark, & Stark, 1975), which allows to interpret peak
saccade velocity independent of varying saccade amplitude.
For each of the 7 OFs, we calculated a mean and SD per
participant and video (see Table 3), which were applied as
dependent variables in the statistical analysis. We were not
able to estimate accuracy and latency measures (Johnson
et al., 2016), as the visual exploration precludes an a priori
definition of visual targets.

Statistical analysis

Data were analyzed by R 3.4.3. software (R Core Team, 2014)
with additional packages (Bates, Maechler, Bolker, & Walker,
2014; Ho, Imai, King, Stuart, & Whitworth, 2018; Kuznet-
sova, Brockhoff, & Christensen, 2017; Robin et al., 2011;
Russell, 2018). Oculomotor features (OFs) were scaled and
separately compared in i = 14 linear mixed models with
restricted maximum likelihood estimation and group as fixed
effect:

Table 1 Sample descriptives

Variable (unit) Autism spectrum disorder (ASD) Typical development (TD)
Test
p-Value

Age (years) N Mean/SD Range N Mean/SD Range
All 142 16.23/5.77 6–30 142 16.21/5.62 6–30 .984
Children 39 9.6/1.57 6–11 38 9.69/1.59 6–11 .797
Adolescent 55 15.24/1.71 12–17 61 15.4/1.64 12–17 .615
Adult 48 22.74/3.7 18–30 43 23.13/3.42 18–30 .603
IQ (score) N Mean/SD Range N Mean/SD Range
All 142 102.17/15.59 61–139 142 102.58/15.31 61–134 .825
Children 39 107.57/14.04 80–139 38 107.71/10.92 85–130 .961
Adolescent 55 98.09/18.17 61–139 61 98.67/16.45 61–134 .857
Adult 48 102.47/12.13 77–124 43 103.59/15.76 62–132 .707
Sex (category) Female Male Female Male
All 37 (26%) 105 (74%) 41 (29%) 101 (71%) .69
Children 13 (33%) 26 (67%) 11 (29%) 27 (71%) .866
Adolescent 8 (15%) 47 (85%) 19 (31%) 42 (69%) .058
Adult 16 (33%) 32 (67%) 11 (26%) 32 (74%) .563
ADHD inatt. (total) N Mean/SD Range N Mean/SD Range
All 142 4.47/3.16 0–9 142 1.13/1.84 0–9 .000
Children 39 5.23/3.05 0–9 38 0.63/1.28 0–7 .000
Adolescent 55 4.38/3.05 0–9 61 1.46/2.17 0–9 .000
Adult 48 3.96/3.31 0–9 43 1.09/1.67 0–6 .000
Sampling rate (Hz) 300 120 300 120
All 35 (25%) 107 (75%) 34 (24%) 108 (76%) 1
Children 7 (18%) 32 (82%) 8 (21%) 30 (79%) .955
Adolescent 13 (24%) 42 (76%) 14 (23%) 47 (77%) 1
Adult 15 (31%) 33 (69%) 12 (28%) 31 (72%) .906
Preprocessing (clusters) Good Medium Flicker Good Medium Flicker
All 52 (37%) 49 (35%) 41 (29%) 71 (50%) 40 (28%) 31 (22%) .073
Children 11 (28%) 12 (31%) 16 (41%) 15 (39%) 10 (26%) 13 (34%) .578
Adolescent 19 (35%) 24 (44%) 12 (22%) 32 (52%) 20 (33%) 9 (15%) .149
Adult 22 (46%) 13 (27%) 13 (27%) 24 (56%) 10 (23%) 9 (21%) .627
Postprocessing (%) N Mean/SD Range N Mean/SD Range
All 142 99.68/0.41 97.8–100 142 99.67/0.43 97–100 .779
Children 39 99.51/0.5 97.8–100 38 99.56/0.55 97–100 .689
Adolescent 55 99.77/0.29 98.8–100 61 99.71/0.39 98.4–100 .361
Adult 48 99.71/0.41 98–100 43 99.7/0.35 98.7–100 .883

Test = group comparison with t-test or Chi-square test, ADHD inatt. = ADHD rating scale – inattentiveness sub-scale. preprocess-
ing = preprocessing data quality clusters (flicker = missing segments but otherwise good raw data), postprocessing = postprocess-
ing data quality.

© 2020 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.
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OFi ¼ group � ðvideo contentþ ageþ IQþ sexÞ
½independent variables�
þ sampling rateþ pre qualityþ post quality

þ ADHD inattention ½covariates�

þ random
ID

site

� �
½randomeffects�

We included video content (human, nonhuman) as within-
subject fixed effect and modeled an interaction with group.
Main group effects without video content interactions would
indicate ASD-specific oculomotor function that is independent
of human content. We modeled age (child: 6–11 years, adoles-
cent: 12–17 years, adult: 18–30 years), IQ (below average: <85,
average: 85–115, above average: >115), and sex (male, female)
as categorical, between-subject fixed effects and allowed two-
way interactions with group. Categorization of age and IQ does
allow to interpret interactions with group as oculomotor
function specific to ASD covariate subgroups. Sampling rate,
preprocessing data quality, and postprocessing data quality

were controlled for by inclusion as covariates. We further
included the inattentiveness subscale of the ADHD rating scale
as covariate, as we expected ADHD inattentiveness symptoms
to affect visual exploration. Participant ID nested in study site
were included as random effects. Fixed effects were tested for
significance by ANOVA with Satterthwaite’s method. Fixed-
effect significance is corrected for false detection rate (FDR) by
the number of estimated models (i = 14). We report pairwise
comparisons of predicted marginal means (ΔM) to quantify
group differences for significant effects, which are presented
with 95% confidence intervals (CI).

Oculomotor function was defined as the composite of the 14
OFs. Discriminative power of oculomotor function was
assessed by receiver operating characteristic (ROC) curves,
which were estimated by a logistic regression with the 14 OFs
as predictors of group affiliation in the overall sample and in
age, IQ, and sex subgroups. Area under the curve (AUC) is
reported with confidence intervals (Sun & Xu, 2014).

In addition, OFs were correlated by Pearson’s coefficient
with ASD symptom and screening measures. These measures

Table 2 Clinical characterization of the autism spectrum disorder sample

Variable (unit)

Child Adolescent Adult

Mean/SD Range Mean/SD Range Mean/SD Range

ADOS-2 (CSS)
Total 6.74/1.9 4–10 7/2.07 4–10 6.69/1.95 4–10
Social affect 7.13/1.81 3–10 7.71/1.67 4–10 7.31/1.64 4–10
Restricted/repetitive 5.77/3.06 1–10 4.73/2.82 1–10 5.62/2.39 1–10

ADI-R (total)
Social 15.15/7.23 1–26 18.59/6.55 2–29 15.93/7.53 0–28
Verbal Communication 14.82/5.25 5–25 14.61/5.4 3–26 12.32/6.02 0–24
Restricted/repetitive 4.79/3.15 0–12 4.65/2.7 0–12 4.83/2.89 0–12

Questionnaires (total)
SRS parent 105.24/27.7 51–163 96.02/25.14 42–153 86.66/34.43 21–154
SRS self – – 70.07/26.65 26–125 86.35/30.99 12–151
RBS-R 21.25/13.77 1–62 17.48/14.23 0–73 13.29/12.89 0–53
SSP 127.66/22.87 82–171 135.97/25.44 88–178 146.12/28.63 93–177

ADI-R, Autism Diagnostic Interview – Revised; ADOS-2, Autism Diagnostic Observation Schedule; CSS, Calibrated Severity Score;
RBS-R, Repetitive Behavior Scale – Revised; SRS parent, Social Responsiveness Scale Total Score – parent rating; SRS self, Social
Responsiveness Scale Total Score – self rating; SSP, Short Sensory Profile.

Table 3 Descriptives of oculomotor features

Oculomotor feature (unit)
Autism Spectrum Disorder (ASD) Typical development (TD) KW-

test
Mean Plausible range Mean SD Min Max Mean SD Min Max p-Value

Fixation duration (ms) 100–800 339.65 36.54 250.86 473.93 335.52 38.57 188.83 459.20 .414
Fixations per second (1/s) 0–5 1.37 0.40 0.32 2.23 1.48 0.42 0.34 2.32 .051
Relative pupil dilation (%/100) 0.7–1.3 1.01 0.04 0.89 1.19 1.01 0.05 0.87 1.14 .941
Saccade duration (ms) 10–100 31.20 3.56 23.37 43.98 31.61 3.53 24.23 47.59 .606
Saccade amplitude (°) 0–20 5.52 0.70 3.18 7.06 5.72 0.75 3.66 7.89 .066
Peak saccade velocity (°/s) 0–1,500 386.56 93.11 249.60 689.82 380.93 87.99 225.14 663.16 .744
Velocity main sequence (1/s) 0–200 76.23 15.00 48.17 120.18 74.67 15.89 51.46 119.27 .146

Variation (SD) Mean SD Min Max Mean SD Min Max p-Value

Fixation duration (ms) 197.94 19.17 136.85 247.72 196.31 22.75 69.11 254.88 .775
Fixations per second (1/s) 0.63 0.21 0.11 1.21 0.65 0.20 0.15 1.15 .432
Relative pupil dilation (%/100) 0.11 0.03 0.05 0.21 0.12 0.04 0.05 0.22 .044
Saccade duration (ms) 18.48 3.24 10.53 29.19 18.48 3.23 12.04 27.70 .986
Saccade amplitude (°) 4.74 0.44 3.00 5.67 4.79 0.40 3.68 5.83 .503
Peak saccade velocity (°/s) 283.25 79.30 151.87 475.82 271.18 74.47 163.19 470.21 .244
Velocity main sequence (1/s) 33.36 5.81 21.77 47.90 32.69 5.71 22.93 48.20 .249

© 2020 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.
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are described above (Table 2) and further outlined elsewhere
(Loth et al., 2017). We report significant coefficients after
Bonferroni’s multiple comparison correction.

POWER analysis

We estimated the achieved POWER for group differences by
simulation with the observed random variance (Green &
MacLeod, 2016). POWER confidence intervals (CI) were based
on 1,000 iterations. For small group differences (DM = 0.2), we
achieved a POWER (1–b) of 81%, CI [78.43, 83.39].

Results
Full models are provided in Tables S4–S6 with
effects for age (Table S7) and video content
(Table S8). These fixed effects were independent of
ASD and thus not further discussed here. We further
found no effect of IQ on oculomotor function.

Oculomotor function in autism spectrum disorder

During visual exploration of naturalistic videos, we
found ASD-specific features with decreased means in
saccade duration (ΔM = �0.50, CI [�0.21,�0.78]) and
saccade amplitude (ΔM = �0.42, CI [�0.12, �0.72]).
Therewerenosignificant interactions,which indicated
that ASD-specific oculomotor function was indepen-
dent of video content, IQ, sex, or age. Decreased
saccade duration and amplitude were further con-
trolled for the effects of pre- and processing data
quality, sampling rate, and ADHD inattentiveness
ratings. In contrast, we did not observe group differ-
ences concerning fixation or pupil-dilation features.

Discriminative power

Oculomotor function as feature composite measure
was able to classify group affiliation in the overall
sample with AUC = .670, CI [0.608, 0.733]. Discrim-
inative power was significantly increased
(AUC > .733) when comparing classification in speci-
fic subgroups like children, adults, females, below
average IQ, and above average IQ (see Table 4). In
contrast, discriminative power was not increased
when classification was restricted to human or
nonhuman videos (see Figure 3).

Correlations with clinical measures

In correlation analysis, ADI-R restricted/repetitive
domain score correlated positively with mean in veloc-
ity main sequence (r(134) = .26, padj < .037), whereas
SSP total score correlated negatively with variance in
velocity main sequence (r(84) = �.32, padj < .041).
Descriptive correlations are presented in Table S9.

Discussion
We investigated ASD-specific oculomotor function
during visual exploration of naturalistic videos. This

design delivers increased ecological validity com-
pared to restricted-viewing paradigms. We did not
find group differences in fixation or pupil-dilation
features, which is reliable regarding the achieved
POWER. In contrast, we did find ASD-specific ocu-
lomotor function with decreased saccade duration
and saccade amplitude. This saccade dysmetria was
independent of human video content and thus
cannot be explained by attenuated social attention.
In our heterogenous sample, these findings were
independent of age, cognitive ability, and sex. Thus,
decreased saccade amplitude and duration during
naturalistic visual exploration are concluded as an
oculomotor phenotype relevant across the ASD pop-
ulation.

Decreased saccade amplitude and duration
describe an ASD gaze behavior that is characterized
by erratic saccades to peripheral targets (see
Tables S5 and S6). Additional compensatory sac-
cades will be required to reach peripheral targets
(Takarae, Luna, Minshew, & Sweeney, 2008), which
has been described during restricted viewing as less
precise saccades (Takarae, Minshew, Luna, Krisky,
& Sweeney, 2004) and increased variation in accu-
racy (Mosconi et al., 2013). This interrelation of
decreased saccade amplitude/duration and
impaired saccade accuracy relates our visual explo-
ration findings to previous restricted-viewing find-
ings (Johnson et al., 2012).

Decreased saccade amplitude and duration fur-
ther describe spatially clustered fixations during
visual exploration. This is in line with ASD findings
for static pictures with decreased gaze deviations
from screen center (Wang et al., 2015) and
increased reorienting to previously fixated areas
(Gliga, Smith, et al., 2015). Accordingly, decreased
saccade amplitude and duration reflect attenuated
visual exploration. Specifically, ASD visual explo-
ration could be characterized by reduced exoge-
nous compared to endogenous attention (Corbetta,
Patel, & Shulman, 2008). Exogenous attention
describes stimulus-driven and spatially distributed
visual exploration, whereas endogenous attention
describes task-focused and spatially clustered
visual exploration (Chica, Bartolomeo, & Lupi�a~nez,
2013). Reduced exogenous attention in ASD was
reported for behavioral attention tasks (Renner,
Grofer Klinger, & Klinger, 2006). In infants at risk
for ASD, a delayed response was reported to
disengage gaze from a central visual target to
orient to a peripheral one, which was a predictor
of later ASD diagnosis (Bedford et al., 2017).
Furthermore, a recent meta-analysis in ASD
described delayed peripheral orienting in Posner-
type attention tasks (Landry & Parker, 2013). We
conclude that these behavioral findings and
decreased saccade amplitude/duration both
describe attenuated visual exploration in ASD with
reduced exogenous compared to endogenous atten-
tion.

© 2020 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.
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Decreased saccade amplitude and duration also
correspond to meta-analytic findings of impaired
motor coordination in ASD, such as during arm
movement, gait, or postural control (Fournier, Hass,
Naik, Lodha, & Cauraugh, 2010). Impaired motor
coordination in ASD has been described by
increased variation of movement speeds (Gowen &
Hamilton, 2013) and rapid transitions in motor
execution (‘jerky movements’; Blakemore et al.,
2013). This erratic motor execution is reflected in
oculomotor function as decreased saccade duration
and amplitude.

We propose altered modulation between FON and
PBON – that is, pontocerebellar connectivity – as
shared underlying neural mechanism of erratic

(oculo-)motor execution. Pontocerebellar connectiv-
ity modulates finetuning of motor execution and
ballistic saccade trajectories (Bodranghien et al.,
2016) and has been proposed to explain saccade
dysmetria independent of ASD (Choi, Kim, Cho, &
Kim, 2008; Golla et al., 2008). This corresponds well
to resting-state findings in our EU-AIMS LEAP
sample (Oldehinkel et al., 2018), which reported
ASD-specific increased connectivity of the cerebel-
lum with a medial motor network including FON and
PBON. In ASD, increased pontocerebellar connectiv-
ity has been associated with saccade dysmetria
during restricted viewing (Schmitt et al., 2014). A
recent review outlined brainstem alterations and its
cascading effects on cortical and cerebellar

Table 4 Area under the Curve (AUC) of oculomotor features in subgroups

All

Age subgroups IQ subgroups Sex subgroups
Video content
categories

Adolescent Adult Children
Above
average

Below
average Average Female Male Human Nonhuman

AUC 0.670 0.708 0.768 0.737 0.828 0.890 0.664 0.739 0.678 0.697 0.628
Lower
bound

0.608 0.615 0.671 0.619 0.719 0.776 0.587 0.630 0.605 0.627 0.564

Upper
bound

0.733 0.802 0.864 0.855 0.937 1.000 0.741 0.848 0.751 0.768 0.693

Lower and upper bounds of AUC 95% confidence intervals.

Figure 3 Receiver operating characteristic (ROC) curves of oculomotor function. Black lines represent the ROC in the overall sample.
Colored lines represent ROC curves in subgroups or video content conditions. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2020 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.
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development as promising etiological factor in ASD
(Dadalko & Travers, 2018). Thus, altered pontocere-
bellar motor modulation underlying saccade dysme-
tria – and other motor execution findings – might be
a promising ASD biomarker.

Oculomotor function as feature composite mea-
sure was able to determine group affiliation in our
heterogenous sample in 67% of the cases
(AUC = .670, CI [0.608, 0.733]). This performance
is comparable to the widely established ‘social
attention’ as ASD classifier, which was investigated
in toddlers (AUC = .710, CI [0.660, 0.760]; Pierce
et al., 2016), younger children (AUC = .853, CI
[0.705, 0.964]; Frazier et al., 2016), and older
children (AUC = .721, CI [0.589, 0.853]; Chevallier
et al., 2015). However, these studies assessed more
homogenous samples with restricted age and IQ
ranges compared to our study. Accordingly, classi-
fier performance was significantly increased
(AUC > .733) in more homogenous age, IQ, and sex
subgroups (see Table S6), which emphasized those
covariates as ASD stratification markers (Charman
et al., 2017).

Within the ASD sample, restricted and repetitive
behavior (RRB) as measured by ADI-R was positively
correlated (r = .26) with velocity main sequence,
which describes peak saccade velocity divided by
saccade amplitude (see Table S9). This relates sac-
cade dysmetria to the ASD core symptom domain B
(i.e., RRB). In addition, decreased atypical sensory
responses as measured by a higher SSP score was
negatively correlated (r = �.32) with variation in
velocity main sequence. Thus, higher sensory symp-
toms introduce additional variation to saccade
behavior within ASD. Sensory symptoms were clo-
sely associated with other RRB (Mandy, Charman, &
Skuse, 2012), and RRB was related to ASD-specific
gaze patterns (Manyakov et al., 2018). Thus, saccade
dysmetria is further concluded as oculomotor indi-
cator of RRB in ASD.

Our findings are preliminary and might not gen-
eralize to people with subclinical ASD symptoms, as
we applied ADOS clinical cutoff as inclusion crite-
rion. Independent replication is recommended with
eye trackers of improved precision and higher sam-
pling rate. Future studies would need to evaluate the
specificity of ASD-specific oculomotor function in
comparison with ADHD, which is likewise associated
with aberrant visual exploration. Future studies may
further relate ASD-specific oculomotor function to
concurrent gaze behavior including social attention.

Conclusions
Oculomotor function during visual exploration in
ASD is characterized by decreased saccade duration
and amplitude. This extends previous findings of
inaccurate saccades during restricted viewing to
naturalistic visual exploration. This saccade dysme-
tria is concluded as ASD oculomotor phenotype,

which bounds saccades to spatially clustered fixa-
tions that attenuate visual exploration independent
of human content. Saccade dysmetria was further
related to RRB in ASD. Altered pontocerebellar motor
modulation is proposed as underlying mechanism of
erratic (oculo-)motor execution that contributes to
attenuated visual exploration.

Supporting information
Additional supporting information may be found online
in the Supporting Information section at the end of the
article:

Table S1. Site ethics.

Table S2. Stimuli characterization.

Table S3. Preprocessing parameters.

Table S4. Linear mixed models overview: oculomotor
features – 1/3.

Table S5. Linear mixed models overview: oculomotor
features – 2/3.

Table S6. Linear mixed models overview: oculomotor
features – 3/3.

Table S7. Age effects.

Table S8. Video content effects.

Table S9. Descriptive correlations with clinical mea-
sures in ASD.
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Key points

� During restricted viewing, previous research indicated saccade dysmetria in autism.
� During visual exploration, we specify saccade dysmetria in autism to decreased saccade duration and

amplitude, which suggests attenuated visual exploration.
� Altered pontocerebellar motor modulation is outlined as underlying mechanism that should be further

investigated as ASD biomarker.
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