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Abstract 

The goal of this article is to investigate the unexplored mechanisms underlying the 

development of saccadic control in infancy by determining the generalizability and potential 

limitations of extending the CRISP theoretical framework and computational model of fixation 

durations (FDs) in adult scene-viewing to infants. The CRISP model was used to investigate the 

underlying mechanisms modulating FDs in 6-month-olds by applying the model to empirical 

eye-movement data gathered from groups of infants and adults during free-viewing of 

naturalistic and semi-naturalistic videos. Participants also performed a gap-overlap task to 

measure their disengagement abilities. Results confirmed the CRISP model’s applicability to 

infant data. Specifically, model simulations support the view that infant saccade programming is 

completed in two stages: an initial labile stage, followed by a non-labile stage. Moreover, results 

from the empirical data and simulation studies highlighted the influence of the material viewed 

on the FD distributions in infants and adults, as well as the impact that the developmental state of 

the oculomotor system can have on saccade programming and execution at 6 months. The 

present work suggests that infant FDs reflect on-line perceptual and cognitive activity in a 

similar way to adults, but that the individual developmental state of the oculomotor system 

affects this relationship at 6 months. Furthermore, computational modeling filled the gaps of 

psychophysical studies and allowed the effects of these two factors on FDs to be simulated in 

infant data providing greater insights into the development of oculomotor and attentional control 

than can be gained from behavioral results alone. 

Keywords. Infancy, fixation durations, scene perception, saccadic control, computational 

modeling. 
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1. Introduction 

From the moment we are born most daily activities involve constant decisions about 

where and when to move our eyes next. During active visual sampling our eyes may remain 

stable at a point (fixations, during which visual encoding occurs) or perform fast ballistic 

movements (saccadic eye movements; Matin, 1974; Ross, Morrone, Goldberg, & Burr, 2001).  

In infants, FDs have been associated with the developmental state of the oculomotor 

system (Bronson, 1994; Johnson, 1990) and with visual and cognitive processes such as 

attention, information processing, memory or anticipation (e.g., Harris, Hainline, Abramov, 

Lemerise, & Camenzuli, 1988; Papageorgiou et al., 2014). Nevertheless, due to practical and 

technical limitations in testing young infants not much is known about the development of the 

mechanisms underlying FDs and saccade programming.  

Computational modeling allows us to describe, predict and explain data that is itself 

unobservable (Lewandowsky & Farrell, 2011). This method is particularly useful in 

developmental science, where it permits the investigation of aspects of eye-movement control 

that could not be analyzed otherwise (Reichle et al., 2013). The present article aims to utilize a 

theoretical framework and computational model of FDs in scenes and determine its 

generalizability to infants (CRISP, a timer (C)ontrolled (R)andom-walk with (I)nhibition for 

(S)accade (P)lanning model; Nuthmann & Henderson, 2012; Nuthmann, Smith, Engbert, & 

Henderson, 2010), in order to investigate the mechanisms underlying FDs in 6-month-olds. 

Notably, the model assumes that saccades are programmed in two stages, an initial labile phase 

during which saccade programs can be altered or cancelled and a subsequent non-labile phase in 

which programs cannot be cancelled. Whether infant saccadic programming operates via these 

two phases is not known. In addition, the CRISP model will be used to examine whether FDs at 
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this age are affected by developmental aspects of the oculomotor system and/or by visual and 

cognitive processing. For this purpose, we report fixation-duration data from 6-month-old infants 

and adults who each viewed dynamic scenes, and two simulation studies that will test whether 

the data from both infants and adults can be explained by a single model architecture, with age-

specific and task-specific influences realized by differences in parameter settings. In the 

following sections, we review the past research on FDs in adults and infants, and introduce the 

background literature on modeling FDs with CRISP. 

1.1 FDs and saccade latency in adults 

The relationship between FDs and visual and cognitive processing has been extensively 

investigated in skilled adult reading (Rayner, 1998, for review) and, more recently, also in the 

context of scene viewing (Nuthmann, 2016, for review). For instance, factors such as the viewing 

task (search vs. memorization; Castelhano, Mack, & Henderson, 2009; Nuthmann et al., 2010), 

the visual characteristics of the stimulus (e.g., luminance, image degradation; Loftus, 1985; 

Walshe & Nuthmann, 2014), the semantics of the scene (e.g., Henderson, Weeks, & 

Hollingworth, 1999; Loftus & Mackworth, 1978; Wu, Wick, & Pomplun, 2014), or familiarity 

(e.g., Althoff & Cohen, 1999) can affect gaze control and FDs. Collectively, these findings 

demonstrate that visual and cognitive processing demands are associated with differences in 

FDs. 

The mechanisms underlying saccadic control in adults have been greatly investigated by 

studying saccadic responses in simple saccade-targeting tasks. In the double-step paradigm, for 

instance, participants are instructed to follow a target while it makes two successive movements 

or steps that are separated by a varying temporal gap (Becker & Jürgens, 1979; Camalier et al., 

2007; Findlay & Harris, 1984; Westheimer, 1954). Findings from double-step studies have 
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provided evidence for parallel programming of saccades in which saccade programming occurs 

in two stages: an initial labile stage which is subject to cancellation, followed by a non-labile 

stage that cannot be cancelled. Becker and Jürgens (1979) showed that participants’ performance 

is best predicted by the time D elapsing between the onset of the second target step and the onset 

of the first saccade. If D is short (< 70 ms), the response saccade is directed to the first target 

location. The saccade program to this location was already fully specified; in other words, it was 

in its non-labile stage of development when it could no longer be altered. As D increases, an 

amplitude transition function emerges, with the first saccade landing progressively closer to the 

second, final location of the target. When the first saccade lands on the second target, the 

oculomotor system began programming a saccade to the second target location while the saccade 

program for the first target location was still in its labile stage of development. In this situation, 

the first program is cancelled and only the second program is executed, prolonging the saccade 

latency and hence the duration of the fixation. Recently, Walshe and Nuthmann (2015) adopted 

the double-step paradigm to a scene-viewing context and showed that saccade cancellation 

processes generalize to scene viewing, and that cancelling a saccade prolongs FDs. The general 

finding that saccades are programmed in two stages has been adopted in computational models 

of fixation behavior in reading (Engbert, Longtin, & Kliegl, 2002; Reichle, Pollatsek, Fisher, & 

Rayner, 1998) and scene viewing (Nuthmann et al., 2010).  

In infant research, video-based double-step paradigms have been used to investigate 

developmental changes in spatial remapping of saccade trajectories across the two saccades, but 

the paradigm has yet to be used to isolate the timing of the transition from labile to non-labile 

stage of saccade programming in infants (Brown et al., 2003; Gilmore & Johnson, 1997a, 

1997b).  
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1.2 FDs and visual and cognitive processing in infancy 

The mechanisms that control FDs in infants remain poorly understood. Evidence suggests 

that as early as 3- to 4-month-old infants’ looking behavior (e.g., looking times to a particular 

stimulus) can be influenced by cognitive factors related to the visual input such as expectations 

of spatiotemporal object continuity and causality (e.g., Leslie & Keeble, 1987; Spelke, 1990). 

However, such studies examine rather coarse shifts in attention (look at the scene vs. do not 

look) with relatively few studies paying attention to the micro-dynamics of visual and cognitive 

processing (such as FDs).  

For instance, some studies have investigated infants’ scanning abilities and FDs when 

presented with familiar and non-familiar complex dynamic stimuli. Hunnius & Geuze (2004) 

followed infants between the ages of 6 and 26 weeks and presented them with a video of their 

mother’s face, and an abstract video. They found that infants only adapted their eye-movements 

according to the type of stimulus from 14 weeks on, showing longer mean FDs for the abstract 

unfamiliar condition. Additionally, the median fixation duration did not stabilize before 18 

weeks, which is slightly later than what has been reported for static stimuli (Bronson, 1990). 

These findings suggest that FDs in infancy can also reflect the visual and cognitive processing of 

the visual input, even though it is still unclear whether these factors have the same influence in 

infants and adults.  

1.3 Neural mechanisms underlying eye-movement control in infancy 

Whilst the subcortical structures involved in saccadic generation are relatively developed 

at birth (e.g., superior colliculus), cortical pathways associated with the generation of more 

complex eye-movements (e.g., the frontal eye fields) remain underdeveloped until 3 to 4 months 

of age (e.g., Atkinson, 2000; Bronson, 1974; Johnson, 1990, 2011). At around 1 month postnatal 
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age, unregulated tonic inhibition of the superior colliculus prevents infants from consistently 

moving their eyes from a point of foveation. This phenomenon is commonly known as “sticky 

fixation” or “obligatory attention” (Atkinson, 2000; Braddick et al., 1992; Farroni, Simion, 

Umiltà, & Barba, 1999; Frick, Colombo, & Saxon, 1999; Johnson, 2011) and is thought to 

diminish from 3 to 4 months with the increasing cortical control over saccades. Sticky fixation is 

thought to occur due to problems with “disengagement”, defined as the difficulty in generating 

an eye-movement after a fixation (Johnson, 1990).  

The ability to disengage from a central target to shift the gaze to a peripheral target has 

traditionally been evaluated using the gap-overlap paradigm (Atkinson, Hood, Wattam-Bell, & 

Braddick, 1992; Farroni et al., 1999; Hood & Atkinson, 1990, 1993; Johnson, Posner, & 

Rothbart, 1991). Reaction times are usually faster on gap trials, where the central target 

disappears and after a temporal gap (e.g., 200 ms) the peripheral target appears. During overlap 

trials, the central target stays on after the peripheral target appears. Sometimes, baseline trials are 

additionally included, in which the peripheral target appears without a temporal gap after the 

central target disappears (e.g., Elsabbagh et al., 2009; Wass, Porayska-Pomsta, & Johnson, 

2011). In this case, disengagement latencies can be calculated by subtracting the baseline 

latencies from the overlap latencies.  

In infancy research, longer disengagement latencies have been associated with greater 

immaturity of the visual system (e.g., Butcher et al., 2000; Matsuzawa & Shimojo, 1997), 

particularly during the first 6 months of life, when the neurological structures involved are 

thought to develop rapidly and approach their adult form (Rothbart, Posner, & Rosicky, 1994). 

Nevertheless, evidence from various neurophysiological and behavioral studies suggests that the 

neural mechanisms involved in the execution of saccades are still undergoing development, or 
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need to increase in efficiency, by 6 months postnatal age, despite hundreds of thousands of 

practice saccades (e.g., Butcher et al., 2000; Hood & Atkinson, 1993; Matsuzawa & Shimojo, 

1997).  

1.4 Modeling FDs 

Empirical studies alone may be insufficient to answer questions related to the extent to 

which longer FDs reflect a less developed oculomotor system, or differences in the speed of 

visual and cognitive processing. Most current models of visual attention have focused on 

explaining where viewers fixate (Borji & Itti, 2013, for review). In comparison, only a few 

models provide control mechanisms for the duration of fixations to shed light on the mechanisms 

underlying saccade generation and the encoding of visual information. Most of these models 

were developed for the task of reading, such as the E-Z Reader model (Reichle et al., 1998; 

Reichle, Rayner, & Pollatsek, 2003) and the SWIFT model of saccade generation during reading 

(Engbert et al., 2002; Engbert, Nuthmann, Richter, & Kliegl, 2005). Both models implement the 

notion of saccade programming being completed in two stages, as suggested by results from 

double-step experiments (Becker & Jürgens, 1979). 

The CRISP model is a computational model and a theoretical framework that accounts 

for FDs in adult scene viewing (Nuthmann et al., 2010; see Figure 1 for a model overview). The 

model architecture can be summarized with three main assumptions on saccade timing and 

programming: (1) the accumulation of activity to a saccade threshold is implemented via a 

random-walk process and is responsible for generating inter-saccadic intervals and hence 

variations in FDs; (2) saccade programming occurs in two stages: an initial, labile stage that is 

subject to cancellation, and a later, non-labile stage; and (3) processing difficulty can inhibit 

saccade timing and programming in a moment-to-moment fashion. For the latter, the default 
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mechanism is that increased processing demands slow down the random-walk saccade timer, 

which delays the initiation of a new saccade program and eventually leads to longer FDs. 

Moreover, processing difficulties can even cancel an ongoing labile saccade program (red cross 

in Figure 1), which extends the duration of the current fixation; this specific mechanism was 

implemented in model simulations that investigated to what extent fixation durations were 

controlled directly and in real time by the current scene image (Nuthmann et al., 2010).  

The CRISP model combines autonomous timing and temporally overlapping saccade 

programming, a feature it shares with the SWIFT model (Engbert et al., 2005) and the ICAT 

model (Trukenbrod & Engbert, 2014). To reiterate, results from the double-step paradigm 

suggest that saccade programming is completed in different stages and that saccade programs 

can partially overlap in time (Becker & Jürgens, 1979; Walshe & Nuthmann, 2015). In the 

CRISP model, there are two different cases of temporally overlapping saccade programs. It can 

happen that the saccade timer initiates a new saccade program while another one is still active 

but has already progressed to the non-labile stage of development. In this case, both saccade 

programs will be executed; typically, this will result into a rather short fixation between the two 

saccades. More importantly, if a new saccade program is initiated while another program is still 

in its labile stage of development, the first program will be cancelled and only the second one 

will be executed. When a saccade cancellation occurs within a fixation, the fixation duration 

tends to be longer than without it (Nuthmann et al., 2010).  
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Figure 1. Overview of the CRISP model. A random-walk timing signal accumulates toward a threshold. Accumulation 

rate is affected by ongoing visual and cognitive processing in a moment-to-moment fashion. Once the threshold is reached, a 

new saccade program is initiated. The saccade program first enters a labile stage, which is subject to cancellation if another 

saccadic program is subsequently initiated. At the end of the labile stage, a point of no return is reached. During the following 

non-labile stage, the saccade program can no longer be cancelled. Finally, the saccade is executed. Fixation durations are the 

time intervals between successive saccades. Figure from Nuthmann et al. (2010). 

 

Mathematically, in its basic form the CRISP model comprises five parameters related to 

saccade timing and programming (tsac, N, lab, nlab, ex; see below for definitions). The random-

walk timing signal accumulates toward a threshold, and once the threshold is reached, a new 

saccade program is initiated. The transition rate for the random-walk’s increments determines 

how fast the process of saccade timing operates. The transition rate r1 is defined as 

 

Equation 1 

𝑟1 =  
𝑁

𝑡𝑠𝑎𝑐
 

where tsac is the mean duration of the timing signal (i.e., the mean time interval between 

two commands to initiate a saccade program). N denotes the number of states the random-walk 

process can adopt and determines the variance of the timing signal; a low N leads to high 
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variance and thus broad fixation duration distributions. The random-walk is implemented as a 

discrete-state continuous-time Markov process with exponentially distributed waiting times 

between elementary transitions (for further details, see Nuthmann et al., 2010).  

Furthermore, saccade latency lsac is derived as the sum of the implemented saccade 

programming stages, i.e., 

 

Equation 2 

lsac = lab + nlab 

where lab and nlab denote the average duration of the labile and non-labile phases, 

respectively. At the end of the non-labile saccade programming stage, the saccade is executed 

(with average duration ex). 

For some of the considerations below, saccade programming parameters (lab, nlab) serve 

as an index for the development of the oculomotor system, and saccade timing parameters (tsac, 

N) are interpreted as an indicator for the speed of visual-cognitive processing. 

Saccade programming processes are assumed to be stochastic in nature. Therefore, for 

each realization of the model simulation, parameter values for the different saccade 

programming phases (lab, nlab, and ex) are drawn from gamma distributions. This introduces 

unsystematic variability in the duration of saccade programming stages. In simulations with 

models of eye-movement control in visual-cognitive tasks like reading and scene viewing, the 

mean duration of saccade execution (ex) is treated as a fixed parameter. Typically, modellers 

choose a value that is in general agreement with empirical data (e.g., Engbert et al., 2005; 

Reichle et al., 1998); sometimes, the specific value is directly estimated from the mean saccade 

duration in the empirical data that are to be modelled (Nuthmann et al., 2010). For the remaining 
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parameters, best-fitting values can be determined using an optimization technique; it is important 

to ensure that the range of possible values for each parameter is psychologically and/or 

neurophysiologically plausible. In its implementation, the model generates sequences of saccades 

and fixations, whereby FDs are the time intervals between successive saccades (excluding 

saccade execution). 

1.5 The current study 

The current investigation includes an empirical study and two simulation studies with the 

CRISP model (Nuthmann et al., 2010). Our main goal was to run simulations with the CRISP 

model to elucidate the unexplored mechanisms underlying oculomotor control in 6-month-olds. 

Moreover, we wanted to study differences between long and short lookers, based in the 

assumption that long lookers might present a less developed oculomotor system (see 

Papageorgiou et al., 2014; Papageorgiou, Farroni, Johnson, Smith, & Ronald, 2015).  

For the empirical study, we recorded the eye movements of 6-month-old infants and 

adults. Participants were presented with two different complex dynamic viewing conditions 

(naturalistic and semi-naturalistic videos) and performed the gap-overlap paradigm. The free 

viewing tasks were used to analyze the micro-dynamics of visual and cognitive processing 

during spontaneous orienting by measuring FDs. The gap-overlap task was used to measure 

participants’ disengagement abilities.  

We predicted that the empirical study would show (1) differences in FDs across viewing 

conditions and age groups (infants vs. adults), and (2) a positive relationship between FDs and 

disengagement latencies in both age groups, particularly in infants due to the underdeveloped 

state of their oculomotor system. The goal of simulation study 1 was to (3) test the CRISP 

model’s generalizability with data from 6-month-old infants by analyzing differences between 
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infants and adults through changes in the model’s input parameters. If the model was unable to 

recover the specific features of fixation-duration distributions in infants (e.g., mode, skew, tail), 

this would suggest that some of the model assumptions do not readily apply to eye-movement 

control during infancy. Simulation study 2 compared simulations from long and short lookers to 

investigate whether (4) FDs in infancy are predominantly influenced by the developmental state 

of the oculomotor system, or by visual-cognitive processing speed, or by both to varying 

degrees. Given that difficulty in disengagement is commonly associated with poorer 

developmental states of the oculomotor system (Matsuzawa & Shimojo, 1997), we hypothesized 

that the absolute and relative values for the labile, and especially non-labile stages of saccade 

programming would be prolonged in infants with longer disengagement latencies.  

2. Empirical study 

2.1 Methods 

2.1.1 Participants 

In total, 18 typically developing 6-month-olds and 18 adults (10 female) with no known 

visual impairments participated in this experiment. Seven infants had to be excluded from the 

analysis due to data quality issues (n = 5) or fussiness (n = 2). Thus, the analysis included 11 

infants (mean age = 171.45 days, range = 150 to 191 days, 6 girls). Most infants (n = 10) were of 

Caucasian middle socioeconomic status. The infants were recruited via magazine advertisements, 

social networking media and flyers. The study protocol was approved by the relevant Ethics 

Committee.  

2.1.2 Apparatus 

Participants’ gaze was monitored using a Tobii TX300 eye-tracker running at a sampling 

rate of 120 Hz. This particular eye-tracker model tolerates large head movements, allowing the 
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infants to move naturally in front of the stimuli presentation screen. The stimuli were presented 

on a 23’’ wide screen TFT monitor attached to the eye tracker unit by using a custom-made 

MATLAB program (MATLAB version R2010a 32-bit). This program made use of the T2T 

(Talk to Tobii) package and the Psychophysics Toolbox 3 (Brainard, 1997; Kleiner, Brainard, & 

Pelli, 2007). The sounds were played through stereo external speakers located at both sides of the 

screen. The participant was monitored and recorded through an external video camera located 

under the Tobii screen by using the ScreenFlow screen-casting software. The objects and figures 

for the gap-overlap paradigm were created using Adobe Photoshop CS6. The naturalistic videos 

were recorded with a full high-definition camera and assembled with Final Cut Pro X Version 

10.0.5.  

2.1.3 Dynamic stimuli 

The spontaneous looking task includes two different viewing conditions: the naturalistic 

condition in which three people performed baby-friendly actions, either simultaneously or at 

different times; and the semi-naturalistic condition in which the people were substituted with 

simple geometrical shapes rotating either simultaneously or at different times.  The two types of 

stimuli were presented in color and were approximately equal in size. The background music that 

accompanied the stimuli consisted of fragments of instrumental songs.  

Each naturalistic video (see Figure 2) lasted between 20 and 25 seconds and comprised 

three regions of interest (right, left and center of the screen) in which three different volunteers 

performed a random baby-friendly action, for example waving a balloon or tossing a ball. The 

actors were filmed against a green screen, which allowed the background to be replaced with a 

baby-friendly static image using chromakeying. In the semi-naturalistic condition (see Figure 3) 

the characters were substituted with simple geometrical shapes (colorful triangles, rectangles, 
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circles, squares, pentagons, hexagons or ellipses) that were rotating clockwise simultaneously or 

at different times. The position of the right and the left elements corresponded to a visual angle 

of 18.26. This design aims to uniformly distribute the semantic and motion information across 

the screen. The set included 10 different naturalistic videos and 12 semi-naturalistic videos. The 

two extra videos were added in order to compensate for a possible decrease in attention to this 

condition towards the end of the experiment, and to obtain the largest number of fixations 

possible. 

 

 

Figure 2. Screenshot from one out of ten naturalistic videos used in the study. 
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Figure 3. Screenshot from one out of twelve semi-naturalistic videos used in the study. 

 

2.1.4 Gap-overlap paradigm 

In a gaze-contingent paradigm, experimental events are contingent on participants’ online 

eye-movement behaviors, thereby permitting the study of eye movements in a truly interactive 

manner (e.g., McConkie & Rayner, 1975; Wass et al., 2011; Wilms et al., 2010). Our 

experimental design included two gaze-contingent tasks: a gap-overlap and a double-step task. 

However, there were not enough valid double-step trials per condition in order to identify the 

threshold between labile and non-labile stages; therefore, the results from the double-step 

paradigm are not included in this article. 

Each gap-overlap trial starts with the presentation of a central stimulus. In the moment 

the infant fixates this stimulus, the peripheral target will randomly appear either on the right or 

the left side of the screen (18). Depending on the time at which the central stimulus disappears, 

a given trial will be flagged as overlap, baseline or gap (see Introduction). The gap trials evaluate 
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the facilitation effect emerging from a temporal gap of 200 ms preceding the peripheral 

presentation. When the participant looks at the peripheral stimulus, a short animation is 

presented. If the participant does not look at the peripheral stimulus after 4 seconds, the next trial 

starts. The disengagement latencies are calculated by subtracting the baseline condition from the 

overlap condition. The central stimulus was a colorful ball, while the peripheral one was a cloud.  

A total number of 72 trials were presented. Forty percent of these trials were gap trials, 

30% were overlap trials and the remaining 30% were baseline trials. They were presented in 

groups of 12 trials (iteration) and alternated with other tasks of the study.  

2.1.5 Procedure 

Participants were welcomed in a lab waiting room in which infants acclimated to the 

experimenter and the lab. Next, they were tested individually in a darkened room while sitting on 

a baby-chair located 60 cm away from the monitor. Prior to starting the experiment, the infants 

were calibrated with a five-point calibration. Infants were shown a moving puppet accompanied 

by a sound on each point of the screen and on the center until the target was fixated. This process 

was repeated until the infant looked at the five points accurately. Adults were seated on a chair 

located 60 cm away from the monitor. They also completed the infant five-point calibration 

procedure. 

The different tasks of the study were alternated in the following order: (1) twelve gap-

overlap trials, (2) one naturalistic video presentation (20-25 seconds), (3) twelve double-step 

trials, and (4) one semi-naturalistic video presentation (20-25 seconds). This process was 

repeated six times. Next, six additional iterations of naturalistic and semi-naturalistic videos were 

presented. In total, participants viewed 10 naturalistic videos, 12 semi-naturalistic videos, 72 
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gap-overlap trials, and 72 double-step trials. In case the infant became upset during the study the 

program was stopped.  

2.2 Analysis 

2.2.1 Cross-validation  

2.2.1.1 Fixation Durations (FDs) 

Eye-tracking data from infants may contain considerably higher levels of noise than data 

from more compliant participants such as adults due to various factors including their high 

degree of movement, lack of compliance to the task, poor calibration and corneal reflection 

disturbances due to the underdeveloped cornea and iris (Hessels, Andersson, Hooge, Nyström, & 

Kemner, 2015; Saez de Urabain, Johnson, & Smith, 2015; Wass, Smith, & Johnson, 2013). To 

account for this potential quality/age confound, dedicated in-house software for parsing and 

cleaning eye tracking data has been developed (GraFix, Saez de Urabain et al., 2015). This 

software allows valid fixations to be salvaged from low-quality datasets whilst also removing 

spurious invalid fixations. In the present study, both adult and infant datasets were parsed using 

GraFix’s two-stage semi-automated process (see Appendix A for details). The second stage of 

GraFix involves manual checking of the fixations detected automatically during the first stage. 

This manual coding stage was validated by assessing the degree of agreement between two 

different raters. One rater was one of the authors (IRSdU). An external coder, naïve to the 

expected outcomes, was trained to code fixations from infants featuring low- and high-quality 

data. The coder had to (1) run GraFIX automatic detection algorithms using the parameters from 

Appendix A and to (2) manipulate the outcome in order to remove artifactual fixations or add 

those undetected by following the predefined guidelines. In total, the external coder coded 10 % 

of the data analyzed for this study. The inter-rater reliability between the mean FDs was 
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evaluated using the Intraclass Correlation Coefficient (ICC; Hallgren, 2012). A strong agreement 

was found (ICC = .898, p = .05).  

2.2.1.2 Gap-overlap paradigm 

All trials from the gap-overlap paradigm were inspected by one of the authors (IRSdU) to 

manually exclude those where (1) the accuracy was not good enough to trigger the gaze-

contingencies, or (2) the infants looked away during the presentation of the peripheral stimulus. 

An external coder, who was naïve to the expected outcomes, evaluated the validity of the gap-

overlap trials for 10% of the data. Interrater reliability was measured using the Kappa statistic to 

determine consistency among raters. This analysis showed a strong agreement between the two 

coders, Kappa = .878 (p < .001), 95% CI (.833, .923). 

2.2.2 Data-quality analysis 

Spatial precision is defined as the consistency in detecting and calculating gaze points 

accurately. Low spatial precision can seriously affect the detection of fixations and hence it is 

essential to measure and report it. There are a number of methods to calculate spatial precision, 

such as the root mean square (RMS, commonly used by manufacturers) or the standard 

deviation, which measures the dispersion of each sample from a mean value (Holmqvist et al., 

2011). The RMS was calculated for each participant.  

In low-quality data it is less likely to find clean long fixations that can be reliably 

detected even if the data are hand-coded. For this reason, one could expect to find negative 

correlations between FDs and precision measures, where participants showing lower data quality 

would also feature proportionally shorter fixations. Correlational analysis between the RMS-s 

and FDs did not find any correlations for the group of 6-month-olds nor for the group of adults, 

confirming that data quality did not affect the experimental results in the present study.  
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2.2.3 Statistical analysis 

The mean fixation duration for each participant and viewing condition was calculated 

after excluding all fixations with a duration greater than two standard deviations from the initial 

mean. Hence, fixations included in the analysis accounted for about 95% of the set for each 

participant. This procedure was necessary to exclude very long or very short fixations on a 

participant basis, rather than establishing a minimum and maximum fixation duration threshold 

for all participants together, regardless of their age. This criterion was established in order to 

exclude those rare very long fixations (e.g., 10 seconds) that were a consequence of the infant’s 

sleepiness rather than a result of a cognitive or neural process. At the same time, this procedure 

ensured that long fixations, which are quite typical in infant populations, were not generally 

excluded.  

For the group of infants, the gap-overlap trials with latencies shorter than 200 ms were 

excluded from the analysis, because such fast eye-movements are considered to be eye-tracking 

errors or anticipatory saccades (e.g., Canfield, Wilken, Schmerl, & Smith, 1995; Frick et al., 

1999; Rose, Feldman, Jankowski, & Caro, 2002). In contrast, for the group of adults the 

minimum latency was lowered to 80 ms, since latencies below this value are considered to be 

anticipatory or express saccades (Fischer & Weber, 1993). Some studies also define a maximum 

latency limit (Elsabbagh et al., 2009; Johnson et al., 1991; Matsuzawa & Shimojo, 1997). 

However, given that our two participant groups are very different in age, one can expect to find 

group and inter-individual differences in their disengagement abilities and reaction times. For 

this reason, we decided to establish a conservative criterion by excluding all the trials that were 

one standard deviation above each participant’s mean latency. 
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3. Simulation studies 

3.1 Modeling infant FDs with the CRISP model 

Only few computational models have attempted to explain cognitive development in 

infancy (for a review see Schlesinger & McMurray, 2012). Whilst some of these models have 

investigated different aspects of visual orienting in infancy (Carlson & Triesch, 2004; 

Schlesinger, Amso, & Johnson, 2007; Domsch et al., 2010; Sirois & Mareschal, 2002; for a 

review see Mareschal, 2010), to date no computational model has attempted to explain the 

specific mechanisms underlying saccadic control in infancy.  

As outlined in the introduction, some evidence exists that infant FDs can be affected by 

developmental aspects of the oculomotor system and/or by visual-cognitive processing demands. 

As a result, one can expect to find more variability in FDs in infants compared to adults, or in 

other words, more positively skewed distributions of FDs (Harris et al., 1988). In order to model 

this variability in infant oculomotor control, the CRISP model (Nuthmann et al., 2010) was 

applied to both infant and adult data.  

In the following, we revisit CRISP’s theoretical assumptions and input parameters with 

the specific aim to explore whether they are, in principle, applicable to infant data and in what 

way age differences (infants vs. adults) could be represented by certain differences in parameter 

settings. From the perspective of age-specific influences on FDs, the following CRISP 

parameters contribute toward systematic differences in FDs: (1) the mean (tsac) and variance (i.e., 

number of states N) of the random-walk timing signal, (2) the mean duration of the labile 

saccade program (lab), and (3) the mean duration of the non-labile saccade program (nlab). 

Moreover, cancellations of existing saccade programs contribute to the variability in fixation 
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durations, and they are particularly important for producing long tailed fixation duration 

distributions (see Nuthmann et al., 2010). 

3.1.1 Random-walk timing signal  

The CRISP model assumes that saccade programs are initiated according to some 

preferred idiosyncratic mean rate (Engbert et al., 2002) and based on this it implements a 

rhythmic saccade timer that is responsible for generating variations in FDs (Nuthmann et al., 

2010). All living things are subject to spontaneous fluctuations of physiological and behavioral 

processes that maintain complex organisms in a fairly stable state (Wolff, 1991). Further, there is 

some evidence that the central nervous system as well as the oculomotor system are rhythmic in 

nature (McAuley, Rothwell, & Marsden, 1999). The temporal organization of spontaneous 

movements has also been studied in newborn infants, where it was found that the fluctuations in 

movement over time were not random but rather rhythmic (Robertson, 1982). The same can be 

interpreted when investigating saccadic eye-movements during the first month of life, which are 

believed to be mainly under subcortical control and hence are rapid and input-driven (Atkinson, 

2000; Johnson, 1995, 2011).  

3.1.2 Random-walk timing and speed of processing 

In CRISP, decreases in processing speed and increases in processing difficulty will slow 

down the random-walk saccade timer. This delays the initiation of a new saccade program, 

which in turn leads to longer FDs. For our simulations, it is reasonable to assume that the mean 

and variance of the random-walk process underlying the initiation of a new saccade program are 

different for infants compared to adults. Specifically, CRISP would capture a slower speed of 

visual-cognitive processing in infants by a higher mean value tsac for the random-walk timing 

signal. In addition, following previous viewing-task simulations with the CRISP model (scene 
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memorization vs. search: Nuthmann et al., 2010; scene viewing vs. reading: Nuthmann & 

Henderson, 2012) we allow both parameters of saccade timing (tsac and N) to vary across viewing 

conditions. In sum, we predict that these values will vary across viewing conditions and age 

groups. 

3.1.3 Two-stage saccade programming 

In CRISP, once the random-walk process reaches threshold, a new saccade program is 

initiated. Saccade programming is completed in two stages: an initial, labile stage that is subject 

to cancellation and an ensuing, non-labile stage in which the program can no longer be cancelled. 

As outlined above, CRISP introduces stochastic (i.e., unsystematic) variability in the durations of 

the labile and non-labile stages in that, for each simulated saccade program, individual durations 

are drawn from gamma distributions with means lab and nlab, respectively. The question arises 

whether there are additional systematic age-dependent and/or viewing condition-dependent 

differences in the duration of saccade programming stages. 

Investigating the two-step notion of saccade programming in infants using the double-

step paradigm is challenging due to the need for a large number of trials in order to identify the 

transition from labile to non-labile stages of saccade programming. Prior infant studies using the 

double-step paradigm have instead focused on investigating developmental changes in spatial 

reference frames by observing where the saccades land rather than when they are launched 

(Brown et al., 2003; Gilmore & Johnson, 1997a, 1997b). However, infants’ ability to inhibit a 

saccade has been investigated by using the anti-saccade paradigm (e.g., Johnson, 1995). In this 

task, after the appearance of a central stimulus a cue appears either on the left or right side. The 

infant is encouraged to look in the opposite direction by subsequently presenting a more 

attractive object at this location. Johnson (1995) found that by 4 months, infants were able to, 
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after a training period, reliably inhibit the saccade to the cue and move their eyes to the second 

more attractive target instead. Interestingly, the ability to inhibit a saccade programming concurs 

with the major development of the premotor areas of the frontal lobes – which contain the frontal 

eye fields – that occurs from 3 to 4 months. These findings suggest that saccade cancellation and 

hence the two stages of saccade programming may be present already by 4 months. Thus, 

assuming that infants may not be able to systematically cancel a saccade before 4 months, one 

could expect the non-labile program to be longer than the labile program before this age. From 4 

months onwards, we predict (1) a relative increase of the labile stage with respect to the non-

labile stage program, and (2) a gradual decrease in the absolute times for both labile and non-

labile programs as the infant’s saccadic control increases in efficiency. Furthermore, research has 

shown that even by 6 months, infant saccadic control is not as efficient as in adult participants 

(Butcher et al., 2000; Csibra, Tucker, & Johnson, 2001), thus both labile and non-labile stages 

are likely to be longer at this age compared to adults. 

Under the assumption that both the existence and duration of the labile (τlab) and non-

labile (τnlab) stages of saccade programing are subject to developmental changes in the 

oculomotor system, we treat them as an indicator of the system’s developmental state. Longer 

labile and non-labile stages will, on average, generate longer FDs. 

There is evidence suggesting that saccade programming and hence saccade latencies 

could be affected by various exogenous factors such as those observed in the gap-overlap 

paradigm, or endogenous factors such as those emerging from certain task instructions (e.g., 

Castelhano, Mack, & Henderson, 2009; Nuthmann et al., 2010). However, for reasons of model 

parsimony we assumed that saccade programming parameters do not vary across viewing 

conditions within a given age group.  
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3.2 Simulation study 1: Baseline 

The goal of the first simulation was to test the CRISP model’s generalizability to 

fixation-duration data from 6-month-old infants. Furthermore, we analyzed the age differences 

and the influence of the material viewed on FDs during scene viewing in both infants and adults. 

3.2.1 Behavioral data 

The empirical data set comprised 12315 adult fixations (Nnaturalistic = 5949; Nsemi-naturalistic = 

6366) and 2675 infant fixations (Nnaturalistic = 1447; Nsemi-naturalistic = 1228). A mixed ANOVA 

exploring the differences in mean FDs with factors Viewing Condition and Age revealed a 

significant main effect of Age (F(1,28) = 91.56, p < .001) and Viewing Condition (F(1,28) = 

22.63, p < .001), but no significant interaction (F < 1). The Age and Condition effects can clearly 

be seen in the group means (Figure 4). The adults presented significantly shorter mean FDs 

(naturalistic: M = 327 ms, SD = 45; semi-naturalistic: M = 377 ms, SD = 69) than the group of 6-

month-olds (naturalistic: M = 644 ms, SD = 142; semi-naturalistic: M = 724 ms, SD = 120) and 

FDs were longer in both groups for the semi-naturalistic videos compared to the naturalistic 

videos (mean difference in adults = 50 ms, and in infants = 80 ms). Participants showing short or 

long mean FDs in one viewing condition also showed short or long mean FDs in the other 

condition, indicating stable individual differences in both 6-month-olds (r(11) = .882, p < .001) 

and adults (r(18) = .615, p = .007). In sum, while oculomotor control in 6-month old infants may 

not have reached adult levels, their FDs are already influenced by the viewing condition.  
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Figure 4. Mean fixation durations across viewing conditions for infants and adults. Error bars represent ± 1 standard 

error. 

 

3.2.2 Model adjustments 

The goal of the simulations was to test the CRISP model’s generalizability to infant data. 

To this end, the same model architecture was applied to both the infant and adult data. Thus, 
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model generalizability was analyzed in the restricted sense of parameter changes, which is a 

more stringent test than adding new parameters to the model (Nuthmann & Engbert, 2009). 

Based on the theoretical and empirical considerations outlined above, it was decided which 

model parameters were allowed to vary across age groups and/or viewing conditions. 

As explained earlier, the mean (tsac) and variance (N, number of states) of the random-

walk timing signal define the transition rate (r1, see Equation 1) for the random-walk process, 

which determines how fast the process of saccade timing operates. For the present simulations 

we allowed the parameters tsac and N to vary across different viewing conditions and age groups. 

Parameter estimates for the different conditions serve as an index for the speed of visual and 

cognitive processing. 

When the model simulates a given saccade program, the durations of the labile, non-

labile and execution stages are drawn from gamma distributions (see also Engbert et al., 2005; 

Reichle et al., 1998). For example, the actual time required to complete the labile saccadic 

programming stage is sampled from a gamma distribution with μ = lab and σ = σγ × μ. In 

previous simulations of adult fixation durations in different scene-viewing tasks (Nuthmann et 

al., 2010), the means of the gamma distributions (μ) were either free or fixed parameters, 

whereas the relation between the standard deviation and mean (σγ) was fixed (e.g., at 0.33 or 

0.25, Nuthmann et al., 2010). In the present simulations, the means for the labile and non-labile 

stages are free parameters, which we allow to vary across age groups while they are constant for 

viewing conditions within a given age group. The parameter for the standard deviation of the 

gamma distributions (σγ) is a fixed parameter. To accommodate the higher variability generally 

observed in infant data compared to adult data, it was set to 0.33 for the infant data and 0.25 for 

the adult data. These values were adopted from previous model simulations (Engbert et al., 2005; 
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Nuthmann et al., 2010; Reichle et al., 1998, 2003). To reiterate, the variability σ of the gamma 

distributions is driven by both μ and σγ. It is important to note that, as the mean durations of 

stochastic processes increase, so too does their overall variability. For example, a higher mean 

duration for the labile stage of saccade programming is associated with a higher overall 

variability. 

The mean duration of saccade execution (ex) is a fixed parameter. For adults, we adopted 

a parameter value used in previous CRISP simulations (ex = 37 ms, simulation study 2 in 

Nuthmann et al., 2010). For the infant simulations, we slightly increased this parameter value (ex 

= 50 ms), thereby acknowledging that saccade execution may be slower in infants than in adults 

(cf. Hainline, Turkel, Abramov, Lemerise, & Harris, 1984).  

3.2.3 Modeling results 

Free parameters were estimated using a genetic algorithm optimization technique that 

was used in previous simulation studies with the CRISP model (Nuthmann & Henderson, 2012; 

simulation study 2 in Nuthmann et al., 2010). For each age group, a total of six free parameters 

were fit: the mean durations for the labile and non-labile stages of programming; the mean and 

variance of the random-walk timing signal for the naturalistic condition; and the mean and 

variance of the random-walk timing signal for the semi-naturalistic condition. The ranges for 

estimating these values were based on previous oculomotor research from infants and adults; 

note that we used relatively wide ranges (especially for the group of adults). The genetic 

algorithm estimated the input parameters by minimizing a goodness-of-fit measure and by 

evaluating how much the simulated data differed from the empirical data. Note, the empirical 

data consisted of all fixations within an age group and viewing condition, collapsed together into 

a single fixation duration distribution. Individuals were not preserved due to the low number of 
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fixations per participant and instead four distributions were modeled: 6 months naturalistic, 6 

months semi-naturalistic, adult naturalistic, and adult semi-naturalistic. The parameter values 

generating the simulations that best resembled the empirical distributions are described in Table 

1.  

The goodness-of-fit measure (E) was calculated by assessing how much the simulated 

data diverged from the empirical data. For this purpose FD distributions and mean FDs were 

compared and the errors were added together (see Nuthmann et al., 2010, Appendix B). As a 

result of the long tail and the high skewedness of the fixation duration distributions presented in 

this article, the simulation with the lower E did not necessarily indicate the best fit. Therefore, 

the parameters displaying the best fit were selected following the procedure described in 

Appendix B. Additionally, we report the mean-root-square error of the cumulative distributions 

(Ec). This function, which gives more weight to the peak of the distribution when calculating the 

error, constitutes an additional source for evaluating the disparity between distributions. 

The results of the simulations are summarized in Figure 5. The two right panels show the 

data from adult observers, which are captured very well by the model simulations. Specifically, 

the simulated data reproduced the characteristic positive skew in fixation duration distributions. 

Compared to the adult data, the fixation duration distributions for the 6 month-olds are much 

noisier, partly due to the fewer number of fixations. For the infant data, the modal portion of the 

distribution is clearly shifted towards longer FDs, and the tail of the distribution is increased. 

These overall trends are captured well by the simulated data. Table 1 displays the best-fitting 

parameters for adults and infants.  
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Figure 5. Simulation study 1: Simulated versus empirical fixation duration distributions. Data from 6-month old infants 

(left) are compared with data from adults (right) during viewing of naturalistic (top) and semi-naturalistic (bottom) videos. 

 

 [INSERT TABLE 1] 

The simulation results suggest differences between age groups in both saccade timing and 

saccade programming parameters, with the infant group displaying considerably higher values 
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(see Table 1). With respect to saccade timing parameters, the mean values for the random-walk 

timer from the infants group (naturalistic = 458 ms; semi-naturalistic = 496 ms) almost doubles 

the values for adults (naturalistic = 253 ms; semi-naturalistic = 271 ms). The saccade timing 

variance (number of steps for the random-walk, N), on the other hand, does not vary much across 

age groups.
1
 For both viewing conditions, the random-walk transition rate (N/ tsac) is lower for 

infants than for adults. In CRISP, this transition rate can be modulated by visual-cognitive 

processing (Nuthmann et al., 2010). Therefore, the striking differences in saccade timing 

parameters between infants and adults may be interpreted such that both saccade timing and 

visual-cognitive processing speed are considerably slower for 6-month-olds than for adults, 

which manifests in longer fixation durations. Additionally, the mean duration of the random-

walk timing signal and its transition rate were lower for semi-naturalistic stimuli than for 

naturalistic stimuli, which contributes to the observed differences in fixation durations with 

shorter durations for semi-naturalistic movies.  

Pertaining to saccade programming parameters, the simulation results can be summarized 

as follows. First, there was no relative increase in the duration of the labile stage with respect to 

the non-labile stage when comparing infants and adults (the labile stage takes up 86.13% of 

saccade programming time in infants and 85.82% in adults). Second, there was a gradual 

decrease with age in the absolute durations of both labile and non-labile saccade programming 

stages (see Table 1). A possible interpretation of these results is that two-stage saccade 

                                                 
1
 Three out of four estimates of the saccade timing variance (N) were simulated at the 

extremes of the possible value range (i.e., 5-20). This should not be seen as a limitation of the 

simulations as confirmatory simulations using broader ranges for N revealed a very similar 

pattern of estimates and fits for the empirical data. Moreover, N is only one of several parameters 

that determine the overall variability in the simulated fixation durations. 
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programming may be fully functioning at 6 months, but it must develop further in order to reach 

adult-like levels. 

The main conclusion of this simulation study is that the CRISP model’s architecture can 

be applied to infant data. However, it became apparent that the model (in its original form) has 

difficulty in dealing with the very long fixations common in infants (> 2 s). The simulation 

results suggest that the fixation duration data from 6-month-old infants were well fit by a model 

in which saccade programming progresses from a labile to a non-labile stage, suggesting that 

two-saccade programming may be active at this age. Furthermore, the CRISP model was able to 

capture the differences in FDs that resulted from the presentation of different viewing conditions 

in both age groups, suggesting that the influence of visual-cognitive processing in FDs can be 

reproduced by adapting the random-walk timer of the saccade generator. 

Regarding age differences, the discrepancies in both saccade programming values (labile 

and non-labile stages) and saccade timing values (mean of the random-walk timing signal) 

between infants and adults are compelling, suggesting that at 6 months, further development of 

the oculomotor system is required to reach adult levels.  

3.3 Simulation study 2: Modeling participants showing long and short disengagement latencies 

This study aims to compare the differences in FDs between infants showing increased 

disengagement difficulties and those whose latencies were closer to adults.  

3.3.1 Behavioral data 

The gap-overlap paradigm was used to measure participants’ disengagement abilities. 

Disengagement was calculated for each participant by subtracting the baseline mean latency 

from the overlap mean latency. Both infants and adults showed a clear gap effect such that 

overlap latencies were significantly longer than baseline latencies (6-month-olds: mean 
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difference = 0.249 s, t(10) = -4.795, p < .001; adults: mean difference = 0.105 s, t(17) = -6.004, p 

< .001). For 6-month-olds, high correlations were found between disengagement latencies and 

both naturalistic (r(11) = .836, p = .001) and semi-naturalistic FDs (r(11) = .851, p = .001). For 

adults, there was a systematic relationship between disengagement latencies and FDs in the 

naturalistic viewing condition (r(18) = .471, p = .049), but not for the semi-naturalistic condition 

(r(18) = .251, p = .315; see Figure 6). The same pattern of results was found when mean FDs for 

naturalistic and semi-naturalistic stimuli were log-transformed to achieve a near-normal 

distribution of the dependent variable. These results indicate that individual differences in the 

ability to disengage from a focal point have an influence on the timing of fixations. To some 

degree, this influence was also present in adults. 

 

 

Figure 6. Correlations between disengagement latencies and fixation durations (in seconds) in infants and adults. 
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The model simulations were restricted to the infant data, with the aim to compare data 

from infants with particularly large or small disengagement difficulties, as a proxy for 

oculomotor programming maturity. Due to the correlations between disengagement latencies and 

mean fixation durations (especially in the infants) participant mean fixation durations could have 

also been used to perform the same stratification but the decision was taken to use the 

disengagement latency as this is a more established developmental marker (Matsuzawa & 

Shimojo, 1997). Gathering a large amount of data from the same infant entails some technical 

and practical difficulties (Saez de Urabain et al., 2015). Due to the low number of fixations 

recorded from each infant, it was not possible to directly compare the two infants with the most 

extreme disengagement latencies (i.e. long and short). Data from at least three participants was 

needed to obtain an acceptable number of fixations for the modelling (> 200 fixations per 

condition). Therefore, the long disengagement (LongD) group included the three infants with the 

longest disengagement latencies (all of them above the mean). In contrast, the short 

disengagement (ShortD) group included the three infants with the shortest disengagement 

latencies (all of them below the mean). Due to the correlations between disengagement latencies 

and FDs, the infants with long (or short) disengagement latencies also showed long (or short) 

FDs. All fixations from the three participants making up each group were combined to make a 

single fixation duration distribution for each viewing condition (Naturalistic and Semi-

naturalistic). CRISP was then used to model these distributions. 

The data from the LongD group was comprised of 486 fixations (Nnaturalistic = 274; Nsemi-

naturalistic = 212). The mean fixation duration was 819.5 ms (Mnaturalistic = 778 ms, SDnaturalistic = 152; 

Msemi-naturalistic = 862 ms, SDsemi-naturalistic = 105) and the mean disengagement latency 502 ms (SD = 

137). The ShortD group included 1094 fixations (Nnaturalistic = 614; Nsemi-naturalistic = 480). The 
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mean fixation duration was 570 ms (Mnaturalistic = 505 ms, SDnaturalistic = 108; Msemi-naturalistic = 635 

ms, SDsemi-naturalistic = 113) and the mean disengagement latency 87 ms (SD = 29). An independent 

samples t-test showed significant differences in disengagement latencies when comparing LongD 

and ShortD groups (t(4) = 5.139, p = .007). 

3.3.2 Modelling results  

The adjustments to the model and the procedure for model fitting were the same as in 

simulation study 1. Figure 7 displays the empirical and simulated fixation duration distributions 

for the LongD (left panels) and ShortD (right panels) groups and the two viewing conditions 

(top: naturalistic videos, bottom: semi-naturalistic videos). The reduced number of fixations for 

the LongD group led to rather noisy empirical fixation duration distributions (red lines). Yet it is 

evident from the data that, for the LongD group, the modal portion of the distribution was shifted 

toward longer FDs, and the tail of the distribution was somewhat increased, with a larger 

proportion of the data lying in the tail; this was more pronounced for the naturalistic videos than 

the semi-naturalistic ones. Overall, the computational model simulations were able to capture the 

group differences in fixation duration distributions for the LongD and ShortD groups reasonably 

well. Not surprisingly, the CRISP model performed worse on the more irregular LongD data as 

compared to the ShortD data, as is evident from the larger deviation measures (see “Error” in 

Table 2).  
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Figure 7. Simulation study 2: Simulated versus empirical fixation duration distributions in 6-month old infants. Data 

from long lookers (left) and short lookers (right) during viewing of naturalistic (top) and semi-naturalistic (bottom) videos. 

 

Reducing the number of participants by grouping them according to their disengagement 

abilities revealed some limitations of the CRISP model in simulating infants’ fixations. Whereas 

the peak and the tail of the distributions were efficiently captured by CRISP, there were a 
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number of long fixations (> 2 s), particularly evident in the LongD group, that were not captured 

by the model. These long fixations have traditionally been associated with disengagement 

difficulties (see Introduction). The fact that most of these very long fixations were found in the 

LongD group supports this hypothesis. 

Analysis of model parameters (see Table 2) offers the intriguing possibility of exploring 

at what level the differences in FDs between the two groups primarily originate—at the level of 

saccade timing, saccade programming, or both? As outlined before, we consider saccade timing 

parameters as an indicator for the speed of visual-cognitive processing, whereas saccade 

programming parameters serve as an index for the development of the oculomotor system.  

The model simulations suggested a higher mean value for the random-walk timing signal 

for the LongD group compared to the ShortD group regardless of the viewing condition. This 

suggests that infants with LongD are slower at processing the visual information required for 

triggering a saccade program, contributing to the greater prevalence of long fixations in this 

group. 

Notably, there are also differences in saccade programming parameters between the two 

groups (Table 2). In the CRISP model, at the transition from a labile to a non-labile stage of 

saccade programming a “point of no return” is passed. Interestingly, for the ShortD group the 

labile stage covers 88.95% of the total saccade programming time, while for the LongD group it 

covers 79.52% only. In relative terms at least, this leaves more time for the modification or 

cancellation of saccade programs for infants in the ShortD group, which may be indicative of a 

more developed oculomotor system. Furthermore, the model simulations suggested that while 

the non-labile stage program is already as short as for adults in the ShortD group (40 ms), it is 

still prolonged for the LongD group (103 ms). The neural structures involved in saccade 
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programming (e.g., the frontal eye fields) are thought to be in place at 6 months. The present 

simulations are in agreement with the view that—at least in some infants—these structures may 

still not be developed enough to perform adult-like online control of eye movements (Csibra et 

al., 1998). Furthermore, in the model simulations the labile stages of saccade programming are 

relatively long for both groups, which may suggest that even the ShortD group is going through a 

“calibration phase” that will lead to more efficient adult-like eye-movements later on. The 

differences between the two groups are striking, providing evidence for large variability in 

saccadic control across infants from the same age group.  

[INSERT TABLE 2] 

3.4 Qualifying remarks 

A major goal of the present work was to test hypotheses related to multi-stage 

programming of saccades in infants. On the empirical side, we exposed 6-month-old infants to 

double-step trials but did not succeed in collecting reliable data. In this respect, the model 

simulations were used to investigate an aspect of eye-movement control that was not tested 

empirically. Based on empirical findings obtained with the anti-saccade task (Johnson, 1995), we 

reasoned that two-stage saccade programming may be present by 4 months and then investigated 

more specific hypotheses with the CRISP model. Here, we take a step back and explore the more 

basic question whether the infants’ empirical data are indeed better described by two-stage 

saccade programming compared with an alternative one-stage process. An affirmative answer 

can be derived from the model architecture along with existing simulations and features of the 

empirical data. One-stage programming implies that existing (labile) saccade programs cannot be 

cancelled. In CRISP, a saccade cancellation occurs when the timer attempts to initiate a labile 

saccade program while a labile program is already active. In this case, the old program is 
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cancelled and replaced by the new program. Previous simulations using the CRISP model have 

revealed the role that saccade cancellation has in generating long fixation durations (Nuthmann 

et al., 2010). Fixation durations with no cancellations of the labile stage were shortest and had 

the smallest variance (Figure 4b). Average fixation duration and variance were much increased 

when there was one cancellation, and even more so when there were two successive 

cancellations. Thus, simulations in which the cancellation mechanism is turned off (or in which 

one-stage programming is implemented) will generally underestimate long fixation durations 

(see also Trukenbrod & Engbert, 2014). Given that long tailed distributions are a prominent 

feature of the infant data, simulations with two-stage saccade programming are bound to fare 

better than without. Of course, our simulations do not “prove” that infants can cancel saccades; 

all we can say is that the empirical data are well fit by a model in which saccade programming 

progresses from a labile to a non-labile stage. 

Relatedly, as explained above there are multiple routes to a longer mean fixation duration 

in CRISP. In the model simulations, certain model parameters were allowed to vary across age 

groups and/or viewing conditions, based on theoretical and empirical considerations. We then 

interpreted the constellation of best-fitting parameters. A complementary strategy is to run 

counterfactual model analyses to isolate the influence that each model component has on the 

mean and distribution of fixation durations (Walshe, 2015). Doing this exhaustively is neither 

feasible nor necessarily informative in the present context. However, in supplementary analyses 

(not presented here) we used this approach to follow up on the results obtained in Simulation 

Study 2. To determine the individual contributions of saccade programming and saccade timing 

model parameters in generating the fixation duration distributions from LongD and ShortD 

groups during free viewing of naturalistic videos, we ran simulations in which we estimated the 
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saccade programming parameters (mean durations of labile and non-labile stages) while keeping 

the saccade timing parameters fixed, and vice versa. In brief, the results confirmed that, for both 

ShortD and LongD groups, a particular combination of saccade-programming and saccade 

timing parameters was needed to achieve a good fit. Holding either set of parameters fixed did 

not result in an adequate fit. 

4. General discussion 

Though FDs and scene perception in infancy are still largely unexplored, a few studies 

have highlighted how FDs can be influenced by perceptual and cognitive activity (Bronson, 

1990, 1994; Harris et al., 1988) and by the developmental state of the oculomotor system 

(“sticky fixation”; e.g., Johnson et al., 1991). It is still unclear, however, what the precise 

mechanisms underlying saccadic control in infancy are and the extent to which large variations 

in FD distributions found during the first months of life are affected by these factors. 

Investigating these issues using more traditional psychophysical experiments can be challenging, 

if not unworkable, due to the practical and current technological limitations that testing infants 

entails. On the other hand, computational modeling allows us to describe, predict and explain 

data that is itself unobservable (Lewandowsky & Farrell, 2011) and complements more 

traditional methods by investigating the mechanisms that are not directly accessible through 

experimentation (Braitenberg, 1984; Schlesinger & McMurray, 2012).   

The present work aimed at advancing our understanding of the mechanisms underlying 

eye-movement control in infancy. To this end, we reported an empirical study and two 

simulation studies using the CRISP model of FDs in (adult) scene viewing (Nuthmann et al., 

2010). The goal of a first baseline simulation was to test the CRISP model’s generalizability to 
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fixation-duration data from 6-month-old infants. In a second simulation study, we investigated 

differences in fixation durations in infants with long and short disengagement latencies.  

For the empirical study we recorded eye-movements from groups of 6-month-old infants 

and adults while watching customized naturalistic and semi-naturalistic videos. Participants also 

performed a gap-overlap task (e.g., Hood & Atkinson, 1993) to measure their disengagement 

abilities. This design allowed us to investigate the effect of viewing condition on fixation 

duration distributions and to examine the relationship between disengagement abilities and 

fixation durations. The results showed that mean fixation durations were significantly longer for 

6-month-olds than for adults, and longer for semi-naturalistic compared with naturalistic videos, 

with no interaction between age group and viewing condition. In addition, for infants we found 

high correlations between disengagement latencies and FDs in both viewing conditions. In 

infants, saccade execution is greatly affected by the development of the frontal eye fields and 

other neural structures. Thus, infants showing more difficulties disengaging are thought to have a 

less developed oculomotor control system, producing longer mean FDs. However, this 

developmental argument cannot explain the correlation that we found, though reduced, in adults 

when they viewed naturalistic videos. Taken together, the results suggest that disengagement is 

not only a consequence of an underdeveloped oculomotor system, but that it also affects saccade 

execution as a function of the characteristics of the visual stimuli being processed. Consequently, 

disengagement could be used to quantify the stimulus dependency of FDs. These results fit with 

the findings from a study by Kikuchi and colleagues (2011) who found larger disengagement 

latencies and saccade-related event-related potentials (ERPs) when children disengaged from 

faces, suggesting that the encoding and processing of the foveated stimulus plays a role in the 

ability to shift the gaze from a central target. 
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The results from simulation study 1 showed that the CRISP model was able to capture the 

trends observed in empirical fixation-duration data from 6 month-old infants. A key assumption 

of the model is that saccades are programmed in two discrete stages—an initial labile stage that 

is subject to cancellation if another saccade program is subsequently initiated, followed by a non-

labile stage that cannot be cancelled. This distinction is based on results from the double-step 

paradigm (Becker & Jürgens, 1979; Walshe & Nuthmann, 2015). To gather sufficient and 

interpretable double-step data from 6-month-olds proved to be a very challenging task in the 

present study. Here, we reported computer simulations which showed that infants’ fixation 

duration distributions were well captured by a model implementing two-stage saccade 

programming. From these results, one may tentatively conclude that two-saccade programming 

is active at this age. A comparison of the parameters estimated for the different age groups 

suggests that both saccade timing and saccade programming (labile and non-labile stages) are 

considerably slowed down at 6 months compared to adults. This may suggest that at 6 months, 

fixation durations are still affected by the development of the oculomotor system (indicated by 

saccade programming parameters) but also by the efficiency of visual and cognitive processing 

(indicated by saccade timing parameters).  

Simulation study 2 aimed to explore a developmentally important research question: how 

do long and short lookers differ in terms of the maturity of their oculomotor and visual/cognitive 

processing? This study acts as a first demonstration of how CRISP could be used to investigate 

questions about the development of active vision that are not feasible given the limitations of 

infant behavioral methodologies. The differences in FDs between infants with large (LongD 

group) and short (ShortD group) disengagement latencies were modeled using CRISP. Based on 

previous research on the inhibition of saccades in infants (e.g., Johnson, 1995), we reasoned that 
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infants with larger disengagement difficulties may have longer saccade latencies, with both the 

labile and non-labile phases being prolonged. The model simulations revealed differences 

between the ShortD and LongD groups in both saccade timing as well as saccade programming 

parameters. According to the model architecture, this means that FDs at 6 months are affected 

both by the speed of visual-cognitive processing as well as developmental aspects of the 

oculomotor system, with the latter being particularly prominent in infants with disengagement 

difficulties. These results are in line with findings from Domsch and colleges (2010), reporting 

that looking behavior within a habituation paradigm was affected by both information processing 

and disengagement. 

We acknowledge that there is a risk of over-interpreting the results from simulation 

studies like the ones presented here. Ideally, CRISP should be used to generate hypotheses that 

are then empirically validated, rather than the simulation be considered the end goal. We now 

comment on the interpretation of saccade timing parameters in the model (i.e., the mean and 

variance of the timing signal, which describe the random-walk transition rate N/ tsac). In some of 

our considerations, we have discussed them as an indicator for the difficulty or speed of visual-

cognitive processing. In the present context, this is little more than a “black box” as our present 

work was concerned with differences in overall fixation duration distributions between infants 

and adults, and with the global effects of the viewing condition, not the local effects of the 

fixated information. Empirical and computational research on fixation durations in adults has 

begun to elucidate the CRISP model’s key assumption that moment-to-moment difficulties in 

visual and cognitive processing can immediately inhibit (i.e., delay) saccade initiation, leading to 

longer fixation durations. One question concerns the degree to which fixation durations are under 

the direct moment-to-moment control of the current visual stimulus. Previous simulations with 
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the CRISP model have investigated this issue by applying the scene onset delay paradigm, which 

selectively manipulates global scene processing difficulty (Henderson & Pierce, 2008; 

Henderson & Smith, 2009). The empirical data and model simulations showed that fixation 

durations are, at least partly, influenced by the current visual stimulus (Nuthmann et al., 2010). 

Going beyond global effects, Nuthmann (2016) investigated properties of local control of 

fixation durations—that is, whether fixation duration varies as a function of the processing 

difficulty of the currently foveated scene content. Linear mixed models were used to assess the 

independent effects of five low-level, mid-level, and higher-level visual image features, yielding 

local image-based indexes of processing difficulty. For example, as the number of edges in 

foveal vision increased, fixation duration increased as well. Interestingly, modelling such data 

with CRISP (or a related model) would more fully elucidate the control mechanisms related to 

the random-walk saccade timer: The transition rate of the random-walk can locally adjust to the 

visual-cognitive complexity of the currently fixated scene region. Of course, such an endeavor 

would require us to add a “where” module to the model, representing the spatial decision about 

where to fixate next. Clearly, more empirical and computational research is needed to unravel 

visual-cognitive processing during scene viewing, by isolating the precise contributions of low-

level bottom-up and high-level top-down factors to fixation durations in infants, and to 

investigate the general principles of the interaction between visual-cognitive processing and 

saccade timing in both infants and adults. 

Simulation study 2 revealed some limitations of the CRISP model when simulating FDs 

from infants. In adults, very long FDs (> 2 s) are fairly uncommon and tend to be discarded from 

the analysis, the rationale being that such long fixations may not be indicative of any perceptual 

activity or information processing (Inhoff & Radach, 1998). Young infants, however, can present 
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a number of very long fixations that are mainly assumed to be a consequence of disengagement 

difficulties. For this reason we decided not to discard long fixations from data analysis. The 

model simulations were able to capture the trends in fixation duration distributions as expressed 

in the mode and the slope of the distribution. Perhaps not surprisingly, they did not capture the 

very long fixations present in the tail of the distribution. The fact that this problem was more 

evident in the LongD group may suggest that these fixations were a consequence of poor 

disengagement abilities. To accommodate this, in future work the model may be extended by 

including a “disengagement component” related to saccade programming. The disengagement 

component will stochastically prolong certain fixations, with the result that the simulations may 

recover the very long fixations found in infants with disengagement difficulties. In this context, 

future research may explore whether disengagement selectively prolongs the non-labile stage of 

saccade programming only, the labile stage as well, or whether disengagement is actually related 

to the transition between the two stages or from non-labile to saccade execution. Further 

empirical work is required.  

Whilst the present studies helped to shed light on the mechanisms and processes 

underlying eye-movements in 6-month-old infants, the causes that explain the large individual 

differences between short and long lookers are still unknown. For instance, from a skill learning 

perspective, it could be argued that infants with shorter FDs will generate a larger number of 

saccades per day, as a consequence of which they will become more skilled in this aspect of 

motor control compared with other infants. In order to test this hypothesis, future simulations 

may consider factoring a “learning component” into the model.  

Finally, in the present article we investigated the stability in FDs within a single testing 

session at only one infant age. Existing evidence suggests that newborn and very young infant 
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saccade programming may be very primitive and involve relatively fixed amplitude saccades 

with limited scope for on-line modification (Aslin & Salapatek, 1975; Johnson, 1990), which is 

suggestive of one-stage saccade programming. Such evidence must be supported by future 

precise behavioral studies analyzing the timing of infant saccades and further computational 

modeling of fixation durations for infants younger than 6 months. Similarly, future longitudinal 

studies should explore the trajectories of the same infants at different points in time in order to 

investigate typical developmental of oculomotor control and provide a reference for atypical 

development such as in the case of Autism Spectrum Disorder or Attention Deficit and 

Hyperactivity Disorder. 
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Appendix A. Fixation detection and coding 

The quality of the raw data generated by the eye-tracker may vary depending on many 

different factors such as the eye-tracker model and manufacturer, the eye physiology, the 

calibration procedure, the position of the participant relative to the eye-tracker, the degree of 

head, or even ethnicity (Blignaut & Wium, 2014; Holmqvist et al., 2011; Holmqvist, Nyström, & 

Mulvey, 2012; Nyström, Andersson, Holmqvist, & van de Weijer, 2013; Saez de Urabain et al., 

2015). Eye-tracking data coming from populations such as infants may contain considerably 

higher levels of noise than data from more compliant participants. This is not only due to their 

high degree of movement, but also a consequence of poor calibration procedures and issues 

related to corneal reflection techniques that affect the youngest ages (Saez de Urabain et al., 

2015, for review).  

Fixations were detected using GraFIX, a semi-automatic approach for parsing low- and 

high-quality eye-tracking data (Saez de Urabain et al., 2015). The input is initially parsed by 

using velocity-based algorithms whose input parameters are adapted by the user, and then 

manipulated using the graphical interface, allowing accurate and rapid adjustments of the 

algorithms’ outcome. Saez de Urabain and colleagues (2015) validated this technique and 

demonstrated its suitability for infant data.  

The input parameters for the automatic detection algorithms were adapted according to the 

data quality for each participant and visit, having two different sets of parameters for participants 

featuring lower (>0.25° root mean square of inter-sample distances, RMS) or higher (<0.25° 

RMS) data quality (see Table 3). These parameters, chosen after executing the algorithms with a 

wide range of values and evaluating the outcomes, may not necessarily be optimal in data sets 

with other characteristics. Having only two sets of parameters rather than multiple options can 
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facilitate the coding process, especially for novice users (Saez de Urabain et al., 2015). In order 

to keep the same standards across participants and coders, strict coding guidelines were defined. 

A fixation was coded when both the x and y coordinates were stable at one point, i.e. when the 

plots of both x and y coordinates against time were displaying horizontal lines. If the detection of 

one eye was imprecise the data from the other eye was used. If the coder was not entirely sure 

about coding a particular fixation they were advised to leave it out. Saccades that were too short 

to be detected by the algorithms were also coded. Fixations that were cut by blinks and smooth 

pursuit eye-movements (diagonal movement of the X/Y trace) were deleted. 
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Appendix B. Details on fitting model parameters 

The best set of parameters from the genetic algorithm was selected as follows. First, the 

deviation between the two distributions was measured by calculating the mean-root-square error. 

For each viewing condition, fixation duration distributions were calculated from 46 bins with bin 

centers ranging from 80 to 6000 ms, in steps of 130 ms. Secondly, the difference between the 

means was evaluated by the mean-squared normalized error for average FDs (Reichle et al., 

1998). As a result of the long tail and the high skewedness of the fixation duration distributions 

presented in this article, the simulation with the lower E did not necessarily indicate the best fit. 

To be a good fit, a simulation needs to capture the peak and the tail of the distribution. The 

fixation duration distributions reported in this article include particularly long fixations (> 2 s) , 

which are typically excluded from the analysis when studying adults (e.g., Nuthmann et al., 

2010). These long fixations, however, are not uncommon in young infants and can in fact be 

revealing when studying the development of oculomotor control. We decided to include these 

fixations for both age groups in order to maintain consistency in the analysis, despite the 

additional difficulties this entails when fitting the data with the genetic algorithm. For instance, 

when the empirical distribution has a long tail, the simulation that reproduces the peak and the 

tail of the distribution best is not necessarily the one that shows the lowest E: mean FDs for the 

empirical and simulated data can still be far apart, which increases the E value. Occasionally, this 

will affect the parameter estimation from the genetic algorithm. To overcome this issue, we 

selected the set of parameters that (1) fitted the peak and the tail of the empirical distribution, and 

(2) presented the best goodness-of-fit measure. 
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Tables 

 

Table 1 Best-fitting parameters for simulation study 1 

 Parameter Symbol Range Naturalistic Semi-naturalistic 

Infants  

Saccade programming      

    Labile stage (ms) τlab 200-400 385 

    Non-labile stage (ms) τnlab 30-120 62 

Saccade timing      

    Mean (ms) tsac 200-650 458 496 

    Variance  N 5-20 20 5 

Saccade execution (ms) τex --- 50 

Standard deviation of gamma 

distributions 

σγ --- 0.33 

Error  E --- 4.275 3.718 

Error cumulative distribution  Ec --- 4.093 9.821 

Adults  

Saccade programming      

    Labile stage (ms) τlab 150-350 224 

    Non-labile stage (ms) τnlab 30-50 37 

Saccade timing      

    Mean (ms) tsac 150-650 253 271 

    Variance  N 5-20 20 10 

Saccade execution (ms) τex --- 37 

Standard deviation of gamma 

distributions 

σγ --- 0.25 

Error E --- 4.513 6.042 

Error cumulative distribution Ec --- 6.758 4.248 
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Table 2 Best-fitting parameters for simulation study 2 

Parameter Symbol Range 

LongD ShortD 

Nat Non-nat Nat Non-nat 

Saccade Programming       

    Labile stage (ms) τlab 200-400 400 322 

    Non-labile stage (ms) τnlab 30-120 103 40 

Saccade timing       

    Mean (ms) tsac 200-650 560 648 437 466 

    Variance N 5-20 10 10 20 6 

Saccade execution (ms) τex --- 50 

Standard deviation of gamma 

distributions 

σγ --- 0.33 

Error E --- 14.641 23.684 11.643 12.747 

Error cumulative distribution Ec --- 4.244 8.680 4.950 3.715 
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Table 3 Input values for the automatic detection algorithms in low and high quality data sets. 

 High spatial precision Low spatial precision 

Interpolation latency (ms) 60 60 

Velocity threshold (°/sec) 9 20 

Maximum interpolation  displacement (°) 0.25 0.25 

Degree per pixel (°/pix) 0.0177 0.0177 

Maximum distance for merging adjacent 

fixations (°) 

0.24 0.35 

Maximum time for merging adjacent 

fixations (ms) 

50 50 

Maximum RMS per fixation (°) 0.24 0.21 

Minimum fixation duration (ms) 99 120 

 

 

 


