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Abstract Fixation durations (FD) have been used widely as a
measurement of information processing and attention.
However, issues like data quality can seriously influence the
accuracy of the fixation detection methods and, thus, affect the
validity of our results (Holmqvist, Nyström,&Mulvey, 2012).
This is crucial when studying special populations such as
infants, where common issues with testing (e.g., high degree
of movement, unreliable eye detection, low spatial precision)
result in highly variable data quality and render existing FD
detection approaches highly time consuming (hand-coding) or
imprecise (automatic detection). To address this problem, we
present GraFIX, a novel semiautomatic method consisting of a
two-step process in which eye-tracking data is initially parsed
by using velocity-based algorithms whose input parameters
are adapted by the user and then manipulated using the graph-
ical interface, allowing accurate and rapid adjustments of the
algorithms’ outcome. The present algorithms (1) smooth the
raw data, (2) interpolate missing data points, and (3) apply a
number of criteria to automatically evaluate and remove arti-
factual fixations. The input parameters (e.g., velocity thresh-
old, interpolation latency) can be easily manually adapted to
fit each participant. Furthermore, the present application
includes visualization tools that facilitate the manual coding
of fixations. We assessed this method by performing an
intercoder reliability analysis in two groups of infants present-
ing low- and high-quality data and compared it with previous
methods. Results revealed that our two-step approach with
adaptable FD detection criteria gives rise to more reliable and
stable measures in low- and high-quality data.
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Introduction

Every day of our life, we use our eyes to sample and create a
perceptual image of the world around us.Without noticing, we
manifest an array of eye movements that allow selecting and
processing the parts of the visual field that are most relevant to
us (Holmqvist et al., 2011). Fixations take place when the
eyes remain relatively stable in a particular point, and it is
only during these periods that visual encoding and process-
ing occurs. Saccades, on the other hand, are the ballistic
eye movements that take place between fixations when the
eyes are rapidly moving from one point to the next.
During these moments, visual sensitivity is suppressed
(Matin, 1974).

Measuring and reporting fixation durations is common
practice in experimental psychology (e.g., Henderson &
Smith, 2009; Martinez-Conde, 2005; Martinez-Conde,
Macknik, & Hubel, 2004; Nuthmann, Smith, Engbert, &
Henderson, 2010; Tatler, Gilchrist, & Land, 2005). There is,
in fact, a growing body of research that associates fixation
durations with cognitive processes such as attention, informa-
tion processing, memory, and anticipation (e.g., Castelhano &
Henderson, 2008; Kowler, 2011; Malcolm & Henderson,
2010; Rayner, Smith, Malcolm, & Henderson, 2009;
Richardson, Dale, & Spivey, 2007). While fixations may not
be the only oculomotor event of interest to researchers mea-
suring eye movements (e.g., researchers investigating atten-
tional shifts may be interested in raw representations of sac-
cadic or smooth pursuit trajectories), the majority of eye
movement research assumes that gaze location can be equated
to visual encoding of high-spatial-frequency foveal informa-
tion, and for this to happen, the eyes need to be stable—that is,
in a fixation (Rayner, 1998). The study of fixation durations is
becoming increasingly important when investigating popula-
tions unable to follow the experimenter’s instructions, such as
infants (e.g., Colombo&Cheatham, 2006; Frick, Colombo, &
Saxon, 1999; Hunnius & Geuze, 2004; Hunter & Richards,
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2011; Richards & Holley, 1999) or monkeys (e.g., Berg,
Boehnke, Marino, Munoz, & Itti, 2009; Kano & Tomonaga,
2011a, 2011b). For instance, in a recent study, Papageorgiou
et al. (2014) showed how individual differences in fixation
durations in early infancy can predict individual differences in
temperament and behavior in childhood, which can ultimately
lead to early intervention practices that aim to improve exec-
utive attention and potentially identify infants at risk of
attentional disorders such as ADHD.

Traditionally, researchers have used many different metrics
to measure infants’ attention, such as familiarization or habit-
uation procedures, preferential looking, or average looking
times. These metrics, which should be applied to serve the
experimental demands, are not always appropriate for answer-
ing certain questions, such as those concerned with the assess-
ment of attention and information processing in spontaneous
unconstrained settings (Aslin, 2007; Wass, Smith, & Johnson,
2013). In these cases, the analysis of fixation durations can
help to gain valuable insights into the mechanisms underlying
eye movement control.

Nevertheless, recent articles (Holmqvist, Nyström, &
Mulvey, 2012; Wass et al., 2013) have highlighted the
substantial impact that low-quality data can have on ex-
perimental measures. Poor eye-tracking recording can af-
fect the validity of results, and sadly, it is still not com-
mon practice to report data quality measures or deeper
descriptions of the fixation detection methods used
(Holmqvist et al., 2011; 2012). This can alter the viability
of research results and, hence, lead to problems replicating
previous studies.

The raw data recovered from any eyetracker includes a
time stamp and the x- and y-coordinates for one eye (monoc-
ular systems) or both eyes (binocular systems). Fixations can
be identified when these coordinates are relatively stable in a
point (and hence, the eyes’ velocity, defined as the rate of
change in x- and y-coordinates from one gaze point to the next,
is low), whereas saccades are flagged when the x- and y-
coordinates are more variable in the scene and the eyes’
velocity exceeds a given threshold (see Fig. 1). Additionally,
other types of eye movements can be detected in the raw data,
such as smooth pursuit (Larsson, Nyström, & Stridh, 2013) or
blinks (e.g., Morris, Blenkhorn, & Zaidi, 2002). In cases
where the data quality and the sampling frequency are very
high, it is even possible to identify very short fixational eye
movements, such as microsaccades, glissades, or tremor
(Nyström & Holmqvist, 2010).

What is data quality and why it is so important

The quality of the raw data generated by the eyetracker may
vary depending on many different factors, such as the
eyetracker model and manufacturer, the eye physiology, the

calibration procedure, the position of the participant relative to
the eyetracker, the degree of head motion (Holmqvist et al.,
2011, 2012), or even ethnicity (Blignaut &Wium, 2013). The
term data quality entails different aspects affecting eye-
tracking data, but not all these aspects will necessarily affect
fixation detection equally.

Low data quality can havemajor effects on both spatial and
temporal accuracy of gaze measurements. Spatial accuracy or
offset refers to the difference in space between the detected
gaze and the real gaze and can be an important issue when
analyzing areas of interest (AOIs) (Holmqvist et al., 2012) .
Apart from the vertical and horizontal accuracy that the eye-
tracking systems report, aspects such as binocular disparity
should also be taken into account, especially when studying
special populations. For instance, we know that binocular
disparity in young infants may be markedly larger than in
adults (Appel & Campos, 1977; Yonas, Arterberry, &
Granrud, 1987). However, it is also common to find infant
data with very large disparities as a consequence of poor
calibrations or incorrect angles between the eyetracker and
the participant. Often, it is possible to minimize the effects of
poor accuracy in AOIs analysis by simply enlarging the re-
gions of interest or by quantifying and correcting the offset for
each participant (Holmqvist et al., 2011, 2012). Frank, Vul,
and Saxe (2012) designed an offline procedure to correct
errors in calibration in order to increase the accuracy and
include a measure that evaluates it. They presented their
participants (infants from 3 to 30 months) with calibration
points that appeared during the experiment and that were
subsequently used to correct the offset.

Nonetheless, a data set with a large offset can also present
high spatial precision and, thus, still be suitable for detecting
fixations accurately. We refer to spatial precision as the con-
sistency in detecting and calculating gaze points (see Fig. 1).
Data sets with relatively low spatial precision will present
higher gaze velocities as a result of noise in the data, and this
will complicate the process of detecting fixations accurately.
Precision can be affected by individual factors that vary on a
participant basis (such as different eye physiologies or the
position of the participant relative to the eye cameras), envi-
ronmental factors that change according to the experimental
design (such as the lighting conditions of the room where the
participants are being tested), or the eye-tracking hardware
and software (Holmqvist et al., 2011, 2012). The default
spatial precision for a particular eyetracker can be calculated
by using an artificial eye. Additionally, there are a number of
methods for calculating spatial precision (Holmqvist et al.,
2011, 2012), such as the root mean square (RMS) of
intersample distances (commonly used by manufacturers)
or the standard deviation, which measures the dispersion
of each sample from a mean value. To see the effect that
spatial precision has on the detection of fixations by a
velocity-based algorithm, see Fig. 1.
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Likewise, data loss (often a consequence of unreliable
detections of the pupil or the cornea reflection) is another
issue that can considerably affect fixation detection
(Holmqvist et al., 2011, 2012; Wass et al., 2013). This also
is highly dependent on individual and environmental factors,
as well as on the eyetracker hardware and software. These
individual variations in the recordings from different partici-
pants can lead to very different levels of data quality (accura-
cy, precision, and data loss), even when participants have
performed the same study under the same experimental con-
ditions. This can, in fact, be a problematic issue when trying to
standardize the procedure to analyze the eye-tracking data: Do
we use exactly the same protocol and values to analyze the
data regardless of the noise that each participant presents? Or
would it be more appropriate to adapt it somehow?

Issues and recommendations when testing special
populations: Infants

All these data quality problems can be particularly concerning
if testing with special populations, such as infants or partici-
pants suffering from certain disorders. For instance, partici-
pants on the Autism spectrum may present a high degree of
head movements (Kelly, Walker, & Norbury, 2013), and this

can seriously affect the spatial precision and the accuracy of
the data. Moreover, in some populations —such as in
Parkinson patients—the head motion can be constant and
consistent across all the participants for the study. Whereas
some eye-tracking systems require the user to maintain the
head still by using a chinrest (e.g., EyeLink), others allow a
high degree of free head movements (e.g., Tobii or SMI
eyetrackers). However, these systems include some extra al-
gorithms for the head position calculations that can interfere
with the gaze estimation and, hence, affect spatial precision
(Holmqvist et al., 2011; Kolakowski & Pelz, 2006).

Infants constitute a group that can be especially challenging
to test in eye-tracking studies. As well as presenting a high
degree of head movement, especially from 7 to 8 months of
age, when their locomotor abilities are rapidly improving
(Adolph & Berger, 2006), many of the quality problems are
derived from poor calibration procedures. Traditionally, in-
fants are calibrated using five-point calibrations where a col-
orful puppet is presented in each corner and center of the
screen, while adults usually perform a nine-point calibration
following a series of small dots.

The first obvious problem occurs when the infant does not
look at the calibration points when they are presented. As a
consequence, the offset calculation will be erroneous, and the
spatial accuracy will be affected in one or more areas of the
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Fig. 1 Data from 3 infant participants recorded with a Tobii TX300 at
120 Hz. The first and the second row show the raw and the smoothed
data, respectively. The third row displays the fixations detected by a
velocity-based algorithm (velocity threshold = 35°/sec), and the fourth
the velocity calculated from the smoothed data. Participant 1 shows low-
precision data, which is very common in young infants. As a

consequence, the fixations-parsing algorithm detected a number of phys-
iologically implausible artifactual fixations. Participant 2 displays high-
precision data from infants. Although the algorithm was more accurate,
due to the high velocity threshold, it merged together fixations that had
short saccades in between (e.g., fixation 8). Participant 3 shows a partic-
ipant that presents frequent missing data points
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screen. Sometimes, infants do not consistently look at all the
points, because they are simply not interested in them (e.g.,
after performing several calibrations in a row, when the infant
is already familiarized with the stimuli). To minimize these
issues, the researcher can regularly change the calibration
stimuli (e.g., varying it in colors and/or shapes) and accom-
pany the points’ presentation with attractive sounds. At other
times, the calibration points are presented too briefly for the
infant to move his/her eyes from one point to the next. This
problem is more obvious in participants younger than
4 months, since the neural structures implicated in oculomotor
control are still underdeveloped (Johnson, 2010; Johnson,
Posner, & Rothbart, 1991). This is manifested through long
disengagement latencies, also known as sticky fixations or
obligatory attention (e.g., Hood & Atkinson, 1993). This
tendency lessens as the infant develops, and by around
4 months of age, they are able to shift their attention more
rapidly and accurately from one point to another. However,
during the first months of life, if the presentation of the
calibration points is relatively quick, the infant may not be
able to follow them. This problem can be solved by giving the
researcher the possibility to decide when the next calibration
point should appear; for example, the researcher presses a
button when the infant is looking to the current calibration
point.

Visual acuity does not reach adultlike levels before the
third year of life (Atkinson, 2000). In fact, newborns are
believed to have a fixed depth of focus (Salapatek, Bechtold,
& Bushnell, 1976), and inmany cases, they even present some
degree of astigmatism (Atkinson, 2000). However, it is during
the first 3–4 months that the biggest changes in visual acuity,
contrast sensitivity, and focusing ability (accommodation)
occur. This means that during the first months of life, infants
may have problems accommodating as a function of target
distance, and hence, they may not see objects (i.e., the cali-
bration points) that are farther away than a certain distance
(Salapatek et al., 1976). Thus, for participants younger than 3–
4 months, the distance between the infant and the presentation
screen needs to be considerably shorter (around 30–40 cm;
Salapatek et al., 1976) than the distance that is recommended
for most eye-tracking systems (around 60 cm; Holmqvist
et al., 2011). A change of the recommended distance will
obviously affect the quality of the data.

Another problem related to the calibration procedure is the
size of the calibration points. As was previously explained,
infant calibration targets are usually bigger and visually more
complex than the traditional adult targets. This means that
even though it is possible to tell whether the infant is foveating
the correct object, we still cannot know which part of the
object. Once again, this can lead to imprecise offset calcula-
tions. A way to minimize this problem is to use calibration
points that, even though they are bigger than the typical dots
for adults, have a clear central point that is more likely to be

gazed (e.g., a colorful spiral) or decreases in size down to a
point.

A final problem related to the calibration procedure is the
viewing angle between the eyetracker and the participant.
Wrong angles may produce higher offsets and inaccurate
binocular disparities. Usually, this problem can be solved
repeating the calibration procedure once again, changing the
participant’s or the eyetracker’s position each time.
Nevertheless, infants do not respond to instructions, and their
attention span is considerably lower than adults’. Thus, re-
peating this procedure may not always be feasible.

Most of the current eyetracking systems use corneal reflec-
tion to estimate gaze, where the pupil is detected using bright
or dark pupil techniques. In bright pupil techniques, the pupil
looks bright as a consequence of on-camera-axis illumination,
whereas in dark pupil techniques, the pupil looks dark due to
off-camera-axis illumination (for a wider review, see
Holmqvist et al., 2011). The illumination of an IR light creates
a bright glint on the back of the cornea that can be detected by
computer vision algorithms. It is this glint and its distance
relative to the center of the pupil that is used to estimate the
gaze on the screen. There are various reasons why the glint or
the pupil can be unreliably detected or not detected at all (e.g.,
poor lighting conditions, different eye physiologies, wrong
distance and/or angle between the participant and the
eyetracker). As a consequence, the data quality can be seri-
ously affected (poor spatial precision, missing points), and
hence, it can complicate the process of identifying fixations
(Holmqvist et al., 2012).

Infants’ eyelids can be particularly watery, especially dur-
ing the first few months of life, and this can considerably
interfere with the glint detection process. Usually, bright pupil
techniques are considered to be more accurate than dark pupil
ones when dealing with certain eye physiologies, like bright
eyes or watery eyelids (Gredebäck, Johnson, & von Hofsten,
2009). For this reason, when testing young infants, it is always
a better choice to use eye-tracking systems that also include a
bright pupil corneal reflection technique.

Previous methods for detecting fixations

Fixations can be detected by an algorithm or by a person on
the basis of visual inspection of the raw eye-tracking data.
Many eyetracker manufacturers already provide smoothing
and event detection tools. However, what these algorithms
do to the data may still be unclear for many users, especially
for those not particularly familiar with event detection tech-
niques. Additionally, when the user chooses arbitrary input
parameters without considering issues like data quality, the
sampling frequency, or other aspects of the experimental
design (e.g., it is not the same to detect small fixational eye
movements in reading research or to detect saccades in

Behav Res (2015) 47: 725356 –



infants), the detection results can be gravely affected, and
hence, the validity of the experimental outcomes can be
questioned (Holmqvist et al., 2012).

Event detection algorithms can be classified into two main
groups: dispersion and duration algorithms and velocity and
acceleration algorithms (for more detailed reviews, see
Holmqvist et al., 2011). Dispersal-based algorithms use a
minimum fixation duration threshold (e.g., 50 ms) and the
positional information (dispersion) of the eye-tracking data in
order to decide whether consecutive points belong to the same
fixation—in which case, they are grouped together. If not,
they are assumed to be a saccade or a missing point.
Dispersion can be measured according to different metrics
(Blignaut, 2009), such as the distance between the points in
the fixation that are the farthest apart (Salvucci & Goldberg,
2000), the distance between two random points in a fixation
(e.g., Shic, Scassellati, & Chawarska, 2008), the distance
between two points at the center of a fixation (e.g., Shic
et al., 2008), the standard deviation of x- and y-coordinates
(e.g., Anliker, 1976), or a minimum spanning tree of the points
in a fixation (e.g., Salvucci & Goldberg, 2000). Currently, it is
possible to find a number of commercial (e.g., SMI BeGaze)
and noncommercial implementations for these algorithms
(e.g., Salvucci & Goldberg, 2000), which are mostly used to
parse low-sampling-rate data (< 200 Hz). On the other hand,
the algorithms from the second group calculate the velocity
and/or acceleration for each point in order to detect events on
the data. Velocity-based algorithms, in particular, flag all the
points whose velocity are over a threshold (e.g., 10–70 °/sec)
as saccades and define the time between two saccades as a
fixation. Once again, there are a number of commercial (e.g.,
Tobii, EyeLink) and noncommercial (Nyström & Holmqvist,
2010; Smeets & Hooge, 2003; Stampe, 1993; Wass et al.,
2013) variations for this type of event detection algorithms.
These algorithms are commonly used in data collected at high
sampling rates (e.g., >500). All these algorithms are very
sensitive to noise, and unless the collected data have a very
high spatial precision, the results will include a number of
artifactual fixations.

The use of event detection algorithms implies decisions
about which thresholds should be selected in order to obtain
optimal results. However, how these decisions are made,
the range of parameters that can be manipulated, and
whether they are reported in published papers is not yet
standardized, making it difficult to compare or replicate results
from different studies. Komogortsev, Gobert, Jayarathna,
and Gowda (2010) compared the performance of different
velocity- and dispersal-based algorithms and presented a stan-
dardized scoring system for selecting a reasonable threshold
value (velocity or dispersion threshold) for different algo-
rithms. Nevertheless, this article did not take into account
the individual differences in data quality across participants
and/or trials.

Most researchers tend to use the same input parameters for
all the participants, paying very little attention to these varia-
tions in data quality and the effects that selecting different
thresholds may have on the data from different participants.
Nyström and Holmqvist (2010) presented a new velocity-
based algorithm for detecting fixations, saccades, and glis-
sades, using an adaptive, data-driven peak saccade detection
threshold that selects the smallest velocity threshold that the
noise level in data allows. The use of thresholds was motivat-
ed by physiological limitations of eye movements. These
algorithms already highlighted the importance of adapting
the input parameters to different levels of noise but still did
not solve the problem of accurately detecting fixations in data
sets with relatively higher levels or noise, such as those from
infants.

Wass et al. (2013) analyzed standard dispersal-based fixa-
tion detection algorithms and showed how results were highly
influenced by interindividual variations in data quality.
Additionally, they went a step further to solve these problems,
developing new detection algorithms that include a number of
post hoc validation criteria to identify and eliminate fixations
that may be artifactual. These algorithms already exclude
many artifactual fixations that were included when other
velocity-based detection algorithms were used. However,
any automatic approach for detecting fixations in data with a
certain degree of noise are likely to produce artifactual fixa-
tions that are erroneously calculated and/or fixations that are
not detected at all.

An alternative to using automatic algorithms is to hand-
code eye movements on the basis of a visual inspection of the
data. For instance, developmental psychologists have tradi-
tionally studied infants’ attention and eye movements by
video-taping participants and hand-coding the direction of
the gaze post hoc (e.g., Elsabbagh et al., 2009). Also, it is a
common practice, when analyzing the data from head-
mounted eyetrackers, to replay the scene and eye videos frame
by frame and make annotations of the onsets and offsets of
fixations on a separate file (e.g., Tatler et al., 2005). Obviously
these techniques are highly time consuming and can limit the
number of participants that a researcher is able to test and code.

With a view to avoiding these problems, some researchers
have suggested excluding all participants whose spatial preci-
sion is over a predefined threshold (Holmqvist et al., 2011,
2012). This way the use of automatic algorithms should be
relatively safe, although not perfect. However, excluding par-
ticipants according to their data quality is a luxury that not
every study can afford. As was previously explained, the data
quality for many experiments studying high-cost populations
such as infants or special populations to whom access is
limited may be consistently low. Using data quality as an
inclusion criterion might result in many participants (or even
all) being excluded. In cases of special populations, the data
can be too valuable to be discarded.
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To address these issues, we developed GraFIX, a method
and software that implements a two-step approach: Fixations
are initially parsed by using an adaptive velocity algorithm,
then hand-moderated using a graphical easy-to-use interface.
This method aims to be as fast and accurate as possible, giving
the researcher the possibility of fixing and adapting the algo-
rithm’s outcome in order to remove all the artifactual fixations
manually and include those that were not accurately detected.
The automatic detection algorithms include a number of post
hoc validation criteria aiming to obtain the cleanest results that
the algorithms alone permit, in order to facilitate and speed the
process of hand-coding fixations.

Introducing GraFIX

GraFIX is a multiplatform application developed in C++ and
QT frameworks that makes use of Armadillo C++ linear
algebra library. It works with any binocular or monocular
eye-tracking system that can record raw X/Y gaze co-
ordinates, including SMI, EyeLink or Tobii eyetrackers.

The present application implements a two-step approach
where fixations are initially parsed by using an adaptive
velocity-based algorithm, before the algorithm’s outcome is
hand-moderated using a graphical interface. Previous methods
for detecting fixations have adopted either a purely automatic
approach or manual coding. Due to the high variability in data
quality across participants and even within a single participant
(e.g., as a result of moving the head throughout the eye-
tracking session), the automatic detection algorithms can be
remarkably unreliable. On the other hand, current hand-
coding methods (e.g., coding fixations looking at the videos
frame by frame) can be extremely time consuming and, in
some cases, imprecise if coding low-quality data sets.

The proposed method combines these two approaches
together in order to detect fixations in a rapid manner and
obtain a fixation distribution with the lowest possible degree
of noise. The present fixation detection algorithm includes a
number of input parameters that can be easily adapted on a
participant basis. Additionally, it implements three post hoc
validation criteria that fix or remove many of the artifactual
fixations generated by the velocity-based algorithm. The ulti-
mate aim of adapting the input parameters and applying
certain post hoc validation criteria is to obtain the most accu-
rate outcome by the algorithms alone and, thus, reduce the
hand-coding time during the subsequent step. Once the fixa-
tions have been automatically estimated, the researcher can
evaluate them and fix those that were not accurately detected
using the GraFIX graphical hand-coding tool.

GraFIX displays the eye-tracking coordinates in the raw
and the smoothed data boxes (see Fig. 2; for an extended
explanation of the user interface, see Appendix 1). It presents
the x- and y-coordinates on the vertical axis, and time on the

horizontal axis. Fixations can then be identified when both x-
and y-coordinates do not present any displacement in the
vertical axis, and saccades when there is a vertical displace-
ment between two fixations accompanied by a velocity peak
(see Fig. 2, velocity box). Occasionally, our eyes move to
smoothly pursue an object in the visual scene, and this type of
eye movement can be identified when there is a regular
increasing or decreasing displacement in the vertical axis with
low velocity and acceleration (not present in Fig. 2).

The following sections will present a detailed review for
the present two-step approach for fixation detection.

Automatic detection of fixations

The first action for the two-step approach to detecting fixa-
tions is to parse the eye-tracking data using adaptive velocity-
based algorithms. The present automatic detection algorithms
(1) smooth the raw data, (2) interpolate missing data points,
(3) calculate fixations using a velocity-based algorithm, and
(4) apply a number of post hoc validation criteria to evaluate
and remove artifactual fixations (to see the pseudo-code, go to
Appendix 2). The input parameters (e.g., velocity threshold,
interpolation latency) can easily be manually adapted to fit the
data from different participants that present different levels of
data quality (see Fig. 3).

The objective of these algorithms is to obtain the most
accurate fixation detection for each participant and, thus,
reduce the amount of time spent manually correcting fixations
in the subsequent step.

Smoothing the data

GraFIX uses a bilateral filtering algorithm in order to decrease
the noise levels from the raw data. The present version of the
algorithm is based on previous implementations (Durand &
Dorsey, 2002; Frank, Vul, & Johnson, 2009) that average the
data for both eyes and eliminate the jitter, while preserving
saccades.

If only one of the eyes is detected, GraFIX allows the user
to decide whether the detected eye will still be smoothed or the
sample should be excluded. Previous researchers have argued
that when one eye is not detected, the data from the other eye
may be unreliable (Wass et al., 2013). However, when the eye-
tracking data comes from special populations, such as infants,
the fact that one of the eyes is not detected does not necessarily
mean that the sample from the other eye is inaccurate. For
instance, it can be the case that the infant is simply occluding
one of his/her eyes with his/her hand, causing difficulties for
the accurate detection of both eyes. Occasionally, these
missing points could lead to inaccurate results regardless
of the inclusion or exclusion of the data (e.g., if one eye was
occluded during a fixation).
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Unless the data come from adult populations, we recom-
mend including the samples in which only one eye is available
—in the interest of obtaining the highest number of fixations.
Once the fixations are automatically calculated, it is possible to
manually remove the artifactual fixations (such as those gener-
ated as a consequence of occluding one eye during a fixation).

Interpolating smoothed data

Occasionally, a data set will present a number of short gaps of
missing data where the eyes are not accurately detected. These
gaps can range from 1 to even 150 ms and may severely affect
the detection of fixations. To address this problem, we include
an algorithm that interpolates short segments of missing data.

Clearly, we do not want to interpolate every single segment
of missing data: The algorithm will only fill the gaps that are
shorter than a given threshold and that belong to a fixation, and
not a saccade. The interpolation latency is the longest period of
missing data that will be interpolated. This value may change
depending on our data quality or the experimental design. For
instance, for our infant studies, we use an interpolation duration
of 60 ms, since the shortest fixations that could be manually
coded in our data were never longer than this value.
Nevertheless, other researchers have also used interpolation

latencies as long as 150 ms, arguing that the minimum time
taken to program a saccade is 100–130ms and, hence, this way
it is possible to avoid interpolating through a complete sac-
cade–fixation–saccade sequence (Wass et al., 2013).

First, the interpolation algorithm flags all the samples in the
data whose velocities lie over the velocity threshold as sac-
cades, and the data segments between two saccades are
targeted as fixations. The velocity threshold, which is also
used in the forthcoming steps, can be set to meet the require-
ments of different data sets (see Fig. 4).

Second, when a gap longer than the interpolation latency is
found, the algorithm finds the subsequent and previous fixa-
tions and calculates the mean Euclidean distances from a
central point for each of them. When the difference between
both Euclidean distances is smaller than the maximum dis-
placement between the two ends of a fixation, the gap is
interpolated. It is important to determine the correct degree
per pixel parameter (in visual angle) in order to convert the
degrees to pixels properly.

Velocity threshold and fixation detection

As in previous velocity-based detection algorithms (e.g.,
Nyström & Holmqvist, 2010; Smeets & Hooge, 2003; Wass

Fig. 2 GraFIX application overview. This is the main window where the
user is allowed to manipulate fixations by looking at the eye-tracking
data, which are displayed in their different formats (raw and smoothed
data). Top section of window: x- and y-coordinates are presented on the
vertical axis, and time on the horizontal axis. Fixations can then be
identified when both x- and y-coordinates do not present any displace-
ment in the vertical axis, and saccades when there is a vertical displace-
ment between two fixations accompanied by a velocity peak.

Automatically detected fixations (orange rectangles) are displayed
aligned with hand-moderated fixations (green rectangles), which are the
ones that can bemanipulated by selecting an action on the right side of the
screen (create, delete, or merge fixations; code them as smooth pursuit)
and mouse-clicking on them. Furthermore, GraFIX allows defining and
indicating the sections where the user is interested in detecting fixations
by displaying them on white or gray
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et al., 2013), all the samples whose velocities lie over a certain
threshold are flagged as saccades and the data segments
between two saccades are targeted as fixations. Choosing the
right velocity threshold highly depends on the characteristics
of the data that are being analyzed or on how short the
saccades that need to be detected are (Holmqvist et al.,
2011). For instance, low sampling rates will present some
limitations when detecting very fast eye movements, such as
microsaccades. Previous research has shown that saccades
smaller than 10° cannot be detected with systems with a
sampling rate of 60 Hz and lower (Enright, 1998). This is
because the peak velocity calculation may not be accurate
enough if only a very few samples of a saccade were recorded.
The lower the sampling frequency, the lower the calculated
velocities for short saccades will be. In these cases, a fixation
detection algorithmwouldmerge the fixations before and after
an undetected saccade, and this would result in longer artifac-
tual fixations. In order to reliably detect small saccades and
reduce noise, it is recommended to use high sampling fre-
quencies and lower velocity thresholds (see Fig. 4).

Nevertheless, data from special populations such as infants
can still represent a challenge, due to their low quality. Thus,
when the noise levels are higher, the velocity threshold should

be increased accordingly in order to decrease the number of
“false positive” saccades. This leads to the question of wheth-
er different noise levels in a given data set could entail the
inaccurate detection of fixations in low- or high-quality data
making it difficult to compare and group participants together.
As has been suggested in previous research (Wass et al.,
2013), different levels of noise can seriously affect the out-
come from fixation detection algorithms. There are two op-
posing approaches that have been traditionally used to mini-
mize this issue. Some researchers prefer to use exactly the
same input parameters for all the participants (such as the
velocity threshold), regardless of the level of noise each par-
ticipant presents (Wass et al., 2013). Usually, these parameters
are set to fit the requirements for participants with high levels
of noise. Consequently, the velocity threshold can be too high
to detect relatively fast saccades, which could ultimately lead
to the detection of long artifactual fixations. Moreover, these
saccades would still remain undetected in very low-precision
data sets even after lowering the velocity threshold. On the
other hand, it is possible to adapt the input parameters accord-
ing to the level of noise on a participant-by-participant basis
(e.g., Nyström & Holmqvist, 2010). Although the use of
different velocity thresholds can lead to different outcomes

Fig. 3 GraFIX Automatic detection of fixations. This screen displays the
input parameters for the automatic detection. It is possible to adapt the
parameters by simply changing their values from the sliders. When
Estimate fixations is pressed, GraFIX executes the detection algorithms
and displays the results on the orange rectangles. Flags indicating which
post hoc validation criterion was executed are also displayed. This

process is relatively fast and, thus, allows multiple and easy adjustments
of the parameters. Once the user is satisfied with the results, the detection
can be accepted by pressing Accept estimation. This will copy the
automatically detected fixations (orange) on the hand-modulated fixa-
tions area (green)
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from the detection algorithms, it is possible to remove a
number of artifactual fixations (this is especially important
in noisy data sets) by also adapting the input parameters for
the post hoc validation criteria (explained below) and manu-
ally fixing the fixations that were not detected correctly. With
current systems, it will never be possible to remove all the
noise, but we can minimize its effects and obtain the cleanest
result for both low- and high-quality data.

Post hoc validation

Once the data are smoothed and interpolated, fixations can be
automatically calculated by executing the velocity-based al-
gorithms described below. Additionally, it is possible to apply
a number of post hoc validation criteria in order to manipulate
the algorithm’s outcome and obtain the most accurate results.
All the input parameters (including the velocity threshold
described in the previous section) can be adapted on a
participant-by-participant basis. This way, it is possible to
personalize the detection process to different participants with
different levels of data quality and reduce, to a certain degree,
the insertion of noise by the algorithms.

Merging adjacent fixations with similar location

Occasionally, the detection algorithms can break down fixa-
tions with low precision into a number of smaller fixations.
This is because one or more samples from a fixation may
present a velocity peak that is higher than the defined velocity
threshold and, hence, be mistakenly flagged as a saccade (see
Fig. 5, first column). As such, even fixations with high spatial
precision can have few samples that were not accurately
recorded and, consequently, will generate the same peaks in
velocity as saccades. Therefore, this issue is of special concern
in low-spatial-precision data sets, even though it can affect
any eye-tracking recording.

The present post hoc validation algorithm merges adjacent
fixations that are close in time and space (see Fig. 5, first
column). First, the algorithm will select fixations that have a
gap in between of less than 50 ms, and then it will evaluate
whether these fixations are also close enough in space. For this
purpose, the user is able to set up a threshold and define the
maximum distance in degrees between two fixations.
Thresholds for merging should depend on the sampling fre-
quency, data quality, stimulus spacing, density of visual infor-
mation, or even on the research question (e.g., studies inves-
tigating microsaccades may require very low thresholds).
Participants that present low spatial precision, for instance,
will require higher distance thresholds than those with high-
precision samples. However, we do not recommend using
thresholds over 0.45°, since the algorithmmaymerge together
fixations that have short saccades in between. In segments
where the spatial precision is particularly low, we recommend
excluding the detected fixations, rather than increasing this
threshold. In high-precision data recorded with a high sam-
pling rate, such small displacements between fixations may
actually represent microsaccades, and therefore, post hoc
merging of fixations should be avoided.

The root mean square of intersample distances per fixations
does not exceed a threshold

Spatial precision is crucial for a correct detection of fixations
(Holmqvist et al., 2011, 2012)—in particular, if the research
interests rely on the study of very small fixational eye move-
ments, such as microsaccades. Furthermore, as was explained
in the sections above, in populations such as infants, spatial
precision can also be a major issue, as a result of the particu-
larities of their eyes and the difficulties that this can entail
when using corneal reflection techniques.

The present post hoc validation criteria calculate the RMS
for each fixation for both the vertical and horizontal axes
together and delete all the fixations with a value above a given
threshold (in degrees of visual angle) (see Fig. 5, second
column). In high-precision data sets, the RMS can be smaller

0 1 2 0 1 2

Raw
data

Before 
interpolation

After
interpolation

Smoothed
data

Velocity

Missing
data

Fig. 4 Interpolation. The sample on the left shows a fixation that has
missing points. As a consequence, there are velocity peaks in the middle
of the fixation. On the other hand, the picture on the right shows the same
sample after interpolating the missing points (the green dots on the
smoothed data are the interpolated points). In this case, the velocity
calculation looks significantly cleaner
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than 0.10°, while in low-precision data sets, it can be higher
than 0.20°.

Minimum fixation duration

Especially in data sets with low spatial precision, the detection
algorithms may mistakenly generate very short fixations. This
is because the dispersion for some of the samples belonging to
a fixation may be high enough to generate velocity peaks over
the given threshold that will be flagged as saccades (see Fig. 5,
third column).

In order to avoid this problem, GraFIX can delete all
the fixations with a duration under a given threshold
(e.g., 100 ms). In the event that a data set is very noisy,
the minimum fixation threshold should be set higher.
This does not necessarily mean that it is not possible to
find short fixations in our data set: In case there are clean short
fixations, they can also be manually coded after the automatic
detection of fixations.

Defining the right parameters for detecting fixations

GraFIX is able to run the fixation detection algorithm and
visualize the results very quickly. For instance, 30 min of data
at a sampling frequency of 300 Hz can be parsed in less than a
second (the processing speed also depends on the capabilities
of the machine where the application is being executed). This
permits the user to adjust the input parameters and evaluate
their effect on the data in a rapid manner. In fact, it can be
immensely helpful (for novice users in particular) to be able to
visualize each estimation and see how changing the input
values described above will affect the detection of fixations.

When the user acknowledges that the fixation detection is
accurate enough, the estimation can be accepted, and the
manual inspection of the algorithms’ outcomes will start. At
this point, the user can review all fixations and manipulate
them in order to meet a chosen fixation detection criterion and
reduce the noise in the data.

The researcher can decide whether the input parameters for
the event detection algorithms should remain the same for the

Raw data

Smoothed data

Velocity

Before post-hoc

After post-hoc

Sample 1:
Merge adjacent 

fixations

Sample 2:
Delete fixations 
with high RMS

Sample 3:
Delete short

fixations

0 1 2 0 1 2 0 1 2

Fig. 5 Post hoc validation examples. We present different segments of
data from one infant, collected with a Tobii TX300 system at 120 Hz. The
velocity threshold was set to 9 °/sec. Sample 1 shows how, as a conse-
quence of the low precision in the data, there are velocity peaks that pass
the velocity threshold and, hence, are erroneously flagged as saccades.
Merging adjacent fixations with similar locations helps overcome this

problem. Sample 2 shows fixations with low precision that are deleted if
they overcome a given RMS threshold. Sample 3 shows a number of very
short artifactual fixations that are detected as a consequence of the poor
precision in the data. The minimum fixation post hoc validation criterion
deletes all the fixations shorter than a given threshold
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entire data set or whether they should change as a function of
data quality. In case different parameters are used for different
participants at different levels of data quality, it can be argued
that since the results for these participants were calculated by
using different criteria, they should not be grouped together.
We know, however, that the selection of certain input
parameters will affect low- and high-quality data differently
(see the Velocity Threshold and Fixation Detection section).
Therefore, even when the parameters remain the same for the
entire data set, they may affect the results from participants
presenting high and low data quality differently. For this
reason, it can also be argued that adapting the input parameters
is a step in reducing the levels of noise for each participant’s
results. Nonetheless, the algorithms alone, even after adapting
the input parameters on a participant basis, are always subject
to errors, particularly when processing low-quality data. In
order to fix some of these errors and achieve the cleanest
results possible, we also propose the manual adjustment of
fixations.

Manual adjustments of fixations

Once the fixations have been automatically calculated, the
user can examine and manipulate them in order to fix the
algorithms’ outcome. Even the most accurate algorithms may
generate a number of artifactual fixations that can corrupt the
validity of the experimental results. This is because most of
the time, the data are assumed to have high spatial precision
or, at least, to present similar levels of noise across the whole
duration of the experiment, and this is not always the case. In
fact, when working with populations such as infants, it will
rarely be the case.

Fixations can be created, deleted, or merged by simply
clicking and dragging the mouse on the main screen. For
instance, in order to create a fixation, the user just needs to
click the point on the screen where the fixation starts and drag
the cursor until the point where the fixation ends. The tags
From and To, located at the upper right of the screen, indicate
the exact onset and offset of the current fixation (see Fig. 2).
Once the fixation is created, it will appear on the fixations list
at the upper left of the screen. If fixation A starts on the current
fragment and ends on the next, we need to (1) create a first
fixation whose onset fits with fixation A’s onset and drag the
cursor a bit further than the end of the fixations box, (2) create
a second fixation on the next fragment whose offset fits with
fixation A’s offset, and (3) merge both fixations. Additionally,
fixations can be coded as smooth pursuit once they are
created.

In general, high-quality data sets will not need as much
manual adjustment, whereas low-quality sets will require sig-
nificantly more. We refer to the process of first parse fixations
applying detection algorithms and then fix the outcome with

the hand-coding tool as the two-step approach. The only
difference between this method and hand-coding is that for
the two-step approach, the detection algorithms are first exe-
cuted and their output is used as a starting point for doing the
manual coding. Thus, the results from the two-step approach
and from a purely hand-coding approach should be approxi-
mately the same, while the coding-time will be considerably
reduced with the proposed method (for more details, go to the
Software validation, Comparing hand-coding with the two-
step approach section). To demonstrate the time difference,
we coded a randomly selected participant both manually
(using GraFIX hand-coding tools) and by applying the two-
step approach. The total length of the experiment was
18.5 min. The coder invested considerably more time hand-
coding the data (51 min), as compared with applying the two-
step approach (35 min). Still, these values are both consider-
ably lower than the time that was required by previous hand-
coding approaches (e.g., coding the same videos frame by
frame could easily take several hours).

Evidently, the amount of time that the researcher needs to
expend coding depends on his/her expertise and on the char-
acteristics of the data (e.g., data quality). Furthermore, accu-
rate detections will require less coding than inaccurate ones,
and hence, the coding time in these cases will be shorter.

Visualizations

Most of the time, it is relatively easy to identify fixations by
looking at the 2-D representation of the x- and y-coordinates;
however, when the coder is not entirely sure about coding a
particular fixation, it is very helpful to visualize the data in
other formats.

GraFIX allows the 2-D visualization in real time of the raw
and smoothed data together with the IDs of the fixations that
are being coded. Additionally, it is possible to include the
stimuli in the background for all the different tasks of the
experiment. This permits a further evaluation of the fixations
and facilitates the coding process, especially for novice
coders.

Pupil dilation

GraFIX will also process the pupil dilation data, in case they
are provided. Once the pupil dilation data are included in the
raw input file, they are automatically displayed on the main
window. Furthermore, the visualization dialogs include the
option to play the eye-tracking data together with pupil dila-
tion. Each fixation that is created or modified by GraFIX
includes the pupil dilation means.
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Software validation

GraFIX has been evaluated from four different perspectives.
First, the agreement between two different raters was assessed
using the intraclass correlation coefficient (ICC) in two groups
of infants featuring low- and high-quality data. Second, hand-
coding results were compared with those of the two-step
approach (automatic detection + hand-coding), demonstrating
that both techniques were generating exactly the same results.
Third, the outcome from GraFIX automatic algorithms was
compared with that of the two-step approach. Finally, we
compared hand-coding results with GraFIX automatic algo-
rithms and previous automatic detection algorithms (the
velocity-based algorithms fromWass et al., 2013; the adaptive
velocity-based algorithms from Nyström & Holmqvist, 2010;
and the I-VT filter velocity-based algorithm as implemented
in Tobii-studio 3.0.0).

Additionally, GraFIX has been successfully used to code
data from various monocular and binocular eye-tracking sys-
tems, such as Tobii, Eye Link, or SMI systems, at different
sampling rates. Even though using different eyetrackers does
not affect the performance, high sampling rates may slow
down the execution of the algorithms.

Intercoder reliability

Manual coding always involves an evaluation of the degree of
agreement between different raters. Data from a group of three
infants with low spatial precision (RMS > 0.30° per infant;
20–25 min of data each) and another group of three infants
with high spatial precision data (RMS < 0.13° per infant; 20–
25 min of data each) were recorded using a Tobii TX300
eyetracker at a sampling rate of 120 Hz and MATLAB (with
Psychophysics Toolbox1 Version 2 and T2T2). Note that even
though the spatial precision for the second group was relative-
ly high, it was still data coming from infants, and thus, there
was a high degree of head motion and frequent missing data
points.

An external coder with no eye-tracking experience and
naive as to expected outcomes was trained to code fixations
from both groups. The second coder was one of the authors of
this article. The coders had to (1) run the automatic detection
algorithms, using the parameters from Table 1, and then (2)
manipulate the resulting outcome in order to remove artifac-
tual fixations or add those undetected by following the
predefined guidelines. The input values for automatic detec-
tion were chosen after executing the algorithms with a wide
range of values and evaluating the outcomes. The values from
Table 1 may not necessarily be optimal in data sets with other
characteristics and may change for different participants,

experiments, and/or groups. We decided to have two sets of
parameters for the two different groups in order to facilitate
the process for the novice coder and to define some standards
for the execution of the automatic detection algorithms.

In order to keep the same standards across participants and
coders, it is essential to define strict guidelines about how to
code the data. A fixation was coded when both the x- and
y-coordinates were stable at one point, or in other words,
when the 2-D representation of both x- and y-coordinates were
displaying horizontal lines. If the detection of one eye was
imprecise, the data from the other eye were used. If the coder
was not entirely sure about coding a particular fixation, he or
she was advised to leave it out. Saccades that were too short to
be detected by the algorithms were also coded. Fixations that
were cut by blinks and smooth pursuit eye movements (diag-
onal movement of the X/Y trace) were deleted. These guide-
lines may change depending on the experimental design. For
instance, if the researcher is particularly interested in smooth
pursuit eye movements, those would not be deleted.

The interrater reliability between the means and the number
of detected fixations was evaluated using the ICC. A strong
agreement between the mean fixation durations was found
for both the low-quality data group (with an ICC of
.967, p = .016) and the high-quality data group (with an ICC
of .887, p = .038). Additionally, we also found strong agree-
ments in the number of fixations detected for low-quality
(with an ICC of .938, p = .037) and high-quality (with an
ICC of .971, p = .009) data. Interestingly, the agreement in the
low-quality group is slightly higher than in the high-quality
group. This may be because fixations that were not clear
enough were not coded, and this can appear to be slightly
more subjective in high-quality data sets, where the data
quality is a bit more variable across the time course of the
experiment (due to head motion and/or data loss). Possibly,
one coder was a bit more strict than the other, removing a
higher number of automatically detected fixations in the parts

1 See Psychophysics Toolbox documentation: http://psychtoolbox.org/.
2 See T2T documentation: http://psy.ck.sissa.it/t2t/.

Table 1 Input parameters for high- and low-spatial-precision data for the
intercoder reliability data

High Spatial
Precision

Low Spatial
Precision

Interpolation latency (ms) 60 60

Velocity threshold (°/sec) 9 20

Maximum interpolation
displacement (°)

0.25 0.25

Degree per pixel (°/pix) 0.0177 0.0177

Maximum distance for merging
adjacent fixations (°)

0.24 0.35

Maximum time for merging adjacent
fixations (ms)

50 50

Maximum RMS per fixation (°) 0.24 0.21

Minimum fixation duration (ms) 99 120
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where the data was not optimal. This demonstrates that the
manual coding can be highly reliable, even in low-quality data
sets.

Comparing hand-coding with the two-step approach

In this section, we demonstrate how the results generated by
hand-coding are the same as those obtained applying the two-
step approach, where the data are preprocessed using event-
detection algorithms before it is hand-coded.

As was mentioned in previous sections, the main purpose
of preprocessing the data before they are hand-coded is to
speed up the process of detecting fixations: The more fixations
the algorithms are able to detect accurately, the less time the
coder will expend manually adjusting fixations afterward. It
can be argued, however, that having the results from the event
detection algorithms as a basis to hand-code fixations can
influence the coder’s decisions for accepting or deleting fixa-
tions. To demonstrate that this is not the case, we compared
results from hand-coding (using GraFIX coding tool, but
without preprocessing the data beforehand) with results from
the two-step approach.

We used exactly the same data as in the previous section
where two groups of infants featuring low- and high-quality
data were analyzed. One of the coders recoded all the data
using a purely hand-coding approach in order to compare it
with results from the previous section coded with the two-step
approach.

The interrater reliability between the means and the number
of detected fixations was evaluated using the ICC. All the
infants were included in the same analysis regardless of
their data quality. A strong agreement between the mean
fixation durations was found (with an ICC of .993, p < .001).
Additionally, we also found a strong agreement in the number
of detected fixations (with an ICC of .994, p < .001).

This analysis demonstrates that the results from a purely
hand-coding approach and the two-step approach are the
same; thus, both can be considered as close to a “ground-
truth” identification of fixations as is possible.

Comparing the automatic detection with the two-step
approach

In this section, we compare GraFIX algorithms for the auto-
matic detection of fixations with the two-step approach where
the algorithm’s outcome was also hand-coded.

We used exactly the same data as in the previous sections.
In particular, we took exactly the same fixations calculated by
one of the raters, which were coded using the two-step ap-
proach, and used them to compare with the outcome from the
algorithms alone. Since it was demonstrated in the previous
section, in terms of results, the only difference between hand-
coding and the two-step approach is that the second one is

faster. In both cases, the data are manipulated to reach the
same criteria; thus, the two-step approach could be considered
a method for hand-coding the data. The input values for the
automatic detection algorithms were the same as those spec-
ified in Table 1.

For the high-quality data group, we found a strong agree-
ment between the automatic and the hand-coding for both
mean fixation durations (with an ICC of .973, p = .019) and
number of fixations (with an ICC of .966, p = .008). On the
other hand, no significant agreements were found for the low-
quality data group for the means (with an ICC of 14.969,
p = .849), even though there was an agreement in the number
of detected fixations (with an ICC of .898, p = .073). This can
also be seen in the means and standard deviations from
Table 2: The values resulting from automatic algorithms and
hand-coding in high-precision data look quite similar, whereas
it is not the case for low-precision data.

Figure 6 shows how the algorithms are able to accurately
detect fixations in high-spatial-precision data (Fig. 6, left),
although even then, few manual adjustments are advisable.
On the contrary, low-spatial-precision data (Fig. 6, right) need
major adjustments, even though these algorithms alone can
still capture the trend in the fixation duration distribution.

Comparing GraFIX with previous approaches

In this section, we compare the detection results from GraFIX
(both the automatic algorithms and the hand-coding) with
those from previous algorithms. In particular, we tested the
fixation-parsing algorithms for low-quality data described in
Wass et al. (2013), the adaptive velocity-based algorithms
from Nyström and Holmqvist (2010), and the I-VT filter (as
implemented in Tobii Studio 3.0.0). The last two algorithms
are not designed to deal with particularly low-quality data,
such as data recorded from infants. In fact, even though
Nyström and Holmqvist (2010) adapt the velocity threshold
according to the level of noise, they still maintain that the
algorithm is suitable only for data collected from viewers with
relatively stable heads while watching static stimuli.3 This is
obviously not the case for most data coming from infants and
other special populations, which is likely to be much noisier
than any of the recordings previously tested with these algo-
rithms. However, given that these algorithms are considered a
well-established method for event detection, we decided to
include them in our comparison.

We selected three infants who presented high-precision
data (RMS <0.13° per infant; 5–6 min of data each) and
another three infants that presented low-precision data
(RMS > 0.25° per infant; 5–6 min of data each) from an
experiment that was recorded using a Tobii TX300 eyetracker
and Tobii Studio 3.0.0 at a sampling rate of 120 Hz. Once

3 See the README attached to the code the authors provide.
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again, it is important to bear in mind that these are data from
infants and, thus, still present a high degree of movement,
variability in the levels of noise across the experiment,
and frequent missing data points, even in the high-precision
group.

When possible, we used the same input parameters for the
four algorithms (see Table 3). Nevertheless, we still kept two
sets of parameters for GraFIX automatic algorithms (for high-
precision and low-precision data), since adapting the input
values according to the data quality is still one of the main
advantages of the present approach.

The parameters that we used for the Wass et al. (2013)
algorithms and the I-VT filter were, if applicable, the same as
for GraFIX algorithms in low-quality data. This is because,
when there are participants with various levels of noise, it is a
more common practice to use thresholds that rather fit the
participants with higher noise. The algorithms from Nyström
and Holmqvist (2010) include an adaptive velocity threshold
that is recalculated every 10 s (we divided the data for each
participant in 10-s chunks). The input parameters that are not
reported in Table 3, such as the blink acceleration threshold or
the post hoc validation inputs, were set to the values that were

recommended in the original articles by Nyström and
Holmqvist (2010) and by Wass et al. (2013) respectively.

Table 4 shows the means and the standard deviations
obtained from the different algorithms and hand-coding, and
Fig. 7 displays the graphs with all the fixation duration distri-
butions from the four algorithms paired with the hand-coding
distribution, which was coded by using the two-step approach.
We assume that the algorithm that gets closer to the hand-
coding distribution will be the one able to detect fixations
more accurately. The differences between algorithms in both
high- and low-precision groups are striking. Results for the
high-spatial-precision group revealed differences in the means
and also in the number of detected fixations. The I-VT filter, in
particular, presented an especially high number of de-
tected fixations (N = 1199), as compared with hand-coding
(N = 973), that can be the result of mistakenly flagging very
small fixations in segments that were slightly noisier (see
Fig. 7, first row, fourth column). For this reason, the mean
durations (M = 554.0) are lower than the means for the other
algorithms or for hand-coding. On the other hand, GraFIX and
the Wass et al. (2013) algorithms present means that are a bit
above the hand-coding mean (M = 674.5). An explanation for
this can be related to the selection of the velocity thresholds
and the sampling rate. As has previously been mentioned,
saccades with very small amplitudes may go undetected by
velocity-based algorithms, especially when the data are re-
corded at low sampling rates (<200). As a consequence, the
fixations before and after these saccades will be merged
together in a longer fixation. Obviously, at higher velocity
thresholds, it is more likely that fixations will be merged
together. Since the velocity threshold for Wass et al. (2013)

Table 2 Automatic versus hand-coding: Fixation duration (FD) means
and standard deviations in low- and high-spatial-precision data

High Spatial Precision Low Spatial Precision

Automatic
algorithms FDs

625.1 ± 847.8 (N = 2,410) 552.2 ± 536.3 (N = 863)

Two-step
approach FDs

627.9 ± 866.2 (N = 2,268) 489.9 ± 445.9 (N = 858)

Fig. 6 GraFIX automatic algorithms versus two-step approach (automatic detection + hand-coding)

Behav Res (2015) 47: 725366 –



was higher (20 °/sec) than for GraFIX algorithms (9 °/sec), it
is also not surprising that the mean for the first algorithms was
still higher than for the present algorithms. The algorithms for
Nyström and Holmqvist (2010) avoided this problem by
adapting the velocity threshold according to the level of noise
in the data. Even though they still capture the trend in the
distribution, the data quality for the samples that were ana-
lyzed (even for the high-precision group) is probably too low
to obtain more accurate results from these algorithms.
Eyeballing the graphs from Fig. 7 (first row), it is possible to
see how the fixation duration distribution produced by
GraFIX algorithms had the closest resemblance to the hand-
coding distribution in high-precision data.

Results from the low-spatial-precision group revealed even
higher differences between the four algorithms. As it can be
seen in Table 4 and in Fig. 7 (second row, fourth column), the
problem that the I-VT filter presented in the high-precision
data was even more obvious here. Likewise, the Nyström and
Holmqvist (2010) algorithms did not manage to deal with
such a high degree of noise (see Fig. 7, second row, third
column). Looking at the graphs and the means, it seems that
due to the low precision in the data, the velocity threshold that
was calculated may have been too high. It is also interesting to
see that even though the length of the recordings was approx-
imately the same for the low- and high-quality groups, the
number of detected fixations in the low-precision data was
almost half the number of fixations detected in the high-
precision data for the GraFIX algorithms, the Wass et al.

(2013) algorithms, and hand-coding. The Wass et al. (2013)
algorithms exclude a high number of fixations with their post
hoc validation criteria, and this is probably why their algo-
rithms still detect many fewer fixations than do the algorithms
that we propose. Once again, GraFIX algorithms seem to
resemble the hand-coding fixation duration distribution more
accurately, even though they would still need manual adjust-
ments (the two-step approach) to be perfect.

Overall, even though all the algorithms are far from perfect,
results from GraFIX algorithms were the ones that more
closely matched the hand-coding results. We believe that this
is not only because of the particularities of our algorithms, but
also because we are adapting the input parameters to different
levels of noise. We would not recommend, however, the
exclusive use of automatic detection algorithms unless the
data quality is very high. Evidently, when the algorithms’
outcome is accurate, the time that needs to be invested in
correcting artifactual fixations will be considerably lower.

In sum, GraFIX seems to be an effective alternative to
previous methods that will improve the quality of our results
and the time invested coding eye-tracking data.

Discussion

In this article, we described a new method and software to
parse fixations in low- and high-quality data. Previous fixation
detection methods are based on either purely automatic

Table 3 Input parameters for the automatic detection algorithms

GraFIX
(High Quality)

GraFIX
(Low Quality)

Wass, Smith, &
Johnson (2013)

Nyström &
Holmqvist (2010)

I-VT
Filter

Interpolation latency (ms) 60 60 60 n.a. 60

Velocity threshold (°/sec) 9 20 20 Adaptive 20

Maximum interpolation displacement (°) 0.25 0.25 n.a. n.a. n.a.

Degree per pixel (°/pix) 0.0177 0.0177 0.0177 n.a. n.a.

Maximum distance for merging adjacent fixations (°) 0.24 0.35 n.a. n.a. 0.35

Maximum time for merging adjacent fixations (ms) 50 50 n.a. n.a. 50

Maximum RMS per fixation (°) 0.24 0.35 n.a. n.a. n.a.

Minimum fixation duration (ms) 99 120 100 100 100

Table 4 Comparing detection algorithms with hand-coding: Fixation durations means and standard deviations in low and high spatial precision data

High Spatial Precision Low Spatial Precision

Hand coding 674.5 ± 621.9 (N = 973) 657.3 ± 642.0 (N = 424)

GraFIX automatic algorithms 719.9 ± 696.4 (N = 954) 640.4 ± 589.3 (N = 505)

Wass, Smith, & Johnson (2013) 779.3 ± 826.5 (N = 676) 491.2 ± 490.2 (N = 229)

Nyström & Holmqvist (2010) 571.2 ± 588.7 (N = 540) 1,337.9 ± 1,435.1 (N =103)

I-VT Filter 554.0 ± 527.4 (N = 1,199) 240.7 ± 169.0 (N = 1,102)
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approaches or manual coding of the eye-tracking data. The
high variability in data quality across participants and even
during the experiment can seriously affect the automatic de-
tection algorithms, and as a consequence, their results can be
remarkably unreliable. On the other hand, current hand-
coding methods can be extremely time consuming and impre-
cise. The present method implements a two-step approach for
detecting fixations, where the data are first parsed by using a
new adaptive velocity-based algorithm especially designed to
deal with low-quality data and, second, the algorithm’s out-
come is manipulated with a view to fix the errors that the
automatic process may have generated.

GraFIX fixation detection algorithms go through a number
of steps in order to parse fixations accurately. First, the raw
data are smoothed by using a bilateral filtering algorithm
(based on previous implementations from Durand & Dorsey,
2002; Frank et al., 2009). This algorithm averages the data for
both eyes and eliminates the jitter while preserving saccades.
Second, missing data points are interpolated in order to avoid
the detection of artifactual fixations in the subsequent steps.
We showed how these missing points generate peaks in ve-
locity that can be mistakenly flagged as saccades. Third, a
velocity-based algorithm gives us an initial parsing of the data.
However, the results from this algorithm may still include
artifactual fixations. Finally, GraFIX executes three post hoc
validation algorithms aiming to fix and/or remove the artifac-
tual fixations detected in the previous step. In particular, the

post hoc algorithms (1) merge adjacent fixations that are close
in space and time, (2) remove all the fixations whose RMS is
over a given threshold, and (3) delete all the fixations with
shorter duration than the minimum fixation (in this order).

GraFIX detection algorithms aim to obtain the most accu-
rate fixation detection for each participant and, thus, reduce
the amount of time the researcher has to spend correcting
fixations in the subsequent step. Furthermore, the hand-
coding graphical tool alone—where the user simply needs to
click on the screen to manipulate fixations—is already much
faster than previous hand-coding approaches (e.g., coding
fixations analyzing videos frame by frame).

We evaluated GraFIX from four different perspectives: (1)
We used the ICC in order to evaluate the agreement between
two different researchers when coding two groups of infants
featuring low- and high-quality data; (2) hand-coding was
compared with the two-step approach, demonstrating that
both methods generate near identical results; (3) GraFIX
automatic algorithms were compared with the two-step
approach; and (4) GraFIX automatic algorithms were
compared with previous automatic detection methods
(the velocity-based algorithms from Wass et al., 2013; the
adaptive velocity-based algorithms from Nyström &
Holmqvist, 2010; and the I-VT filter). Additionally, GraFIX
was tested with data from different eye-tracking systems.
Results from these analyses revealed that GraFIX automatic
algorithms was the method that more closely matched hand-

Fig. 7 These graphs display the hand-coding (green; GraFIX two-step approach) distribution paired with the distributions for the four different
algorithms (red). We assume that the algorithm that is closer to hand-coding is the one able to detect fixations more accurately
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coding results and that these algorithms alone can be a more
reliable technique than other methods, overcoming some of
the previous issues detecting fixation in low- and high-quality
data. However, we strongly believe that given the nature of
our data, any automatic algorithm should be used in combi-
nation with a later hand-coding approach.

Many of the current detection algorithms, especially those
commercially available, obscure the quality of the data and the
fixation detection process. Consequently, evaluating the reli-
ability of results or checking how different parameters affect
the fixation detection may become an arduous task. GraFIX
allows the adaptation of the input parameters for the automatic
algorithms (e.g., velocity threshold, interpolation latency) to
fit the data from different participants that present different
levels of data quality. As was previously explained, choosing
the right velocity threshold highly depends on the quality of
the data and the experimental design. Ideally, the user will
select low thresholds in order to be able to detect small
fixational eye movements. However, the lower the data qual-
ity is, the higher the velocity threshold needs to be. If all the
participants are at very different levels of data quality, it can be
worthwhile to adapt this value on a participant basis.
Likewise, the rest of the parameters (such as the post hoc
validation parameters) should be adapted according to the
participant’s data quality in the interest of obtaining the
most accurate results. Additionally, the execution of the
algorithms is fast, and it displays all the information
that we need to precisely evaluate what the algorithms
calculated (interpolation and post hoc validation flags for
each point, visualization of the results paired with the velocity
and the raw and smoothed data.). This can enormously facil-
itate the correct selection of the input parameters for the
detection algorithm.

Traditionally, all participants are grouped together, and a
single velocity threshold that is usually selected to fit low-
quality sets is chosen to parse all the data. We have shown
how applying high velocity thresholds can be the reason why
the algorithms detect artifactual long fixations.We believe that
adapting the input parameters on a participant basis can avoid
the detection of artifactual fixations and will lead to more
accurate and reliable experimental results. However, it is still
up to researchers to decide whether they prefer to use the same
parameters for all the participants, adapt the parameters on a
participant basis, or rather have different input parameters for
different groups of participants featuring different levels of
data quality (as we did in our validation section). It is also a
topic of debate for the field of eye tracking as to how the
parameters used to parse each participant’s data should be
reported in publications, factored in to statistical analysis, or
standardized within populations and across labs.

But to which extent is it acceptable to group together
participants with very different data quality? For instance, this
can be an important issue in clinical group comparisons where

one group may present considerably lower quality data than
the other (e.g., ADHD children vs. control groups), when
analyzing different age groups (e.g., 3 month olds vs.
14 month olds) or even when comparing “long fixators” with
“short fixators.”We know that in low-quality data, there is less
probability of finding clean long fixations that can be reliably
detected, also, when the data are hand-coded. This can lead to
correlations between data quality and fixation durations where
low-quality data sets are more likely to present shorter fixa-
tions on average. To at least acknowledge these limitations in
our studies, it would be advantageous to consistently report
data quality measures and detailed descriptions of the detec-
tion methods, together with a data quality correlational
analysis. Nevertheless, this still does not solve the problem.

Another limitation is related to the way fixations are hand-
coded. In the interest of improving the reproducibility of the
experimental outcomes, we believe it is very important to
include precise guidelines to define how the fixations are
being coded. In part, without these guidelines, the intercoder
reliability loses its value.

In sum, the proposed method and software prove to be
a more reliable and accurate technique for parsing fixa-
tions in low- and high-quality data and overcomes many
of the issues that previous methods presented. More accu-
rate outcomes and reporting data quality measures and
descriptions of the detection methods in scientific papers
can considerably improve the viability of research results
and, hence, facilitate the replication of previous studies.
This can have a big impact not only in research from
populations that are particularly difficult to test and that
typically present higher degrees of noise (such as infants,
people in the autism spectrum, or ADHD patients), but
also in participants that simply do not reach certain data
quality standards. In fact, nowadays we are experiencing
an increase in the number of new low-cost eye-tracking
systems that inherently suffer from data quality issues
even with compliant participants. Additionally, GraFIX
could also be adapted to code data from head-mounted
eye-tracking systems by including the head position and the
eye and scene images.

Software download

Please download GraFIX from: http://sourceforge.net/
projects/grafixfixationscoder/

Author note The authors wish to thank Kristen Swan Tummeltshammer
for her comments on the first draft of the manuscript. Thanks also to
Casey Thornton for performing the hand-coding analysis. This
research was supported by the EC Marie Curie Initial Training
Networks FP7-PEOPLE-2010-ITN PART B, and the UK Medical
Research Council.
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Appendix 1

Application overview

The main window consists of a number of boxes where the
eye-tracking data and the application’s output is visualized, in
addition to all the necessary buttons used to manipulate fixa-
tions (see Fig. 2). A brief explanation of these different com-
ponents is included below.

1. Menu bar. The menu bar allows access to different
dialogs such as Project configuration, Visualizations, or
Automatic Detection of Fixations dialogs.

2. Raw data. The horizontal axis represents time, while the
vertical axis displays the position of subsequent gaze
data-points (Each data-point consists of the x- and y-
coordinates for the right and/or the left eye.). For binoc-
ular systems, the right- and left-eye coordinates are
displayed (x-right = red; x-left = orange; y-right = dark
blue; y-left = light blue). In case the system is monocular,
the data from the second eye will simply not be displayed.

3. Smoothed data. As for the raw data, the horizontal axis
represents time, while the vertical axis displays the po-
sition of subsequent smoothed gaze data-points. Once
the data is smoothed, the resulting x- and y-coordinates
are displayed.

4. Pupil dilation. In cases where the eye-tracking system
provides pupil dilation data, it is displayed in this box.
Further, the average pupil dilation is calculated for each
fixation.

5. Velocity. The horizontal axis represents time, while the
vertical axis displays the velocity for subsequent gaze
data-points.

6. Missing data from left and right eyes. If there is a data-
point missing for either of the eyes, it is displayed in this
box.

7. Automatically detected fixations. The orange boxes rep-
resent the fixations that are automatically detected by the
automatic-detection algorithms.

8. Flags from the automatic-detection algorithm. During
the automatic detection, the data are interpolated, and
the post hoc validation criteria are applied. The flags
indicate which data-points were affected by different
algorithms.

9. The cursor’s current location. A horizontal line is
displayed at the cursor’s location, facilitating the accu-
rate coding of fixations’ onsets and offsets. Additionally,
the From label indicates the line in the raw file where the
cursor is located.

10. Manually coded fixations. The green boxes represent the
fixations that can be manipulated manually. Each fixa-
tion has a fixation number that matches the numbers
from the first column at the fixations list.

11. Fixations list. This is a list of the fixations that are being
manually coded (green boxes). The first column shows
the fixation number, the second displays the line in the
raw file where the fixation starts, the third displays the
line in the raw file where the fixation ends, and finally,
the fourth column reveals the fixation duration in
seconds.

12. Select the action button. In order to perform an action,
the corresponding option has to be selected. Once it is
selected, one will need to click and drag the cursor in
order to create, delete, or merge fixations. Moreover, it is
possible to target smooth-pursuit fixations by selecting
this option and dragging the cursor on top of the fixa-
tions that need to be coded. In order to add more preci-
sion to the task, it is possible to enter in the textboxes the
start and the end of the fixation that needs to be manip-
ulated and press Execute. This will execute the action
currently selected using the specified start and end
points.

13. Nonactive segment. The portion of the screen in gray
corresponds to the tasks in the experiment that do not
need to be coded.

14. Active segment. The portion of the screen in white
corresponds to the tasks in the experiment that need to
be coded.

Input files

The raw input file is a csv file separated by commas with the
following columns: (1) time in microseconds; (2) zeros; (3)
relative gaze-point x left eye; (4) relative gaze-point y left eye;
(5) relative gaze-point x right eye; (6) relative gaze-point y
right eye; (7) pupil diameter left eye (optional); and (8) pupil
diameter right eye (optional).

If the eye-tracking system is monocular, all the columns
corresponding to the second eye should be substituted with
−1 s.

The segments input file indicates which parts of the
experiment need to be coded. If the whole data file is
the subject of interest, this file does not need to be
included.

The segments input file is a csv file separated by commas
with the following columns: (1) segment id, which is an
unique number for each row; (2) row number in the raw file
where the segment starts; (3) row number in the raw file where
the segment ends.

Output files

File smooth_[subject number].csv This file is created when
the data is smoothed. Each row corresponds to a data point
from the raw file; thus, both files have the same length. This
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file is a csv file separated by commas with the following
columns: (1) time in microseconds; (2) zeros; (3) smoothed
x-coordinate; (4) smoothed y-coordinate; (5) velocity; (6) Is
saccade flag: 0/1; (7) Is interpolated flag: 0/1; (8) post hoc
merge adjacent fixations flag: 0/1; (9) post hoc RMS flag: 0/1;
(10) post hoc minimum fixation flag: 0/1.

File fix_auto_[subject number].csv This is created when fix-
ations are automatically estimated. Each row contains the
information for one fixation. This file is a csv file separated
by commas with the following columns: (1) row from the raw
file where the fixation starts; (2) row from the raw file where
the fixation ends; (3) duration in seconds; (4) Average x-
coordinate; (5) Average y-coordinate; (6) RMS; (7) Is smooth
pursuit flag: 0/1; (8) Average pupil dilation.

File fix_all_[subject number].csv This file is generated when
the first fixation is created, and it is updated every time a
fixation is manipulated. It is a csv file separated by commas
with the following columns: (1) row from the raw file where
the fixation starts; (2) row from the raw file where the fixation
ends; (3) duration in seconds; (4) Average x-coordinate; (5)
Average y-coordinate; (6) RMS; (7) Is smooth pursuit flag:
0/1; (8) Average pupil dilation.

Appendix 2

Pseudo-code of the proposed interpolation algorithm

1. Calculate the velocities for each point
2. Iteratively find velocity peaks and flag those over the

velocity threshold as saccades
3. Find next gap

3.1. If the gap is longer than the interpolation latency:

3.1.1. Calculate the Euclidean distances from a central
point for the fixations preceding and following
the gap.

3.1.2. If the difference between both Euclidean dis-
tances is lower than the maximum displacement
threshold:

3.1.2.1. Interpolate.

Pseudo-code of the proposed velocity algorithm and the
post hoc validation

1. Calculate the velocities for each point
2. Iteratively find velocity peaks and flag those over the

velocity threshold as saccades

3. The data points in between two saccades are grouped and
flagged as fixations

4. Post hoc validation: Merge adjacent fixations with similar
location

4.1. If this post hoc validation criterion is selected

4.1.1. Find next two adjacent fixations
4.1.2. If the gap between the two fixations is shorter

then 50 ms

4.1.2.1. Calculate the distance in degrees between
the locations for the two fixations

4.1.2.2. If the distance is shorter than the maximum
displacement threshold

4.1.2.2.1. Merge both fixations
5. Post hoc validation: The RMS of intersample distances

per fixations does not exceed a threshold

5.1. If this post hoc validation criterion is selected

5.1.1. Find all fixations with an RMS over the
threshold

5.1.2. Delete them
6. Post hoc validation: Minimum fixation duration

6.1. If this post hoc validation criterion is selected

6.1.1. Find all fixations with a duration over the
threshold

6.1.2. Delete them

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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