Sustainability by reduced energy consumption: changing raw materials and manufacturing processes in water-in-oil emulsions

Jana Fröhlich¹, Ludger Fischer², Sylvie Bunyan³, Tim Barbary³, Elisabeth Dufton⁴, Slobodanka Tamburic¹

Cosmetic Science Research Group, London College of Fashion, University of the Arts London, UK ² Institute of Mechanical Engineering and Energy Technology, Lucerne University of Applied Sciences and Arts, Switzerland ³ Benchmark Consulting Global Ltd, UK

⁴ Surfachem Group Ltd, UK

Introduction

Attempts to reduce the energy consumption and carbon footprint of cosmetic products are made by changing synthetic for natural ingredients, or hot for cold manufacturing processes. However, there is a scarcity of data quantifying these reductions to allow formulators to make fact-based decisions in this important area.

The aim of this study was to compare the energy consumption and carbon footprint of physico-chemically comparable water-in-oil (W/O) emulsions made with standard (mainly synthetic) and COSMOS-approved natural ingredients, respectively, using different manufacturing processes (hot, hot-cold and cold process emulsification).

Materials and Methods

- Six W/O emulsions were tested (Figure 1 and Table 1).
- Hot-cold process involved heating only the oil phase.
- 'Scale-down calculations' were performed beforehand, to coordinate the laboratory and manufacturing conditions.
- 500 g batches were prepared at 6600 rpm for 2 minutes and 20 seconds using the L5M homogeniser (Silverson, UK).
- The formulations were aimed for a typical 500 kg manufacturing vessel.

Table 1. Standard and natural hot, hot-cold and cold process formulations Figure 1. Emulsions prepared				ared	
Phase	INCI name	Standard hot and hot-cold % (w/w)	Standard <mark>cold</mark> % (w/w)	Natural hot and hot-cold % (w/w)	Natural cold % (w/w)
Δ	Aqua	73.00	76.00	73.00	73.00
~	Sodium Chloride	1.00	1.00	1.00	1.00
	Paraffinum Liquidum	20.30	17.80	-	-
	Helianthus annus (Sunflower) Seed Oil	-	-	20.50	20.50
	Microcrystalline Wax (and) Paraffin Wax	1.50	-	-	-
	Cera alba	-	-	0.30	-
B	Hydrogenated Castor Oil (and) Castor Oil	1.00	-	0.20	-
	Cetyl PEG/PPG-10/1 Dimethicone	2.50	2.50	-	-
	Polyglyceryl-4 Diisostearate/ Polyhydroxystearate/Sebacate (and) Caprylic/Capric Triglyceride (and) Poly-glyceryl-3 Oleate (and) Diisostearoyl Polyglyceryl-3 Dimer Dilinoleate	-	-	4.00	4.00
С	Zinc Stearate	-	2.00	-	0.50
D	Phenoxyethanol (and) Ethylhexylglycerin	0.70	0.70	-	-
	Dehydroacetic Acid (and) Benzyl Alcohol	_	-	0.70	0.70
	Tocopherol	-	-	0.30	0.30

Based on TA results (Figure 3) hot-cold process, as well as standard emulsions may be perceived as slightly less spreadable than their hot/cold and natural counterparts, respectively [2]. Further fine-tuning would produce sensorily almost identical formulations, as well as take care of some stability issues. However, for the purpose of this study, the six emulsions presented a suitable model for the comparison of their thermal energy consumption and total carbon footprint during manufacture.

Thermal energy makes up to 95 % of the total manufacturing energy [3]. While 100 % of the thermal energy was saved when moving from a hot to a cold manufacturing process, our calculations (Table 2) show that **approximately 85 % of** thermal energy was already

Table 2. Thermal energy consumption to manufacture 500 kg emulsions					
Formulation	Therm Man	Thermal Energy			
	Water	Oil	Total	Saving (%)	
	Phase	Phase			
Standard Hot	191.96	30.66	222.62	_	
Standard Hot-Cold	-	30.66	30.66	86.23	
Standard Cold	-	-	-	100	
Natural Hot	191.96	34.24	226.20	-	
Natural Hot-Cold	-	34.24	34.24	84.86	
Natural Cold	-	_	_	100	

saved when moving from a hot to a hot-cold manufacturing process due to the high heat capacity of water.

Table 3. Endset and recommended melting temperatures of standard and natural oil phases and corresponding energy saving				
Oil Phase	Endset Temp. (°C)	Recommended Melting Temp. (°C)	Energy Saving (%)	
Standard	81.9	82.0	-	
Natural	63.0	63.0	30.65	

BENCHMARK

CARBON TRANSPARENCY & COST ACCURACY

DSC revealed that oil phase mixtures had lower endset melting than constituent temperatures waxes (Table 3). Reducing from 82 °C to the new recommended manufacturing temperature Of

Surfachem

63 °C for the natural hot/hot-cold process, could save more than 30 % of the

• Emulsion stability: centrifuge test and 6 weeks at room temperature and 40 °C.

- Emulsions were characterised by continuous flow and oscillatory rheology (Haake Mars iQ Air, ThermoFisher Scientific, UK) and texture analyser immersion/deimmersion test (TA.XT Plus, Stable Micro Systems, UK).
- Thermal energy consumption, as well as the **carbon footprint using cradle-to-gate** life cycle analysis (LCA) (Benchmark, UK), of each emulsion were calculated.
- Melting temperatures of the oil phase mixtures were determined using differential scanning calorimetry (DSC) (DSC 3 STAR System, Mettler Toledo, Switzerland).

Results and Discussion

Figure 2 showcases viscosity at varying shear rates, as well as rigidity (complex modulus G*) and elasticity (phase angle δ).

Hot-cold process emulsions were slightly more viscous,

thermal energy.

The LCA results confirmed that the manufacturing process had a major impact on the carbon footprint of the final emulsion, with a 25 % and 29 % reduction from the hot process to the hot-cold and cold process, respectively (Table 4).

Carbon footprint reductions were less than thermal energy reductions, highlighting that other energy inputs, such as indirect and mechanical, are also important contributors.

Table 4. Cradle-to-gate CO2e (carbon dioxide equivalent) figures for 500 kg emulsions						
Formulation	Raw Material CO ₂ e	Manufacturing CO ₂ e	Packaging CO ₂ e	Total CO ₂ e (kg)		
	(kg)	(kg)	(kg)			
Standard Hot	0.15	204.38	29.58	234.11		
Standard Hot-Cold	0.15	146.16	29.58	175.89		
Standard Cold	0.14	136.85	29.58	166.57		
Natural Hot	1.07	205.46	29.58	236.11		
Natural Hot-Cold	1.07	147.24	29.58	177.89		
Natural Cold	1.04	136.85	29.58	167.47		

LCA also revealed that, contrary to expectations, natural ingredients used in this study had a slightly higher carbon footprint than standard ingredients. However, this fact had a low impact on the overall carbon footprint of the products, which was dominated by the manufacturing method.

Conclusion

Rheologically and texturally similar W/O emulsions can be achieved at lower energy consumption and carbon footprint through use of hot-cold and cold **process** (with appropriate formulation adaptations).

Figure 2. Shear rate sweep curves (above) and oscillatory stress sweep curves (below) for standard and natural hot, hot-cold and cold process emulsions

behaviour [1]. This should be researched further for possible additional savings.

- The hot-cold manufacturing process saves approximately 85 % of thermal energy and did not require the change in formulations.
- Switching from synthetic to natural ingredients could either increase or decrease the carbon footprint, but **the effect is almost negligible**.
- Scale down calculations, and the use of DSC to confirm the melting temperature of the oil phase should be used to save further energy.

Acknowledgements

The authors wish to thank London College of Fashion for supporting this study, as well as Judi Beerling and Natasha Csonge for their formulation advice.

References:

crystallisation

[1] Jana, S. and Martini, S. (2014) 'Effect of high-intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils', Journal of Agricultural and Food Chemistry, 62(41), pp. 10192-10202. Available at: https://doi.org/10.1021/jf503393h; [2] Estanqueiro, M., Amaral, M.H. and Sousa Lobo, J.M. (2016) 'Comparison between sensory and instrumental characterization of topical formulations: impact of thickening agents', International Journal of Cosmetic Science, 38(4), pp. 389-398. Available at: https://doi.org/10.1111/ics.12302; [3] Lin, T.J. (1978) 'Low energy emulsification - I principles and applications', Journal of Cosmetic Chemists, 29, pp. 117-125. Available at:

http://www.scientificspectator.com/documents/personal%20care%20spectator/Lin%20Low%20Energy%20Emulsification%201.pdf (Accessed: 26 April 2023).