
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hihc20

International Journal of Human–Computer Interaction

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/hihc20

To Abstract or Not to Abstract? A Comparative
Study Evaluating the User Experience of
Spreadsheet Programming with Sheet-Defined
Functional Abstractions

Anel Kudebayeva, Christopher Harte, Nick Bryan-Kinns & Tony Stockman

To cite this article: Anel Kudebayeva, Christopher Harte, Nick Bryan-Kinns & Tony Stockman
(12 Jun 2024): To Abstract or Not to Abstract? A Comparative Study Evaluating the User
Experience of Spreadsheet Programming with Sheet-Defined Functional Abstractions,
International Journal of Human–Computer Interaction, DOI: 10.1080/10447318.2024.2361209

To link to this article: https://doi.org/10.1080/10447318.2024.2361209

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 12 Jun 2024.

Submit your article to this journal

Article views: 75

View related articles

View Crossmark data

To Abstract or Not to Abstract? A Comparative Study Evaluating the User
Experience of Spreadsheet Programming with Sheet-Defined Functional
Abstractions

Anel Kudebayevaa, Christopher Hartea, Nick Bryan-Kinnsb, and Tony Stockmana

aQueen Mary University of London, London, UK; bUniversity of the Arts London, London, UK

ABSTRACT
Spreadsheets are a widespread functional programming paradigm that offer liveness and directness of
interaction. However, spreadsheets are notoriously error-prone and difficult to debug. To overcome this
limitation and improve the expressive power of spreadsheets, we propose an extension to the spread-
sheet paradigm in the form of sheet-defined lambdas – user-defined functions that abstract computa-
tions on the sheet. This concept was developed and deployed in our web-based spreadsheet
application named Lattice. We evaluate this approach through a user study which compared the user
experience of programming in a spreadsheet with and without lambdas, as well as the difference in
performance between learner (N¼ 12) and experienced (N¼ 12) programmers. The study measured
participant task performance (task time, success rate and number of errors) and the quality of their user
experience of using Lattice (video recordings of use, interviews and questionnaire responses). Our find-
ings indicate that programming with lambdas is not only more efficient than writing formulas in a con-
ventional way, but also provides a rewarding hedonic experience. However, we found that learners
perceived the concept of functional abstractions with lambdas as difficult to comprehend; while experi-
enced programmers noted potential utilitarian advantages that aid in managing the complexity of a
spreadsheet program. The results obtained in this work contribute to a better understanding of human-
spreadsheet interaction and can inform the future design of user-friendly computational systems.

KEYWORDS
User experience; usability;
programming; spreadsheet

1. Introduction

While spreadsheets are well-known as a data management and
analysis tool across various businesses, they are in fact an
example of a functional programming paradigm. However,
spreadsheet code is often poorly documented and difficult to
maintain. Many authors have proposed various approaches to
solving these problems, ranging from changing or extending the
spreadsheet interface or the formula language for effective ana-
lysis and debugging of errors to abstracting data/procedures to
prevent them (see Section 2). In recent years, industry-leading
spreadsheet software, such as Microsoft Excel and Google
Sheets, have introduced the LAMBDA command, which lets their
users define custom functions without needing to rely on script-
ing languages. However, these systems rely on additional layers
of interaction with the user interface to achieve this functional-
ity. We believe that the experience of programming in a spread-
sheet can be improved with the addition of a mechanism to
abstract computations into functions directly on the sheet.

Historically, the design and development of programming
languages and environments primarily focused on such aspects
as computational efficiency and syntactic complexity, which opti-
mize the computer’s understanding of the instructions. However,

programming is a human-centered activity and thus, usability
and user experience of programming languages and tools are
equally important aspects to consider (Myers et al., 2016).

In this paper, we report our findings from a user study
which focused on exploring the hedonic and pragmatic
experiences of programming in a spreadsheet with and with-
out functional abstractions. Furthermore, we compare the
differences in performance between learner and experienced
programmers, which in turn informs us on the program-
ming needs of users of varying experience levels.

2. Related work

2.1. Spreadsheet programming

Thinking of a spreadsheet as a programming language might
be unnatural to many who have been primarily exposed to
textual programming languages through their formal educa-
tion and work experience. However, what is a programming
language if not a way to communicate with computers? To
that degree, spreadsheets have been successfully used to
write formulas for instructing computers to perform labori-
ous tasks of data analysis and calculations for years. Many

CONTACT Anel Kudebayeva anel.kudebayeva@qmul.ac.uk Queen Mary University of London, London, UK
� 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted
Manuscript in a repository by the author(s) or with their consent.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION
https://doi.org/10.1080/10447318.2024.2361209

authors argue that spreadsheet programming is actually
functional programming (Abraham et al., 2009; Burnett
et al., 2001; De Hoon et al., 1995) with a great emphasis on
the liveness and reactiveness of the interaction (Gulwani &
Marron, 2014; Hermans et al., 2016).

When it comes to limitations, spreadsheets are infamous
for being susceptible to vexing errors that are difficult to
debug (Panko, 1998). This is commonly attributed to the
fact that spreadsheets hide computations and dependencies
in exchange for data visibility (Sarkar et al., 2018). Typical
spreadsheet errors include writing incorrect formulas, refer-
encing incorrect cell coordinates in formulas and hard-cod-
ing numbers into formulas (Powell et al., 2009). Many
efforts have been made to resolve this problem through vari-
ous add-ons and tools that visualize the program structure
and relationships between its components (Hermans et al.,
2012; Mittermeir & Clermont, 2002), assist in testing user
programs (Wilson et al., 2003) or redesign the interface of
the formula editor (Jansen & Hermans, 2019).

An alternative approach to address this limitation is to
minimize its likelihood altogether by introducing abstraction
mechanisms to the spreadsheet paradigm. Examples of this
include visually-manipulated forms (Burnett et al., 2001),
sheet-defined functions (Bock et al., 2020; Jones et al., 2003)
and, most recently, computational abstractions (the LAMBDA
function in Excel and Google Sheets) (Sarkar et al., 2022).
In our research we focus on the second approach of intro-
ducing sheet-defined lambdas.

2.2. User studies of spreadsheets

Many user studies of spreadsheets in the literature have pri-
marily focused on analyzing errors made while authoring
programs. Brown and Gould (1987) report that of the 27
spreadsheet programs created by nine experienced users in
their study, 44% contained errors, with the most prevalent
being incorrect formulas. Teo and Tan (1997) found that of
the 168 spreadsheets developed by the participants in their
study, 41.7% contained errors in the first exercise and 50%
– in the second exercise. They identified three main error
types: (i) logic (incorrect algorithm/formula), (ii) omission
(incomplete model of a solution) and (iii) mechanical (typo/
incorrect cell reference) errors. The authors also note that
logic and omission errors made in the first exercise were
more difficult for participants to detect and correct in the
second exercise than mechanical errors.

In their study of the factors affecting spreadsheet error
detection, Howe and Simkin (2006) found that their partici-
pants (228 Information Systems students) identified only
67% of all errors present in the test spreadsheets. The
authors also report that none of their predictors (age, gen-
der, years of programming and spreadsheet experience,
among others) explained the ability of users to detect errors,
which they deemed unexpected.

A number of studies in this field have attempted to
understand the precursors of spreadsheet errors. One not-
able example of a common source of errors is the complex-
ity of spreadsheet formulas. Having interviewed ten

industrial spreadsheet users in their study of formula smells,
Hermans et al. (2015) conclude that complex formulas are
difficult to understand and modify, particularly for non-
authors. The researchers note that the complexity of formu-
las most frequently stems from either coding multiple opera-
tions into a single formula, or chaining multiple formulas to
perform a calculation as an alternative approach.

Much effort in the spreadsheet research community has
been dedicated to developing and testing various approaches
of reducing spreadsheet errors. Based on the results of two
user studies, Janvrin and Morrison (1996) note that partici-
pants, who designed the structure of a spreadsheet (using
data-flow diagrams) prior to implementing it in a software
program, completed the task faster and made fewer linking
errors in the process. In their study of the relationship
between errors and task complexity using spreadsheet pro-
gramming and programming by example paradigms, Thorne
et al. (2013) observed that solutions produced by spread-
sheet programming participants were more prone to errors
and misinterpretations, as the task complexity grew. The
authors propose that building spreadsheet programming
models using a machine learning algorithm based on the
user input data may reduce the likelihood of defects in
programs.

One of the most underexplored research avenues is the
interplay between programming and spreadsheets, which we
are particularly interested to delve into. An exploratory sur-
vey conducted by Sarkar et al. (2020) shows a correlation
between programming expertise and formula expertise,
whereby experienced programmers are likely to become pro-
ficient in formula writing, and vice versa. However, as noted
by the authors, further studies are necessary to understand
this phenomenon.

3. Sheet-defined functional abstractions

In the context of this paper, a lambda is a custom function
that a user defines on the grid of a spreadsheet application
like any other formula. The main purpose of extending the
spreadsheet paradigm with sheet-defined lambdas is to
enable functional abstraction of computations as a reusable
unit that is native to the formula language. The addition of
this abstraction mechanism enables users to develop com-
plex programs that are easier to maintain by virtue of a
modular incremental design. Traditionally, spreadsheets
have lacked such functionality, which meant users had to
rely on external scripting languages (such as VBA or
JavaScript) to be able to create their own custom functions.
However, this arguably made writing custom functions
inaccessible for the average user who may not have been
familiar with programming, as it required switching to a
programming language different not only syntactically, but
also conceptually from the formula language (Peter Sestoft,
2014).

To evaluate the usability and user experience of sheet-
defined lambdas, we have developed a web-based spreadsheet
application, named Lattice, that includes this abstraction
mechanism.

2 A. KUDEBAYEVA ET AL.

In our spreadsheet tool lambdas are defined using the fol-
lowing formula:

¼ lambdaðargument range, body range, return cellÞ (1)

where

� argument_range is a range of arguments that are used in
the body;

� body_range is a range of cells that are calculated to pro-
duce a result;

� return_cell is a cell containing the return value of a func-
tion (the result).

Declaring a lambda on the sheet in Lattice implicitly
defines it as a reusable function, which differs from the
multi-step approach of the commercial spreadsheets
(Microsoft Excel and Google Sheets) that requires an add-
itional interaction with a distinct user interface layer.

Figure 1 illustrates an example program that calculates
the sum of squares of two given numbers. We begin by
inputting two test values, 3 and 4, in cells C3 and C4,
respectively. Next, we calculate the square of each of these
values by writing a formula of the form “¼X�X” in cells
C5 and C6, where X is replaced by the corresponding cell
coordinates (C3 and C4). The final step is to add the result-
ing squared values in cell C7. Lastly, we define a lambda in
cell C2 following the template in Equation (1) to reuse these
calculations. It is worth noting that a lambda can be defined
before or after the logic of a function has been implemented.
To call a lambda with another set of inputs, we use its cell
coordinate. For example, “¼C2(2,3)” in cell C9.

By comparison, Figure 2 demonstrates how a custom
function to achieve the same goal might be implemented in
a conventional scripting language using the Apps Script1

platform that is integrated into Google Sheets. Screenshot B
shows a JavaScript function SUMOFSQUARES that calculates
the square of the input (a cell or a range) and outputs the
squared cell value or the sum of squares in the case of a

range input. Once this function is saved, it can be called in a
spreadsheet, as shown in screenshot A. It is worth noting that
the user is required to be familiar with writing functions and
understand how to work with objects (e.g., Array) in
JavaScript. Additionally, Apps Script is launched in its own
development environment that is different from a standard
spreadsheet, which means the user has to become accustomed
to a potentially unfamiliar separate user interface.

4. Methods

To evaluate the impact of using lambda on the user experi-
ence of programming in a spreadsheet, we conducted a
within-subjects experiment. We also wished to explore how
the experience of programming in a spreadsheet differed for
people of varying levels of programming expertise.

The two research questions that we attempted to answer
in our study were:

Q1 does using lambdas improve the user performance and user
experience of programming in a spreadsheet?

Q2 does programming expertise affect the perception of
programming in a spreadsheet?

The two hypotheses that we tested in our study were:

H1 the user experience of programming in a spreadsheet differs
when using lambda or not;

H2 programming expertise affects the task completion time
when using lambda or not.

4.1. Study design

4.1.1. Variables
The independent variable in our study was the use of func-
tional abstraction (Lambda), which had two levels (conditions):

� With Lambda (WL) – completing programming tasks in
a spreadsheet using lambdas;

Figure 1. An example of a lambda function definition in Lattice. The declaration formula lives in cell C2, while the colored cells C3:C7 represent the constituent
parts of a lambda, i.e., the arguments, followed by the body and the return value cell within the body range.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 3

� No Lambda (NL) – completing programming tasks in a
spreadsheet without the use of lambdas.

To reduce the carryover practice effects, the ordering of
these conditions was counterbalanced using a Latin square,
such that half of the participants in each group started
with NL.

The dependent variables in our study were both quantita-
tive and qualitative in nature. We sought to measure partici-
pant performance and attitudes.

Performance metrics (Rogers et al., 2023) that we
recorded were:

� completion time – the time it takes to successfully com-
plete a task (the mean in minutes);

� success rate – the number of participants who completed
a task (expressed as a percentage);

� errors – the number and types of errors made during
task completion.

To assess the subjective experience of interacting with the
spreadsheet (see Section 4.4), we defined the following three
qualitative variables:

� ease of programming – comparison of the two methods
of programming (WL and NL) to determine their per-
ceived level of complexity;

� quality of the experience – evaluation of the hedonic
value of the experience of programming using the two
methods (WL and NL);

� preference – participants’ reported inclinations towards
the two methods of programming (WL and NL).

To evaluate the “quality of experience” of our extended
spreadsheet system from the pragmatic (efficiency and
effectiveness) and hedonic (aesthetic value and emotional
impact) perspectives, we chose the standardized User
Experience Questionnaire (UEQ (Schrepp, 2015)) for our
study. Compared to another option that we considered
(AttrakDiff (Hassenzahl et al., 2003)), the terms used in the
UEQ are perceived as easier to understand (Walter et al.,
2023). Additionally, the UEQ use is widespread in the litera-
ture and has been growing at a faster rate than AttrakDiff in
recent years (D�ıaz-Oreiro et al., 2019).

The programming tasks were an extraneous variable in
our study. In order to control its effects, the tasks were
standardized, such that every participant received the same
set of tasks, and the same set of tasks in the same order
were used to test both conditions in this study. The theme
of the programming tasks was Boolean Algebra and Logic
Gates, which are fundamental topics in the curriculum of
Computer Science/Engineering degree courses (Jim�enez-
Hern�andez et al., 2020; Ristov et al., 2016). These topics can
be effectively translated into spreadsheet programs owing to

Figure 2. An example of a user-defined function SUMOFSQUARES, that calculates the sum of the squares of two numbers, implemented in Apps Script (B) and
used in Google Sheets (A).

4 A. KUDEBAYEVA ET AL.

the data-flow model of the spreadsheet programming para-
digm, whereby values flow between cells depending on the
relationship specified by the formulas, similar to logic cir-
cuits and Boolean equations.

4.1.2. Apparatus
We carried out our study in an online voice call format with
screen sharing and audio recording using Zoom software. The
questionnaires were distributed via a link to Google Forms.

We used our research spreadsheet tool, Lattice,2 for the
experiment. It is based on the open-source spreadsheet web
application (ipgrid3) that was implemented in JavaScript.
Lattice is similar in appearance to most modern spread-
sheets (such as Google Sheets and Microsoft Excel), albeit
with fewer customization options. The web page of Lattice
can be accessed using the latest version of the recommended
browsers (Chrome, Safari or Firefox).

4.2. Participants

We invited a total of 24 participants (mean age: 26.79 years
(SD: 7.81), 2 females, 22 males) to take part in our study.
Half of the participants were learner programmers and the
other half were experienced programmers. Learners were
Bachelor’s or Master’s students in Computer Science or
related disciplines. Experienced programmers were Software
Developers/Engineers or PhD students in the field of
Computer Science. All participants were over 18 years old,
fluent in English and familiar with using spreadsheet soft-
ware. They were recruited via the Prolific4 platform and
paid GBP 15 for participating. Ethical approval for this
study was obtained from the ethics committee at the first

author’s university (see Section Ethical approval). Every par-
ticipant submitted an electronic informed consent form to
take part in the study.

The distribution of participant programming experience
(in years) and the highest education levels are specified in
Table 1 and Figure 3, respectively. Figure 4 illustrates the
distribution of study participants by the self-reported levels
of programming knowledge and spreadsheet expertise. No
experienced programmers possessed an introductory level of
programming knowledge, and no learner programmers were
expert spreadsheet users. Approximately half of the partici-
pants self-assessed their skill levels in programming and
spreadsheet use as intermediate. A summary of the
demographic and skills data of the participants is listed in
Figure 5. P01 to P12 were learners and P13 to P24 were
experienced programmers.

When it comes to familiarity with the themes of the
study, three participants (P10, P21, P24) were new to the
concept of lambdas in programming and one participant
(P16) was unfamiliar with the topic of Logic Gates/Boolean
Algebra.

4.3. Procedure

The Zoom call with each participant lasted approximately
90 minutes. At the start of the call participants were asked
to fill out a demographics-and-skills questionnaire. Next,
they watched a video clip that provided a summary of logic
gates and demonstrated our research tool, Lattice.
Participants got hands-on experience of the tool and prac-
ticed defining lambdas prior to completing the experimental
programming tasks.

The process of task completion was as follows:

1. Complete two programming tasks under the starting
condition;

2. Fill out the User Experience Questionnaire for the start-
ing condition;

3. Complete two programming tasks under the second
condition;

Table 1. Distribution of the years of programming experience of the partici-
pants per category (learner/experienced).

Years of Prog. experience: Under 2 2–5 6–10 Over 10

Learner 2 10 0 0
Experienced 0 4 4 4
Total 2 14 4 4

The values in bold represent the total number of participants per group.

Figure 3. Highest education levels of the participants in each category (learner/experienced).

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 5

Figure 4. Distribution of the self-assessed levels of programming knowledge (from introductory to expert) and spreadsheet expertise (from beginner to expert) per
participant category (learner/experienced).

Figure 5. Information on the demographics and skills of the participants. P01-P12 are learners; P13-P24 are experienced programmers. Education refers to the
highest education level achieved. Programming knowledge and spreadsheet expertise were self-assessed by the participants.

6 A. KUDEBAYEVA ET AL.

4. Fill out the User Experience Questionnaire for the
second condition;

Participants were advised to work under each condition
for 20 minutes, however they were allowed to move on to
the next section if they finished earlier and were not stopped
if they needed a reasonable amount of extra time to finish
the task.

The final stage of the study consisted of a semi-structured
interview, followed by a short post-activity questionnaire.

4.3.1. Tasks
During the task completion phase, participants were asked
to implement two Boolean equations with (WL) and without
(NL) the use of lambdas. They were presented with a dia-
gram of the digital circuit and a truth table for each of the
equations (Figure 6). Participants were allowed to reuse
parts of their solution to task 1 in task 2. Additionally, they
were asked to verify that their programs were correct by
testing them with the values from the truth tables.

4.4. Data collection

The task completion process of the experiment was screen-
recorded during the voice call. The resulting video files were
analyzed by the first author to record the task duration,
completion and errors made. The interview part of the study
was audio-recorded and transcribed verbatim after the voice
call. All recordings were deleted after the analysis for ano-
nymity and data protection purposes.

The data collected using the User Experience Questionnaire
(UEQ) (see Figure A1, Appendix A), semi-structured interview
and post-activity questionnaire (Appendix B) was used to
measure the qualitative dependent variables in our study.

The 7-point semantic differential items of the UEQ are
arranged into 6 different scales (see Figure A2, Appendix A).
Schrepp et al. (2017), the authors of the UEQ, define its scales
as follows:

� attractiveness: overall impression of liking or disliking
the system;

� perspicuity: the measure of how difficult it is to learn to
use the system;

� efficiency: the measure of the amount of effort required
to operate the system;

� dependability: the quality of the system behaving as
expected, allowing the user to feel in control of the
interaction;

� stimulation: the degree to which the system elicits the
excitement and motivation to use it;

� novelty: the evaluation of whether the user perceives the
system as innovative and creative.

Participants complete the UEQ by selecting responses on
7-point Likert items. Each scale of the UEQ is then meas-
ured by averaging the transformed user scores of its con-
stituent items, as defined in the official UEQ Data Analysis
Tool (freely available on the UEQ website5). Additionally,
the obtained values may be compared to the average scores
of the benchmark data set in the provided tool, resulting in
one of the five evaluations (Bad, Below Average, Above
Average, Good, Excellent).

The goal of the semi-structured post-activity interview
was to gather participant feedback on the areas of their
experience that were not covered by the UEQ. The interview
used the following four questions as starting points for dis-
cussions with the participants about their experience:

1. Please could you describe what you just experienced?
2. What did you find most enjoyable about the

experience?
3. How would you compare the two methods that you

used to complete the tasks?
4. What was the most challenging aspect of programming

in a spreadsheet? Did either of the two methods help to
make it less challenging?

We purposefully phrased these questions in a broad,
open-ended manner to enable a dialogue with the partici-
pants by means of further enquiries based on their
responses. Furthermore, during the interview we asked the
participants to explain their thought process in relation to
any interesting patterns of behavior that we observed in task
completion. The purpose of the interview Question 1 was to
give the participants an opportunity to express their impres-
sions of the study and describe their understanding of the
experience, without enforcing any particular direction. The

Figure 6. Schematic and the corresponding truth table of each of the two Boolean equations (A – left and B – right) that participants needed to implement during
task completion.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 7

next item, Question 2, sought to identify what participants
prioritized when describing their hedonic experiences. The
goal of Question 3 was to determine if the participants
noticed any similarities or differences between the two study
conditions, which could guide our understanding of the par-
ticipant programming needs. Question 4 was designed to
uncover any challenges related to spreadsheet programming
in general that could have affected the user experience.
Additionally, we wished to understand if either of the two
conditions assisted the participants in overcoming said
challenges.

We designed a post-activity questionnaire (PQ) made of 7
statements to compare the two methods of completing the
tasks (with lambdas and without them). For each statement,
we asked the participants to choose a method for which they
agreed with the statement, giving a brief reasoning for their
choice. The statements of the PQ were specific to the program-
mer experience rather than the overarching user experience.
Thus, we asked the participants to make a direct comparison
between the two implementation methods to assess the per-
ceived complexity, efficiency and personal preference. Due to
the long duration of the experiment and the high cognitive
load of the tasks, we constrained the PQ to 7 statements with
binary outcomes in an attempt to reduce respondent fatigue
(Dolnicar et al., 2011; Dolnicar & Leisch, 2012).

5. Results

In the following subsections we report the quantitative and
qualitative results collected in our user study.

5.1. Task completion

To assess the quantitative dependent variables in our study,
we analyzed participant performance measurements related to
the three aspects of task completion: success rate, time and
errors. Success rate represents the proportion of participants
who completed a task successfully out of the total number of
participants who attempted it. We define success as following
the instructions fully and arriving at the correct final result;
while failure means abandoning the task completion process
or producing an incorrect final result. As shown in Table 2,
20 (83.33%) out of the total of 24 participants in our study
completed the tasks successfully under the WL condition and
22 (91.67%) – under the NL condition.

The task completion time in this context provides an esti-
mation of how long it took the participants to complete the
tasks successfully. In our results we report a geometric mean
completion time and its geometric standard deviation for
every task and condition, since the geometric mean is a

better estimate of the central tendency of task times for a
small sample size (n< 25), as discussed in Sauro and Lewis
(2010). The comparison of the task completion times
between WL and NL is depicted in Figure 7. We estimate
that, on average, participants completed the first task
approximately 1.8 times faster under the NL condition.
Conversely, they finished the second task on average 1.4
times faster under the WL condition.

To evaluate the association between the participant pro-
gramming experience and the duration of their task comple-
tion process, we ran the Spearman’s correlation test on the
two variables. We chose a non-parametric test due to the
presence of non-normal data. As demonstrated in Table 3,
we found that there was no statistically significant correl-
ation between the number of years a person spent program-
ming and their task completion time.

Lastly, we examined each participant’s screen recording,
noting down all the observed behavior, to identify what kinds

Table 2. Measures of performance per task for our study conditions (WL and NL), including success rate, average completion time (t in minutes) and its standard
deviation (SD).

WL NL

Task Mean t (minutes) SD (minutes) Success rate (%) Mean t (minutes) SD (minutes) Success rate (%)

T1 13.28 1.54 83.33 7.42 1.56 91.67
T2 3.18 1.62 83.33 4.35 1.49 91.67

n¼ 24 data points per condition.

Figure 7. Mean completion time (in minutes) per task for each study condition.
Error bars represent standard deviation. n¼ 20 (WL), 22 (NL) sample points.

Table 3. The Spearman’s correlation test to evaluate the association between
the years of programming experience of participants and their task completion
time for the two study conditions per task.

WL NL

Task q p value q p value

T1 −.01 .980 −.18 .430
T2 −.19 .433 −.12 .586

q ¼ Spearman’s rank correlation coefficient; significance level a ¼ .05; n¼ 20,
22 pairs of observations for WL and NL, respectively.

8 A. KUDEBAYEVA ET AL.

of errors were the most prevalent. Following that we calcu-
lated the total number of occurrences per error type in every
task/condition combination for all participants. As a result,
we found that there were two main categories of errors: (i)
usability errors and (ii) logical mistakes. Examples of usability
errors include dragging the cursor past the last cell when
auto-filling values/formulas; selecting an incorrect cell when
referencing it in a formula; and accidentally modifying a for-
mula by clicking non-target cells while still in edit mode.
When it comes to logical errors, they most frequently meant
making mistakes in the structure of the if-formula (such as,
using an incorrect number of arguments or an incorrect
order of the true/false return values) or writing an incorrect
Boolean condition of a logic gate. As shown in Table 4,
implementing the tasks using lambdas (WL) resulted in fewer

errors of all types except for incorrect cell references, where
the number was near identical to the NL version. It is worth
noting that type 1 and type 2 errors (refer to Table 4) could
be attributed to user interface limitations of the spreadsheet
application used as a base of our research tool, rather than
spreadsheet programming in general.

5.2. User experience

The six scales of the UEQ helped us to measure the “quality
of the experience” dependent variable per study condition.
Upon transforming participant responses to the [-3 (most
negative); þ3 (most positive)] scale, as advised in the official
UEQ Handbook, we calculated the measures of central ten-
dency (mean and median) and the dispersion (standard
deviation and interquartile range) of the user data. The
resulting values are listed in Table 5. Using the standard
interpretation of the scale means (Paramitha et al., 2018),
values between −0.8 and þ0.8 represent a neutral evaluation
and values outside of this range depict a negative and a
positive evaluations, respectively. Hence, our results show
that the WL condition was positively evaluated across all six
scales, while the NL version received a mixed feedback span-
ning across the whole range of values.

As seen in Figure 8, WL tended to score positively higher
than NL in Attractiveness, Efficiency, Stimulation and
Novelty. Moreover, we ran the Wilcoxon signed-rank test on
the data and confirmed that these findings were statistically
significant (see Table 6).

Further comparison of our scale means with the bench-
mark dataset provided in the UEQ Data Analysis Tool
(v.12) showed that the WL version performed noticeably
well across all scales, except for Perspicuity, where its score
was below the average (see Table 7). In contrast, the NL ver-
sion fared badly across all scales, except for Perspicuity and
Dependability, where its scores were below the average of
the benchmark dataset.

Table 5. Measures of central tendency (mean; median) and dispersion (stand-
ard deviation – SD; the interquartile range – IQR) of the six UEQ scales for WL
and NL conditions.

WL NL

Scale Mean SD Median IQR Mean SD Median IQR

Attractiveness 1.53 0.95 1.67 1.50 0.10 1.48 0.42 1.88
Perspicuity 0.88 1.25 0.88 2.00 1.10 1.52 1.50 2.56
Efficiency 1.52 1.13 1.38 1.81 −0.34 1.62 0.00 2.88
Dependability 1.49 0.76 1.62 0.56 0.90 1.44 1.25 2.00
Stimulation 1.76 0.80 2.00 1.12 −0.01 1.35 0.00 1.81
Novelty 1.06 0.96 1.00 1.50 −1.55 1.01 −1.62 1.06

n¼ 24 data points per condition.

Figure 8. Comparison of the UEQ scale medians between WL and NL conditions. Centre lines indicate the medians; boxes indicate the 25th (Q1) and 75th (Q3) per-
centiles; whiskers extend 1.5 times the interquartile range from Q1 and Q3. n¼ 24 sample points per condition.

Table 4. The types of errors made by participants during task completion and
their number.

WL NL

Type Error description T1 T2 Total T1 T2 Total

1 Overfilling of cells using the fill cursor 16 18 34 32 21 53
2 Accidental formula modification 14 4 18 16 14 30
3 Incorrect cell reference 14 12 26 14 11 25
4 Incorrect if-formula 10 0 10 26 9 35

The information is categorized per condition (WL/NL) and per task (T1/T2).
The values in bold represent the total number of errors per condition.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 9

5.3. User preferences

Table 8 presents the distribution of participants for each
statement in our post-activity questionnaire per study condi-
tion (WL/NL). For statements 1 and 2, the number of partici-
pants who chose WL closely matched the number of those
who selected NL. However, it is worth noting that 72.73% of
participants, who chose NL as the easier method of program-
ming in a spreadsheet, were learners. Furthermore, 75% of all
learners felt more confident programming without the use of
lambdas. Perhaps unsurprisingly, 91.67% of learners selected
WL as the more complex option in statement 4.

Nevertheless, programming with lambdas produced better
results and was the preferred method overall, as evidenced
by the number of participants who chose this option in
statements 3 and 5. Additionally, 87.5% of all participants
stated that they would consider using it for their personal
programming projects. Lastly, 23 out of the total of 24 par-
ticipants expressed that using lambdas made their program-
ming experience rewarding.

5.4. Qualitative results

We followed an iterative inductive approach to thematic
analysis, described in Braun and Clarke (2006), to evaluate
participant answers to the interview questions and their
comments made in support of their choices in the post-
activity questionnaire. During the initial coding phase we
identified a total of 290 codes (labels to describe the content
of a passage of text) in the transcripts. Next, we carried out
multiple rounds of reviewing the codes and grouping them
into possible themes. As a result of the final refinement
phase, we developed two main themes and nine correspond-

ing sub-themes, which are illustrated in Figure 9. We found
that when describing their experiences and comparing the
two implementation methods (with and without the use of
lambdas), participants approached it either from a subjective
emotional point of view or a pragmatic outlook on the
importance of efficiency in programming. In the following
sections we define each theme and present verbatim quotes
from the participants (P01-P12: learners [L]; P13-P24: expe-
rienced programmers [E]) in support of the sub-themes.

5.4.1. Theme: Hedonic value of programming
Overall, participants found the experience of programming
with lambdas to be rewarding. Interestingly, learners tended
to attribute that to a sense of accomplishment, resulting
from learning something new and successfully applying that
knowledge; while experienced programmers identified the
efficiency of programming with lambdas to be the most
enjoyable aspect.

For instance, when asked to explain their choice of lambda
in statement 7 (“My experience was rewarding”) of the post-
activity questionnaire, participants gave the following answers:

� “because I just learned it, so … it felt great when I made
it” (P07jL).

� “because I felt I had gained knowledge on the lambda. It
was not something I experienced before” (P12jL).

� “of course lambda because it is … clear, neat, and clever
way to solve the problem” (P18jE).

Table 8. Participant distribution for every statement in our custom-designed
post-activity questionnaire.

WL NL

Statement R L E R L E

1 It was easier to program using 13 4 9 11 8 3
2 I felt more confident using 11 3 8 13 9 4
3 The best results were produced by 19 9 10 5 3 2
4 I found it more complex 15 11 4 9 1 8
5 I preferred to program in 21 9 12 3 3 0
6 I could imagine using it for my personal

programming projects
21 9 12 3 3 0

7 My experience was rewarding 23 11 12 1 1 0

“R” – the total number of participants who chose a given condition (WL/NL).
“L” – learner; “E” – experienced.

The values in bold represent the total number of participant votes per state-
ment per condition.

Table 6. The Wilcoxon signed-rank test to compare WL and NL conditions
based on the six UEQ scales.

Scale Statistic, xs z-value p value Interpretation

Attractiveness 31.5 −3.39 .001 Significant difference
Perspicuity 129.5 −0.59 .558 No significant difference
Efficiency 27.0 −3.23 .001 Significant difference
Dependability 83.0 −1.68 .094 No significant difference
Stimulation 10.5 −3.99 <.001 Significant difference
Novelty 0.0 −4.20 <.001 Significant difference

Significance level a ¼ :05:
The values in bold represent the statistically significant differences in scales.

Table 7. Comparison of the scale means in our study to the UEQ benchmark dataset.

Scale Mean Comparison Interpretation

WL
Attractiveness 1.53 Above average 25% of results are better, 50% of results are worse
Perspicuity 0.88 Below average 50% of results are better, 25% of results are worse
Efficiency 1.52 Good 10% of results are better, 75% of results are worse
Dependability 1.49 Good 10% of results are better, 75% of results are worse
Stimulation 1.76 Excellent In the range of the 10% best results
Novelty 1.06 Above average 25% of results are better, 50% of results are worse

NL
Attractiveness 0.10 Bad In the range of the 25% worst results
Perspicuity 1.10 Below average 50% of results are better, 25% of results are worse
Efficiency −0.34 Bad In the range of the 25% worst results
Dependability 0.90 Below average 50% of results are better, 25% of results are worse
Stimulation −0.01 Bad In the range of the 25% worst results
Novelty −1.55 Bad In the range of the 25% worst results

10 A. KUDEBAYEVA ET AL.

On the other hand, when expressing their feelings about
using the conventional NL method, participants often
described it as uninspiring and tedious:

� “If I had to program in spreadsheets for my personal
programming, I think I’d definitely use lambdas. I think
it’d be like hell using the first method [no-lambda] to do
anything productive” (P09jL).

� “I think the first one [no-lambda] … it’s the simplest
way to do it, but on the other hand, it is more boring
and exhausting” (P22jE).

When it comes to the visual presentation of the two
methods, participants found that lambdas were helpful for
organizing the grid space and resulted in a clear layout:

� “I could very easily visually see what’s happening … the
user can just see which is inputs, which is … the logic,
and then you get the output, which is very useful”
(P08jL).

� “It [lambda] will help me … remove clutter … I really
like to be … cleanly when I work” (P10jL).

� “I like the way you put colors in lambdas, and then you
have other colors in the cells that are being used … it
looks great” (P19jE).

Through our analysis we found that familiarity with the
conventional NL method gave rise to a sense of comfort and
security in participants while programming:

� “I felt like I’m in a familiar territory when I do the if-
statement [no-lambda] like … it’s a normal day of
coding” (P02jL).

� “I’d say that the first method [no-lambda] is more prag-
matic like … if you have to get the job done – I think
it’s a better way, maybe” (P09jL).

� “I felt more confident using no-lambda … I know I do
an exhausting way, but I know that it was correct”
(P22jE).

5.4.2. Theme: Utilitarian value of programming
5.4.2.1. Learnability and comprehension. The consensus
among most participants was that lambdas were a complex
concept to grasp. Many learners stated that the structure of
the lambda definition formula was confusing and learning
how to write it correctly was not straightforward. On the
other hand, experienced participants tended to look beyond
the initial learning curve and evaluate lambdas as an
improvement over the NL approach due to their aid in pro-
gram comprehension, particularly when it comes to review-
ing another person’s code. Additionally, we found that
familiarity with a method affected its perceived complexity.
Thus, learners often found the NL method easier to under-
stand because they had previous knowledge of using if-state-
ments in other programming languages; whereas
experienced programmers tended to appreciate the func-
tional abstractions more due to it being a staple approach in
the industry of software development.

� “It [lambda] is easy once you get the hang of it but in
the beginning it is a bit confusing” (P01jL).

� “It’s [the lambda method] harder to learn if you haven’t
made this but easier to maintain” (P19jE).

� “The first one [lambda] is superior, but it’s more com-
plex and difficult to master. But once you get the grasp,
it makes the work easy” (P23jE).

5.4.2.2. Readability. One of the most mentioned characteris-
tics when comparing the two methods was readability.
However, it is interesting to note that this aspect of pro-
gramming was primarily discussed by experienced pro-
grammers. Based on their comments, readability of code is
important when you need to modify or debug a program,
especially when you are not the author of said program.
Most experienced programmers in our study and some
learners agreed that programming with lambdas produced a
clear and organized solution. When it comes to the NL
method, participants often mentioned having difficulty navi-
gating logical elements within nested if-formulas. In fact,

Figure 9. A concept map of the themes (ellipses) and sub-themes (rectangles) developed through thematic analysis of the participant comments.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 11

only 3 out of the 24 participants in our study utilized a
nested approach when solving the tasks in NL, while the
majority resorted to breaking their solutions down into mul-
tiple steps, each requiring a separate column.

� “I think in readability of the code … lambda is less
complex … it’s easier to have a global view” (P03jL).

� “I think it’s easy to go back and read the statement
again, because this one [lambda] is just more concise
and short. So, it’s easy to gain back focus again after you
lose some time over a shortcut” (P14jE).

� “While declaring functions, my spreadsheet is very clean,
readable. I know where something is, if I want to …
check something or … correct some mistake in the
function” (P18jE).

5.4.2.3. Modularity. We found that modular design of a
program was considered more valuable the more program-
ming experience the participant had. A number of experi-
enced programmers commended the lambda approach for
the flexibility that it offers when combining basic elements
to compose a complex program. Given that very few learn-
ers discussed this aspect, it appears that breaking a problem
down into individual pieces of functionality requires
practice.

� “Without lambdas you are gonna end up with tons of
columns you gotta hide, or some big, unwieldy formula
that nobody is going to be able to discern and make a
change to if needed … I thought it was easier to do the
lambdas cause I could break it down into smaller
chunks” (P17jE).

� “I preferred to program in lambda, and this is because I
really liked the fact that it felt very much like program-
ming, like calling functions and everything, and I like the
modularity that it offered” (P20jE).

� “I think that it [lambda] is a good method to split the
problem in little parts and link it again when you need
the final solution” (P21jE).

Furthermore, many learners stated that their choice of
the implementation method would depend on the complex-
ity of the problem at hand. One common reasoning was
that lambdas required more effort to implement, thus they
would be more appropriate and worthwhile to use when the
task was more complex.

� “I think the most important comparison we could say is
that one [NL] is a naive approach of how to solve this
issue and the other one [WL] is more, I would say,
sophisticated in a way … Sometimes it’s overpowered to
use lambda functions … But I would say, when you
start to have more complicated patterns … lambda func-
tions can give you a more clear view of the overall proj-
ect” (P03jL).

� “I would personally do it without lambdas … maybe in
a more difficult and complex environment, I would
maybe try to use the lambda” (P05jL).

� “Once you start implementing additional logic where it
gets complex, then [NL] starts to be a bigger issue than
solving the issue – like the task itself. So that’s when the
lambdas shine” (P08jL).

5.4.2.4. Reusability. Both learner and experienced pro-
grammers acknowledged the benefit of high reusability of
lambdas in a spreadsheet. The two main ideas brought forth
by the participants were: (1) reusing functions reduces the
probability of errors in the code; (2) reusing functions
reduces the overall development time. A few participants
also noted the advantage of automatic propagation of
changes due to functions being reused in the WL method as
opposed to the necessity of manual modifications of formu-
las in the NL version.

� “When I used the lambda expressions for the first time, I
felt like it’s kind of like a waste of time. But actually, I
think over time, if you need to use a lot of them, it’s
probably gonna be better because you’re reusing the
statements you already wrote and just changing the
parameters” (P11jL).

� “If you used lambda, and you used the same function in
a few places, you can change that one function, and it’s
just changed everywhere” (P17jE).

� “If there’s something that already works, you can just
keep using it [lambda] rather than trying to re-imple-
ment it and having the risk of making a mistake … I
know that once one thing works, it’s going to work the
same way again” (P20jE).

� “Once you create a lambda function, you can reuse it
again and again. That saves a lot of time” (P24jE).

5.4.2.5. Errors and debugging. As discussed in the literature,
spreadsheet errors are notoriously difficult to spot and fix.
Perhaps the most troubling are errors resulting from refer-
encing incorrect cells, since they may not generate any error
messages and go unnoticed. This is something the partici-
pants in our study observed while completing the tasks.
While neither of the methods directly addressed this issue,
the use of lambdas enabled a unit testing approach. Thus,
participants confirmed that their lambdas were correct
before combining them to solve the final Boolean equation.
They stated that it gave them confidence in finding an
incorrect reference, since it significantly narrowed down the
possible location of a bug.

� “It’s less probable to make a mistake because you don’t
have to change cells, you just type one function [lambda]
and use it in other cells, just like in programming
languages” (P04jL).

� “The if-expressions were too clustered in one line … so
that was the difficult part to find the syntax errors …
The lambda method could help in that situation”
(P06jL).

� “I think debugging is going to be way easier on lambda,
because if you have one function that misbehaves, you
know exactly where it was defined … [with NL] it’s very

12 A. KUDEBAYEVA ET AL.

tempting to copy your formula out of the spreadsheet
and put it in a text editor, to try and … well, type it up
properly so that you can see the nesting … I think that
defeats the aim if you have to use a tool to use a tool”
(P20jE).

5.4.2.6. Development speed. Perhaps the most discussed cri-
teria for choosing one method over the other was the speed
of development. This aspect was important to both learners
and experienced programmers. Here the consensus was that
even though lambdas took longer to set up, they ultimately
saved time in subsequent applications. As some participants
stated, while it may have been quicker to implement the NL
solution for a simple task, it did not scale well with the
complexity of a task and resulted in a lot of wasted time
spent copying and pasting parts of a solution in subsequent
tasks.

� “I know if I feel comfortable with lambda next time
when I use it, I would prefer lambda because it is
more … fast” (P12jL).

� “It was a pretty interesting challenge here … very cre-
ative. And this functionality [lambda] is actually very
time-saving” (P14jE).

� “I think with some more time I would properly create
my lambda functions and arrange them in a meaningful
way, so that I could use and reuse them quite fast”
(P16jE).

� “With the nested IFs [NL] definitely I would spend more
time when I, for example, have to do like 10 of these
tasks” (P17jE).

6. Discussion

The main goal of this study was to evaluate the effect of
adding functional abstractions in the form of sheet-defined
lambdas to a spreadsheet. Having applied a within-subjects
design to compare the experience of writing standard for-
mulas to composing custom functions, we found that the
latter not only improves the efficiency of programming in a
spreadsheet, but also evokes positive feelings in participants.
For instance, a sense of fulfilment as a result of using a
novel method and curiosity about possible use cases of
lambda. Furthermore, we were able to gain insight into the
needs of learner and experienced programmers.

Our findings indicate that the initial learning curve of
lambdas affected the completion times of the first program-
ming task, as well as the resulting perception of the lambda
method difficulty in comparison to the conventional formula
approach. This statement is supported by the longer periods
of time that participants spent completing the first task and
the lower mean score given to the lambda method by the
participants on the Perspicuity scale of the User Experience
Questionnaire. Furthermore, based on the responses to the
post-activity questionnaire, we found that primarily learner
programmers evaluated the lambda method as more com-
plex overall and more difficult to implement. However, as
indicated by the interview responses and the higher mean

score on the Efficiency scale of the UEQ, with additional
training, using lambdas could become the preferred method
for complex projects. Many participants noted that reusabil-
ity of lambdas reduces the development time and the prob-
ability of making an error. These qualitative observations are
further supported by the shorter completion time of the
second programming task and the substantially lower num-
ber of errors due to logical mistakes when using lambdas
compared to the conventional formula approach.

In the following subsections we discuss the quantitative
and the qualitative results in more detail, as well as reflect
on the limitations and future work.

6.1. Usability of lambdas in a spreadsheet

As reported in Section 5, the number of participants who
successfully completed every task without the use of lambda
was slightly higher than those who succeeded in using the
lambda method. Additionally, the participants completed the
first task faster under the no-lambda condition. However,
we speculate that these results are due to the novelty of the
lambda method compared to the standard use of if-state-
ments in NL. It is possible that the initial learning curve
and the lack of extensive practice with lambdas affected how
well the participants performed in the tasks and how long it
took them. We suggest that the increase in proficiency after
using lambdas for a longer period of time might result in a
higher success rate and a reduced task completion time.

Our second hypothesis (H2) stated that the programming
expertise affects task completion time. While we did notice a
very weak negative association between those variables, the
result of the correlation analysis showed that it was not stat-
istically significant; hence, we reject H2. It is possible that a
larger sample size with a well-balanced range of experience
levels will demonstrate the statistical significance of this
observation.

When it comes to the types of errors made and their
number, we found that neither of the methods has improved
the problem of referencing incorrect cells. Perhaps imple-
menting the functionality of naming lambdas could reduce
the number of these instances in relation to calling user-
defined functions. On the other hand, our results showed
that participants made fewer logical errors when implement-
ing the first task using lambdas and no mistakes were made
in the second task. It is likely that participants made fewer
mistakes in the first task because the use of lambda enabled
them to break their solution down into manageable compo-
nents and test those individually. Also, reusability of lamb-
das meant that they did not need to write any logical
formulas again.

6.2. Lambdas enrich spreadsheet programming

The evaluation of the qualitative data generated by the ques-
tionnaires and the interview revealed that the majority of
participants in our study preferred to program using sheet-
defined lambdas. Participants found the lambda method to
be user-friendly and enjoyable. They often mentioned that

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 13

learning to use lambda was novel and provided a rewarding
experience. We believe that the hedonic value of this experi-
ence could play an important role in stimulating the interest
of learners in learning to program using a spreadsheet.
However, another study focusing on the aspect of learning
and teaching to program using a spreadsheet needs to be
conducted to confirm or disprove this theory.

The main difference between learner and experienced
programmers surfaced in their evaluation of the utilitarian
value of using lambdas, which answers Q2 (see Section 4).
Despite seeing the value in reusability and speed of develop-
ment with lambdas, learners tended to favor the conven-
tional method (NL) because of its ease and familiarity. On
the contrary, experienced programmers acknowledged the
improvements in readability and debugging of a spreadsheet
program that used sheet-defined lambdas due to its modular
design. Furthermore, experienced programmers relied on
their coding experience to achieve faster development speed
when using lambdas due to their reusability.

Having assessed the qualitative results of our study, we
can accept the first hypothesis (H1) that states that the
experience of programming in a spreadsheet varies depend-
ing on the implementation method used. Furthermore, we
conclude that lambdas positively affect the performance and
experience of programming in a spreadsheet, which answers
Q1 (see Section 4).

6.3. Limitations and future work

As a consequence of the COVID-19 pandemic, our study
was carried out in an online format with participants
recruited through Prolific. Despite the high total number of
participants available through the platform, it was difficult
to find a sample that perfectly fit the notion of novice and
expert programmers. Thus, we ended up with some partici-
pants whose expertise could be described as intermediate in
both categories. Hence, the results of this study may differ if
reproduced with true novices, who possess a limited know-
ledge of programming. A future study6 with a more rigorous
pre-screening process to evaluate participant programming
expertise could address this limitation.

Another limitation is that our experiment was carried out
in a condensed time period. Many participants indicated
that a longer training session with lambdas would have
improved their performance in the task completion phase.
Despite their confirmation of readiness to undertake the
tasks, it is possible that some participants needed more time
to understand and learn to use lambdas. We think this limi-
tation can be overcome by running a future longitudinal
study, whereby participants are given the opportunity to
practice implementing spreadsheet programs using sheet-
defined lambdas without strict time constraints.

In terms of technical limitations, a prominent constraint
of the current version of sheet-defined functional abstrac-
tions that confines their scope is the inability to use them
across multiple workbooks. It is possible to overcome this
limitation in future iterations of Lattice by implementing a
system akin to packages in conventional programming

ecosystems, whereby the user may share their custom lamb-
das as a reusable module that may be imported across
workbooks.

7. Conclusion

In this paper, we presented the results of a within-subjects
study exploring the experience of programming in a spread-
sheet using sheet-defined lambda abstractions. We analyzed
and compared two implementation methods (with and with-
out the use of lambdas) through various usability and user
experience measurements. Overall, we found that sheet-
defined lambda abstractions improve the usability of a
spreadsheet for programming multi-dimensional concepts.
Despite having a steeper learning curve than the conven-
tional approach, programs implemented with the use of
lambdas had an organized visual layout that improved their
readability and debugging. Additionally, reusability of lamb-
das made implementing successive tasks much quicker and
more straightforward. Participants in our study reported
experiencing a sense of accomplishment and excitement
after completing the tasks using lambdas. Lastly, we found
that the main difference between learner and experienced
programmers was in their evaluation of the perceived diffi-
culty and learnability of lambdas. Hence, in our future stud-
ies we would like to concentrate on examining how
functional abstractions affect program comprehension in
programmers of various levels of expertise.

Notes

1. https://developers.google.com/apps-script/guides/sheets/
functions

2. https://lattice-lang.github.io/
3. https://github.com/marzsocks/ipgrid
4. https://www.prolific.com/
5. https://www.ueq-online.org/
6. At the time of the publication of this paper follow-up

studies have not yet been conducted.

Ethical approval

This study was approved by the Electronic Engineering and
Computer Science Devolved School Research Ethics Committee at
Queen Mary University of London (reference number:
QMERC20.565.DSEECS22.130).

Disclosure statement

The authors hereby certify that, to the best of their knowledge, there
are no conflicts of interest to disclose.

Funding

This study is a part of the PhD research carried out by the first author.
The PhD research is funded by Queen Mary University of London and
supported by EPSRC and AHRC Centre for Doctoral Training in
Media and Arts Technology under Grant EP/L01632X/1.

14 A. KUDEBAYEVA ET AL.

References

Abraham, R., Burnett, M., & Erwig, M. (2009). Spreadsheet program-
ming. In Wiley Encyclopedia of computer science and engineering
(pp. 2804–2810). John Wiley & Sons. https://doi.org/10.1002/
9780470050118.ecse415

Bock, A. A., Bøgholm, T., Sestoft, P., Thomsen, B., & Thomsen, L. L.
(2020). On the semantics for spreadsheets with sheet defined func-
tions. Journal of Computer Languages, 57, 100960. https://doi.org/10.
1016/j.cola.2020.100960

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology.
Qualitative Research in Psychology, 3(2), 77–101. https://doi.org/10.
1191/1478088706qp063oa

Brown, P. S., & Gould, J. D. (1987). An experimental study of people
creating spreadsheets. ACM Transactions on Information Systems,
5(3), 258–272. https://doi.org/10.1145/27641.28058

Burnett, M., Atwood, J. O. H. N., Walpole Djang, R., Reichwein, J.,
Gottfried, H., & Yang, S. (2001). Forms/3: A first-order visual lan-
guage to explore the boundaries of the spreadsheet paradigm.
Journal of Functional Programming, 11(2), 155–206. https://doi.org/
10.1017/S0956796800003828

De Hoon, W. A. C. A. J., Rutten, L. M. W. J., & van Eekelen, M. C. J.
D. (1995). Implementing a functional spreadsheet in Clean. Journal
of Functional Programming, 5(3), 383–414. https://doi.org/10.1017/
S0956796800001404

D�ıaz-Oreiro, I., L�opez, G., Quesada, L., & Guerrero, L. A. (2019).
Standardized questionnaires for user experience evaluation: A system-
atic literature review [Paper presentation]. Proceedings 31.1 (2019).
https://doi.org/10.3390/proceedings2019031014

Dolnicar, S., Gr€un, B., & Leisch, F. (2011). Quick, simple and reliable:
Forced binary survey questions. International Journal of Market
Research, 53(2), 231–252. https://doi.org/10.2501/IJMR-53-2-231-252

Dolnicar, S., & Leisch, F. (2012). One legacy of Mazanec: Binary ques-
tions are a simple, stable and valid measure of evaluative beliefs.
International Journal of Culture, Tourism and Hospitality Research,
6(4), 316–325. https://doi.org/10.1108/17506181211265059

Gulwani, S., & Marron, M. (2014). NLyze: Interactive programming by nat-
ural language for spreadsheet data analysis and manipulation for
Computing Machinery, 2014 [Paper presentation]. Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data
(pp. 803–814), New York. https://doi.org/10.1145/2588555.2612177

Hassenzahl, M., Burmester, M., & Koller, F. (2003). AttrakDiff: Ein
Fragebogen zur Messung wahrgenommener hedonischer und prag-
matischer Qualit€at. In Mensch & Computer 2003: Interaktion in
Bewegung (pp. 187–196). ViewegþTeubner Verlag.

Hermans, F., Pinzger, M., & van Deursen, A. (2015). Detecting and refac-
toring code smells in spreadsheet formulas. Empirical Software
Engineering, 20(2), 549–575. https://doi.org/10.1007/s10664-013-9296-2

Hermans, F., Jansen, B., Roy, S., Aivaloglou, E., Swidan, A., & Hoepelman,
D. (2016). Spreadsheets are code: An overview of software engineering
approaches applied to spreadsheets [Paper presentation]. 2016 IEEE 23rd

International Conference on Software Analysis, Evolution, and
Reengineering (SANER) (Vol. 5. pp. 56–65). https://doi.org/10.1109/
SANER.2016.86

Hermans, F., Pinzger, M., & van Deursen, A. (2012). Detecting and vis-
ualizing inter-worksheet smells in spreadsheets [Paper presentation].
34th International Conference on Software Engineering (ICSE) (pp.
441–451). https://doi.org/10.1109/ICSE.2012.6227171

Howe, H., & Simkin, M. G. (2006). Factors affecting the ability to
detect spreadsheet errors. Decision Sciences Journal of Innovative
Education, 4(1), 101–122. https://doi.org/10.1111/j.1540-4609.2006.
00104.x

Jansen, B., & Hermans, F. (2019). XLBlocks: A block-based formula.
Editor for spreadsheet formulas [Paper presentation]. 2019 IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) (pp. 55–63). https://doi.org/10.1109/VLHCC.2019.8818748

Janvrin, D., & Morrison, J. (1996). Factors influencing risks and out
comes in end-user development [Paper presentation]. Proceedings of
HICSS-29: 29th Hawaii International Conference on System

Sciences (Vol. 2. pp. 346–355). https://doi.org/10.1109/HICSS.1996.
495418

Jim�enez-Hern�andez, E. M., Oktaba, H., D�ıaz-Barriga, F., & Piattini, M.
(2020). Using web-based gamified software to learn Boolean algebra
simplification in a blended learning setting. Computer Applications
in Engineering Education, 28(6), 1591–1611. https://doi.org/10.1002/
cae.22335

Jones, S. P., Blackwell, A., & Burnett, M. (2003). A user-centred
approach to functions in Excel. ACM SIGPLAN Notices, 38(9), 165–
176. https://doi.org/10.1145/944746.944721

Mittermeir, R., & Clermont, M. (2002). Finding high-level structures in
spreadsheet programs [Paper presentation]. Ninth Working
Conference on Reverse Engineering (pp. 221–232). https://doi.org/
10.1109/WCRE.2002.1173080

Myers, B. A., Ko, A. J., LaToza, T. D., & Yoon, Y. (2016).
Programmers are users too: Human-centered methods for improv-
ing programming tools. Computer, 49(7), 44–52. https://doi.org/10.
1109/MC.2016.200

Panko, R. R. (1998). What we know about spreadsheet errors. Journal
of Organizational and End User Computing, 10(2), 15–21. https://
doi.org/10.4018/joeuc.1998040102

Paramitha, A. A. I. I., Dantes, G. R., & Indrawan, G. (2018). The evalu-
ation of web based academic progress information system using heur-
istic evaluation and user experience questionnaire (UEQ) [Paper
presentation]. 2018 Third International Conference on Informatics
and Computing (ICIC) (pp. 1–6). IEEE. https://doi.org/10.1109/IAC.
2018.8780430

Peter Sestoft. (2014). Sheet-defined functions. In Spreadsheet implemen-
tation technology: Basics and extensions (pp. 127–150). MIT Press.

Powell, S. G., Baker, K. R., & Lawson, B. (2009). Errors in operational
spread sheets: A review of the state of the art [Paper presentation].
2009 42nd Hawaii International Conference on System Sciences (pp.
1–8). https://doi.org/10.1109/HICSS.2009.197

Ristov, S., Jovanov, M., Gusev, M., & Mihova, M. (2016). Curriculum
reorganization and courses’ collaboration in computer science [Paper
presentation]. 2016 IEEE Global Engineering Education Conference
(EDUCON) (pp. 349–354). https://doi.org/10.1109/EDUCON.2016.
7474577

Rogers, Y., Sharp, H., & Preece, J. (2023). Interaction sesign: Beyond
human-computer interaction. Wiley.

Sarkar, A., Borghouts, J. W., Iyer, A., Khullar, S., Canton, C., Hermans,
F., & Williams, J. (2020). Spreadsheet use and programming experi-
ence: An exploratory survey [Paper presentation]. Chi EA’20 (pp. 1–
9), Honolulu, HI, USA. https://doi.org/10.1145/3334480.3382807

Sarkar, A., Gordon, A. D., Jones, S. P., & Toronto, N. (2018).
Calculation View: Multiple-representation editing in spreadsheets
[Paper presentation].2018 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC) (pp. 85–93). https://doi.
org/10.1109/VLHCC.2018.8506584

Sarkar, A., Ragavan, S. S., Williams, J., & Gordon, A. D. (2022). End-
user encounters with lambda abstraction in spreadsheets: Apollo’s
bow or Achilles’ heel? [Paper presentation]. 2022 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC)
(pp. 1–11). https://doi.org/10.1109/VL/HCC53370.2022.9833131

Sauro, J., & Lewis, J. (2010). Average task times in usability tests: What
to report? [Paper presentation]. Conference on Human Factors in
Computing Systems (pp. 2347–2350). https://doi.org/10.1145/
1753326.1753679

Schrepp, M. (2015). “User experience questionnaire handbook”. https://
doi.org/10.13140/RG.2.1.2815.0245

Schrepp, M., Thomaschewski, J., & Hinderks, A. (2017). Construction
of a benchmark for the user experience questionnaire (UEQ).
International Journal of Interactive Multimedia and Artificial
Intelligence, 4(4), 40–44. https://doi.org/10.9781/ijimai.2017.445

Teo, T. S. H., & Tan, M. (1997). Quantitative and qualitative errors in
spreadsheet development [Paper presentation]. Proceedings of the
Thirtieth Hawaii International Conference on System Sciences (Vol.
3, pp. 149–155). IEEE. https://doi.org/10.1109/HICSS.1997.661583

Thorne, S., Ball, D., & Lawson, Z. (2013). Reducing error in spread-
sheets: Example driven modeling versus traditional programming.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 15

International Journal of Human–Computer Interaction, 29(1), 40–53.
https://doi.org/10.1080/10447318.2012.677744

Walter, T., Marques, L. C., Redmiles, D., de Oliveira, E. H., & Conte,
T. (2023). Investigating the influence of different factors on the UX
evaluation of a mobile application. International Journal of Human–
Computer Interaction, 39(20), 3948–3968. https://doi.org/10.1080/
10447318.2022.2108658

Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook,
C., & Rothermel, G. (2003). Harnessing curiosity to increase correct-
ness in end-user programming [Paper presentation]. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems. Association for Computing Machinery (pp. 305–312).
https://doi.org/10.1145/642611.642665

About the authors

Anel Kudebayeva is a PhD candidate at the Department of Computer
Science, Queen Mary University of London. Her research interests lie
in the area of human-centered computing. Her current work focuses
on the intersection of HCI and computer programming, in particular
improving the spreadsheet paradigm for programming education.

Christopher Harte is an engineering leader with interests in a number
of different research areas including HCI, music theory and perception,
music information retrieval and signal processing. He is currently a vis-
iting lecturer at Queen Mary University of London.

Nick Bryan-Kinns is Professor of Creative Computing at the University
of the Arts London. He is Fellow of the Royal Society of Arts and the
British Computer Society, and Senior Member of the Association of
Computing Machinery. He researches explainable AI, AI music, inter-
action design, interactive art, and cross-cultural design.

Tony Stockman is a lecturer and researcher at Queen Mary University
of London. With over 100 peer-reviewed HCI publications, he is a for-
mer president and now emeritus Board member of the International
Community for Auditory displays (ICAD). He has served on organiz-
ing committees of numerous international HCI conferences.

Appendix A. User experience questionnaire

This version was obtained from the official website: https://www.ueq-
online.org/.

Figure A1. A 26-item UEQ in English.

16 A. KUDEBAYEVA ET AL.

Appendix B. Post-activity questionnaire

Figure A2. The assumed scale structure of the User Experience Questionnaire (Schrepp, 2015).

Statement WL NL

1 It was easier to program using w w

2 I felt more confident using w w

3 The best results were produced by w w

4 I found it more complex w w

5 I preferred to program in w w

6 I could imagine using it for my personal programming projects w w

7 My experience was rewarding w w

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 17

	To Abstract or Not to Abstract? A Comparative Study Evaluating the User Experience of Spreadsheet Programming with Sheet-Defined Functional Abstractions
	Abstract
	Introduction
	Related work
	Spreadsheet programming
	User studies of spreadsheets

	Sheet-defined functional abstractions
	Methods
	Study design
	Variables
	Apparatus

	Participants
	Procedure
	Tasks

	Data collection

	Results
	Task completion
	User experience
	User preferences
	Qualitative results
	Theme: Hedonic value of programming
	Theme: Utilitarian value of programming
	Learnability and comprehension
	Readability
	Modularity
	Reusability
	Errors and debugging
	Development speed

	Discussion
	Usability of lambdas in a spreadsheet
	Lambdas enrich spreadsheet programming
	Limitations and future work

	Conclusion
	Ethical approval
	Disclosure statement
	Funding
	References

