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Chapter 11
Building Simulations with Generative 
Arti"cial Intelligence

Jon McCormack and Mick Grierson

Abstract In this chapter, we explore the possibilities of generative arti!cial intel-
ligence (AI) technologies for building realistic simulations of real-world scenarios, 
such as preparedness for extreme climate events. Our focus is on immersive simula-
tion and narrative rather than scienti!c simulation for modelling and prediction. 
Such simulations allow us to experience the impact and effect of dangerous sce-
narios in relative safety, allowing for planning and preparedness in critical situations 
before they occur. We examine the current state of the art in generative AI models 
and look at what future advancements will be necessary to develop realistic 
simulations.

Keywords Augmented reality · Diffusion models · Generative arti!cial 
intelligence · Immersion · Machine learning · Simulation · Virtual reality · 
Visualisation

11.1  Introduction: A Scenario

It is mid-summer in a small rural town in eastern Australia. You are standing on the 
spacious wooden veranda of your beautiful home, surveying an expansive vista of 
wild "ora nestled in the valley formed by two distant mountains. It is a clear, sunny 
day. You feel a hot, dry, gusty wind on your face. All around you, the landscape is 
parched—heavy rains earlier in the year allowed the surrounding landscape to 
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blossom, and it !lled with tall grasses and a rich variety of tinder. But a few months 
ago, the rains gave way to continuous weeks of well-above-average temperatures. 
Rain has not fallen in months, and now everything is a faded hue of off-yellow and 
completely dry.

As you turn to go inside, you hear a far-off roar that sounds like the rumble of 
thunder. The sound seems to be getting louder. As the wind picks up, you notice an 
orange glow on the horizon. Within the space of just a few minutes, it becomes quite 
clear that a massive bush!re is bearing down on you. Thousands of tiny burning 
embers are blowing around you, mixed with an acrid, grey smoke that chokes the 
atmosphere, soon making it dif!cult to see more than a few metres in any direction. 
The pleasant blue sky has quickly turned pitch black, creating an eerie sense of 
disquiet.

As the wall of super-heated "ames—a minute ago just a pretty deep orange glow 
in the distance—are now closing in on you and your property at over 100 km/hour, 
you have just a few seconds left before the wall of !re will consume you. You see 
several animals running just ahead of the !re front, but less than a second later, they 
are swallowed by the !re and disappear. A sense of panic and dread kicks in as it 
feels as though the blood is draining from your body. You rush out to the back of the 
property to locate the large steel door that leads down to an emergency !re bunker. 
You pull the vegetation that has grown around the door away as the roar becomes 
unimaginably loud; the thick black smoke has turned day into the darkest night. You 
scramble to get into the bunker, pulling the heavy steel door shut, just as an enor-
mous wave of !re engulfs your home and land. You sit inside the dark bunker, the 
intense roar of the !re still audible, and a wave of super-heat can be felt above. You 
notice your heart is racing and pounding against the wall of your chest. You take 
deep breaths, telling yourself to stay calm while trying to convince yourself that you 
will survive.

A few moments later, the attendant removes the virtual reality headset and 
bodysuit you were wearing, letting you know that “the simulation is over”, reassur-
ing you that “you are safe now and there’s nothing to worry about”. You suspect that 
you must look very frightened and distressed as you are asked if you need a few 
minutes to take in what you have just experienced, before completing your disaster 
readiness training and heading back home. You are in your town’s local community 
hall, and it is only a short drive back to your property—the same one that you just 
experienced burning to the ground with a realism so visceral you are now sweating 
profusely and in a mild state of shock. This is not an experience you will 
quickly forget.

11.1.1  Building Simulations

While the scenario just presented is currently largely in the realm of speculative !c-
tion, the technology to produce such a simulation has made rapid advances over the 
last few years, suggesting that it may shift from speculation to practical realisation 
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in the next decade. Further, in addition to being able to provide virtual reality (VR) 
simulations of familiar environments for training purposes, it is potentially possible 
that such experiences could even be simulated with generative AI using augmented 
reality (AR) in situ. Currently, however, building realistic simulations for immersive 
technologies—such as VR and AR—is a complex and time-consuming process.

Three-dimensional (3D) simulations usually begin with modelling the geometry 
and textures of every object that will appear in the simulation. Despite advances in 
3D modelling techniques and the wide availability of existing models online, this is 
a highly specialised and time-consuming task. Beyond the modelling of physical 
form, a simulation also needs to model behaviour. For the simulation to be realistic, 
that behaviour must be accurate to reality or at least be plausible to reality. Lastly, 
for the simulation to be immersive, it must provoke a strong sense of presence, con-
vincing any participants that what is happening is “real”. This typically involves 
high-!delity images, sound, haptics, kinaesthetics and beyond.

Our speculative scenario made use of sensory experience beyond mere visual 
simulation, incorporating sound, proprioception, kinaesthetic, haptic and even 
olfactory simulation (e.g. the smell of smoke). Not all of these sensory modalities 
are currently well synthesised by AI, and a heavy commercial focus on visual and 
audio synthesis currently dominates the well-known foundational AI models 
(Bommasani et al., 2021).

11.2  Simulation of Extreme Event Scenarios

In this section, we look at the current state of the art in generative AI and how it 
might be usefully purposed for immersive simulation.

As we noted elsewhere, “over the last decade, a [number] of innovations in gen-
erative machine learning (ML) models have allowed the generation of photo- 
realistic images of [nonexistent] people (Karras et al., 2018), coherent paragraphs of 
text (Vaswani et al., 2017), conversion of text directly to [runnable] computer code 
and, [more] recently, from text descriptions to images (Ramesh et al., 2022), video 
(Singer et al., 2022; Blattmann et al., 2024), and 3D models (Gao et al., 2022)” 
(McCormack et al., 2023). Neural radiance !elds (NeRFs) (Mildenhall et al., 2020) 
can synthesise 3D scenes from novel viewpoints using sparse 2D images as input 
and guided by text descriptions (Zhang et al., 2023). Tools such as these are already 
being offered to creators through platforms such as NVIDA’s Open USD-based 
Omniverse.

These tools are increasingly used in audio-visual production, combining a range 
of generative AI techniques, including diffusion models (Yang et al., 2023), special-
ised generative adversarial networks (Iglesias et al., 2023), autoencoders and image- 
to- image systems (Wang et al., 2018). Initially popular for their potential for still 
image generation, they have more recently become surprisingly usable for video 
and 3D scene generation. As noted elsewhere, “systems such as DALL-E 2, 
MidJourney and Stable Diffusion allow the generation of detailed and complex 
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imagery from short text descriptions. These text-to-image (TTI) systems allow any-
one to write a brief description [(a ‘prompt’)] and have the system respond with a 
series of images that depict the scene described in the text, typically within 5 [to 30] 
seconds” (McCormack et al., 2023). More recently, diffusion model-based text-to- 
image systems have demonstrated rapid advances in both quality and popularity. At 
the time of writing, these systems can produce high-quality imagery as fast as a 
person can type in a prompt (Stability.ai, 2023). They can also facilitate image edit-
ing and manipulation.

As my team noted, “the obvious source of these systems’ popularity is that they 
offer something new: being able to generate an image, [video sequence or 3D ren-
der] just by describing it, without having to go to the trouble of learning a skill—
such as [illustration,] painting, photography, [cinematography or 3D modelling]—to 
actually make it. And importantly, the quality and complexity of the [media] gener-
ated is often [comparable] to what an experienced [professional] human creator 
could produce, [at least at the surface level. Moreover, generative AI] systems dem-
onstrate a semantic [interpretation] of the input text and can convert those semantics 
so that (in some cases) they are more-or-less coherently represented in the generated 
images. This new-found capability has inspired many useful image generation and 
[manipulation possibilities,] such as ‘outpainting’, where a pre-existing image can 
have its edges [extended] with coherent and plausible content, or as an ‘ideation 
generator’, where new versions of a set of input images are generated” (McCormack 
et al., 2023).

11.2.1  Use in Visual Simulation

The idea that through new generative AI technologies we can construct high-!delity 
simulations of real-world events presents a step change in developing simulation 
systems. Rather than labouring over detailed 3D models, building complex simula-
tions by hand or using digital media such as cinema or photomedia to construct a 
rich simulation experience, generative AI potentially presents the opportunity to 
deliver high-!delity simulations simply by describing them in language.

Current text-to-image (TTI) systems rely on diffusion models. These models are 
trained by adding noise to a training set, forcing the model to learn how to convinc-
ingly reconstruct image representations. This approach has signi!cant advantages 
in image generation quality over previous methods such as generative adversarial 
networks (GANs) (Goodfellow et al., 2020). The fundamental innovation of TTI 
systems lies in the integration of two different approaches—a language transformer 
model that accepts image descriptions as text and an image generator that synthe-
sises the image. The transformer is usually based on CLIP (Contrastive Language–
Image Building Simulations with Generative AI 5 Pre-training) models, a neural 
network that learns visual concepts from natural language supervision (Radford 
et al., 2021). This is a signi!cant improvement over previous models such as convo-
lution neural networks (CNNs), which excelled at basic classi!cation of objects in 
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Figs. 11.1 and 11.2 Images of bush!re created using Stable Diffusion

an image but could not recognise more salient concepts such as style, context or 
semantics. The image generator uses a multi-step process that operates in the image 
latent space, using a UNet neural network and scheduler. The output of this “diffu-
sion” process is an image tensor that is decoded into an image by an autoencoder.

To illustrate the potential of these systems for simulation, we used an open- 
source version of Stable Diffusion. Figures  11.1 and 11.2 show two sample 
AI-generated images created using Stable Diffusion. The prompts used were 
“national geographic photo of an Australian bush!re, landscape, trees” (left) and 
“national geographic photo of !re-!ghters with a hose !ghting a large bush!re” 
(right). As can be seen, the prompts generate quite “realistic” images that would 
typically be associated with Australian bush!res. Using phrases such as “national 
geographic photo” pushes the system into producing high-quality, documentary- 
like images, as would typically be associated with National Geographic (we could 
have speci!ed “old black and white daguerreotype” or “Banana Fish anime” to 
completely change the aesthetic style of the image).

This simple example highlights some of the issues with creating prompts: that 
one needs to be quite speci!c in the prompt about details such as surface aesthetics, 
style, context, etc. Such a requirement leads to much of the prompt language con-
taining references to the visual aesthetics of the image: including style, lighting, 
level of detail, even descriptions of camera lens focal lengths, angle or position of 
the shot and other various cinematic conventions. The necessity of providing such 
detail on surface aesthetics, composition, etc. mirrors CLIP’s ability to capture these 
image qualities as general image features irrespective of the objects depicted 
in them.

Figure 11.3 shows another example of generative AI simulation of "ooding 
events. To create these images, the following prompts were used: “national geo-
graphic photo of people piling sandbags in an Australian town after "ooding” (left) 
and “national geographic photo of an Australian town after mild "ooding” (right). 
In this example, the prompts are interpreted correctly, but only to a point. The way 
the sandbags are being piled does not really make practical sense (they would be 
unlikely to mitigate the effects of rising water), the “people” depicted do not have 
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Figs. 11.3 and 11.4 Images of "ooding created using Stable Diffusion

natural poses or body parts, the layout of the town is impossible, and so on. An obvi-
ous solution to these issues would be to provide more speci!c directions.

However, providing too much detail on the objects and their relations in the 
scene does not necessarily translate into the generated image. Using Fig. 11.1 as an 
example, if we were to modify the prompt used in the second image to be more 
speci!c about the exact number of !re!ghters, speci!cs of their individual poses, 
details of their uniforms or their speci!c location in the image, the results are 
unlikely to directly match the prompt. For example, if we speci!ed “!ve !re!ght-
ers”, we may get any number between two and ten or more. This is due to the way 
CLIP converts the input prompt into a latent embedding.

Another potential approach is to use an image-to-image (ITI) method. These are 
largely similar to TTI systems, and most popular diffusion-based TTI platforms 
offer an ITI mode. Using this approach, imagery can be adapted using a text prompt 
to make modi!cations and transformations while preserving important characteris-
tics of the scene. There are a few potential methods for generating realistic scenes 
more easily using ITI. For example, simple 3D environments can be created using 
existing 3D models and then modi!ed using generative AI to render more realistic 
environments for simulation. This is demonstrated in Fig.  11.3 using Stable 
Diffusion. A basic 3D environment is transformed into a more complex scene 
through the use of a text prompt while preserving the overall structure and charac-
teristics of the scene. There are a few potential problems with this approach. For 
instance, it can be a challenge to control the content that might appear in the gener-
ated scene due to the diversity of images used to train the model. In Fig. 11.3, the 
generated image features a boat in place of a shadow, which appears in the input 
image. This can be mitigated by adjusting the strength of the transformation. 
Another approach is to use !ne-tuning methods, including the creation of custom 
low-rank adaptors (Hu et al., 2021) to guide content generation more explicitly with 
examples and custom embeddings. Despite offering considerably more control, 
problems with content consistency still cannot be entirely avoided with approaches 
such as these (Figs. 11.5 and 11.6).

Aside from adjusting and controlling content with prompting, there are poten-
tially other, more direct content control methods that may be more practical. One 
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Figs. 11.5 and 11.6 A low-quality 3D render is shown on the left, with an image-to-image version 
on the right generated by Stable Diffusion. The ITI prompt was simply “A "ooded art gallery”

Fig. 11.7 Image from Learning to see: Gloomy Sunday, 2017. A simple ITI approach is used to 
create a real-time transformation of webcam input. The input image on the left-hand side is trans-
formed into imagery of the sea and rendered in under 20 milliseconds, allowing for interactive 
control of the generative AI system

could use speci!cally curated models, such as !re and/or water generators. These 
models could be speci!cally trained to add photo-real !re and water effects on input 
images using ITI methods, similar to the approach taken in Memo Akten’s Learning 
to See: Gloomy Sunday (Akten et al., 2019), as shown in Fig. 11.7. Here, models 
were created from datasets of open water, !re, "owers and other categories of 
images, and these were then used for generation.

Using this approach, models need not understand a wide range of different kinds 
of imagery, have knowledge of context, nor draw on complex text prompts in order 
to guide generative image models. Instead, input images could be adapted by mod-
els with highly limited yet detailed and carefully engineered outputs. These kinds of 
models are far simpler than large, monolithic text-guided diffusion systems and as a 
result can be run in real time in high de!nition on modern hardware. Furthermore, 
as these models could be speci!cally tailored to the problem of disaster simulation, 
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they could also contain information on behaviour, for example, through the applica-
tion of "uid dynamics models within the content generation pipeline.

This approach could be applied to the generation of content for simulations in 
AR environments. Focused, bespoke generative AI models such as those based on 
ITI approaches described above could quite easily be deployed in order to transform 
real-time stereoscopic image feeds from AR headset cameras, with the transformed 
output rendered directly to the headset in real time. This creates the opportunity for 
generating disaster simulations in real-world environments, where participants 
experience photo-real 3D generative AI simulations superimposed on the world as 
it exists. This requires less computing power as only the transformed elements need 
rendering. In addition, it could provide the opportunity to conduct disaster readiness 
training in situ with greater !delity, allowing !re!ghters and other emergency ser-
vices personnel to model scenarios in speci!c locations where there are known chal-
lenges, such as in public buildings and city centres and with potentially vulnerable 
communities.

Another advantage of speci!cally engineering models for simulation is that they 
can be more transparently usable and explainable than currently popular contempo-
rary text-guided diffusion systems. For example, it can be challenging for users of 
contemporary generative TTI systems to understand precisely which aspects of their 
prompt may be having the greatest impact.

As illustrated in Table 11.1, human prompt writers often tend to over-equate the 
complexity, poetics and quality of the prompt with that of the resultant generated 

Table 11.1 An example of differences between human-generated prompts and machine-based 
description

Prompt Generated image Description
Imagine a dream-like scene 
where reality blurs and the 
boundaries between woman and 
peacock dissolve. Sketch a 
woman’s body full of delicate 
vulnerability, her features soft 
and poetic. Let the peacock’s 
head emerge, seamlessly 
integrating with its essence, 
symboli-sing the deep 
connection with the world of 
colours of the peacock’s tail. 
Use the impasto technique to 
add a tactile quality, allowing 
the viewer to visually feel the 
texture of the artwork. Set 
against a deep, velvety canvas 
of dark blue on a black 
background, this ethereal 
combination creates a sense of 
enchantment, encouraging 
viewers to explore the depths of 
their imagination

Painting of a 
woman with 
peacock 
feathers on 
her head
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image. The table shows a relatively long human-authored prompt (left) and the 
resultant image generated by Midjourney (middle). We ran this image through a 
state-of-the-art BLIP (Bootstrapping Language-Image Pre-training for Uni!ed 
Vision-Language Understanding and Generation) image captioning model (Li et al., 
2022), which can generate a descriptive caption for any image. The captioning 
model gives an overall description of the image, much like the way a human would, 
as the model recognises not only the objects in a scene but also the relationships and 
basic surface aesthetic properties. Table  11.1 (right) shows the results of this 
“machine eye” perception of the image. As can be observed, this is a far more direct 
and literal description of the image than that of the original prompt.

11.3  Accuracy and Ethics

In addition to issues of transparency and explainability in contemporary TTI sys-
tems, there are considerable problems with both the accuracy and also the ethical 
grounding of many large foundation model-based generative AI tools. Such systems 
are not being developed within the constraints of well-de!ned use cases, nor with 
domain building simulations with generative AI-speci!c requirements in mind. 
Evidence points to the need for the development of generative AI that is speci!cally 
tailored to the problems of simulation.

For example, careful examination of the images shown in Figs. 11.1, 11.2, 11.3 
and 11.4 reveals problems of accuracy and bias. Due to both the data used for train-
ing and the nature of diffusion systems, references such as “Australian landscape” 
tend to get translated into cliched representations based on statistical averages in the 
training data. A number of studies have analysed AI-generated images, identifying 
a wide range of biases, such as under-representing certain race groups (Bansal et al. 
2022; Naik & Nushi, 2023), cultural gaps (e.g. over-representing speci!c nations 
(Naik & Nushi, 2023), or the reinforcement of stereotypes (e.g. “a photo of a law-
yer” consistently showing a white male) (Bianchi et al., 2023).

A recent analysis of 3000 images generated by Midjourney using prompts to 
depict national identities also highlighted tendencies towards bias and stereotypes 
prevalent in generative AI systems. For example, prompting an image of “New 
Delhi’s streets” generated images that were mostly portrayed as polluted and lit-
tered (Turk, 2023). This perpetuates cultural norms that are prevalent in training 
datasets while under-representing less stereotypical and non-Western aspects of cul-
ture, society and landscape. Although some researchers have proposed ways to miti-
gate these effects, such as adding speci!c phrases, e.g. “irrespective of gender” 
(Bansal et al., 2022), or through the use of more speci!c prompts to mitigate bias, 
these mitigation strategies are often ineffective (e.g. despite explicitly mentioning 
words such as “white”, “wealthy” or “mansion”, Bianchi et al. (2023) report that 
Stable Diffusion continues to associate poverty with people of colour).
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There is emerging research exploring ways that AI systems can be potentially 
better designed through the inclusion of those with domain expertise in !elds where 
models will be deployed. Co-production of ML systems is a developing interna-
tional !eld that attempts to respond to risks including those mentioned above. 
Recent work (e.g. Grabe et  al., 2022) indicates existing research on AI system 
design does not adequately address design challenges posed by AI. They propose a 
method for understanding the potential complexities of design through two speci!c 
features: uncertainty regarding system capability, as exempli!ed by the lack of sys-
tem transparency highlighted above, and output complexity, which, as we have 
described, is a fundamental problem for TTI approaches using foundation models. 
Other work (e.g. Mucha et al., 2020) highlights the importance of creating AI inter-
faces tailored to users’ needs and of gaining feedback from users early in the design 
process, supporting the fundamental principle that generative AI systems for simu-
lation should be speci!cally designed through collaboration with domain experts 
and that this approach is vastly preferable to the use of existing general-purpose TTI 
systems in the context of simulation design.

11.3.1  Data Laundering

As we noted elsewhere, “one of the key factors that contributes to the capability of 
TTI models is their access to [very large] datasets used for training and validation. 
Achieving the visual quality and diversity that they are capable of reproducing 
requires a [vast] corpus of human-created imagery, which is typically scraped from 
the internet, in a practice that has been dubbed ‘data laundering’. Scraped datas-
ets—which [may] include copyrighted media—rely on special exemptions for ‘aca-
demic use’ to avoid any legal barriers preventing their use, or for copyright owners 
to claim against (Baio, 2022). For [example], Stability AI (the creators of Stable 
Diffusion) funded the Machine Vision & Learning research group at the Ludwig 
Maximilian University of Munich to [undertake] the model training and a small 
[not-for-pro!t] organisation, LAION, to create the training dataset of approximately 
5.85 billion images, many of which are [copyrighted], and in general appropriated 
for this purpose without the image [creators’] direct permission” (McCormack 
et al., 2023).

We further noted that artists have “raised [concerns] about the ethical and moral 
implications of their work being used in such systems. These concerns include the 
appropriation of an [individual] artist’s ‘style’, mimicry, and even the replacement 
of a [specialist] human artist or illustrator. Furthermore, there is [currently] no easy 
way to be excluded or removed from such datasets” (McCormack et al., 2023), and 
any mechanisms are generally “opt-out”, meaning that unless you take action to 
prevent your own data from being excluded, it is considered fair game for scraping. 
The use of copyrighted material in AI training data is currently being tested legally 
in several different countries. Governments may need to draft new legislation to 
deal with these issues, as has already happened in the European Union.
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11.3.2  Copyright Issues

The use of copyrighted images in datasets highlights the question of whether train-
ing models on copyrighted data should be considered plagiarism or a form of copy-
right infringement. As we pointed out elsewhere, “being able to easily generate an 
image in [a speci!c] artist’s or [house] style [(e.g. ‘National Geographic’)] without 
paying for that artist to create it (or paying any royalties or licensing fees), allows 
users of such technology to bypass the traditional economic, legal and moral frame-
works that have supported artists and businesses traditionally. Generating copyright- 
free images immediately for commercial use without the cost or time involved in 
securing copyright from a [human] artist may become an attractive proposition, 
raising the interesting legal [question of who would be the defendant in any copy-
right infringement case brought about by this scenario” (McCormack et al., 2023).

11.3.3  Making AI “Safe”

Beyond ethical questions involving the sources of data and representational bias are 
the mechanisms by which many large companies try to ensure that generative AIs 
are “safe”. Many models are augmented with what is known as “Reinforcement 
Learning from Human Feedback” (RLHF), where outsourced workers in develop-
ing economies are paid to “sit for several hours every day watching videos of harm-
ful content and analyzing textual descriptions of hate speech, sexual violence, 
bestiality, and violence” (Ngila, 2023). This human tagging or classifying of unsafe 
content is used to train additional AIs that !lter results to prevent the underlying 
generative system from showing harmful content.

Some people have already developed psychological dependencies or been 
prompted to take real-world action following advice from generative AI systems, 
with both positive and negative results, including suicide, divorce or self-harm. As 
models become even more sophisticated, we are likely to see new forms of human–
AI relationships with potentially dangerous results. In the context of simulation, 
there are a number of important considerations for the simulation to be credible. 
Generative AI suffers from what is euphemistically referred to as “hallucinations”—
factually incorrect or erroneous results. The implications for a generative AI “hal-
lucinating” in a simulation context can range from benign to catastrophic, depending 
on context and situation. For example, the “Australian town” depicted in Fig. 11.4 
does not exist, and no real town would be structured in the way it is depicted. 
Simulations may be speculative, allowing us to ask, “what if…”, but if the answer 
is based on factual inaccuracies, the value of the simulation may be worthless.
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11.4  Conclusion

These issues, when considered in the round, support the overall conclusion that 
speci!c, tailored bespoke generative AI models could offer signi!cant advantages 
over large, monolithic generative AI tools in the context of disaster simulation. They 
are more controllable in terms of content, as the training process can effectively 
constrain their output to a known selection of imagery labels. They are more ef!-
cient, being able to transform multiple high-resolution video streams in real time on 
a single modern computer having a relatively modest capacity. They could be used 
to augment existing, low-quality 3D scenes with photo-realistic real-time generative 
AI incorporating relevant and plausible behaviour. They could also be used to ren-
der stereoscopic photo-real AR experiences for emergency readiness training in 
real-world environments. They are potentially more transparent, being trained on 
known data that could be speci!cally selected by domain experts. As a result, they 
are less likely to generate out-of-domain hallucinations, potentially offering greater 
accuracy, avoiding potential copyright infringement and mental health risk to those 
working with them.

11.4.1  Limitations: Multimodal AI

In this chapter, our main focus has been on exploring the use of AI to generate real-
istic imagery for visual simulation. As discussed, many contemporary systems use 
text prompts to generate output—e.g. text to image, text to video and text to 3D 
model—and in these ways are not too distinct from a text-based search. We have 
also explored how more bespoke generative AI systems can potentially play a sig-
ni!cant role in the future. However, an obvious current limitation of this analysis is 
that the interaction with such generative AI systems is uni-modal.

However, as our simple scenario in Sect. 1 demonstrates, an immersive simula-
tion is a multimodal experience, encompassing multiple senses and ways of inter-
acting. Multimodal interaction has been well studied from a human–computer 
interaction perspective (see, e.g. McCormack et al., 2018 for an overview). Recently, 
multimodal generative AI systems have been gaining traction. These systems con-
sider multiple modes of input and output (e.g. text, image, video) allowing cross- 
modalities to be considered. For example, Google DeepMind recently announced a 
new AI platform, which they call “Gemini” that allows “reasoning seamlessly 
across text, images, video, audio, and code” (Google DeepMind, 2023). While still 
in development, multimodal AI systems have the potential to analyse scenes or envi-
ronments and to then ask questions that would require expertise (“how safe would 
this exit be in a !re?”, “where is the safest place to go if this area is under imminent 
threat of "ooding?”). It may be that these multimodal systems are better able to 
generalise scenarios as a result of constructing representations from a greater num-
ber of dimensions, for example, combinations of sound, image and text. The 
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capability and power of such systems is potentially enormous, and more research is 
needed in order to understand how they might one day be deployed for the purposes 
of simulation.
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