
Updating	maximilian.js	for	Modern	JavaScript	Live		
Coding		

		
 Louis	McCallum Mick	Grierson 	

CCI,	UAL	 	
l.mccallum@arts.ac.uk 	

CCI,	UAL 	
m.grierson@arts.ac.uk 	

ABSTRACT		
The	 original	 and	widely	 used	Maximilian1	signal	 processing	 library	was	written	 in	 C++	 and	 provided	
bindings	to	JavaScript.	When	WebAudio’s ScriptProcessorNode	was	discontinued,	previous	incarnations	
of	maximilian.js2	were	rendered	unusable	in	contemporary	browsers.	In	this	paper,	we	provide	details	of	
the	new	implementation	including	updates	to	allow	for	live	coding	without	interrupting	the	audio	output	
and	a	focus	on	web-based	collaborative	editing.			

INTRODUCTION		
Whilst	 much	 development	 has	 been	 made	 with	 browser	 based	 live-coding	 for	 symbolic	 pattern	
manipulation	(e.g.	Strudel	(Roos	and	Mclean	2022),	WebChucK	(Mulshine	et	al.	2023),	Estuary	(Oborn	et	
al.	2021)),	the	evolution	of	web-based	audio	processing	has	been	marked	by	signiOicant	developments	
and	 challenges,	 particularly	 when	 it	 comes	 to	 signal	 processing	 and	 audio	 generation.	 The	 original	
Maximilian	 library,	 a	 cornerstone	 in	 this	domain,	was	 initially	developed	 in	C++	and	adapted	 for	web	
applications	 through	 JavaScript	 bindings	 (Byszynski	 et	 al.	 2017).	 However,	 the	 deprecation	 of	 the	
WebAudio’s ScriptProcessorNode	 posed	 a	 substantial	 challenge,	 rendering	 previous	 versions	 of	
maximilian.js	de	facto	deprecated	in	modern	browsers.	This	setback	coincided	with	the	development	of	
the	Sema	library,	under	the	ambit	of	the	AHRC	MIMIC	project,	which	was	successfully	utilising	the	robust	
core	of	Maximilian	for	an	efOicient	audio	engine	compatible	with	AudioWorklets (Bernardo	et	al.	2019).	
Rather	than	begin	from	nothing,	we	decided	to	use	the	engine	updated	for	Sema	as	a	foundation	for	a	new	
iteration	of	maximilian.js	in	efforts	to	overcome	the	limitations	imposed	by	ever-tightening	web	standards	
that	make	the	browser	a	hostile	environment	for	audio	development.		

The	initial	design	of	the	Maximilian	library,	while	not	explicitly	tailored	for	live	coding,	presents	a	robust	
and	 comprehensive	 audio	 framework	 that	 is	 well-suited	 for	 adaptation	 to	 a	 dynamically	 updated	
environment.	Indeed,	the	adoption	of	Maximilian	by	the	explicitly	live	coding	library	Sema	exempliOies	
this	 potential.	 It	 is	 important	 to	 note	 that	 Sema's	 approach	 necessitates	 users	 to	 contend	 with	 the	
challenging	task	of	language	design,	which,	despite	its	powerful	capabilities,	is	a	niche	requirement	that	
diverges	from	the	straightforward	API	of	Maximilian	and	the	established	familiarity	its	regular	users	have	
with	 it.	 Our	 objective	 has	 been	 to	 leverage	 the	 audio	 engine	 of	 Maximilian	 and	 user-friendly	 API	 to	
facilitate	 an	engaging	and	expressive	 live	 coding	experience.	Moreover,	born	out	of	 remote,	pandemic	
collaborations	we	aimed	to	allow	for	playful	and	collaborative	online	connections.		

SIGNAL	PROCESSING	ON	THE	WEB		
Keeping	 the	 signal	 processing	 within	 the	 web-based	 live	 coding	 environment,	 despite	 its	 inherent	
complexities	 (Grierson,	 M	 et	 al.	 2019),	 offers	 notable	 advantages	 over	 traditional	 methods	 involving	
external	Digital	Audio	Workstations	(DAWs)	or	synthesis	engines.	One	of	the	primary	beneOits	is	the		

		
elimination	of	third-party	software	installations,	signiOicantly	enhancing	accessibility	and	ease	of	use	for	
educational	purposes	and	general	user	engagement.	The	sole	requirement	to	access	the	full	capability	of	
the	 library	 is	 a	 web	 browser.	 Additionally,	 when	 considering	 networked	 interactions,	 browser-based	

	
1	https://github.com/micknoise/Maximilian		
2	https://mimicproject.com/course/making-music/overview		

processing	naturally	lends	itself	to	remote	and	collaborative	performance.	To	maintain	consistency	across	
local	executions,	it	can	be	favourable	to	have	all	audio	generation	happening	within	one	shared	library.			

Primarily,	 to	 access	 sample	 level	 audio	 processing	 in	 the	 browser,	 the	 WebAudio API	 provided	 a	
ScriptProcessorNode to	be	added	into	the	audio	graph.	This	was	initially	leveraged	by	Maximilian	for	its	
JavaScript	adaption.	For	full	details	see	ICMC	2019	paper	(Bernardo,	F	et	al.	2019).		

The	 adoption	 of	 AudioWorklets over	 the	 ScriptProcessorNode in	 web-based	 audio	 processing	
represented	 a	 signiOicant	 advancement	 in	 the	 Oield.	 The	primary	 reason	 for	 this	 shift	 is	 the	 enhanced	
performance	and	Olexibility	offered	by	AudioWorklets.	Unlike	ScriptProcessorNode,	which	operates	on	
the	main	browser	thread	and	is	prone	to	audio	glitches	and	performance	bottlenecks,	AudioWorklets run	
in	a	separate	audio	processing	thread	(Choi,	2018).	This	allows	for	more	reliable	and	efOicient	processing	
of	 audio	 data,	 signiOicantly	 reducing	 latency	 and	 ensuring	 smoother	 audio	 playback.	 Furthermore,	
AudioWorklets	 provide	 a	 more	 robust	 framework	 for	 complex	 audio	 processing	 tasks,	 enabling	
developers	 to	 create	 more	 sophisticated	 and	 nuanced	 audio	 applications.	 This	 shift	 aligns	 with	 the	
evolving	needs	of	web-based	audio	applications,	demanding	higher	performance,	precision,	and	stability,	
especially	in	scenarios	requiring	real-time	audio	processing.	Given	its	clear	advantages,	although	they	ran	
it	 parallel	 for	 a	while,	 in	2021	ScriptProcessorNode was	deprecated	 in	most	major	browsers3.	 This	
rendered	current	iterations	of	maximilian.js	unusable	without	major	refactoring.		

MANY	LIVE	CODERS	IN	THE	SAME	DOCUMENT	ON	THE	MIMIC	PLATFORM		
Since	 2018,	 the	 authors,	 in	 collaboration	 with	 other	 researchers,	 have	 been	 instrumental	 in	 the	
development	of	the	MIMIC	creative	coding	platform4.	This	platform,	following	the	paradigm	established	
by	 its	 predecessor,	 CodeCircle,	 enables	 users	 to	 write	 JavaScript	 code	 and	 immediately	 visualise	 its	
outcomes,	 a	 feature	 later	 seen	 in	 other	 projects	 including	 the	 popular	 p5.js	 web	 editor.	 Interactive	
refreshing	where	the	whole	document	is	re-executed	in	relation	to	user	input	has	proven	highly	beneOicial	
for	artists	engaged	in	creating	interactive	visual	works	(Grierson,	2018).	However,	this	approach	presents	
challenges	when	applied	to	audio	processing.		

In	REPL	(Read-Eval-Print	Loop)	editors,	like	the	Sema	Playground	(Bernardo	et	al.	2019)	and	Strudel	Live	
Code	 (Roos	 and	 Mclean	 2022),	 the	 entire	 script	 is	 updated	 upon	 user	 request.	 This	 global	 update	
methodology,	 while	 efOicient	 in	 some	 contexts,	 poses	 a	 challenge	 for	 collaborative	 live	 coding.	 A	
fundamental	requirement	in	such	a	setting	is	the	ability	to	re-execute	only	speciOic	portions	of	a	document,	
thus	avoiding	interference	with	other	contributors'	code.	The	MIMIC	interface	addresses	this	by	allowing	
selective	re-execution	of	single	or	multiple	lines	of	code,	utilising	JavaScript’s	eval()	function.	This	feature	
is	akin	to	the	functionality	offered	by	the	SuperCollider	editor	(McCartney,	2002)	enabling	users	to	alter	
speciOic	code	elements	(such	as	a	variable	controlling	an	oscillator's	frequency)	without	necessitating	a	
full	 restart	 of	 the	 audio	 engine	 or	 causing	 disruptions	 in	 audio	 output.	 This	 selective	 execution	 also	
ensures	that	multiple	users	working	on	the	same	document	(the	“Shared	Code”	paradigm	(Nilson,	2007))	
can	 independently	 update	 their	 code	 segments	 without	 the	 risk	 of	 crashing	 the	 performance	 due	 to	
incomplete	or	erroneous	code	inputs	from	others.		
		

		
		
		
		

		

	
3	https://developer.mozilla.org/en-US/docs/Web/API/ScriptProcessorNode)	4	
https://mimicproject.com/		

		
Figure	1.	Two	browsers	updating	synchronously,	with	coder	name	and	re-execution	highlighted		
		
MIMIC	allows	for	collaborative	coding	by	employing	an	operational	transforms	approach	for	document	
editing,	facilitated	by	the	JavaScript	library	ShareDB4.	Changes	made	to	the	document	are	propagated	to	
all	 collaborators	 via	 WebSockets,	 ensuring	 that	 each	 participant's	 local	 version	 of	 the	 document	 is	
synchronously	updated.	This	includes	live	code	partial	re-executions	(which	are	sent	as	transforms	to	the	
document).	As	a	result,	while	code	execution	occurs	on	each	user's	local	machine,	updates	to	both	the	
state	 through	 re-execution	 and	 the	 source	 code	 itself	 are	 shared	 among	 all	 performers.	 Local	 code	
execution	with	collaborative,	real-time	document	synchronisation	is	an	expressive	and	valid	approach	to	
collaborative	live	coding	in	a	web-based	environment.	Here,	we	prioritise	synchronising	of	source	code	
over	synchronising	of	clocks	(an	ongoing	and	possibly	insurmountable	challenge)	in	a	way	that	can	work	
in	remote-online	or	collocated-live	contexts	(for	example	if	only	one	performer	is	broadcasting	an	audio	
out)	(Roberts	2022).		

LIVE	CODING	IN	A	SAMPLE	LOOP	WITH	MAXIMILIAN		
Maximilian	was	originally	created	to	facilitate	the	teaching	and	learning	of	complex	audio	digital	signal	
processing	methods	in	C++	for	novice	coders.	Maximilian	borrowed	key	features	from	existing	creative	
coding	 environments	 including	 Processing5 	and	 openFrameworks6 ,	 in	 order	 to	 provide	 a	 bestOit	 API	
combining	buffer-level	audio	digital	signal	processing	capabilities	alongside	rapid-prototyping	features	
for	synthesis,	sampling,	analysis	and	audio/music	information	retrieval	tasks.	Furthermore	the	API	was	
designed	to	make	use	of	existing	and	recognised	music	technology	nomenclature	rather	than	conventional	
textual	 programming	 or	 engineering	 conventions	 for	 method	 names,	 such	 as	 the	 names	 of	 speciOic	
generators	(sinwave,	sinebuf, ADSR, line),	Oilters	(lores, hipass, SVF).	and	techniques	(granular,	
stretch,	mosaic).	This	was	done	in	order	to	lower	the	barrier	to	entry	for	those	with	a	good	understanding	
of	creative	music	technology	engineering	principles	but	for	whom	C/C++	was	still	an	emerging	skill.		

Another	key	factor	in	its	design	was	that	all	objects	and	functions	would	update	and	maintain	their	own	
phase	as	much	as	possible,	reducing	the	need	for	setup	variables.	Objects	behave	by	generating	single	
value	 updates	when	 called,	 even	 in	 cases	where	 vectors	 are	 processed	 under	 the	 hood	 (such	 as	 FFT	
processing).	This	was	done	to	encourage	a	single	sample	thought	process	amongst	teachers,	learners	and	
coders,	to	encourage	people	to	think	about	what	happens	when	complex	audio	calculations	are	being	done	
one	step	at	a	time	and	provide	a	method	for	rapidly	designing	them	with	minimal	code.	This	allowed		

	
4	https://share.github.io/sharedb/		
5	https://processing.org/		
6	https://openframeworks.cc/		

		
instructors	to	introduce	notions	of	timekeeping	with	constant	reference	to	sample	rate,	 foregrounding	
buffer-level	 precision	 in	 all	 mathematical	 operations,	 allowing	 for	 higher	 quality	 output	 as	 much	 as	
possible,	with	optimisations	left	to	the	compiler.			

These	approaches	allow	users	to	create	complete	synthesiser	and	sequencer	systems	in	a	single	line	of	
code	by	nesting	operations	within	each	other,	each	parameterising	 the	other.	This	makes	 it	extremely	
simple	 to	 live	 code	 complex	 systems	 rapidly,	 providing	 a	 platform	 that	 can	 be	 used	 to	 create	 music	
immediately	that	would	otherwise	take	much	longer,	and	without	the	need	for	pattern	libraries.	It	also	
allows	users	to	introduce	entirely	bespoke	buffer-level	signal	processing	routines	and	interoperate	these	
with	 existing	 Maximilian	 objects.	 This	 makes	 it	 relatively	 simple	 even	 for	 beginners	 to	 extend	 the	
Maximilian	library	once	the	core	concepts	have	been	understood	–	for	example,	a	sample-and-hold	clock	
can	be	created	with	a	phasor	cast	to	an	Int,	and	this	can	index	a	look	up	table	at	a	modulating	rate	to	create	
a	polyrhythmic	structure	that	parameterises	a	waveform,	Oilter	and	envelope	in	three	lines	of	code.			

There	 are	 challenges	with	 this	 approach,	 focussing	 as	 it	 does	 on	 continuous	maths	 applied	 to	music	
technology	 concepts,	 and	 users	 with	 less	 experience	 or	 interest	 in	 the	 domain	 can	 struggle.	 Overall,	
however,	 this	 continues	 to	 be	 a	 relatively	 minor	 issue	 when	 compared	 to	 the	 potential	 beneOits	 of	
rendering	buffer-level	 signal	processing	 as	 immediate,	 intuitive	 and	 creative	 an	approach	as	possible.	
Further,	 the	 familiarity	 that	many	have	with	Maximilian,	 and	 its	 ease	of	use	when	compared	 to	other	
buffer-level	complex	DSP	tools	makes	it	a	good	choice	for	live	coding.	Possibly	as	a	result,	the	library	has	
been	 used	 as	 the	 basis	 for	 several	 live	 coding	 experiments	 in	 the	 past7 ,	 but	 the	 issue	 of	 controlling	
execution,	in	particular	for	the	relatively	new	Oield	of	collaborative	live	coding,	continues	to	be	an	area	of	
development	that	offers	signiOicant	challenges.	Others	working	along	a	similar	line	include	the	Rust	based	
Glicol	(Lan	and	Jensenius,	2021).		

MAXIMILIAN	TO	SEMA	TO	MAXIMILIAN.JS		
The	 comprehensive	 development	 of	 the	 Sema	 engine	 by	 Bernardo	 et	 al.	 is	 well	 documented	 in	 the	
literature	(Bernardo	F	2019).	However,	our	decision	to	integrate	certain	advancements	back	into	a	distinct	
maximilian.js	library,	while	concurrently	developing	additional	functionalities,	is	motivated	by	several	key	
factors.	Firstly,	 it	 is	 imperative	to	retain	the	familiar	API	of	Maximilian	for	 its	substantial	existing	user	
base,	as	Sema's	primary	contribution	is	the	affordance	of	novel	end	user	live	code	language	design.	This	
level	of	abstraction,	while	highly	interesting	to	a	specialised	audience,	does	not	align	with	our	current	
objectives.	We	have	previously	discussed	our	preference	 for	 the	MIMIC	Code	editor’s	approach	 to	 live	
coding	over	Sema’s	functionality	of	full	document	update,	which,	despite	its	ability	to	maintain	symbolic	
state,	results	in	undesirable	interruptions	in	audio	output	due	to	the	restarting	the	audio	signal	upon	each	
re-execution	(Grierson,	M	and	Kiefer,	C	2011).		

Moving	to	the	new	engine	leads	to	a	signiOicant	departure	from	previous	iterations	of	maximilian.js	as	
there	is	necessity	for	user	code	to	be	transmitted	to	a	separate	audio	thread	for	execution,	as	opposed	to	
running	as	standard	JavaScript	on	the	main	thread.	In	the	context	of	most	interactive	web	applications,	it	
is	critical	to	maintain	elements	of	the	original	HTML5	ecosystem,	such	as	DOM	access,	third-party	library	
integration,	 and	user	 interactions,	 and	 to	 facilitate	 smooth	 and	 synchronous	 communication	between	
these	elements	and	the	audio	processing	tasks.	Our	challenge	was	to	author	an	API	that	accommodates	
this	 requirement,	 while	 staying	 as	 true	 as	 possible	 to	 the	 original	 Maximilian	 API	 and	 avoiding	 the	
introduction	 of	 additional	 complexities	 for	 novice	 users,	 who	 often	 comprise	 the	 library's	 primary	
audience	(Grierson,	M	2009).			

As	much	as	possible,	we	want	the	library	to	be	platform-neutral	allowing	the	greatest	Olexibility	to	users.	
This	also	applies	to	the	MIMIC	site,	as	although	optimised	towards	interactive	creative	coding,	it	is	by	no	
means	 a	maximilian.js	 speciOic	 sole	use	platform.	This	 is	 to	 say	 that	we	did	not	wish	maximilian.js	 to	
require	 a	 tailor-made	 environment	 to	 run	 well	 and	 designed	 its	 live	 coding	 API	 to	 Oit	 in	 with	 a	

	
7	e.g.	https://vimeo.com/35012356		

generalpurpose	platform	that	allowed	for	re-executing	code	in	library	agnostic	web	projects.	We	see	this	
as	a		

		
massive	bonus	as	it	will	not	require	participants	to	learn	a	new	editor,	can	be	deployed	elsewhere,	and	
easily	integrate	into	other	web	projects	without	the	developers	needing	to	make	speciOic	integrations	on	
a	 per	 library	 basis.	 Crucially	 for	 the	 audio-visual	 practice	 common	 in	 live	 coding	 performance,	 this	
involves	graphics	packages	such	as	Three.js8	or	p5.js9.		

All	audio	code	is	written	separately	and	then	transmitted	to	the	AudioWorkletNode	as	a	string.	This	is	
achieved	using	the	built-in	post	messaging	functionality.	Given	that	post	messaging	does	not	guarantee	
synchronicity	and	consistent	delivery	times,	which	are	critical	for	audio	rate	signal	processing,	the	engine	
has	used	SharedArrayBuffers to	make	a	shared	ring	buffer	between	the	threads.	This	approach	ensures	
reliable	 data	 transfer	 between	 the	 main	 thread	 and	 the	 audio	 thread	 at	 high	 refresh	 rates,	 thereby	
maintaining	the	efOiciency	and	integrity	of	the	audio	processing	workOlow.		

For	maximum	Olexibility	execution	we	allow	for	3	ways	to	write	audio	code	and	pass	to	the	library		

1. As	 code	 within	 a	 script	 element.	 This	 allows	 the	 code	 to	 be	 in	 the	 same	 document,	 for	 text	
highlighting	of	the	JavaScript	to	still	work	and	for	a	clean	logical	separation	of	audio	and	main	
code.	See	Oig	above.		

2. As	a	string	literal		
3. As	a	URL	to	the	text	hosted	remotely.	This	can	be	used	to	access	audio	code	from	separate	tabs	in	

MIMIC	documents		

		
	

8	https://threejs.org/		
9	https://p5js.org/		

Figure	2.	Example	of	Sending	maximilian.js	code	to	the	audio	thread		

		

		
		

UNINTERRUPTED	AUDIO	WITH	SEPARATE	STREAMS		
Our	 experience	 with	 collaborative	 live	 coding,	 speciOically	 with	 multiple	 performers	 editing	 a	 single	
document,	 has	 identiOied	 distinct	 requirements	 essential	 for	 an	 effective	 live	 coding	 environment	 in	
network	music.	These	requirements,	some	resonating	with	established	norms	in	live	coding	and	network	
music	work,	include:		

1. The	environment	must	support	multiple	audio	streams,	allowing	updates	without	affecting	the	
existing	streams.	This	feature	is	vital	for	dynamic	and	improvisational	performance	scenarios.		
2. Updating	algorithms	and	symbolic	states	should	occur	without	any	interruption	to	the	ongoing	
audio	output.		
3.The	system	should	maintain	audio	output	without	interruption	even	when	invalid	code	is	executed,	thus	
supporting	experimental	and	exploratory	coding	practices.		
4. The	system	should	allow	for	updates	to	individual	parts	of	the	document.	For	instance,	while	the	entire	
document	may	not	be	valid	in	its	current	state,	speciOic	code	segments	may	be	updated	and	re-executed	
creating	valid	updates	to	the	musical	output.		

5. It	 is	 crucial	 to	 keep	 the	 code	 in	 sync	 between	 performers,	 ensuring	 a	 cohesive	 and	 coordinated	
performance.		

6. Code	execution	should	be	shared	synchronously	between	performers.		

		

	
Figure	3.	System	diagram	for	execution	of	code	between	threads		

Addressing	the	challenges	highlighted	in	prior	studies	(notably	by	Roberts	(2022)	and	Bernardo	(2019))	
regarding	dynamic	code	updates	in	the	AudioWorklet thread,	our	approach	and	API	design	focus	on	
setting	up	a	system	that	meets	these	requirements.	We	have	introduced	a	this.mx	namespace	within	the	
AudioWorkletProcessor to	facilitate	simple	and	extensible	access	to	symbolic	and	named	variables	on	
the	audio	thread.	This	JavaScript	object,	capable	of	being	extended	to	prevent	collisions	(for	instance,	

adding	namespaces	like	this.mx.louis or	this.mx.mick),	can	maintain	and	dynamically	update	any	
JSON-stringiOiable	objects	for	use	in	music	production	on	the	audio	thread.			

As	established,	a	fundamental	requirement	for	a	maximilian.js	program	is	a	play()	function,	executing	
at	audio	sample	rate	and	returning	audio	samples.	This	precision	is	a	key	feature	of	its	utility	as	a	music	
library.	The	existing	Sema	engine	is	designed	with	a	singular	play()	function	which	can	cause	
discontinuities	when	redeOined	during	new	code	execution.	Our	solution	is	the	updateSignal()
function,	enabling	the	creation	of	named	streams,	each	with	its	own	play()	function.	These	streams	are	
evaluated	and	mixed	on	the	audio	processor	for	output.		

For	multiple	collaborators,	this	design	means	each	performer	can	manage	one	or	more	personal	
streams,	updating	or	experimenting	without	impacting	others'	outputs.	This	aligns	with	our	Oirst	
requirement.	Channels	can	be	muted	by	replacing	them	with	a	play()	function	that	returns	zero.	Should	
performers	choose	not	to	update	a	named	play() function	and	instead	wish	to	update	an	element	
within	the	this.mx	object,	they	can	utilise	the	executeOnce()	function,	satisfying	our	second	
requirement.	To	ensure	requirement	three,	we	have	implemented	a	system	where	code	is	evaluated	
before	integration	into	the	audio	chain,	rejecting	any	code	that	returns	errors.		

The	MIMIC	coding	platform,	as	previously	described,	addresses	requirements	four,	Oive,	and	six,	providing	
a	robust	foundation	for	our	collaborative	live	coding	environment.		

REFLECTIONS	AND	EVALUATION			
Over	the	past	three	years,	the	current	iteration	of	our	library	and	platform	has	been	utilised	in	a	variety	
of	performances,	notably	at	the	Network	Music	Festival	(Grierson,	Yee-King	and	McCallum	2020),	NIME	
2021	(Grierson,	Yee-King	and	McCallum	2021),	and	the	TOPLAP	Winter	Solstice	202310.	In	this	section	
we	aim	to	provide	critical	insights	into	the	advantages	and	limitations	encountered	during	these	
implementations.		

With	regards	to	the	namespaces	for	variables	allowed	for	simultaneous	yet	non-interfering	operations	
among	users,	all	synchronised	to	the	same	clock.	This	feature	was	crucial	in	avoiding	crashes	due	to	
inprogress	code	(e.g.,	non-executable	scripts)	while	allowing	concurrent	updates	in	other	document	
sections.			

Choosing	the	general-purpose	MIMC	platform	offers	substantial	advantages,	such	as	reduced	learning	
curves,	broad	accessibility	to	creative	coders,	and	a	single	codebase.	Particularly,	the	ease	of	integrating	
visual	elements	with	general-purpose	code	without	requiring	separate	integrations	was	a	notable	
beneOit.	However,	this	Olexibility	can	lead	to	the	absence	of	specialised	features	that	might	streamline	a	
platform	dedicated	to	live	coding	or	music	production.	Despite	this,	the	current	balance	between	
Olexibility	and	speciOicity	appears	to	be	effective.		

As	highlighted	by	Roberts	(2022),	effective	communication	among	remote	performers	is	vital.	Our	
current	setup	lacks	an	integrated	chat	feature,	leading	us	to	use	external	tools	like	Zoom	for	spoken	
communication	whilst	performing.	While	this	approach	is	effective	in	synchronising	performance,	it	
occasionally	could	be	seen	to	interfere	with	the	primary	listening	experience	of	the	audience,	the	music.	
This	being	said,	in	terms	of	the	transparent	philosophy	of	live	coding,	introducing	contextual	elements	of	
performer	communication	can	provide	added	context	for	the	audience.		

Our	reliance	on	ShareDB	for	document	synchronisation	has	not	been	without	challenges,	necessitating	
additional	scaffolding	to	avoid	corruption.	Future	stress	tests	are	planned	with	larger	groups	to	identify	
and	address	potential	technical	and	creative	bottlenecks	in	collaborative	scenarios.		

This	 paper	 primarily	 focuses	 on	 the	 technical	 aspects,	 and	 future	 work	 will	 explore	 the	 creative	
affordances	of	the	library	more	comprehensively.		

	
10	https://solstice.toplap.org/		

CONCLUSION		
In	this	paper	we	have	presented	the	requirements	for	bringing	the	popular	and	powerful	Maximilian	
C++	library	into	use	for	a	modern	JavaScript	live	coding	experience.	We	have	identiOied	several	key	
requirements	for	such	an	update	and	detailed	how	the	newly	developed	maximilian.js	can	allow	creative	
and	powerful	sample	level	code	collaboration	in	real	time,	especially	in	tandem	with	the	MIMIC	
platform.			

		
		
Acknowledgments		
		
This	research	was	supported	by	AHRC/	UKRI	MIMIC	project	grant		

REFERENCES		
Bernardo,	Francisco,	et	al.	“An	AudioWorklet-Based	Signal	Engine	for	a	Live	Coding	Language	Ecosystem.”	2019.		
			
Byszynski,	Michael,	Mick	Grierson,	Matthew	Yee-King,	and	Leon	Fedden.	“Write	Once	Run	Anywhere	Revisited:	Machine	Learning	
and	Audio	Tools	 in	the	Browser	with	C++	and	Emscripten.”	In	Web	Audio	Conference	2017,	21-23	August	2017,	Queen	Mary	
University	of	London,	United	Kingdom,	2017.		
			
Choi,	H.	“Audio	Worklet:	The	Future	of	Web	Audio.”	In	International	Conference	on	Music	and	Computing,	2018.		
			
Grierson,	Mick,	Matthew	Yee-King,	Louis	McCallum,	Chris	Kiefer,	and	Michael	Zbyszynski.	“Contemporary	Machine	Learning	for	
Audio	 and	 Music	 Generation	 on	 the	 Web:	 Current	 Challenges	 and	 Potential	 Solutions.”	 In	 International	 Computer	 Music	
Conference,	16-23	June	2019,	New	York,	2019.		
			
Grierson,	 M.,	 and	 C.	 Kiefer.	 “Maximillian:	 An	 Easy	 to	 Use,	 Cross	 Platform	 C++	 Toolkit	 for	 Interactive	 Audio	 and	 Synthesis	
Applications.”	Proceedings	of	 the	 International	Computer	Music	Conference	2011,	University	of	Hudders`ield,	UK,	31	 July	 -	5	
August	2011.		
			
Grierson,	Mick.	“Creative	Coding	for	Audiovisual	Art:	The	CodeCircle	Platform.”.	In	The	Routledge	Research	Companion	to	
Electronic	Music:	Reaching	out	with	Technology,	edited	by	Simon	Emerson,	London:Taylor	Francis	2018		
			
Grierson,	Mick,	Matthew	Yee-King,	and	Louis	McCallum.	“Executive	Order.”	In	NIME	2021.	PubPub,	2021.		
			
Lan,	 Q.,	 and	 A.	 R.	 Jensenius.	 “Glicol:	 A	 Graph-Oriented	 Live	 Coding	 Language	 Developed	 with	 Rust,	 WebAssembly	 and	
AudioWorklet.”	In	Web	Audio	Conference,	2021.		
		
McCallum,	Louis,	Mick	Grierson,	and	Matthew	Yee-King.	"Local	Code	for	Local	People."	Live	performance.	Network	Music	
Festival,	July	5-18,	2020.	https://networkmusicfestival.org/programme/performances/local-code-for-local-people/.		
			
McCartney,	J.	“Rethinking	the	Computer	Music	Language:	SuperCollider.”	Computer	Music	Journal	26,	no.	4	(2002):	61–8.		
			
Mulshine,	 Michael	 R.,	 Ge	Wang,	 Jack	 Atherton,	 Chris	 Chafe,	 Terry	 Feng,	 and	 Celeste	 Betancur.	 “Webchuck:	 Computer	 Music	
Programming	on	the	Web.”	In	New	Interfaces	for	Musical	Expression,	2023.		
			
Nilson,	Click.	“Live	Coding	Practice.”	In	Proceedings	of	the	7th	International	Conference	on	New	Interfaces	for	Musical	Expression	
(NIME	'07).	Association	for	Computing	Machinery,	New	York,	NY,	USA,	112–117,	2007.		
			
Ogborn,	David,	et	al.	“Estuary	0.3:	Collaborative	Audio-Visual	Live	Coding	with	a	Multilingual	Browser-Based	Platform.”	Web	
Audio	Conference	2022	(WAC2022),	Cannes,	France,	28	June	2022.			
			
Roberts,	 Charlie,	 Ian	 Hattwick,	 Eric	 Shef`ield,	 and	 Gillian	 Smith.	 “Rethinking	 Networked	 Collaboration	 in	 the	 Live	 Coding	
Environment	Gibber.”	In	NIME	2022.	The	University	of	Auckland,	New	Zealand:	PubPub,	2022.			
			

Roberts,	C.,	and	G.	Wake`ield.	“Tensions	and	Techniques	in	Live	Coding	Performance.”	In	The	Oxford	Handbook	of	Algorithmic	
Music,	edited	by	A.	McLean	and	R.	Dean,	293–317.	Oxford:	Oxford	University	Press,	2018.		
			
Roos,	F.,	and	A.	McLean.	“Strudel:	Live	Coding	Patterns	on	the	Web.”	Proceedings	of	the	International	Conference	on	Live	Coding,	
Utrecht:	ICLC,	2023.		

