
Experience report in developing and applying a method
for self-organisation to agile manufacturing

Giovanna Di Marzo Serugendo and Regina Frei
School of Computer Science and Information Systems

Birkbeck College, University of London
London, UK

dimarzo@dcs.bbk.ac.uk, work@reginafrei.ch

Abstract—The design and implementation of distributed,
self-organising and self-adaptive systems are challenging. This
article details our experience gained during the development of
self-organising assembly systems, which provide solutions for
user-friendly agile manufacturing systems. More specifically,
we describe how both a development method for self-organising
systems, called MetaSelf, and the above particular application
were progressively shaped, each influencing the other.

I. INTRODUCTION

This poster describes our experience with the creation of
Self-Organising Assembly Systems (SOAS) [5] where we
added self-organising and self-managing capabilities to in-
dustrial assembly systems. We identified a suitable architec-
ture and developed SOAS accordingly. As the research work
progressed, experience gained SOAS provided feedback
and insight into the actual development of self-organising
systems. As a result, an initial development method, called
MetaSelf, for self-organising and self-managing systems
was devised, mainly based on the original architecture.
Gradually, improvements in the development method caused
changes in the design of SOAS, which were revisited and in
turn provided additional feedback for improving the method.

II. MANUFACTURING SCENARIO

Manufacturing systems of the future have to be agile,
distributed, user-friendly and increasingly autonomous. They
need to cope with frequently changing requirements, low
production volumes, many product variants, as well as per-
turbations and failures. Mechanical system reconfigurations
are facilitated by modular hardware, but (re-)programming
remains a work-intensive and error-prone procedure.

Evolvable Assembly Systems (EAS) [6] consist of
robotic modules of varying granularity. A module is either
an entire industrial robot with several skills (i.e. screwing,
rotating and linearly moving) or a simpler module such as
a robotic axis, a gripper, a feeder, or a conveyor having
a single skill only. Every module is an embodied agent
with thorough self-knowledge (about its skills and physical
characteristics) as well as social abilities (to coordinate its
work with other modules). Modules engage in coalitions to
provide composite skills necessary to assemble the product.

For instance, a gripper able to seize and release parts forms
a coalition with a rotating robot to provide a screwing skill.

Self-Organising Assembly Systems (SOAS) [4] extend
EAS with two additional features: 1) modules self-organise
to produce a suitable layout for the assembly of the ordered
product and 2) the assembly system as a whole self-adapts
to production conditions and self-manages its behaviour.

III. EXPERIENCE

The stepwise design of the SOAS architecture went in
conjunction with the evolution of the design method. We
revisited the design of SOAS several times.

Initiation - 1 to 2: We had only a vague idea of the func-
tionality provided by SOAS. This stage included a literature
review to gain theoretical knowledge about self-organisation
in natural systems, specific self-organising mechanisms, to
identify and understand complexity concepts. Various forms
of self-organisation were considered; see Figure 1 (1). We
introduced (Figure 1 (2)) dynamic coalitions formed and
modified by the agents themselves.

Shaping - 2 to 3: We decided to use the MetaSelf archi-
tecture [3] for its internal and external control capabilities,
and for its focus on both self-organising and self-managing
issues. We gained a better understanding of SOAS, identified
the self-* requirements, and defined four SOAS life cycle
phases (Figure 1 (3)). A development method was added
to the MetaSelf architecture. It proposes a development
process [2] in three phases (Figure 1 (3)): requirement and
analysis, design (including the definition of patterns and self-
* mechanisms as well as system design) and implementation.

Refining - 3 to 4: Firstly, the self-organisation mech-
anism and the architectural pattern are chosen. To obtain
a truly bottom-up approach where modules spontaneously
assemble to fulfill the product order given in input, we
decided to follow the Chemical Abstract Machine (CHAM)
paradigm [1]. Secondly, models including agents, metadata
and policies are developed. Our approach was now based on
the Metaself development method as illustrated in Figure 1
(3). A simulation phase within the design complements the
method (Figure 1 (4)).

2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems

978-0-7695-4232-4/10 $26.00 © 2010 IEEE

DOI 10.1109/SASO.2010.24

253

Authorized licensed use limited to: The University Of The Arts London. Downloaded on August 06,2024 at 10:25:02 UTC from IEEE Xplore. Restrictions apply.

Figure 1. Refinement of the method in conjunction with the refinement of the application

Concretisation - 4 to 5: Self-adaptation to production
conditions is obtained through a series of if-then-else
policies applying to individual modules, dynamic coalitions
or the whole system. Open issues: priority and conflicts
among policies (Figure 1 (4)). The policies related to self-
organisation and applying continuously are now called rules,
while those related to self-management, applying punctually
(to recover from faults) are called policies (Figure 1 (5)).

Consolidation - 5 to 6: A complete prototype will
include the above described elements (Figure 1 (6)). A
self-organising or self-adaptive system is now considered
to be composed of active autonomous agents evolving into
an environment, handling passive artefacts, and working
according to some self-* mechanism. To determine potential
faults in the system, the verification step consists in identi-
fying faults that can arise in each of these elements (e.g. an
error in the design of the self-organising rules, a malicious
agent, or a faulty environment) and determine their impact
on the system as a whole and how the system overcomes
(or not) these faults.

IV. CONCLUSION

Our experience helped gain insight on three levels: better
understanding of the application we want to develop and
of different design possibilities; better understanding of a
development method for self-organising and self-managing
systems; and finally, trade-off between design and imple-
mentation issues. While developing SOAS and applying the

MetaSelf architecture, an accompanying design method was
elaborated and step-by-step further refined.

Acknowledgments: This work was started while Regina Frei received
a PhD grant from the Portuguese FCT; she currently receives a post-doc
grant from the Swiss NSF. We also thank the EU-funded coordination action
PerAda for financially supporting travel exchange.

REFERENCES

[1] G. Berry and G. Boudol. The chemical abstract machine.
Theoretical Computer Science, 96(1):217–248, 1998.

[2] G. Di Marzo Serugendo, J. Fitzgerald, and A. Romanovsky.
Metaself - an architecture and development method for depend-
able self-* systems. In Symp. on Applied Computing (SAC),
pages 457–461, Sion, Switzerland, 2010.

[3] G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, and
N. Guelfi. A metadata-based architectural model for dy-
namically resilient systems. In ACM Symposium on Applied
Computing (SAC), pages 566–573, Seoul, Korea, 2007. ACM.

[4] R. Frei. Self-organisation in Evolvable Assembly Systems.
PhD thesis, Department of Electrical Engineering, Faculty
of Science and Technology, Universidade Nova de Lisboa,
Portugal, 2010.

[5] R. Frei, G. Di Marzo Serugendo, and J. Barata. Designing
self-organization for evolvable assembly systems. In IEEE Int.
Conf. on Self-Adaptive and Self-Organizing Systems (SASO),
pages 97–106, Venice, Italy, 2008.

[6] M. Onori. Evolvable assembly systems - a new paradigm?
In 33rd Int. Symposium on Robotics (ISR), pages 617–621,
Stockholm, Sweden, 2002.

254

Authorized licensed use limited to: The University Of The Arts London. Downloaded on August 06,2024 at 10:25:02 UTC from IEEE Xplore. Restrictions apply.

