
EVOLVABLE ASSEMBLY SYSTEMS 
BASIC PRINCIPLES 

Mauro Onori 
Royal Institute of Technology, onori@iip.kth.se 

Jose Barata 
Universidade Nova de Lisboa/UNINOVA, jah@uninova.pt 

Regina Frei 
Royal Institute of Technology, onori@iip.kth.se 

This paper addresses the underlying principles of Evolvable Assembly 
Systems. This paradigm was recently proposed as an answer to the 
requirements faced by assembly companies in the current world of 
business and technological change.i. The basis for this new approach 
lies in a muhi-disciplinary study of the needs and requirements, and 
shifts the technological focus from complex, flexible, multi-purpose 
systems to simpler, process-oriented, dedicated swarms of machine 
modules. 

1. INTRODUCTION 

Notwithstanding recent teclinological advances, thie social and economic situation 
for assembly-intensive companies in Europe is facing considerable challenges. 
Recent studies quantify European outsourcing at 21% of total assembly activities, 
and have forecasted a rise to over 40% by 2007 (Kirsten 2002). The hidden issue 
behind such facts is that assembly has not been rendered cost-effective yet, and this 
is particularly true for novel products and markets, such as the micro-assembly 
domain. In order to counter this lack of adequate automation, and to rise to the 
challenge, the Evolvable Assembly Systems (EAS) paradigm was launched a few 
years ago (Alsterman et al. 2004; Barata et al. 2005; Onori 2002). The basis for this 
new approach lies in a multi-disciplinary study of the needs and requirements, and 
shifts the technological focus from complex, flexible, multi-purpose systems to 
simpler, process-oriented, dedicated swarms of machine modules. From a paradigm 
point of view, the EAS approach rejects machine flexibility (sub-optimal at any 
specific task) for application agility. This paper will attempt to detail the recent 
developments within Evolvable Assembly Systems, including ontological, 
methodological, and application developments. 

2. BASIC FOUNDATIONS 

Evolvable Assembly Systems (EAS) is commonly understood to be just another 
interpretation of Reconfigurable Assembly Systems (RAS). Since this is not the 

Please me the following format when citing this chapter: 

Onori, M., Barata, J., Frei, R., 2006, in IFIP International Federation for Information Processing, Volume 220, Informa­
tion Technology for Balanced Manufacturing Systems, ed Shen,W., (Boston; Springer), pp. 317-328. 



318 Information Technology for Balanced Manufacturing Systems 

case, it is of some importance to clarify how EAS differs, and which new aspects it 
proposes. Re-configurable systems take a system perspective and start with, in most 
cases, the current product and user requirements. In fact, re-configurability is a 
further development of flexibility. Flexible systems provided multi-purpose 
machines that were fairly good at many tasks but optimal in none. And the cost was 
high. Re-configurability has sub-divided these machines into smaller units and 
focussed on the system interfaces, but the focus is far too limited in time: current 
products and company aspects! EAS differs radically, and the following clarifies 
some aspects: 

• Main focus - RAS focuses on re-configurability (geometric setup) of system 
components; not necessarily automatic. EAS focuses on adaptabilify of 
system components through capture of emergent properties; semi or fially 
automatic. This may raise safety issues. 

• Development trigger issue - RAS uses current (existing product features as 
a development trigger, whereas EAS focuses on the re-engineering needs of 
the assembly system (product shift). 

• Modularity level - RAS applies conventional subdivision of assembly into 
"transport-handling-assembly-finalisation" blocks, which results in coarse 
granularity. EAS applies lower-level modularity based on process-level 
characteristics: the "operational" level becomes subject to modularity, hence 
resulting in fine granularity. 

In truth, the differences are many, and EAS provides, through its tight process-
oriented modularity, a much closer link between product design and assembly 
system development. In order to further clarify how EAS operates, and upon which 
premises it builds its theoretical and technological foundations, a brief description of 
the main aspects will follow. 

2.1 System Concept 

EAS proposes, basically, a radical new way of thinking: in terms of assembly 
systems, what is required is not a complex solution which tries to accomplish all of 
the envisaged assembly needs within a closed unit (Flexible Assembly systems) but, 
rather, a solution which, being based on many simple, re-configurable, task-specific 
elements (system modules), allows for a continuous evolution of the assembly 
system. This, in many ways, is an interpretation of swarm strategies. In fact, it is the 
aggregation of many small, simple enfifies that will enable a given functionality, and 
this functionality can disappear by the removal of some of these entities. New 
functionalities are simply created by forming different formations, or coalitions of 
entities. 

EAS also goes a step further by proposing a totally new way a considering the 
products and assembly systems: the design cycle of the products will be influenced 
by which modules are available. In other words, many simple, strictly task-oriented 
components with standard interfaces are better than few, very flexible but extremely 
expensive solutions that cannot be integrated within existing systems: in effect, there 
are no defined systems within EAS, only process-oriented modules. This, however, 
brings us to a discussion of what a system is. In fact, a system's capabilify is NOT 
the sum of the capabilities of its parts. It could be a completely different scenario 
altogether. The issue being raised here is that EAS will consist of a vast range of 



Evolvable assembly systems basic principles 319 

inter-connectable modules. When a system will be created according to the EAS 
principles, the resulting capability of the sum of the modules will not be so easily 
predicted. What happens, in fact, when a multitude of small entities is brought 
together, is that new, unthought-of capabilities may emerge from this coalition. 
Hence the need to start studying the principles of emergence, since the capabilities 
being brought together may also be viewed as particular functionalities (skills) being 
offered by each module. A very important point to highlight is the fact that the 
properties that emerge out of the interaction of the modules that compose the 
assembly system represent just the complex functionalities (complex skills) of the 
system we want to create (Barata 2005). The interesting conclusion is that we can 
generate any functionality we want as long as we provide the conti'ol architecture 
able to accommodate the interaction of modules. 

2.2 Control Concept 

Starting with the basic assumptions enunciated in the previous section, it becomes 
clear that traditional control paradigms cannot be used to support EAS. In effect the 
control solution for EAS must cope with the following aspects: 

1) Support the integration of modular components that might include their 
own controllers with different levels of intelligence, 

2) product changes, 
3) fluctuations in demand, 
4) support the addition and removal of components during normal production, 
5) provide support for the operative phase. 

Support the Integration of Modular Components 
In terms of integration of modular components, then the centralised approach is 
immediately at a loss since the basic assumption under which EAS is grounded is 
the idea of independent modules that may be reused and put together at will, 
according to the system that is being created (coalition). With such an objective the 
main goal is about plugability or the possibility that coalitions of modules need to be 
created in a very fast way without any or just minor programming changes. This 
requirement cannot be achieved with a centralised approach which may be optimal 
for static systems but copes poorly with dynamic life cycle systems. The hierarchical 
approach is also very weak because hierarchies deal poorly with structural changes. 
Even if each module has its own controller, and therefore becomes distributed, it is 
not convenient that each module controller has functionalities that allow essentially 
the creation of very static hierarchies. 

Hence a different approach should be followed in which each module should 
have a level of intelligence that enables it to participate in societies of modules 
(coalitions) following different types of hierarchical structures. This means a 
completely new approach on how module controllers should be designed because 
modules do not know a priori (statically) what kind of requests and from whom 
these requests will come. These new extra functionalities for participating in 
dynamic coalitions with different types of hierarchical structures requires new 
challenges on the module controller architecture. 

The multiagent paradigm is a good choice for two reasons. The first reason is 
related to modelling and abstraction. In fact it is quite simple to make the connection 



320 Information Technology for Balanced Manufacturing Systems 

between a module and a modular component. The second reason is related to the 
need for plugability. In effect if a modular system is being considered they must be 
plugged or unplugged at will. Therefore a multiagent system seems to be ideal 
because, by definition, a multiagent system is adequate to plug and unplug agents (in 
this case component modules). Another aspect connected to a modular system is the 
fact that a particular assembly or production system is a composition of modules, 
which can then be also considered as a coalition of modules. This is another 
connection between production modules and the agent world. A very well known 
and established work is in fact the work on agent coalitions (Castelfranchi et al. 
1992; Klusch and Gerber 2002; Pechoucek et al. 2002; Shehory and Kraus 1995), 
which can be applied also here (Barata 2005). 

It is important to emphasise that modularity does not immediately imply modules 
with very intelligent controllers. However, if it is considered that modules can be 
plugged and unplugged in a very simple way (none or minor programming effort) 
then at least some functionalities related to plugability are needed at module level. 

Product changes 
Product changes may imply alterations in the structure of the assembly system. The 
system evolves by changing, rapidly, the modules that compose the coalition. This 
change must be done with no or minor programming. The aspects of plugability 
referred to in the previous point are fundamental to ensure a smooth change. 
However, more than just simple plugability is needed because one must consider an 
entity that will be responsible for the changes in the coalition or society, and the 
controller modules must be able to cope with this entity by providing them with 
relevant information (such as the skills that each one is able to perform) in addition 
to information about their past experience. 

Therefore, an entity that should be called upon whenever a major change is 
required to the coalition is being implied. This entity (tool) should be able to guide a 
systems integrator in the process of creating a new coalition fitted for a product 
family. The most important aspect is that this tool should be able to guide the user 
by suggesting that the coalition is not created based only on product features but also 
on the skills made available by the modules. 

In otner words, each module should be able to supply information of its own 
skills or functionalities to be used by the external tool or configurator. In addition to 
this information, the user should also get information about the quality of the 
module he/she is choosing. Consequently, each module controller should include 
functionalities to store relevant information such as the number of faults, number of 
working days, etc and also to supply them whenever requested by the configurator. 
This means extra computational capability (or intelligence) for each module 
controller. 

It is relevant to consider that whenever the coalition is created the set of module 
controllers (agents) start to interact and a new set of behaviours (skills) emerges. 
This means that whenever a coalition is created it is not necessary to program the 
interactions between its members. The only thing the configurator has to do is assist 
in the creation of the coalition. 

The relation with the multiagent paradigm for this requirement is that an agent 
supports various behaviours. In fact, in the illustrated situation, the agent in addition 
to its normal work of controlling its module should also perform behaviours related 



Evolvable assembly systems basic principles 321 

to answering requests about its own skills and monitoring and storing relevant 
information about its physical entity (module). On top of these aspects the 
configurator can itself be an agent, in this case a configurator agent that interacts 
with a user and with the society of modules to get information. 

If the change on the product only implies alterations of the flow within the 
system then the change does not imply any changes to the coalition but only changes 
in the way the product is processed. If it is considered that the product is an entity 
that know its process steps (process sequence) and considering that the 
transportation system is intelligent enough to know what kind of modules and which 
skills they publish, then whenever there is a product change that can be coped within 
the system nothing is required to change since it is all about negotiation between the 
product and the transportation system. It must be clarified that what is being 
considered here is a situation in which each traveling product (piece) is represented 
within the control system as an intelligent entity that can interact with the other 
entities. If, for instance, it is considered that each product is transported by an 
autonomous entity (kind of AGV) that can move to the locals where the other 
modules might do some operation on the product, and in addition to that the 
transporter can make broadcasts to know which modules are available and which are 
their skills, then it becomes easier to understand why product changes of this type do 
not require any reprogramming. 

Taking into consideration the previous requirements it is quite easy to make the 
connection between product changes and the need for a controller based on the 
multiagent paradigm. The autonomy makes the agent responsible for its own acts, 
which means that each module is individually responsible for the actions over the 
product. Adding or removing one of these modules does not have a big impact on 
the overall system structure since each module is a confined individual entity. It 
must be noted that being confined does not mean any interactions with the other 
modules. In fact the social ability that characterises the multiagent world is 
fundamental to ensure that the modules interact among themselves. 

Fluctuations in the demand 
This aspect is mostly related with the ability to plug or unplug modules, as well as 
with the capability of the modules to adapt themselves to the new requirements. If 
the demand increases a very obvious solution is adding new modules to increase 
throughput or in case of lower demand modules can be removed. But a less obvious 
solution of system adaptation to the new requisites may take place. For instance lets 
suppose the system is composed of intelligent modules that always tries to save 
energy. On a situation of low throughput, each module understands that it can do the 
work at slower speed, therefore saving energy. It can even be the case that parts of 
the system are shutdown, which means that certain modules are shutdown; only part 
of the controller is active, looking for changes in the demand. If a demand increases 
the modules detects this new situation and the ones already working start to produce 
faster and the ones that have shutdown themselves start working. The reverse 
happens in a situation of reduced demand. 

This capacity flexibility can only be achieved if each module is intelligent 
enough to be able to execute these actions. It is very important to consider that the 
agents needs to interact among themselves in order to be able to sense that a demand 



322 Information Technology for Balanced Manufacturing Systems 

is increasing or decreasing. It would be ideal that the agents could figure out what is 
going on based on their local knowledge. 

Addition or removal of modules during normal operation 
This aspect is about minor changes that might be made to a system during normal 
operation. These minor changes might happen due to minor changes in the product 
that do not require the intervention of the configuration tool and/or to support 
maintenance interventions without having to stop the system. For instance, if the 
system is operating and at certain level a feeder or even a gripper is required to be 
removed for short period maintenance then the system should be able to still 
operating, even if at reduced capability. It might be the case that the removal of the 
gripper inhibits the capability of the cell to do some operations but the other might 
still be supported. 

These requirements are again best suited for the multiagent paradigm since only 
with intelligent modules that support emergence in the sense that the new 
capabilities of the system are automatically derived whenever a new module is 
added or removed, it is possible to solve this problem. 

An interesting side effect of this requirement is that the system can be composed 
manually without the need for a configurator. Because of the mergence that is 
supported by each module controller the behaviour of the system emerges naturally 
out of the coalition. 

Operative phase 
The need for better operational support means all the tasks that are required to 
support the shop floor while it is operating. This include aspects such as online 
reconfiguration of production parameters, maintenance support functionalities, 
advanced diagnostic systems, advanced user interfaces, etc. All these requirements 
are also better solved if the multiagent paradigm is considered, because among other 
aspects it is important to model each manufacturing component or module as an 
entity that includes all relevant information (maintenance parameters, process 
related variables, etc) that can be used in supporting the aspects referred before. This 
shows how the connection between modular component and agents is done. Another 
important aspect at this level is the autonomy that each agent (module) must possess. 
In fact each agent must support simultaneously different behaviours or actions. For 
instance an agent representing a certain module participating in a coalition (system) 
must simultaneously do the following tasks: 1) answer requirements for executing 
some work (for instance, the request to transport one piece from one point to another 
received by a gantry robot), 2) keeping monitoring the internal sensors of the 
module, 3) answering requests from external users for internal parameters values, 4) 
interacting with other modules for advanced diagnosis functionalities, etc. 

2.3 Emergence 

The EAS paradigm, considers the optimisation under conditions of change. As a 
system, an assembly system actually consists of many different, small, but 
cooperating, entities, or if we like, organisms. There will be higher organisms (the 
system as a whole, or modules) and lesser ones (grippers, fixtures). As this approach 
is adopted by EAS, with many simple, dedicated process units, special conditions 



Evolvable assembly systems basic principles 323 

arise. This brings us to how systems should be interpreted, and a branch of studies 
called "Systems Thinking". 

Systems Thinking enables one to progress beyond simply seeing events to seeing 
patterns of interaction and the underlying structures which are responsible for the 
patterns. A system is something that maintains its existence and functions as a whole 
through the interactions of its parts. It consists of many different parts and organs, 
each acting separately yet all working together and each affecting the others 
(analogy with EAS: The modules are the parts and the assembly system is the 
system). 

The essential difference, from a EAS point of view, is that in a true system, when 
one part is added, the additional functionality is not an obvious addition of the added 
parts' functionality. This is what is called emergent properties, and is the basis of 
EAS. Systems have emergent properties that are not found in their parts. You cannot 
predict the properties of a complete system by taking it to pieces and analysing its 
parts. 

Similarly, the smaller the constituents of the system, the easier it is to define, 
structure and coordinate the skills being brought in and out of it. 

Note: the constituents have to be classified in terms of the overall system 
demands, changing external conditions, and particular tasks to de carried out. 

It is suggested, due to the potentially large level of complexity, and liability 
issues, to subdivide emergence into 3 levels: primitive, communal, and full 
emergence. 

Primitive emergence: 
This refers mainly to very simple self-organisation. The main prerequisite is the 
ability of the system modules to self-recognition. This is to be viewed as a 
fundamental objective of plugability. There must be an open information exchange 
between the modules and the organiser of assembly events, whether this be at 
configurator level or performed autonomously by more "intelligent" (agent-based) 
modules. This type of emergence has a smaller effect on systems based on coarse 
modules: i,e.- the finer the granularity, the higher the need for primitive emergence 
to satisfy the reconfigurability & evolvability demands. 

Communal emergence: 
This refers mainly to self-organisation with adaptability. In this case the system is 
not only fully capable to self-program and setup itself, but it also enables some 
forms of adaptability. This is not only self-calibrations but, primarily, the ability of 
the system to adapt if changes are brought to the "world perimeter" its comprises, 
such as the product or fluctuation scenarios described earlier. 

At this point, the emergent solution may detect possibilities and inform the 
user/controller of such emergent properties. An example of such Community-
adaptive emergence could be the creation of a Pick&Place capability out of a gripper 
and one or two linear or rotational movements. 

Full/Evolutionary emergence: 
This refers to full adaptability and evolvability. This level enters the realm of 
classical emergence, in which the emergent property itself is often unpredictable and 
unprecedented, and may represent a new level of the system's evolution. Full 



3 24 Information Technology for Balanced Manufacturing Systems 

emergence means that EAS learns how to perform "tricky" tasks, similar to the way 
a human operator gets better when he gains more experience. This means that the 
systems has to be taught how to use its acquired knowledge to draw further 
conclusion. Of great importance is the idea that certainty/uncertainty aspects surface. 
The emergent properties have never before been tested and exploited, are the result 
of previously unknown logical/social or other patterns, all of which raises liability 
and safety issues. It is for this reason alone that it is of utmost importance to 
understand the value of an emulator: it will enable the user to verify the emerging 
skills/properties before one builds the actual system! If this is available, the liability 
issues would also become more treatable. 

2.4 Evolvability 

When considering evolvability, or EAS, one often makes the terrible mistake of 
considering qualitative and quantitative features on the same plane of thought. This 
has led the EAS developments into quite some confusion, and some preliminary 
clarification is required. 

A qualitative feature describes a given EAS characteristic from a general 
viewpoint, and cannot easily be assigned any set metric for quantification, unless 
this metric is clearly defined. 

A quantitative feature describes a performance characteristic and can be 
measured. Hence, when discussing evolvability one should first ask whether such 
concepts may be measured at all. In an attempt to clarify this, the article proposes a 
tentative set of definitions. 

First of all, the evolvability resides within the system characteristics (we will 
always assemble, etc.- functionality not evolvable, but the qualitative attributes), 
which must be assumed to be mechatronic in nature. The assembly system may then 
be defined as an evolvable system if; 

• It is a fully "reconfigurable" mechatronic system platform that exhibits an 
emergent behaviour. 

• The assembly units and modules are mechatronically integratable. 
• The evolvable & reconfigurable system is composed of process-oriented 

components. 
• The system can automatically determine its functionality based on the 

components' skills (when components are plugged together to form it). 
• There is no (or minimal) investment in the programming & coding, but, 

rather, in how to establish and exploit relations. 
• Maintenance, documentation and the ability to store information in support 

of operational stability. 
However, evolvability is not attained by a single giant leap forward in 

technology. It is attained in carefully measured steps, that start with specified 
modularity. From a process-oriented set of modules, one must then assure 
plugability, followed by reconfigurability and, finally, evolvability. A full set of 
definitions and clarifications will be given later. 



Evolvable assembly systems basic principles 325 

3. EAS PREREQUISITES 

Several partners have, for the past few years, elaborated on the EAS paradigm. 
Some of the more recent developments, such as the ABAS platform, clearly attempt 
to fathom out the prerequisites and move forward. The EUPASS Integrated Project 
has been the largest endeavour to date to follow the EAS principles, and has, 
together with more pinpointed efforts between KTH, UNINOVA, and EPFL, 
elaborated a set of foundations for EAS. 

3.1 Definitions and metrics 

As stated earlier, it became quite clear, at a very early stage, that means to validate 
the concept were needed. The first step was to define the way certain aspects were 
being interpreted, and then move forward to try and set up adequate metrics for 
exploitable validation. The basic definitions are given below, starting with the basic 
EAS prerequisite, which is a process-oriented set of assembly modules. 
Module - Any unit that can perform an operation and integrates a specific interface. 
Granularity level needs to be defined (the lower the level, the higher the degree of 
emergence) 
Granularity - The lowest level of device being considered within a reference 
architecture. The lower the level of building block (tool, gripper), the higher the 
emergent behaviour: if a gripper can "communicate" with a robot, new operational 
characteristics may emerge (flip product/part in motion, fine positioning...). 
However, this implies that an overload of definitions and information management 
may arise, and a minimum level needs to be clearly set. 
Plugability - The ability to rearrange and integrate system components within the 
framework of a given system architecture. The resulting new layout does not 
preclude efficient performance, one simply and physically plugs together a new 
arrangement. 
Reconfigurability (interoperability) - The ability to reaarrange available system 
components to perform new, but pre-defined operations (plugability plus 
characteristics that ensures the efficient performance of the resulting new layout). 
Evolvability - It is a fully "reconfigurable" mechatronic system platform that 
exhibits an emergent behaviour which introduces new or refined levels of 
functionality. It requires a stringently defined reference architecture to enable the 
correct application of the relevant characteristics. 

These are qualitative features. Therefore, an attempt at setting quantitative 
features to the EAS objectives was carried out, resulting in the table below: 

EAS Qualitative Features 
Evolvability-conformity 
Plugability- control specifications 
Plugability- user requirements 
Safety conformity 
Evolvability & Safety 
Plugability-practical implementation 
Evolvability-practical impl. 

EAS Quantitative Features 
Skills repository & Management 
Module description/blueprint 
Application guidelines 
CE & safety certification procedures 
Rules related to emergent behaviour 
EAS "wrapper" solution: hardware 
EAS "wrapper" solution: software 



326 Information Technology for Balanced Manufacturing Systems 

At the highest level the EAS application will require some form of virtual 
repository that stores the protocols, guidelines, and other support structures for users 
to be able to comply with its specifications. The Reference Architecture will be 
available through this level. Plugability is not only the required control structures 
and approaches applied to exchange and adapt data, but it must also indicate for 
external users what may be required in order to comply. Emergence, defined earlier, 
also implies that unwanted characteristics may emerge, and raise safety or liability 
issues. This will have to be considered carefully, and specific rules will need to be 
enforced. One of the major keys to a successful EAS application resides in how the 
modules will interact with one another, which implies that much more than 
traditional interfaces will be required. These are, for the time being, defined as 
"wrappers", which also implies that legacy components may be adapted to the EAS 
format. Finally, but also fundamentally, EAS requires an extremely well defined 
Reference Architecture. This architecture will be a mirror of the ontology developed 
for a particular class of products. This Reference Architecture is currently being 
developed out of the ontology definition that will be given in the next section. 

3.2 Ontologies 

Ontology is a concept widely used today in Knowledge Engineering, Artificial 
Intelligence and Computer Science in any application that involves knowledge 
management and information management. Its importance in other engineering 
domains such as mechanical engineering and assembly, in particular, is quite natural 
since this domain requires computer based supporting tools to help in the design and 
operation of agile assembly systems such as Evolvable Assembly Systems. The full 
development of the EAS concept cannot be done without design supporting tools 
and advanced control solutions whose main requirement is the ability to quickly 
change and adapt. However, this requires the assembly domain to be fully 
understood and modeled in a way that can be used by the different computerized 
tools involved within assembly. Only if the main concepts behind the assembly 
domain and how they interrelate are fully understood and conveniently represented 
using some kind of formalism it will be possible to create computer programs that 
support the development and operation of EAS. In addition to the central aspect of 
creating computer representations that model the concepts and their relationships it 
is fundamental that these representations are agreed by the assembly community 
because it must be taken into account that different tools will be used and developed 
across the domain and therefore it will be of great advantage if the tools could 
somehow reuse the models that are developed. These computer representations 
(models) can be defined using ontologies and this is the reason why they are being 
addressed here. 

Ontologies are much more than simple taxonomies since they allow appending 
semantics to relations among entities. So, we may envision relations that describe 
dynamics, social interactions, etc. However, much work needs to be done in 
knowledge modelling and knowledge management, which should not be a surprise 
since ontologies are about representing knowledge. For knowledge management 
existent methodologies, like CommonKADS (Schreiber et al. 1994) may be 
exploited. But the great challenge is about knowledge modelling, since the approach 



Evolvable assembly systems basic principles 327 

for ontology creation needs always knowledge modelling both for the situations in 
which the ontology is created using a top-down or bottom-up approach. One 
challenge is modelling operational knowledge, which is not clearly stated in 
products' data sheets. For instance, two modules can be mechanically interconnected 
but practical experience may indicate that such a connection is usually ineffective as 
mechanical stress is imposed, which in turn it is application dependent. The 
problems are increased if the knowledge of several experts needs to be merged, if 
the knowledge is contradictory, etc. The ontology research work about creating 
ontologies tries to provide answers to this question (Gomez-Perez et al. 2004). 

Some steps are being done in the direction of structuring the assembly domain in 
the European project EUPASS, in which some preliminary ontologies about the 
assembly process are being done using OWL. The most important concepts that are 
necessary in defining a precision assembly ontology to implement successful EAS 
must include the following sub-ontologies: (1) ontology of modules, (2) ontology of 
processes, (3) ontology of skills, and (4) ontology of products. 

Skills ^ . 

/ paitiaj)3fe Jn^\,^--'' his Sblls" ^KContfoL^ctioiis 

) Activity .Kî 'Piuts; Wette^ 

/ liiirdwareRepresenbtioif s.ii]>j)ortfi ^v snppi>ited_ By'' 

.4j),semb]y Etiiiipneut 

Figure 1 - Most important concepts and how they interrelate 

An ontology of modules should identify the modules available to be used in 
coalitions (assembly systems). These modules can range from simple entities such as 
a gripper to a very complex entity such as an assembly cell. The ontology of 
processes should identify all the classes of processes that are used in assembly such 
as gluing, pick&place, joining, etc. The ontology of skills needs to formalise the 
skills that may be found in assembly. Not only is it necessary to define the 
individual skills associated to each module but also the skills that emerge out of the 
basic ones. The ontology of products should identify families of products that share 
certain assembly processes. These concepts grouped as sub ontologies are related 
according to figure 1. In figure 2 it is shown just part of the taxonomy of the 
ongoing ontology work that describes the assembly process. 

Figure 2 - Part of the taxonomy of the assembly process 



328 Information Technology for Balanced Manufacturing Systems 

4. CONCLUSION 

Results are currently being published (Barata et al. 2006), and include 
methodologies for selecting modules, ontologies, and Reference Architectures. This 
article has focussed on the underlying principles. This is important since a new 
paradigm is taking form. As stated earlier, the underlying foundation of EAS is 
evolvability. Evolvability is, in rough terms, the most advanced form of adaptability. 
Hence it implies that the systems must adapt to changes. Changes may be either 
predictable or unpredictable in nature. Changes may occur at internal system level or 
external gobal level. Unpredictable behaviours that may affect EAS systems are 
termed as "emergent" and can be either great opportunities or extremely disruptive. 
A solution that cannot even attempt to tackle emergent events cannot be deemed as 
Evolvable. Therefore, the work is now focusing on Reference Architectures and 
validation cases. 

5. ACKNOWLEDGEMENTS 

This work has been partially done with the support of the European Commission 
through the Integrated Project EUPASS. The authors would also like to thank all 
their colleagues in the EUPASS project. 

6. REFERENCES 

1. Alsterman, H., Barata, J., and Onori, M. (2004). "Evolvable Assembly Systems Platforms: 
Opportunities and Requirements." Intelligent Manipulation and Grasping, R. Molfino, ed., 
IMG'2004, Genova, 18-23. 

2. Barata, J. (2005). Coalition Based Approach For ShopFloor Agility, EdifOes Orion, Amadora -
Lisboa. 

3. Barata, J., Camarinha-Matos, L. M., and Onori, M. "A Multiagent Based Control Approach for 
Evolvable Assembly Systems." INDIN 05 - 3rd International IEEE Conference on Industrial 
Informatics, Perth - Australia. 

4. Barata, J., Onori, M., and Frei, R. "Applying Evolvable Assembly Systems." ISIE'06 - IEEE 
International Symposium on Industrial Electronics, Montreal - Canada. 

5. Castelfranchi, C , Micelli, M., and Cesta, A. (1992). "Dependence Relations Among Autonomous 
Agents." Decentralized A.I. 3, E. Werner and Y. Demazeau, eds., Elsevier Science Publishers B. V, 
Amsterdam, NL, 215-227. 

6. Gomez-Perez, A., Lopez, M. F., and Corcho, 0 . (2004). Ontological Engineering, Springer-Verlag, 
London. 

7. Kirsten, M. (2002). "Present: Trends in the Western European Electronics ", Reed Electronics 
Research. 

8. Klusch, M., and Gerber, A. (2002). "Dynamic Coalition Formation Among Rational Agents." IEEE 
Intelligent Systems, 17(3), 42-47. 

9. Onori, M. "Evolvable Assembly Systems - A New Paradigm?" International Symposium on Robotics, 
Stockholm, Sweden. 

10. Pechoucek, M., Marik, V., and Barta, J. (2002). "A Knowledge-based Approach to Coalition 
VoxmaXion." IEEE Intelligent Systems, 17(3), 17-25. 

11. Schreiber, A. T., Wielinga, B. J., De Hoog, R., Akkermans, J. M., and Van de Velde, W. (1994). 
"CommonKADS: A Comprehensive Methodology for KBS Development." leee Intelligent Systems 
& Their Applicatiom, 9(6), 28-37. 

12. Shehory, O., and Kraus, S. (1995). "Coalition Formation among Autonomous Agents: Strategies and 
Complexity." From Reaction to Cognition, C. Castelfranchi and J. P. MuUer, eds.. Springer-Verlag, 
Heidelberg, 57-72. 




