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ABSTRACT
Identifying points of engagement from a person’s interaction with
computers could be used to assess their experience and to adapt user
interfaces in real-time. However, it is difficult to identify points of
engagement unobtrusively; HCI studies typically use retrospective
protocols or rely on cumbersome sensors for real-time analysis.
We present a case study on how children compose digital music at
home in which we remotely identify points of engagement from
patterns of interaction with a musical interface. A mixed-methods
approach is contributed in which video recordings of children’s
interactions whilst composing are labelled for engagement and
linked to i) interaction logs from the interface to identify indicators
of engagement in interaction, and ii) interview data gathered using
a remote video-cued recall technique to understand the experiential
qualities of engaging interactions directly from users. We conclude
by speculating on how the suggested indicators of engagement
inform the design of adaptive music systems.
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1 INTRODUCTION
The term engagement has been used in Human-Computer Inter-
action (HCI) to describe points where people are drawn in and
attentive during interaction with a computer [11, 16, 51, 70]. Indeed,
the state of mind when engaged with an interface is closely related
to the psychological state of flow [11, 51, 70], where the balance
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of an individual’s challenge and ability leads to a sense of con-
trol and loss of self-consciousness [20, 43]. Many HCI researchers
have considered flow and engagement as essential aspects of the
user experience [7, 9, 44, 51, 70]. However, identifying points of
engagement is an ongoing HCI research challenge. Often, methods
to measure engagement use retrospective protocols [50, 51, 53] or
make use of sensor technology which is too obtrusive to be used
outside of specialist settings [24, 39], undermining characteristic
qualities of the creative experience such as spontaneity [11]. We
suggest that points of engagement can be identified from a person’s
interaction with a user interface (UI) and present a method for do-
ing so. Our method links points of engagement with interview data
to provide insight into the user’s subjective experience and may
potentially be applicable to other open-ended activities without
easily measurable metrics of success, such as task completion time
(see [53]).

As a case study, we explore how children compose music using
a digital musical interface. We examine music composition as it af-
fords an open-ended and complex interaction in which engagement
is an important quality [11, 44, 71]. Our aim is to identify relation-
ships between users’ patterns of interaction with a UI and points
of engagement. This is achieved using a method which combines
qualitative and quantitative methods. Patterns of interaction are
identified from the actions of the children within our case study and
supported by interviews based on a remote video-cued recall (VCR)
technique, giving insight into the experiential qualities of their
engagement with a musical interface. As a remote home-use study,
with no in-person interaction between researchers and participants,
we suggest that there is potential to apply our method to a range
of hard-to-reach user communities. Our findings could possibly
inform the design of systems which automatically adapt during
interaction to support specific user’s engagement. To summarise,
we offer the following contributions:

• A method for identifying points of engagement using data
collected solely from a UI which could be used to describe
patterns of interaction for an observed set of users. This is
presented as a set of metrics for identifying engagement from
a case study of children interacting with a digital musical
interface.

• An approach for linking interaction data and interview data
via a VCR technique to gather information from users on
what they did and why, reducing the need for researchers
to interpret interactions based on only their intuitions (as in
existing methods, see Section 2.3). This is applied in a remote
study setting, potentially providing opportunities to reach
many different users.
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2 RELATEDWORK
Engagement is a complex, multifaceted, construct. In HCI, engage-
ment has been defined as points where people are drawn in and
attentive during interaction with a computer [11, 16, 51, 70] and
has received a large amount of attention in HCI sub-fields such as
funology [7] and gamification [22]. Consequently, researchers have
established key attributes of engagement that can be measured and
used in evaluations [11, 58, 71]. For example, O’Brien and Toms [51]
proposed attributes of engagement based on extensive user stud-
ies and an interdisciplinary literature review, including: attention,
novelty, control, positive affect (pleasure) and feedback.

The theory of flow [20] is frequently cited by HCI researchers
when exploring attributes of engagement [1, 7, 11, 44, 47, 51]. The
theory posits that people experience an optimal flow state charac-
terised by nine conditions, which include balancing task challenge
with skill, presenting clear goals, and providing immediate feed-
back [20]. With respect to composing music digitally, researchers
within both HCI [6, 7, 48] and digital music education [1, 44, 47]
have suggested using flow as basis for evaluating UIs designed
to support enjoyment, creativity and learning. A key difference
between engagement and flow is that flow must be intrinsically
motivated and requires long-term focus, whereas engagement can
be extrinsically motivated and sometimes occurs in the midst of
multitasking [51, 70].

Some attributes of engagement, coinciding with attributes of
flow, have been successfully identified via observation as opposed
to through an individual’s subjective self-reporting [1, 11, 21, 58],
which is typically used to identify engagement. Evaluating engage-
ment via observation can be useful in creative contexts where
retrospective protocols do not necessarily capture characteristic
qualities of the experience such as spontaneity [11]. In music edu-
cation, Custodero [21] developed a set of observable attributes of
flow states which occurred during children’s daily musical expe-
riences. Custodero’s attributes are similar to O’Brien and Tom’s
[51] and have been used to study engagement in children’s musical
improvisations with a human-AI piano system [1].

Based on the described work above, notably [1, 21, 51], we ex-
plore the following attributes of engagement in our case study:

• E1: Focused attention. The child is attentive to a particular
(musical) idea or UI element.

• E2: Clear goals. The child shows the intention to perform
specific musical ideas such as to create an ascending motif.

• E3: Clear cut feedback. The child reacts to feedback from
the system.

• E4: Pleasure. The child is enjoying themselves.

It is important to note that our intention is not to measure points
of flow per say, as our interest is in the objective identification of
points of engagement rather than an introspective assessment of
participant’s feelings that characterises the flow state [20, 43] —
especially given the theory of flow’s roots in positive psychology
[43, 60]. We also do not focus on examining different levels of
engagement (such as in [14, 51]) as our interest is in identifying
where points of engagement might occur in a user’s interaction
with a UI, not to what extent.

2.1 Creativity Support Tools
HCI designers strive to provide opportunities for engagement with
computers in many ways, such as through gamification [22]. We
focus on Creativity Support Tools (CSTs) whose aims include foster-
ing users’ engagement and skill development in creative contexts
[27, 63]. A set of design principles for developing CSTs from the sem-
inal National Science Foundation workshop [63] include to enable
collaboration, provide a low threshold of entry (to engage novices),
and high ceiling (for expert users) [32]. The principles have been
influential, inspiring the design of many CSTs [27], including in
educational contexts [25, 40, 45]. However, they mainly focus on
professional creativity, supporting engagement to motivate profes-
sional users in developing expertise. In contrast, Casual Creators
are a sub-genre of CSTs which emphasise a non-professional’s ini-
tial short term enjoyment when interacting with CSTs [18, 19]. A
set of pragmatic design patterns for designing Casual Creators are
offered in [19] with key patterns being to provide instant feedback
and entertaining evaluations.

2.2 Music Composition & Technology
In terms of music and creativity, there is a vast amount of previous
work in education and psychology examining how people learn
musical constructs (such as pitch [36, 38]) or engage with music
in everyday life [30, 37]. Indeed, early work on the psychology of
creativity informed models of the composition process [64, 69, 73].
Wallas’s [68] seminal model described the creative processes as a
set of linear stages, including preparation (consciously collecting
ideas and planning), illumination (the culmination of unconscious
thoughts), and verification (conscious testing of an outcome). Mod-
els of the music composition processes extended this [64, 69, 73],
incorporating iterative movements between phases and placing
emphasis on preparation.

Numerous musical CSTs have been designed and evaluated to
support the composition process. For example, Nash [44, 46] ex-
plored learning and motivation in users of a soundtracker (a grid-
based music sequencer) plugin by examining 1000+ user interac-
tions. Bryan-Kinnswith various co-authors [10, 11] identified points
of mutual engagement for non-musicians collaboratively creating
music remotely with a simple loop-based interface. Beyond music
composition, Addessi et al. [1, 2] explored how young children in-
teracted with a “virtual copy of themselves” [52] in playful musical
interaction — their system allows children to play with a piano and
receive generated musical responses. Nijs et al. [47] developed a
system which also extends a musical instrument, using flow and
theories of embodied cognition, where performers could create
artwork using their acoustic instrument and body movements.

Based on the models of the composition process and the user
studies of CSTs above, we briefly outline some typical patterns
of musical interaction that could be expected in children’s music
composition with CSTs:

• B1: Preparation. Children often perform a prepatory phase
where they set up a scaffold for their music before starting
to compose [44, 68, 69].

• B2: Auditioning. Children with more musical expertise
with a CST likely spend a shorter amount of time editing their
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music between episodes of playback [44, 46], performing
edits during, and reacting to, auditory feedback [1, 19, 44, 46].

• B3: Contemplation. Long episodes of listening possibly
indicate contemplative flow states [10] and can be described
as a distinct phase [73].

• B4: Envisioning. Children likely envision musical ideas
before committing them to notation [64, 68, 68, 69].

2.3 Approaches to Identifying Patterns of
Interaction

There are many HCI studies on creativity and engagement beyond
music which aim to identify patterns in people’s interactions. Some
rely on tasks with a clear completion goal [9, 23, 49, 53–55, 72] –
for example, Pastushenko and colleagues [53] speculate on how a
gamified system could detect flow states, later presenting a pilot
investigation for predicting attributes of flow [49]. Other investiga-
tions have identified patterns of interaction in open-ended inter-
faces [35, 62, 65, 67] similar to the system used in our case study
(see Section 3.1). These patterns of interaction are often determined
by visualising common interactions which researchers interpret
as points of engagement based on their intuitions. For example,
Soltanheis [65] developed a visualisation system for interaction logs
collected from an open-ended application for children’s literacy
and labelled examples of interactions where users acted intention-
ally. Our method incorporates VCR (see Section 3.4.2) to directly
understand how children perceive their own interactions, which
might help researchers understand how they relate to points of
engagement. Furthermore, a number of these works [49, 53, 65]
focus on identifying patterns to train classifiers which predict en-
gagement based on entire sessions of interaction – we strive to
identify patterns of interaction which could potentially be used to
detect points of engagement whilst children are composing.

3 METHOD
We conducted a fully remote — meaning online with no in-person
interaction between researchers and participants — case study of
children’s engagement when composing music for the first time
at home with a musical CST, named Codetta (see Section 3.1). The
purpose of the study was to explore the research question of which
patterns of interaction with a musical UI might indicate points
of engagement for the children in our case study. The study was
designed to be fully remote to i) follow social distancing restrictions
in place at the time, and ii) potentially accommodate otherwise hard-
to-reach participants. The study was approved by Queen Mary
University of London’s ethics committee, following their standard
procedures which can be found online. Both parents and children
provided written consent using information sheets and consent
forms designed for their reading level. For convenience, we use the
term parents to refer to parents and guardians.

3.1 Codetta
Codetta [25, 26] is an open-source block-based CST for music com-
position. We chose Codetta in this study because: i) it is sufficiently
developed and simple enough to use, meaning that children can
successfully write short musical compositions [25, 26]; ii) the soft-
ware contains many characteristics of CSTs such as undo features

Figure 1: Screenshot of Codetta showing the composition
the children create during the tutorial. The context help
panel is where the tutorial is also displayed.

and context help documentation, supporting CST design principles
[63]; iii) when talking to teachers in our recruitment pool it was
apparent that block-based programming was commonly taught in
the children’s schools, thus they were likely familiar with Codetta’s
interaction style; and iv) we wish to contribute to the canon of re-
search on how children can make music with block-based systems
[25, 26, 56, 61].

Codetta, labelled in Figure 1, offers a variety of blocks, collected
in a tabbed toolbox. Users drag blocks from the toolbox into the
workspace, where they can then combine, delete, and edit each
block. Codetta offers two main types of blocks: bar blocks and
procedural blocks. Bar blocks contain a stave of fixed length where
children can incrementally add notes from left to right. Once added,
these notes can be shifted up and down the C major scale using two
arrows that appear when the mouse is hovered over. No sharp or
flat notes are offered to increase the likelihood that the children’s
music is harmonious [26]. When pressing the play button in the
top left, the bar blocks are played back sounding the connected
instrument (e.g. the piano in Figure 1). Procedural blocks change a
high-level aspect of the music and can create variations over time;
Codetta includes procedural blocks for looping and varying the
music’s dynamics, tempo and pitch (see [25, 26]).

3.2 Participants
Children were recruited by approaching parents via e-mail, starting
from the first author’s existing contacts with schools and clubs.
The e-mail contained a link to a booking page where parents could
select a time that would not disrupt their everyday activities. 10
children participated in total (4 Females, 5 Males and 1 Non-binary).
6 children were 9 years old, 2 were aged 10, and 2 were aged 11. No
financial incentive was offered to take part in the study.

To understand the children’s background in both music and
computing, we gathered self-report measures of their confidence,
shown in Figure 2. The statements were adapted from [25] and
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Not 
confident

A little 
confident

Somewhat 
confident

Mostly 
confident

Super 
confident

I don’t
know

Q1: I am 
confident in 
music lessons.

O O O O O O

Q2: I am 
confident in 
reading music 
notation.

O O O O O O

Q3: I am 
confident with 
block-based 
computer 
programs (like 
Scratch or Purple 
Mash).

O O O O O O

Q4: I am 
confident using a 
computer.

O O O O O O

Q5: I am 
confident with 
music software  
(like Garage Band 
or Logic Pro).

O O O O O O

Figure 2: Questionnaire used to gather participant’s confi-
dence.

extended based on preliminary discussions with the recruitment
pool of teachers regarding software used in the children’s schools
(e.g. Q3 and Q5 reference existing software). This was selected in
place of other measures such as [42] which would have been too
complicated for children of this age [59]. We use a center value that
is not neutral as is recommended for surveys designed for children
[59], and interpret “I don’t know” as no response.

The children’s self-reported confidence is shown in Table 1 along-
side descriptive statistics. We interpret these to mean that the chil-
dren are confident with block-based tools, reasonably confident in
music lessons, but not so confident with music notation or music
software.

3.3 Procedure
A parent and their child joined a Zoom1 video-conferencing call
with the first author of this paper (RA) and an assistant (RB). RA is
a male PhD researcher with over 5 years experience studying both
music technology and composition, whilst RB is a female masters
student who – although a non-musician – was completing a related
project on motivation and music notations. Participants were asked
to share their screen. RA then recorded the Zoom call meaning
that everyone’s faces and the participant’s screen were captured.
It was important to record the children’s faces as the researchers
analysed their facial expressions to identify points of engagement
both during and after the study session (see Figure 3).

Codetta was sent to the participants via the video-call chat
in a compressed ZIP file. The children then completed the pre-
questionnaire (see Section 3.2) and followed a tutorial adapted from
[25] which was extended to show the children how to use the newly
developed help feature (see the tutorial in the Appendix).

Parents were asked to “busy themselves” so as to not distract
the children, as suggested in [1]. The children were then given 20
minutes to compose a piece of music but were told they could stop

1https://zoom.us/

when they wanted. The duration was based on the median time
children spent composing in [25] and is similar to timings used in
similar studies such as [11]. The task was purposely open-ended
as we are interested in understanding how children use Codetta
unprompted. Verbal help from the researchers was only given if
requested and referring to something that cannot be discovered
through Codetta’s help documentation (for example, how to scroll
the workspace).

After composing, the children were given a 10 minute break.
On return, a remote video-cued recall (VCR) technique was used
to interview the children about their creative process (see Section
3.4.2), lasting 10 minutes. The children were also asked to answer
two post-task questions (see Section 3.4.3). The maximum study
duration was 50 minutes (including break and setup time).

3.4 Data Collection
A mixed-methods approach was used to gather data capturing both
‘when’ and ‘why’ children were engaged, as described below.

3.4.1 Interaction Data. Logs of each click and drag interaction
performed were generated by Codetta. Each interaction was repre-
sented by i) the elapsed time since program start in milliseconds
and ii) a description of the event (for example, “piano block added”
or “note moved up”). The elapsed time is truncated to the nearest
tenth of a millisecond so that it was easier to jot down during the
study session (see Section 3.4.2). An example log is visualised in
stage 3 of Figure 3.

3.4.2 Remote Video-Cued Recall. During the study session, RA and
RB used the elapsed time displayed in the bottom left of Codetta
(see Figure 1) which updates on each mouse click, to identify points
of engagement whilst the children were composing. To share the
workload, RA observed ‘E1: Focused attention’ and ‘E2: Clear goals’,
whilst RB observed ‘E3: Clear cut feedback’ and ‘E4: Pleasure’ (see
Figure 3, stage 1). These labels were not used to determine our final
labels – labelling of all attributes of engagement were also per-
formed by both researchers independently after the study session
(see Figure 3, stage 3). The time-stamps noted in this step were only
used to navigate the video recordings of the children composing,
which were replayed to participants during the interview by RA,
remotely sharing the recorded video via their computer screen (see
Figure 3, stage 2). At each time-stamp, we asked the children to
comment on “what they were doing” and “why”. As parents were
also present, they were free to comment at any time.

3.4.3 Post-Task Questionnaire. As engagement is characterised as
points where people are attentive, a very short questionnaire was
presented to the children (to keep the total study time at an appro-
priate length [59]), capturing possible confounding variables: Q6 -
“I felt under extra pressure because I was being recorded”; and Q7 -
“I felt under extra pressure because my parents were in the room”.
The children were asked to select from an ordinal 5 point scale with
the following anchors (left to right): “Not true”, “I don’t think so”,
“Maybe”, “I think so” and “Very true”. We reiterated to the children
that we would like their honest opinion and reiterated to parents to
“busy themselves” to partly mitigate the risk of misleading results.
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Table 1: A breakdown of the participant’s background, alongside descriptive statistics and observations based on discussions
with participants during the study.

ID Age Gender Q1 Q2 Q3 Q4 Q5 Observations

P1 9 Female 2 2 4 4 1
P2 10 Female 4 1 5 4 4 Plays the piano.
P3 9 Male 5 5 4 5 1 Used music terminology with ease.
P4 9 Non-Binary 2 2 2 4 1
P5 9 Female 4 4 4 5 3 Plays the piano. Used music terminology with ease.
P6 11 Male 3 4 5 5 .
P7 11 Male 4 2 5 4 3
P8 10 Female 4 4 5 5 4 Plays both trumpet and piano. Has sat graded exams.
P9 9 Male 2 1 2 5 1 Friends with P10.
P10 9 Male 2 1 4 5 4 Friends with P9.

Mean: 3.20 2.60 4.00 4.60 2.44
Std-dev: 1.14 1.51 1.15 0.52 1.42
Median: 3.50 2.00 4.00 5.00 3.00

1 = "Not Confident"; 2 = "Alittle Confident"; 3 = "Somewhat Confident"; 4="Mostly Confident"; 5="Super Confident"

Figure 3: A visualisation of the data collection procedure. Stage 1 indicateswhich attributes of engagementRAandRBobserved
in real-time. Stage 2 indicates the VCR process (see Section 3.4.2). Stage 3 shows which attributes of engagement RA and RB
labelled after the study session – a partial visualisation of a coded interaction log is also shown, highlighting interactions
using the colours shown in Figure 4.

3.4.4 Labelling Attributes of Engagement. To label the interaction
logs with points of engagement, we used the attributes of engage-
ment listed in Table 2. After each study session, RA and RB reviewed
the video recording of the child composing, noting start and end
points for each attribute. The logs were then labelled so that each
interaction performed during each attribute of engagement was
marked with a 1, otherwise 0. An example section of a labelled
interaction log is presented in step 3 of Figure 3 (for ‘E2: Clear
Goals’). RA and RB iteratively performed this procedure indepen-
dently until a Cohen’s Kappa comparison of these labels, for all the
collected interactions, showed a reasonable degree of fit (κ = .761).

We used Cohen’s Kappa as it is suitable for assessing the agree-
ment between two raters when using binary values [57]. The final
points of engagement were derived by labelling where RA and RB
fully agreed (i.e. where their labels overlapped for each observed
attribute of engagement). Table 2 lists observations of the children
which inductively emerged from this analysis. The labelled log files
are in the Appendix.

3.5 Data Analysis
We used five data analysis techniques: categorising, windowing,
linear mixed effect models, decision trees, and thematic analysis,
discussed below.
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Table 2: Examples of observations for each attribute of en-
gagement (see Section 2).

Attribute of Engagement Examples for Codetta

E1: Focused Attention Child looks back and forth try-
ing to spot a specific note during
playback; Child licks lips (con-
centrating); Child looks for a
specific block in the workspace;
Child leans in to inspect their
music more closley.

E2: Clear Goals Child changes a parameter or
note based on what they heard
during playback; Child decides
to drag in a block, decides it was
the wrong move, and then re-
connects another; Child clearly
creates a specific shape with the
notes.

E3: Clear cut Feedback Any positive or negative reac-
tions (e.g. "that sounds weird");
Child dances or bobs their head
to the music; Child hums a tune.

E4: Pleasure Child smiles; Child laughs; Child
exclaims that something is “fun”
or “cool”.

Figure 4: Coding Scheme for the interaction logs, adapted
from [25].

3.5.1 Categorising & Windowing. As a first step in analysing the
interaction logs, we programatically assigned each interaction to a
category, inspired by [25, 44, 71]. Specifically, we used the categories
developed in [25], shown in Figure 4, which were tailored to Codetta
whilst being representative of other interactions common across
CSTs. For the full list of categorised interactions, see the Appendix.

To uncover patterns of interaction that could be used to identify
points of engagement during the composition process, we used
a windowing technique, counting the percentage of interactions
and engagement labels across windows of the interaction logs. A
window and hop size of 25 seconds was used based on the average
length of all engagement labels (22.5 seconds), which we rounded

to an integer value to make calculations easier. This resulted in
348 observations which we will refer to herein as ‘dataset 1’ and
can be found in the Appendix. We shuffle and split the data into
training and validation sets to report the generalisability for models,
as described below.

3.5.2 Linear Mixed Effects Models. By following the windowing
technique described in Section 3.5.1, we measure the percentage of
interactions performed every 25 seconds for each participant. As
we are interested in which interactions with Codetta’s UI might
identify points of engagement, and our samples are dependent re-
peated measures (coming from just 10 different children), we use
linear mixed effect models. These models are useful as they cap-
ture individual idiosyncrasies as random effects and are appropriate
when “we only have a limited number of observations” [34, pg. 267].
Indeed, linear mixed effect models have been successfully applied in
other HCI studies [29, 41, 75]. We use linear mixed effect models to
predict all engagement labels and each labelled attribute of engage-
ment as a function of our interactions, considering participant ID
as a random effect. We limited interactions to the following as they
occurred most frequently (see Section 4.1): note-edit, navigate, play-
back, building and param-change. All linear models are trained on
a test-validation split of 80%:20% and we report a standard measure
of accuracy (the sum of squared residuals) – see [74] for detail.

3.5.3 Decision Tree. To visualise which combinations of interac-
tions might indicate engagement, we used a Decision Tree (DT)
algorithm – a supervised machine learning technique which splits
a dataset multiple times based on a target variable and can be visu-
alised as a human interpretable flowchart. Our choice was inspired
the work described in Section 2.3, but particularly motivated by
[53]’s suggestion that DTs could be usefully applied to predict flow
states with gamified systems. Moreover, DTs are easily interpreted
by humans and identify if-then rules that can likely be quickly
applied to adaptive systems. We used the CART (Classification And
Regression Trees) DT algorithm detailed in [28] as it is provided
by the ‘rpart’ library2 and thus easily reproducible. We trained our
trees on a modification of dataset 1 (named ‘dataset 1b’), where
engagement values are set to True if above 0, otherwise False. As
in Section 3.5.2, we limited interactions to the following as they
occurred most frequently (see Section 4.1): note-edit, navigate, play-
back, building and param-change.

As we are mostly interested in identifying children’s patterns
of interaction, we first trained a tree on the entirety of dataset 1b,
which we name DT1. We stress here that DT1 is overfit and visu-
alises non-generalisable patterns in our collected data. Indeed, the
purpose of DT1 is to reflect idiosyncrasies in participant’s inter-
actions which might be drawn out from our qualitative analysis.
Furthermore, we split dataset 1b into a training and validation set
(as described in Section 3.5.1) fitting a second DT to the training
set to capture information which is more generalisable, which we
name DT2. DT2 is pruned to reduce its complexity and prevent
overfitting by programmatically determining the improvement in
error when a node is split (named the complexity parameter) with
the optimum prediction accuracy as calculated by the leave-one-
out cross validation procedure, described as follows: i) leave out

2https://github.com/cran/rpart
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one data point and train the model, ii) test that model against the
removed data point and record the accuracy, iii) do this for all data
points and average error estimates for the final accuracy (see [74]
for details). Leave-one-out cross validation is useful as we have a
small dataset [74]. Furthermore, we use the validation set to report
standard prediction accuracy metrics for classification, described
in Table 3 (see [74] for detail).

3.5.4 Thematic Analysis. To analyse our qualitative VCR data, we
used Thematic Analysis (TA) [8] to identify insights into why the
children performed certain interactions whilst composing. We used
TA instead of other approaches such as discourse analysis [66]
because researchers in music HCI have found that a good level of
descriptive detail can be obtained whilst the method is still man-
ageable by an individual researcher [12].

The VCR portion of the Zoom recording was transcribed by RA
to the level of utterances (i.e. including all “Umms” and “Uhhs”)
and included descriptions of the replayed videos (see transcripts
in the Appendix). This provided the raw text for the inductive TA,
following the steps in [8]. Completed by RA, initial codes were iden-
tified in the raw text, then grouped into themes. These themes were
then reviewed and defined. RA also used the constant comparison
method [17] to validate their analysis, performing the process many
times and retaining the most prominent codes across iterations.

4 RESULTS
Firstly, we report analyses of the interaction data using descrip-
tive statistics, mixed regression and decision trees (DT). Then, the
Thematic Analysis (TA) [8] of the remote video-cued-recall (VCR)
data is reported, giving insight into children’s perceptions of their
points of engagement. The post-task questionnaire is also reported.

4.1 Interaction Log Analysis
The children composed for a total of 2 hours, 24 minutes and 47
seconds (2h 24m 47s). The mean time spent composing was 14m
29s (SD = 5m 37s), with values ranging between 5m 23s and 21m
17s. The mean length of all engagement labels was 22.5s, with a
standard deviation of 27.1s (n=105).

Figure 5 shows the amount of time children displayed points of
engagement as a percentage of the total amount of time they were
composing. All engagement labels occurred between 11.4% and
40.8% of the time, with a mean of 26.9% (SD = 0.1%). ‘E2: Clear goals’
were displayed most often (M = 13.9%, SD =7.6%), followed by ‘E1:
Focused attention’ (M=8.4%, SD=4.8%). ‘E3: Clear cut feedback’ oc-
curred the second least (M = 3.3%, SD = 3.1%). ‘E4: Pleasure’ occurred
the least (M = 3.8%, SD = 5.9%). P9 is an outlier who demonstrated
E4 for 20.0% of their time composing.

Figure 6 shows the types of interactions children performed for
each of the labelled attributes of engagement as a percentage of
the total number of logged interactions. The children mostly per-
formed building interactions (adding, dragging or deleting blocks),
equating to 35.2% of all interactions. This was followed by navigate
interactions (changing toolbox tabs or sliding around the workspace
area), which equals 28.7% of all interactions. Navigate interactions
also accounted for a high proportion of ‘E1: Focused attention’
(49.1%) and ‘E3: Clear cut feedback’ (70.1%), whereas building inter-
actions accounted for most ‘E2: Clear goals’ (44.5%). Param-changes

Figure 5: The proportion of time children showed points of
engagement for each of the labelled attributes of engage-
ment.

(tweaking values on procedural blocks) contributed the most to
‘E4: Pleasure’ (58.7%). Help, clipboard and undo interactions were
performed rarely (<0.01%).

4.1.1 Linear Mixed Effects Models Analysis. After splitting dataset
1 into training (n=276) and validation (n=72) sets, we fit a linear
mixed effects model to the training set, to predict all engagement
labels and each labelled attribute of engagement, as described in
Section 3.5.2. The resulting equations are:

Enдaдement = (.73)no + (.77)pa + (.58)bu + (.95)pl + (.79)na − .40

E1 = −(.14)no − (.22)pa − (.21)bu − (.10)pl − (.08)na + .26
E2 = (.50)no + (.49)pa + (.38)bu + (.35)pl + (.42)na − .25
E3 = −(.10)no − (.08)pa − (.14)bu − (.04)pl − (.03)na + .13
E4 = (.05)no + (.20)pa + (.10)bu + (.42)pl + (.10)na − .09

, where no = note-edits, pa = param-changes, bu = building, pl =
playback and na = navigate interactions.

Playback accounts for most of the prediction for all engagement
labels (β = .95, SE = 1.50, t = .63, p = .53) – children pressing play or
stop contributes most towards predicting engagement. Conversely,
building interactions accounted for the smallest amount of all en-
gagement labels (β = .58, SE = 1.52, t = .38, p=.70). Of the engagement
labels, param-change was most detrimental to the prediction for
‘E1: Focused attention’ (β = -.22, SE = .98, t = .23, p = .82) – tweak-
ing of procedural blocks negatively predicts points of focus. ‘E2:
Clear goals’ was accounted for mostly by note-edits (β = .50, SE
= 1.37, t = .37, p = .72) – adding, removing or editing notes might
help to predict when children follow a specific strategy. Playback
contributed the least to this prediction (β = .35, SE = 1.37, t = .37, p =
.80). Building interactions were the most detrimental to ‘E3: Clear
cut feedback’ (β = -.14, SE = .55, t = -.25, p = .80) – adding, deleting or
dragging blocks contribute to points where children do not openly
react. Playback contributed the most to ‘E4: Pleasure’ (β = .42, SE =
.66, t =.64, p = .52), with note-edits contributing the least (β = .05,
SE = .66, t = .07, p = .94).
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Figure 6: An overview of the children’s interactions as a percentage of all logged interactions and for each labelled attribute of
engagement. Note that the labelled attributes of engagement can overlap meaning that the values for each interaction across
E1 through to E4 do not sum to 100%.

All of our linear mixed models performed poorly (R2 = 0.01,
< 0.00, 0.06, < 0.00 and 0.002 for linear models of all engagement
labels, E1, E2, E3 and E4 respectively). Our interactions also did not
achieve statistical significance. Therefore, although the findings
reported above do not represent generalisations, they might be
useful in quantifying how different interactions contributed to
labelled aspects of engagement for the children in our study.

4.1.2 Decision Tree Analysis. The output of DT1 is shown in Figure
7 with the leaf nodes denoted by characters a through d. We also
show a breakdown of each labelled attribute of engagement in each
leaf node as a percentage of the total number of engagement labels,
in Figure 8. Playback is the first interaction to split the tree into
leaf a. Leaf b is reached when the child does not perform many
playback or building interactions, but is navigating the workspace
— ‘E2: Clear goals’ and ‘E1: Focused attention’ account for most of
these interactions (both 57.1%). At leaf c, the children do not use
playback or building, but instead perform a large number of note-
edits — a majority of these interactions belong to ‘E2: Clear goals’
(88.9%). Leaf d occurs when children performed a combination of
building and note-edit interactions but did not use playback — these
interactions mostly predicted ‘E2: Clear goals’ (61.1%).

To determine which interactions might be somewhat general-
isable, the data was split into a training set and validation set,
containing n=274 and n=74 data points respectively, with the train-
ing set being used to fit DT2. Following the procedure described in
Section 3.5.3, DT2 predicts engagement based on two interactions,
visualised in Figure 9: i) if playback occurred then engagement is
predicted, and ii) if close to zero building interactions occurred
then engagement is predicted. Table 3 reports metrics for DT2’s
performance calculated using the validation set. We infer that DT2
performs reasonably well, with an especially good recall.

4.2 Thematic Analysis
Fifty seven codes were identified from the TA [8] of the VCR tran-
scripts, leading to 6 broad themes: T1 – Clear Ideas (11 codes); T2 –
Ideas in Head (5 codes); T3 – Accidents (5 codes); T4 – Exploring
Blocks (12 codes); T5 - Self-Assessing Music (18 codes) and T6 -
Space (6 codes). We describe these below.

4.2.1 T1: Clear Ideas. The children had clear ideas about what they
wanted to include in their composition [P2 - P10]. In some cases,
this was described using specific elements of Codetta’s notation.
For example, P5 “wanted [their] piece to be in the treble clef not
the bass clef”. P3 explicitly noted that they “wanted[...] like[...] a
four four bar”, as well as “two notes and then a second note that’s
two beats long”. They also, when shown themselves filling a bar
with quaver notes, said: “I was just trying to get all the notes ready
for my scale to go upwards” – implying their intention to use an
ascending scale.

Other children had more general ideas about how their piece
should sound. Generally speaking, the children wanted their music
to be more “complex” (P6), “interesting” (P9) or “longer and[...]
better” (P10). For example, P4 and P7 both wanted to include more
notes within their bars, leading to compositions with a greater
rhythmic density.

4.2.2 T2: Ideas in Head. Some of the children reported having ideas
in their head for their music [P7 - P9]. When asked why they were
using a separate block to vary note pitches, P7 said: “I just use the
blocks to like [...] turn out what I thought it [in] my head was going
to be the music”. The idea that children used Codetta to match
sounds in their head was further described by P7 when shown
themselves nodding and humming along to the music: “I thought of
it in my head and[...] bobbed on to what I would hopefully think it
was.”; “I thought of the song in my head and I was humming along

450



Identifying Engagement in Children’s Interaction whilst Composing Digital Music at Home C&C ’22, June 20–23, 2022, Venice, Italy

Figure 7: A decision tree fit to our entire dataset, named DT1, predicting which interactions with Codetta’s UI indicate points
of engagement every 25 seconds. Percentages in each leaf represent the proportion of observations in the node.
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Figure 8: The amount of each labelled attribute of engagement as a percentage of the total number of engagement labels within
each leaf node a through d of DT1 (see Figure 7).

Figure 9: A pruned decision tree fit to our training data, named DT2, predicting which interactions with Codetta’s UI indicate
points of engagement every 25 seconds, validated in Table 3. Percentages in each leaf represent the proportion of observations
in the node.
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Table 3: Performance metrics for DT2, visualised in Figure 9.

Leave-One-Out DT Metrics

Metric Description Score

Accuracy Ratio of correctly predicted observations to all observations 0.77
Precision Ratio of correctly predicted engagement observations to all correctly predicted observations 0.77
Recall Ratio of correctly predicted engagement observations to the all engagement observations 0.85
F1 Weighted average of precision and recall 0.80

to the actual song to see if they were like connect and right with
each other”. When asked to comment on one of their melodies, P9
said: “I wanted it to go (singing) boom ding boom ding” and had
“just made [the music] up”.

P8 also developed ideas in their head, however, was less prescrip-
tive. Following their parent’s question of “did you know in your
head what you wanted it to sound like?”, they said that they “kind
of improvised [but...] had a vague thing of what [they] wanted it
to be like in [their] head”.

4.2.3 T3: Accidents. The children reported that they often per-
formed interactions by accident [P1, P2, P4, P6, P8]. Commenting
on themselves adjusting a note during playback before eventually
deleting its bar, P1 said they “accidentally pressed on[...] the wrong
note”. P6 likewise “had messed up one of the notes[... so] tried to[...]
get rid of that note that [they] put wrong”. When discussing adding
blocks from the toolbox, P2 suggested that “if [they] dragged [a
bar] like to the other side that was probably an accident”.

P8 adapted their piece in response to an accident. After acciden-
tally deleting a line of music, they created an accompaniment part
which was “kind of like this beat only less frequent”. Commenting
on this, P8 said: “I don’t mind[...] because I managed to make it
better by changing it”.

4.2.4 T4: Exploring Blocks. Many of the children tried to under-
stand how Codetta’s blocks worked by testing them [P1-P5, P7].
P2 and P4 both reported tinkering with the blocks to create some
initial sounds. Furthermore, P4 “tried doing some music without
[the tempo-changer block] and then with it” to figure out what
the block did. P1 similarly notes that they were “just trying to see
what the umm[...] blue[...] whatever it does”, when dragging in the
tempo-setter block.

The tempo blocks in particular seemed problematic for the chil-
dren to self-assess. When testing the block, P4 said: “well that
doesn’t really seem to make much of a difference”. P1, similarly,
noted that the blue tempo-setter block “sounded the same as the
orange [tempo-changer] one”. P3 and P5, on the other hand, under-
stood what the tempo blocks did, but had difficulty setting their
values. P3 explicitly said they were “a bit confused what number
[to] pause at for when it should be the right speed”.

P7 was the only participant who successfully used the context
help feature; P9 used the feature after prompting from their parent
but did not follow the written instructions. When asked questions
on why they sought out help, P7 stated: “I didn’t knowwhat[...] that
block would do so I used the instructions”. Although we observed
that P7 successfully used the in-built documentation to correct their

program’s order of execution, they stated that “they’d learnt that
the block changed like the different tone of the music”.

4.2.5 T5: Self-Assessing Music. The children reported checking the
quality of their music [P1-P5, P7-P10]. For example, P5, on finishing
their piece, decided to “check[...] for any errors”. P3 also “check[ed]
that the next note was [correct]”. P8 similarly spent their time
“trying to get [their notes] right”. P4, P7, P9 and P10 all commented
on alternating between high and low pitches until deciding the
final pitch of a note. P9, for example, commenting on moving notes,
said that they were “just doing it and then listening to it to see
if it was good and if it wasn’t [they’d] move it down one”. P10
similarly noted that they were “going in this pattern of high low
high low” and even implied that the sound triggered on moving a
note provided enough information such that the play button was
redundant: “when you like put them high and put them low you
can kind of, you can hear the sounds, so I was basically using it off
of that”. P5 was the only other participant who decided not to use
the playback button, saying: “I was quite worried that something
would go really wrong [...] I thought just looking at it would be a
better way to do it”.

4.2.6 T6: Space. Five children discussed how they organised and
used Codetta’s workspace [P1, P3, P5, P6, P8]. P5 for example “didn’t
notice that you could slide along so[...] thought[...] it all had to
squeeze into a gap” — a comment echoed by P8. P5 thought that
scrolling around “was quite easy and quite fun”, whereas P1 felt
that they had to use the navigation bars which were “quite fast”.

P5 also placed all the blocks in a row, as opposed to on top of one
another, because they assumed “that the parts probably wouldn’t
play together so[...] was trying to attach them so that they were
gonna play together”. In contrast, P6 purposely aligned their bars
“cause, when you press play they both simultaneously start playing
and[...] that would be a lot more easy to understand”.

4.3 Post-Task Questionnaire Analysis
Most of the children said “Not true” (4/10), “I don’t think so” (4/10)
or “Maybe” (1/10) in response to feeling under pressure as they were
being recorded (M=1.5, SD=1.269, n=10). Likewise, most children
said “Not true” (8/10) or “I don’t think so” (1/10) in response to
feeling under pressure as their parents were in the room (M=2,
SD=1.247, n=10). In contrast, P9 answered both statements as “Very
true”.
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5 DISCUSSION
We suggest that the decision trees (DT) in Figure 7 and Figure
9 might indicate patterns in the observed children’s interaction
with Codetta that have a relationship to their points of engage-
ment. Measured every 25 seconds as a percentage of all performed
interactions, our proposed indicators of engagement are:

• M1: Playback
Children used the playback controls the majority of the time
during points of engagement (> 1%) – see Figure 7 and 9.

• M2: Building
Children spent less than 13% of the time adding, deleting or
dragging blocks during points of engagement – see Figure 7
and 9.

• M3: Note-edits
Children edited notes for more than 98% of their interactions
during points of engagement – see Figure 7.

We discuss each indicator of engagement considering their rela-
tionship to themes identified in our TA [8] of interview data (see
Section 4.2) and previous research, including the patterns of musical
interaction listed in Section 2.2 (referred to as B1 to B4 throughout)
and attributes of engagement listed in Section 2 (referred to as E1 to
E4 throughout). We then reflect on our method and discuss future
work.

M1: Playback
We found that playback interactions are the first interaction to
divide the DTs. Indeed, playback was important in DT2 (see Figure
9) which had a reasonably good accuracy (see Table 3). T5 (Self-
assessing music) suggests that the children were using playback
to self-assess the quality of their musical compositions, iteratively
tweaking notes until it sounded “correct” (P8). The mixed regres-
sion equations for ‘E4: Pleasure’ and ‘E3: Clear cut feedback’ also
suggest that pressing play contributed towards the children react-
ing openly to their music. This supports B2 (Auditioning) and B3
(Contemplation), which suggest that people listen to their music to
inform their decisions and make edits.

The cases of P10 and P5 in T5 (Self-assessing music) contra-
dict the finding that playback indicates engagement because both
participants did not use the play button. P10 suggested that the
sounds triggered when moving a note are more helpful than the
play button, whereas P5 was “worried that something would go
really wrong”. It is possible that playing back smaller parts of the
music frequently is more important to engagement than listening
to the piece as a whole, as supported by B2 (Auditioning) and the
Casual Creator pattern to provide immediate feedback [19].

M2: Building
Based on the assumption that the children were largely focused
and attentive when engaged (see E1 and E2 in Figure 5), we offer
a possible explanation for the limited (and often negative) contri-
bution building interactions made to the mixed linear models for
engagement and ‘E2: Clear goals’, as well as in DT2 (see Figure 9). It
is possible that dragging, adding and deleting blocks were prepara-
tory steps that children needed to take before actively working on
their music. This is supported by B1 (Preparation). However, T3 (Ac-
cidents) offers another explanation: the children would often drag

in blocks by accident, likely leading to annoyance. The potential
for frustration is supported also when considering T4’s (Exploring
blocks) finding that, even once dragged in, various blocks were
difficult to understand. Coupled with the knowledge that the chil-
dren are unlikely to make use of help documentation, this supports
Ford et al.’s [25] suggestion that children must sometimes figure
out how to use Codetta’s blocks as they are not immediately intu-
itive. Nonetheless, we suggest the contemplative interactions we
observed for ‘E1: Focused attention’, which are similar to B3 (Con-
templation), sometimes indicated moments where children were
reflecting on their interactions during the composition process and
could present an interesting avenue for further study.

M3: Note-edits
Leaf c in DT1, where children are performing a large number of
note-edits, contains mostly ‘E2: Clear goals’. As note-edits were
also prominently observed as ‘E2: Clear goals’ during labelling (see
Table 2), we suggest it is possible that the children needed to manip-
ulate the music at note-level to realise their musical ideas. Indeed,
we suggest the finding that children spent most of their time per-
forming ‘E2: Clear goals’ (see Figure 5) is a notable interaction for
our sample. T1 (Clear Ideas) supports this, showing that children
have specific ideas about what they want to include in their com-
positions. This notion supports the CST design principle to provide
a high ceiling (affording fine grained, note-level, control) [63], but
contradicts the Casual Creator principle to limit user control [19]. It
is important to note that the predictive power for M3 is less so than
the previous suggested metrics, and is not represented in our most
generalisable model, DT2. Nevertheless, based on B4 (Envisioning)
and our discussion related to reflection above, their might be a back
and forth relationship between points of engagement, where the
observed children use note-edits to notate ideas and validate them
with playback, which is potentially worthy of further investigation.

5.1 Reflections on Method & Limitations
Due to the length of time needed to complete the qualitative por-
tion of our analysis, we could only realistically recruit a small
number of participants, limiting the statistical power of our quanti-
tative analysis. Our use of decision trees and mixed linear models
helped identify engaging patterns of interaction within our sample
of children, but we cannot be confident of their generalisability.
Furthermore, it may be that other models such as Support Vector
Machines or Naive Bayes classifiers, as used in [9, 65], could per-
form well with our interaction data – we open-source our dataset
to encourage further experimentation (see Appendix). Nonethe-
less, we found that the quantitative data analysis approach was
useful for us in complementing our thematic analysis, possibly of-
fering insights for designers and evaluators of a range of similar
systems. Unlike related approaches (see Section 2.3), these insights
are gleaned directly from our study population, reducing the need
for researchers to solely interpret patterns of interaction. Indeed,
we suggest that others could use this method to develop their own
metrics for their target users or system — the thematic analysis
reveals “rich and detailed” [8, pg. 78] information on the children’s
perceptions of their points of engagement, with the quantitative
analysis complementing this data.
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The nature of child-computer interaction and engagement makes
it difficult to account for confounding variables. For example, al-
though our questionnaire responses indicate that parents had a
small influence, this possibly introduced distractions, making it
harder for the children to engage fully. Or, as we observed in the
case of P9, who was distracted by their parent, this led to outlier ac-
tivity. Future work could incorporate our measures of confounding
variables as random effects into multilevel models similar to our
use of mixed regression. Specifically, Bayesian multilevel models
[13] might be able to adequately model such effects (see [5]).

Lastly, as the researcher’s backgrounds are crucial in influencing
the assignment of engagement labels, a comparison between the
labels and children’s post-hoc responses for a questionnaire on
engagement (e.g. [33]) would have improved the study’s external
validity. This was omitted from this study due to time restrictions.
Labelling could be performed by professional educators who are
close to the children’s world, ensuring social context is captured.

5.2 Future Work
In terms of designing an adaptive CST for children, it might be
possible to use the suggested indicators of engagement to auto-
matically adjust a UI and possibly better support engagement. We
suggest design ideas for adapting Codetta’s interface below based
on our identified metrics, being careful to take into account our
small sample size and that the way in which Codetta might adjust
must be sensitive to the affective and motivational context, not
causing frustrations detrimental to engagement [44].

For M1 (Playback), it may be beneficial to increase children’s
awareness of how often they press play. A subtle approach could
be to detect when a child has performed a low number of playback
interactions and use this as a trigger for gradually making the
play button more translucent, based on similar HCI studies that
have used fading techniques to draw attention to UI features [3,
4]. Alternatively, we could perhaps start playback automatically
to prompt children — although this could be too obtrusive and
detrimental to engagement. We could also take inspiration from
Casual Creators [19] and provide entertaining evaluations to provide
motivation as children self-assess their work (cf. T4 and T5). For
example, a fun animation could reward children for using playback.

Advances in generative music [15, 31] also have the potential to
contribute in the music composition process, supporting engage-
ment through human-AI collaboration and co-creation. Perhaps,
Codetta could interject with a block containing novel music if M2
(Building) is met, creating a comparable experience to Addessi et
al.’s system [1, 2]. There could also be opportunities to introduce
musical material that is tangential to the children’s personal com-
position style (for example, introducing fragments of music outside
of western traditions) to explore whether the children would adopt
stylistic ideas similar to the AI.

6 CONCLUSION
This paper presented a fully remote method for identifying points
of engagement for a group of children’s interactions whilst com-
posing with a digital musical interface at home. Through a case
study of children composing music with Codetta [25] — a musical
block-based CST — we successfully identified a set of indicators of

engagement which, although not generalisable, describe patterns of
interaction which could potentially be applied to programmatically
detect their engagement whilst composing. We also successfully
linked interaction data and interview data using a remote VCR
technique, providing qualitative support for our engagement indi-
cators gleaned directly from the children, lessening the need for
researchers to interpret interactions based soley on their intuitions.
As a remote-study, we also suggest that our method has the poten-
tial to be applied to otherwise hard-to-reach groups such as those
who cannot easily attend user studies in person at a University.
Overall, this work contributes towards the design of musical CSTs
which might better facilitate children’s learning experiences in mu-
sic, and helps towards supporting HCI researchers in designing
adaptive CSTs.

APPENDIX
All appendix material can be found online at: https://github.com/
thecoreyford/Identifying-Engagement.
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