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Abstract: This article advances the discourse on sustainable and energy-efficient software by examin-
ing the performance and energy efficiency of intelligent algorithms within the framework of green
and sustainable computing. Building on previous research, it explores the theoretical implications of
Bremermann’s limit on efforts to enhance computer performance through more extensive methods.
The study presents an empirical investigation into heuristic methods for search and optimisation,
demonstrating the energy efficiency of various algorithms in both simple and complex tasks. It also
identifies key factors influencing the energy consumption of algorithms and their potential impact on
computational processes. Furthermore, the article discusses cognitive concepts and their interplay
with computational intelligence, highlighting the role of cognition in the evolution of intelligent algo-
rithms. The conclusion offers insights into the future directions of research in this area, emphasising
the need for continued exploration of energy-efficient computing methodologies.

Keywords: green computing; software energy efficiency; sustainable and responsible artificial intelligence;
Free Search; Bremermann’s limit

1. Introduction

The increasing enthusiasm for environmentally sustainable practices naturally extends
to green computing, where software plays a pivotal role. Green computing encompasses a
wide range of strategies, including optimising hardware and software design, reducing
power consumption, employing renewable energy sources, enhancing software efficiency,
virtualising servers, and managing electronic waste (e-waste) [1]. The goal of green comput-
ing is to improve the performance and energy efficiency of computational systems through
both hardware and software optimisation.

Recent societal and environmental concerns have driven the focus towards Responsible
Artificial Intelligence (RAI), which aims to develop energy-efficient intelligent software
systems [2,3]. While Artificial Intelligence (AI) holds the potential to create a future
where all of humanity can thrive, the energy consumption of Information Technologies
(IT)—including portable devices, data centres, and cloud servers—has been escalating
annually [4]. This surge in energy demand is reflected in global carbon emissions, as
highlighted in recent global energy reviews [5,6].

The issue of computing energy efficiency requires a deeper examination. As noted in
foundational research, there is a theoretical upper limit to the rate at which data processing can
occur. This limit is applicable to all data processing systems, whether artificial or biological,
and posits that “no data processing system, artificial or living, can process more than (2 times
1047) bits per second per gram of its mass” [7]. The formulation of these computational
constraints is grounded in fundamental physical principles: “The capacity of any closed
information transmission or processing does not exceed (Mc2/h = ~(M/gram)1047) bits per
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second, where (M) is the mass of the system, (c) is the speed of light, and (h) is Planck’s
constant” [8].

More recent studies have refined this understanding, suggesting that Bremermann’s
limit, initially proposed in 1962, should be corrected to align with the principles of general
relativity. The revised limit is expressed as (c5/Gh)1/2 = ~1043 bits per second, where (c)
is the speed of light, (G) is the gravitational constant, and (h) is Planck’s constant [9]. The
existence of Bremermann’s limit suggests that further improvements in computational
performance will encounter insurmountable physical barriers. Early signs that computing
systems are nearing this threshold include the growing need for cooling systems to dissipate
heat, increased electricity consumption, and changes in environmental heat pollution that
may have irreversible effects on the climate.

A potential solution to these limitations is to enhance energy efficiency in a manner
similar to natural systems, focusing on both hardware and software optimisation. While
there has been significant progress in the energy efficiency of hardware in large com-
putational systems—including those used by major AI services such as OpenAI—with
supercomputers improving their hardware energy efficiency by more than 200 times over
the past 20 years based on the LINPAC Benchmark [10–13], such categorical advancements
in software energy efficiency remain elusive.

This article, therefore, focuses on the critical need for improving software energy
efficiency, particularly in the context of AI and intelligent algorithms, which often handle
high volumes of uncertain, time-dependent data.

2. Survey of Related Literature

While hardware energy efficiency has consistently improved over time [14,15], con-
cerns about the energy efficiency of software have only recently emerged, as evidenced by
a growing number of publications on the topic [16]. Software sustainability encompasses a
range of applications, including specific software products, online applications, and data
processing systems. This involves minimising power consumption and optimising the
entire software lifecycle, considering human, economic, and energy resources [16].

Given the increasing demand for portable devices such as smartphones, tablets, and
laptops, significant research efforts have focused on reducing their energy consumption
by enhancing software quality through techniques such as code refactoring, which re-
structures existing source code to be more energy efficient [17–19]. A more advanced
approach involves assessing software sustainability holistically, considering factors such as
efficiency, quality, and other critical properties [20–22]. This approach encourages software
practitioners to prioritize sustainability during design and development [20], while offering
systematic guidelines and frameworks that help professionals evaluate the sustainability
impact of software [21,22].

Artificial Intelligence (AI) and intelligent systems, as sophisticated types of software,
are fundamental to computing, cloud services, and data processing, influencing multiple
aspects of life. Current research predominantly focuses on enhancing the accuracy and
reliability of AI-based systems, which often requires vast datasets, large AI models, and
resource-intensive infrastructures [23]. Recent studies have proposed a hypothesis suggest-
ing that when developing “green” AI systems, architectural decisions’ impact on energy
efficiency must be better understood, managed, and reported to reduce computational
power requirements [23].

Research also indicates that intelligent software development benefits from appropri-
ate data abstractions, heuristic and metaheuristic algorithms, and the reduction of outdated
limitations [24,25]. This allows for the adaptation of intelligent software to solve tasks
with minimal computational resources, whether these tasks are relatively simple [24,26]
or involve problems with a high number of parameters [27,28]. Consequently, there has
been a shift towards developing sustainable, green AI-based software systems that utilize
architecture-centric methods to model and develop energy-efficient AI systems [23]. How-
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ever, these approaches often overlook essential properties of natural intelligence, such as
cognition and adaptation, which are discussed further in this article.

Furthermore, a comprehensive study on design patterns for machine learning appli-
cations identifies 15 distinct patterns, such as solutions for real-time data processing and
continuous reprocessing or storing data in a raw format [29]. However, these patterns
are generally limited to analytical programming and fail to incorporate elements like ab-
straction and intuition, which are integral to natural intelligence. Evaluating AI systems’
sustainability and quality also requires measuring and assessing software products and
components’ energy efficiency. Recent research efforts have focused on developing a Green
Software Measurement Model to categorize existing measurement methods and create
adapted methods for specific use cases, such as software types and system components [30].
This model has been adapted for the empirical research and evaluation of experimental
software presented in this article.

Another aspect that requires further exploration is the impact of programming lan-
guage choice on software energy efficiency. Recent studies have shown significant vari-
ations in energy consumption depending on the language and compiler used [31]. This
highlights the need for more research into the influence of not only computer languages
but also human languages on software energy consumption.

There are growing concerns regarding the current trajectory of AI, machine learning,
and deep learning due to their exponentially increasing demand for data, training, and
infrastructure [32,33]. These trends conflict with emerging regulations and requirements
for efficiency and sustainability [34,35], as well as with the natural laws of selection [36].
Achieving harmony with these natural laws could enhance the sustainability of AI systems,
prompting key questions, such as: How do biological systems manage data storage and
transmission efficiently? Understanding these principles could inform the design of more
sustainable AI.

In software engineering, especially for high-performance computing (HPC) systems,
achieving a balance between energy efficiency and performance has become a critical
non-functional requirement. Software developers must thoroughly understand both the
problem domain and the target computer architecture, considering various programming
models, languages, tools, and heterogeneous systems, which increases development com-
plexity [37]. AI applications, in particular, demand high performance and energy efficiency,
necessitating specialised knowledge from developers. Therefore, methodologies and tools
that assist both specialised and general developers are crucial for optimising HPC systems.
The time and energy consumption measurement approach discussed in this paper could be
invaluable for evaluating intelligent computing and AI software systems.

In AI, computational intelligence, and software development, it is often observed that
the same task can be accomplished using different resources and timeframes, similar to the
behaviour of biological species. Examples in software include sorting algorithms [38] and
adaptive heuristic algorithms in computational intelligence [39]. To enhance intelligent
systems, genetic, swarm, evolutionary, heuristic, metaheuristic, and adaptive algorithms are
promising. For instance, a study comparing over ten metaheuristic algorithms optimised by
swarm intelligence for code smell detection demonstrated notable advancements in these
algorithms’ performance [40]. However, this research also highlighted common limitations
among these metaheuristics, suggesting the need for further improvements.

The ultimate goal of AI is to develop technology that enables machines to operate
in highly intelligent ways [41]. This objective drives the creation of new algorithms and
large, high-quality datasets. However, it remains challenging for AI systems to address all
potential real-world scenarios fully. Therefore, a critical question is how to harness these
uncertainties to ensure socially responsible behaviour in AI algorithms [42]. Defining AI
in a manner that aligns with social responsibility remains a significant challenge, and this
study questions whether AI can be considered socially responsible based on its energy
efficiency and sustainability, necessitating further comprehensive research [43].
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3. Materials, Tools, and Methods

The selection of methodology and experimental settings for this study was guided
by four key principles: minimising energy use, eliminating energy waste, thoroughly
evaluating software processes, and avoiding specific settings that might unduly favour
certain tasks.

To adhere to these principles, three algorithms and seven test problems were chosen,
all of which have been previously studied with results documented in the literature. The
selection of test problems was based on the following criteria:

1. The tests must involve problems with unknown optimal solutions.
2. The tests should be scalable to multidimensional formats.
3. The tests should feature heterogeneous landscapes.

The selected numerical tests meet these criteria, offering scalability and varying search
spaces. Each test was configured with 100 parameters, and they include:

• Griewank test: A global optimisation problem with an optimal value of 0 [43].
• Michalewicz test: A global test with an unknown optimum that varies depending on

the number of dimensions [44].
• Norwegian test: Another global test with an unknown optimum influenced by dimen-

sionality [45].
• Rastrigin test: A global optimisation problem with an optimal value of 0 [46].
• Rosenbrock test: A smooth, flat test with a single solution and an optimal value of

0 [47].
• Schwefel test: A global optimisation problem with an optimal value of 0 [48].
• Step test: A test that introduces plateaus into the topology, which prevents reliance on

local correlation in the search process. Its optimal value depends on the number of
dimensions and may be unknown for various dimensions [49].

In alignment with the study’s principles, three algorithms were selected:

• Particle Swarm Optimisation (PSO): A swarm-based algorithm for real-coded tasks
over continuous spaces [50].

• Differential Evolution (DE): A heuristic algorithm designed for optimising nonlinear
and non-differentiable functions in continuous spaces [51].

• Free Search (FS): An adaptive heuristic algorithm for search and optimisation within
continuous spaces [52].

All algorithms were configured to operate on 10 candidate solutions, with a limit of
100,000 iterations over 320 sequential runs. The experiments aimed to measure both the
processing time and energy consumption required to complete the specified number of
iterations. Previous publications provide detailed evaluations of these algorithms in similar
contexts [27,39,45,52].

The experiments were conducted on a computer system with the following specifi-
cations: an Intel XEON E5 1660 V2 processor overclocked to 4.750 GHz, operating in a
1 core—1 thread configuration with a maximum thermal design power (TDP) of 130 W. The
system was equipped with a CPU water cooler, RAM set at 2000 MHz, an ASUS P9X79-E
WS motherboard, and a SanDisk Extreme SSD SATA III solid-state drive. Each experiment
was executed individually, with one algorithm applied to a single test function at a time to
ensure accurate measurement of performance and energy consumption.

By adhering to these methodological principles and experimental setups, the study
aims to provide robust, replicable, and meaningful insights into the efficiency of different
optimisation algorithms under real-world conditions.

Methodology

This study adopts a modified version of the Green Software Measurement Model as
proposed in prior literature [30]. The model was adapted to align with the specific context
and requirements of this research by focusing on the following key parameters:
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• Duration (min): Time taken for each experiment.
• Number of iterations (integer): The count of repeated cycles for each algorithm.
• Mean system power (W): Average power consumption of the entire system.
• System energy (Wh): Total energy consumption over time.
• CPU usage (%): The percentage of CPU utilization during algorithm execution.
• CPU power (W): Power consumption specific to the CPU.
• CPU cores (1 core—1 thread): Number of active cores and threads during processing.

While the complete implementation of the Green Software Measurement Model as
described in [30] is beyond the scope of this study, it remains a promising direction for
future research, contingent on the availability of the required resources.

To measure power consumption, a digital power consumption energy meter was used
to monitor the entire system’s power usage [53]. The power consumption of each algorithm
was calculated as the difference between the system’s power level during the algorithm’s
execution and the baseline power level recorded when the system was in standby mode,
with only the operating system components and tools for CPU parameter measurement
(CPU-Z) [54] and CPU core temperature monitoring (Core Temp) [55] running. These
monitoring tools were kept active throughout all experiments, running concurrently with
the algorithms.

Each experiment was restricted to a maximum of 100,000 iterations, with the duration
recorded manually at the start and the end time automatically logged as an attribute of the
results file. This approach ensured that the time-tracking process did not interfere with the
performance of the algorithms or the system configuration.

4. Results

The experimental results are summarised in Table 1, which presents the performance
metrics of three optimisation algorithms: Particle Swarm Optimisation (PSO), Differential
Evolution (DE), and Free Search (FS). The table outlines the time taken by each algorithm
to complete the experiments, with the time recorded in the format of hours, minutes, and
seconds (hh:mm:ss).

Table 1. Time for execution of 100-dimensional version of the tests.

Test PSO DE FS

Time Time Time

Griewank 01:45:00 00:41:00 00:14:00
Michalewicz 02:44:00 01:46:00 01:02:00
Norwegian 01:50:00 00:47:00 00:12:00
Rastrigin 01:46:00 00:45:00 00:11:00

Rosenbrock 01:39:00 00:40:00 00:05:00
Schwefel 02:44:00 01:03:00 00:27:00

Step 02:37:00 00:42:00 00:06:00

The mean system power consumption in standby mode, with the task monitor at 0%
workload, was measured at 166 W on the socket. Under these conditions, the CPU power
consumption for a single core with one thread was recorded at 33.4 W and 21.5 W, respectively.

At full workload capacity (100% workload) for all experiments reported in Table 1, the
mean system power consumption increased to 185 W, with a variation of 3% throughout the
execution period. This variation could potentially be attributed to changes in temperature
or other environmental factors, which warrants further investigation. Additionally, under
full workload conditions, the CPU power consumption for a single core with one thread
was measured at 42.8 W and 30.4 W.

Presented in Table 1, data indicates variation of time for the execution per test and
per algorithm.

The analysis of the experimental data reveals that the evaluation time per test is
directly influenced by the complexity of the search space. More complex search spaces
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require longer evaluation times. Additionally, the duration of the search process varies
depending on the capabilities and characteristics of the algorithms used.

Figure 1 illustrates the time taken per test, while Figure 2 shows the time required by
each algorithm to complete 100,000 iterations for a selected test case. Among the algorithms
analysed, Particle Swarm Optimisation consistently required the most time across all tests.
Differential Evolution exhibited a moderate range of time consumption, while the Free
Search algorithm completed all tests the fastest. Notably, the results for the Schwefel and
Step tests (Figure 2) suggest the presence of specific factors that may affect exploration time,
indicating that certain features of these functions could be influencing the efficiency of the
search process.

 
Figure 1. Tests time comparison per algorithm.

During the evaluation period, three distinct components can be considered:

• Time for objective function evaluation: This represents the duration required to
understand and assess the search space.

• Time for algorithm execution: This refers to the time taken for the interpretation and
assessment of the search space by the algorithm.

• Time for algorithm decision making: This is the duration needed for the algorithm
to make decisions and select subsequent actions.

The energy consumption data presented in Table 2 is calculated based on the energy
used by the algorithms. This is determined by the difference in power consumption
between 100% workload during the experiments and 0% workload in standby mode,
multiplied by the time taken to complete each experiment. Since different algorithms may
take varying amounts of time to complete the same task, their energy consumption also
differs accordingly. An analysis aimed at identifying systematic relationships between
these components, summarised in Table 3, reveals only general qualitative differences.

The relative time differences (expressed as percentages in Table 3) generally suggest
that the Differential Evolution (DE) algorithm is faster than Particle Swarm Optimisation
(PSO) across all tests, while the Firefly Search (FS) algorithm is faster than both the Par-
ticle Swarm Optimisation (PSO) and DE algorithms. However, the magnitude of these
differences varies significantly, and no precise systematic relationship can be identified
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for each test or algorithm. A more detailed quantitative analysis could be the focus of
future research.

 
Figure 2. Algorithms time comparison per test.

Table 2. Energy use for execution of 100-dimensional version of the tests.

Test PSO DE FS

Wh Wh Wh

Griewank 33.25 12.98 4.43
Michalewicz 51.93 33.57 19.63
Norwegian 34.83 14.88 3.80
Rastrigin 33.57 14.25 3.48

Rosenbrock 31.35 12.67 1.58
Schwefel 51.93 19.95 8.55

Step 49.72 13.30 1.90

Table 3. Relative time difference per test in %.

Test DE/PSO FS/PSO FS/DE

% % %

Griewank 39% 13% 34%
Michalewicz 65% 38% 58%
Norwegian 43% 11% 26%
Rastrigin 42% 10% 24%

Rosenbrock 40% 5% 13%
Schwefel 38% 16% 43%

Step 27% 4% 14%

5. Discussion

This section critically examines the results of the study, interpreting them in light of
previous research and exploring the role of intelligent algorithms in enhancing energy
efficiency. The findings corroborate and, to some extent, clarify earlier studies [27] that in-
vestigate computational limitations, energy consumption, and processing time in intelligent
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algorithms. While it is evident that variations in efficiency can be attributed to differences
in software design, implementation, and execution, it is also essential to understand how
different software engineering techniques can embody intelligent behaviour.

To ground this analysis, we first turn to epistemological frameworks [56,57]. Models such
as Data–Information–Knowledge (DIK) [58] and Data–Information–Knowledge–Wisdom
(DIKW) [59] provide valuable insights into how intelligent beings and systems perceive and
interact with their environment. These models illustrate a hierarchical process wherein data
is generated and pre-processed to abstract essential information, which can then be further
refined into knowledge for future use. This hierarchical abstraction not only reduces the
amount of data that needs to be stored but also accelerates the processing of familiar cases
while enabling adaptation to new ones. Both factors significantly enhance the efficiency
and sustainability of intelligent entities. Translating this process into intelligent computing
software can thereby contribute to the overall sustainability of AI systems.

Among the various definitions of knowledge, the one most applicable to software de-
sign and implementation is “Knowledge is the perception of the agreement or disagreement
of two ideas” [60–62]. This conceptualisation is crucial for understanding how cognitive
processes can strengthen machine learning algorithms and improve the sustainability of
intelligent systems. According to the literature, “Knowledge of the external world can
be obtained either by intuition or by abstraction” [63]. Understanding these cognitive
processes, particularly intuition and abstraction, is pivotal for advancing the process of
machine learning and knowledge construction.

William of Ockham provides a useful distinction between intuitive and abstractive
cognition [64]:

• Intuitive cognition involves the immediate apprehension that allows the intellect to
make evident judgments about the existence or qualities of an object.

• Abstractive cognition, on the other hand, is an act of cognition where such judgments
cannot be evidently made.

Applying these concepts to the “Blackbox” model facilitates the operation of adaptive
heuristic algorithms such as Free Search, which can perform more efficiently across het-
erogeneous landscapes and tasks. Faster performance directly translates to better energy
efficiency. For simple tasks, high computational intelligence and the competition between
different algorithms and systems enhance software sustainability and energy efficiency.
For more complex problems—such as those involving a search space exceeding 101,000,000

(10 to the power of 1,000,000) possible locations, where the exploration time could approach
infinity—adaptive intelligent behaviour becomes crucial in minimising both time and
energy consumption. An example of this can be seen in the application of Free Search to
optimise tasks involving 100,000 parameters, achieving notable efficiency gains [28].

Future research should focus on developing new models and software implementa-
tions that enhance machine learning, intelligent computing, environmental interaction,
knowledge construction, and adaptive behaviour. These advancements are critical for
creating more efficient and sustainable AI systems

6. Conclusions

This study contributes to the ongoing discourse on sustainable and energy-efficient
software, specifically addressing the question: Can Artificial Intelligence (AI) be classi-
fied as socially responsible based on its energy efficiency and sustainability? While this
question remains open and requires further comprehensive research, our findings provide
a foundational perspective on the energy efficiency of computing systems, highlighting
several key aspects:

1. The overall growth in energy consumption by computational systems poses significant
challenges, especially considering the fundamental physical limitations that, if left
unaddressed, could lead to global negative consequences.
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2. Although there have been positive changes in hardware energy efficiency, the sustain-
ability of software, particularly the energy efficiency of intelligent algorithms, plays a
critical role.

3. Our empirical evaluation demonstrates the variation in time and energy consumption
of intelligent, adaptive algorithms applied to heterogeneous numerical tests, revealing
substantial differences in energy efficiency and speed when different algorithms are
used for the same tasks.

4. The study identifies potential benefits of time- and energy-efficient software, un-
derscoring the importance of optimising computational processes to reduce their
environmental impact.

5. The discussion on the interrelationship between concepts, computational intelligence,
and the role of cognition in advancing intelligent algorithms further elucidates the
complexities involved in this area of study.

While the study provides valuable insights, it also raises several questions that remain
unanswered and merit further investigation, such as the sustainability of other algorithms,
the energy efficiency of algorithms when applied to real-world problems, and the broader
contribution of intelligent computing to green computing. Future research should aim for
more precise quantitative analyses, focusing on the evaluation and improvement of a wide
range of software products and services to promote energy-efficient and sustainable computing.

By exploring these avenues, this study hopes to contribute to a deeper understanding
of the potential for AI and other intelligent computing solutions to align with principles of
social responsibility and environmental sustainability.
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