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Abstract
Haptic feedback plays a significant role in expressing emotions,
however, there is a lack of research on haptics compared with
visual and audio channels. In this paper we investigate AI and
machine learning methodologies for generating affective vibrotac-
tile feedback. Two generative AI (GenAI) approaches to vibration
generation were examined using a custom dataset of vibration-
emotion pairings: a Variational Autoencoder (VAE) approach and a
fine-tuned large language model (LLM) approach. A quantitative
user study involving 15 people validated the GenAIs’ capabilities to
generate vibrations conveying a range of levels of emotion valence
or arousal. Subjective interviews were conducted afterwards which
provided valuable insights for multimodal interaction design and
future research topics of affective haptics.
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•Human-centered computing→Haptic devices;User studies;
• Computing methodologies→ Artificial intelligence.
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1 Introduction
Haptic feedback plays a significant role in communicating emotions
[8, 19, 39] and yet whilst generative AI has been widely applied
to generating affective visual and audio feedback [6, 24, 34], AI-
generated vibrations remain unexplored. One reason for this may
be a lack of clear methodologies. Our primary goal in this paper is
to explore and evaluate different approaches for generating emo-
tional vibrations with AI from a human-centered perspective, thus
fostering creativity in haptic feedback and shifting the focus on
emotional communication to this sensory modality. This includes
three major components: i) construction of a vibration-emotion
dataset; ii) exploration of generative AI methods for vibration; iii)
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a human-centered study to provide insights for designing compu-
tational affective haptic feedback.

2 Related Work
Haptic feedback encompasses tactile inputs across the body, includ-
ing kinesthetic, thermal, force, and vibrotactile feedback [19, 36]
which can be passive or active forms [10, 35]. In this paper we focus
on active vibrotactile feedback to convey emotion, also referred to
as affective vibration.

2.1 Design and Technologies for Vibration
Rendering

Researchers have been exploring the role of haptic feedback in
conveying emotions for decades [13]. In the Human-Computer In-
teraction (HCI) community, research has explored the potential
of vibrotactile patterns to convey emotions [2, 11, 17]. Indeed, af-
fective haptics have been increasingly utilized in various domains,
including storytelling [15], mental therapy [18], film [21], virtual re-
ality [33, 35], and enhancing visual-audio experiences [1, 12, 29, 32].
However, despite the diversity of applications of haptic feedback, it
is still difficult to design vibrations to convey emotions.

Technologies for rendering vibrations have also advanced over
the past decades. For example, by coding Pulse Width Modulation
(PWM) outputs, hardware such as vibration motors can convey
various vibrations [21] and are frequently integrated into hand-
held devices such as mice [11, 36] and game controllers [9]. Some
other vibration data libraries [15, 31] have been published for stan-
dardization. Specifically, Hasti Seifi’s team has developed several
open-sourced haptic datasets [27, 28], employing the Waveform
Audio File Format (WAVE) to present vibrations. Their work enables
broader applications of vibrations across computational devices.
On mobile devices, vibration rendering is further simplified by
hardware producers. For example, Apple’s Haptic and Audio Pat-
tern (AHAP) [14] format allows developers to customize vibration
patterns with text editors. This JSON-like text format opens pos-
sibilities for leveraging large language models (LLMs), offering a
simpler and more efficient solution.

2.2 Emotion Quantification for Affective
Computing

Designing systems to convey emotion through vibrations relies on
being able to identify human emotional responses to these stimuli
either through physiological signals or subjective scales. Commonly
used physiological signals indicating human emotional response
include Electroencephalography (EEG), Electrocardiogram (ECG),
Galvanic Skin Response (GSR), and facial activity [5, 22, 25, 30]. As
for subjective scales, the dimensions of valence and arousal [26] are
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most commonly applied in affective computing systems[6, 16, 20,
38]. Subjective scales such as the Self-Assessment Manikin (SAM)
[3], utilize these valence-arousal dimensions to measure emotion,
and are considered reliable and effective. Compared to monitoring
emotion using physiological signals, using the SAM scale costs
little and requires no specialized equipment, so is regarded as an
affordable option.

Figure 1: The Self-Assessment Manikin (SAM) used to rate
the affective dimensions of valence (top panel) and arousal
(bottom panel). Originally from [3]

3 Methodology
To evaluate GenAI methods for generating affective vibrations,
research was undertaken split into three parts:

(1) Vibration-emotion dataset construction: section 3.1
(2) Model training using two different GenAI approaches for

comparison: section 3.2
(3) Human-centred evaluation to compare the effectiveness of

the two GenAI approaches to affective vibration generations:
section 4

3.1 Vibration-Emotion Dataset Construction
Datasets of vibration data are limited. In Hasti Seifi’s VibViz dataset
[28], a large collection of vibrotactile effects was categorized with
emotion labels. However, due to differences in rendering devices,
as well as the limited number of annotators involved in the original
dataset, it is necessary to conduct additional data annotation. The
data annotation process in this paper follows methods from the
VibViz project as well as research on building emotional music
datasets [34].

The original VibViz dataset contains 120 vibration samples in
WAVE audio format. Before annotation in our study, these vibra-
tions were converted into the Apple Haptic and Audio Pattern
(AHAP) format for rendering on mobile devices. Fifteen partici-
pants were then invited (𝑀age = 23.73; 9 males, 6 females) through
online recruitment to annotate vibration patterns using a mobile
app developed for the study. Participants were required to use a
mobile phone preinstalled with the app and follow instructions
provided by the contact person either in person or online.

On the data annotation app vibrations were presented one by
one in random order. Five seconds after experiencing a single vibra-
tion, participants were asked to rate the valence and arousal of the
emotion they perceived on a 9-point scale. There was a five-second
break between each annotation to reduce potential fatigue. The user
interfaces of this annotation flow can be seen in Figure 2. The mean

and standard deviations of participants’ ratings for each vibration
were calculated. Vibrations with clearly high/low valence-arousal
mean ratings or with low variability were retained for AI training.

Figure 2: Interfaces of Data Annotation App and Annotation
Procedure.

3.2 AI Models
Two of the most common forms of GenAI were selected to generate
affective vibrations: audio-based generation and text-based genera-
tion as discussed in this section. Both approaches were trained on
the dataset constructed in section 3.1.

3.2.1 VAE Approach: Audio-based Vibration Generation. Extensive
research has been conducted on audio generation using emotion
labels [6, 34, 37, 38]. Leveraging Variational Autoencoders (VAEs)
[7] offers an approach to mapping annotated data into a multi-
dimensional latent space [4] which is followed in this study for
audio-based vibration generation by training the model on the
vibration-emotion dataset from section 3.1.

In Figure 3 each spectrogram represents a vibration pattern gen-
erated by a pair of emotion-valence values. The horizontal axis
represents time (in seconds), the vertical axis represents frequency
(in Hz), and the color intensity represents the amplitude (in dB).
These spectrograms visually demonstrate the variety and complex-
ity of the generated vibration patterns, demonstrating that valence-
arousal inputs have influenced the generated vibration outputs of
the VAE.

3.2.2 LLM Approach: Text-based Vibration Generation. For our sec-
ond approach we chose the popular ChatGPT API [23] to fine-tune
the large language model (LLM) ChatGPT-3.5-turbo. The dataset
from section 3.1 was converted into AHAP format in advance, ensur-
ing compatibility with the fine-tuning requirements of the ChatGPT
API. Compared to the original LLM, the fine-tuned LLM demon-
strated a significant improvement in generating AHAP patterns
tailored to emotional inputs.

In Figure 4, each diagram represents a vibration pattern gener-
ated by the fine-tuned LLM. The horizontal axis represents time (in
seconds), and the vertical axis represents intensity ranging from 0.0
(lowest) to 1.0 (highest). These patterns demonstrate the diversity
of the fine-tuned LLM’s generated vibration outputs.

4 Evaluation
A user study was undertaken to evaluate the quality and emotion-
expression accuracy of the two GenAI approaches as described in
this section.
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Figure 3: Spectrograms of VAE-generated vibration samples

Figure 4: Vibration patterns of sampled generation outputs
of the fine-tuned LLM

4.1 Participants, Materials, and Procedure
Fifteen participants were invited to the user study (𝑀age = 24.0
years; 7 males, 8 females). All participants were healthy adults
with experience using mobile phones. The user study material
consisted of two components: a mobile phone with a customized
app preinstalled for displaying generated vibrations, and an online
form on a laptop for listing tasks and collecting data (Figure 5).

Figure 5: User Study Procedure

The key user interfaces of the app are shown in Figure 6, the
app uses a grid system for haptic pattern selection. The haptic
patterns are assigned into four quadrants, each corresponding to
one of four emotions: happy (high-valence, high-arousal), angry

Figure 6: User interfaces of the user test app on the mobile
phone

(low-valence, high-arousal), sad (low-valence, low-arousal), and
relaxed (high-valence, low-arousal) but for the user study there is
no visual indication of this arrangement in the user interface. The
size of the grid is 21x21, which represents 441 generated vibrations
mapped onto the 2-dimensional valence-arousal emotion space.
The size and number are chosen to balance the accuracy of emotion
expression and the cost of model generation. A virtual joystick
below the emotion space enables continuous navigation across this
grid, allowing participants to explore the 2-D space and sample the
vibrations with real-time feedback.

The user’s tasks were split into two groups in random order:
VAE and LLM. In each group, participants were required to ex-
plore vibrations on the app using one hand and select vibrations
that best represented one of the four emotions. For each emotion,
two selections were required. During the study, the details of the
dimension representation and models were not disclosed to the par-
ticipants. To minimize fatigue, participants were given a 5-minute
break between the two models’ tasks.

A semi-structured interview was conducted afterward to quali-
tatively gather their feedback. The main interview questions were:

• What are the differences between two groups of vibrations
based on your feelings? And which group of vibrations do
you prefer?

• Were there any specific emotions that were difficult to iden-
tify using the vibrations? And what criteria did you use to
identify emotions represented by the vibrations?

• Have you had any prior experience with applications or
interactive designs involving vibrations?

4.2 Quantitive Analysis
All 15 participants completed the tasks. Their responses were ana-
lyzed to determine whether the emotion they perceived matched
the quadrant to which the vibration belonged. By aggregating the
results across all participants, the emotion quadrant matching ac-
curacy was calculated as the ratio of the total number of vibrations
correctly matched to the total number of annotated vibrations.

Figure 7 illustrates that both models performed better than ran-
dom generation but not exceptionally well. The LLM was more
effective in expressing high-arousal emotions (happy and angry),
while the VAE was more effective in expressing low-valence emo-
tions (sad and relaxed). Notably, the VAE performs significantly
well in conveying relaxation.
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Figure 7: Emotion quadrant matching accuracies of LLM and
VAE

Figure 8: Distribution of LLM-generated vibrations selected
by participants.

Figure 9: Distribution of VAE-generated vibrations selected
by participants.

The labeled vibrations were further mapped onto the valence-
arousal grid according to the value that generates them. Using cen-
troid distribution and T-test, the deviations between the input emo-
tional parameters and the participants’ perceived emotions were
revealed. For the LLM (Figure 8), the distribution showed difficulty
in accurately reflecting valence. However, significant differences
(𝑝 < .001) were observed in arousal between the low-arousal and
high-arousal groups. For the VAE (Figure 9), the generated vibra-
tions fail to distinguish arousal. Significant differences (𝑝 = .0019)
were observed in valence groups but not in the correct distribution.

Figure 10: Pairwise significance differences between four
emotions in both models

To investigate differences across the four emotion groups, CHI-
squared tests were conducted. For the general differences among the
four emotions, neither the LLM (𝑝 = .1019) nor the VAE (𝑝 = .0995)
model shows significant differences. However, when comparing
specific emotion pairs, significant differences were partially found
(Figure 10). For the VAE, angry (low-valence, high-arousal) differed
significantly from relaxed (high-valence, low-arousal) (𝑝 = .0132).
For the LLM, significant differences were found between angry and
relaxed (𝑝 = .0057) as well as between angry and sad (low-valence,
low-arousal) (𝑝 = .0483).

Overall, both the LLM and VAE models demonstrate the po-
tential for generating affective vibrations and exhibit strengths in
specific aspects. The LLM was more effective in emotion expression
especially for high-arousal, whereas the VAE performed better at
conveying relaxation. However, both models have notable weak-
nesses, as neither of them was able to generate affective vibrations
with high accuracy. In terms of overall performance, the LLM per-
formed better. These insights were further validated during the
interview sessions.

4.3 Qualitative Feedback Summarization
All 15 participants responded to our interviews. Using thematic anal-
ysis, we identified key insights by categorizing their text responses
and extracting frequently mentioned keywords. Each participant’s
response has been labeled and referenced in the analysis.

Eight participants (P1, P4, P6, P7, P10, P11, P13, P14) described
vibrations generated by the LLM as intense, clear, or easy to inter-
pret, while vibrations from the VAE were considered as smooth and
soft. Key participant feedback includes:

“Model B (LLM) is more intense, while A (VAE) is more gentle and
subtle.” (P1)

“Model A (LLM) is more direct, and Model B (VAE) is more smooth.”
(P6)

As shown in Figure 11, more than half of the participants pre-
ferred LLM-generated vibrations. Only one participant preferred
VAE vibrations, and others expressed no clear preference.

In addition to evaluation between the VAE and LLM, features
of affective vibrations were explored to identify design principles.
Participants highlighted that certain vibration features like rhythm
and intensity could effectively evoke specific emotions (P2, P8, P9,
P11, P12). Strong, continuous vibrations were often associated with
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Figure 11: Participants’ preference towards LLM and VAE

emotions like anger (high-arousal, low-valence). Rhythmic vibra-
tions were linked to high-valence emotions (happy and relaxed).
Participants found it easier to identify emotions like angry due to
its high intensity, while relax and sad were more difficult to iden-
tify. Several participants noted that they associated vibrations with
human behaviors, such as sobbing for sadness (P2, P3, P8). Table 1
summarizes the vibration features associated with four emotions.

Arousal-Valence Intensity Rhythm
High Arousal, Low Valence High Continuous
High Arousal, High Valence High Rhythmic
Low Arousal, High Valence Low Rhythmic
Low Arousal, Low Valence Low Like sobbing/crying

Table 1: Features of Vibrations for Four Emotions

For potential applications, most participants referred to vibra-
tions provided by game controllers equipped with haptic engines.
However, these are predominantly used for physical simulation
rather than affective feedback. For example, “opening treasure
chests" (P6) or “diving into ink in ‘Splatoon’" (P4). Other vibration-
related scenarios associated with affective feedback mentioned
include music games (P15) and music performances (P9).

Despite the diverse perspectives on interacting with haptic feed-
back, we suggest the following guidance for designers of affective
vibrations:

• Rhythms are essential for expressing emotional valence,
while continuity and intensity are essential for expressing
arousal as summarized in Table 1.

• Vibrations commonly convey negative emotions on mobile
phones in daily life, while the opposite conclusion is found
in entertaining scenarios such as gaming and music perfor-
mances.

• Many users interpret vibrations through synesthesia and
metaphor, such as associating certain vibrations with heart-
beats, sobbing, or alarms e.g. “In judging vibrations, I need
to rely on associations to understand emotions" (P14).

• Based on keyword counts of participants’ responses, vibra-
tions are more effective in expressing emotions with high
arousal or low valence.

• Participants with professional musical backgrounds high-
lighted the similarities of the emotional expression among
music rhythms, drum patterns, and vibrations. “Those with

normal rhythms feel positive, those with abnormal rhythms
do not" (P11).

When choosing between VAE and LLM from the perspective of
designers and users, we suggest that for most scenarios utilizing
vibrotactile feedback, fine-tuned LLM performs better because of its
diverse outputs. VAE would be an alternative in specific scenarios
such as relaxation. Moreover, in scenarios requiring large-scale
AI-generated content, using LLM may incur substantial costs in
terms of time, energy, and financial resources.

5 Limitations and Future Work
Our study on the AHAP format limits non-iOS devices from using
the AI-generated vibrations, future iterations will extend compati-
bility across platforms. Since AHAP describes vibrations through
structured, human-readable text, it provides the potential for sys-
tematic analysis of AI-generated vibrations and platform-independent
vibrotactile design guidelines.

Compared to the 5-10 participants in relevant projects [28, 34],
our project engaged a larger sample (15), but remains insufficient
to fully eliminate potential biases and randomness. However, start-
ing from an open-sourced dataset of 120 WAVE-format clips, we
expanded it to 441 samples in both WAVE and AHAP formats.
Through user studies, these vibrations were assessed and filtered,
and those with clear emotion patterns were selected.

Figure 12: Records of the music performance, taken by the
author. (a) An overview of the dynamic background of mu-
sic visualization and the main DJ console. (b) The audience
members engaging at the music performance. (c) Two audi-
ence members gathering to interact with the remote-control
app while experiencing the rendered vibrations. (d) A single
audience member interacting with the music via the remote-
control app while experiencing vibrations.

As an example application, these selected vibrations were used in
an interactive music performance (Figure 12), where each audience
member could act as a DJ using a mobile phone remote-control
app. By rendering vibrations with a valence-arousal space, the app
establishes connections between music filters and vibrations. Audi-
ence feedback suggested that the vibrations offered a novel sensory
channel, enriching the emotional atmosphere and enhancing the
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sense of engagement. This application illustrates the potential of
AI-generated vibrotactile feedback in future creative practices.

These selected vibrations may also contribute to future research
of computational haptic design. Our future work will concentrate
on two directions: i) iterations to models and datasets, aiming to
develop a generative system capable of accurately mapping vibra-
tions onto the valence-arousal space; ii) quantitative evaluations on
the insights and phenomena identified through user studies. These
could evolve into focused research topics, ultimately contributing
to design principles that advance human-computer interaction.

6 Conclusions
This project contributes to the field of affective haptics from both
technical and design perspectives. With our vibration-emotion
dataset, two AI-based approaches for vibration generation were in-
vestigated: an audio-based method using Variational Autoencoder
(VAE) and a text-based method using fine-tuned large language
model (LLM). Through a human-centered study, the VAE’s abil-
ity to express certain emotion and the LLM’s ability to express
arousal was examined. From the interview, five insights for design-
ers and researchers were provided to further explore the design
of vibrations. Despite limitations such as dataset and sample size,
the findings demonstrate the potential of these methods for ad-
vancing the computational generation and application of affective
vibrations.
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