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Systems to interactively generate audio from human movement are used by artists including dancers to support their 
performances and practice. However, current real-time movement-to-sound systems require specialized hardware or 
expertise, or map only very simple movement-to-audio relationships. We present a new technique and system 
implementation for interactive sonification of human movement through unsupervised machine learning. Our system maps 
between latent spaces, linking a pose estimator to a neural audio generator to enable sonification of human bodies. This 
may lower barriers to entry for artists to generate sound from their embodied movement through complex mappings. Our 
system requires no specialized hardware or niche AI expertise, minimal data to learn a user’s custom movements, and 
trains extremely fast. It represents a new method for mapping custom data to a latent space through unsupervised learning, 
and advances state-of-the-art interactive movement sonification through its increased accessibility and ease of use relative 
to its complexity. 

CCS CONCEPTS • Human-centered computing~Human computer interaction (HCI) • Computing 
methodologies~Machine learning • Applied computing~Arts and humanities~Sound and music computing • Computing 
methodologies~Machine learning~Learning paradigms~Unsupervised learning • Computing methodologies~Machine 
learning~Machine learning approaches~Neural networks 
ACM Reference Format: 
Joseph Meyer, Nick Bryan-Kinns, Sarah Fdili Alaoui, Mick Grierson, and Rebecca Fiebrink. 2025. Interactive Movement-
to-Audio with Pre-Trained Neural Networks. In Creativity and Cognition (C&C ’25), June 23–25, 2025, Virtual, United 
Kingdom. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3698061.3734415 

Nick Bryan-Kinns
Author pre-print



2 

1 Introduction 
Movement-to-sound systems, a subset of creativity support tools [16], are used by dancers to dynamically generate 
soundtracks for their choreography or facilitate real-time sonification of their improvisations [3] [9] [13]. They are also 
used by music artists to produce novel audio samples from gestural input [12]. Additionally, academics are interested in 
movement-sound systems to examine relationships between modalities [2] [18]. 
However current architectures are either too simple to yield complex (i.e. implicit) mappings [10], too complicated to use 
without niche AI expertise [13], or too heavy to customize to individual users or interact with in real-time [17]. Directly 
mapping body part locations to synthesizer parameters facilitates real-time movement-to-sound generation but limits 
expressivity and complexity of interaction [10]. Supervised machine learning enables more complex movement-to-sound 
mappings but requires niche AI expertise, extensive time, and painstaking effort to customizably train [13]. Large 
unsupervised models such as diffusion can learn complex mappings automatically but require large amounts of data and 
computational power to train, are too heavy to customize for individual users, and are too slow for real-time interaction 
[17]. 
Our system seeks to address these gaps. It generates complex mappings between movement and sound spaces, 
customized to a user’s data, using minimal resources and labor. It requires no hardware beyond a user's laptop, 
processing movement data from a laptop's camera via computer vision and training lightweight autoencoders to map 
between movement and audio spaces in real-time. Thus our system may reduce barriers to entry compared with previous 
state-of-the-art movement-to-sound paradigms. 

2 Background & Motivation 
Dancers have experimented with incorporating movement sonification into their practice for years [3]. They can map 
their body position to synthesizer parameters to control the generated sound [10]. With traditional synthesizers, this 
generally yields relatively direct and simple mappings between movement and sound. Neural audio generators which 
have emerged in the last several years may offer a more complex solution [5]. They can learn a latent audio space, with 
sound dimensions abstracted into a smaller, continuous, and more expressive set of parameters. By manipulating this 
latent audio space, artists can control more complex aspects of the generated sound. 
Neural audio generators create sound by predicting the next section of a waveform. WaveNet [14] models the long 
temporal relationships inherent to music by incorporating dilated causal convolutions, similar to CNNs. Engel et al 
(2017) [7] applied WaveNet’s approach to an autoencoder, enabling techniques such as timbre transfer. Caillon and 
Esling (2021) [5] broke autoencoder training into an initial representation learning stage, and a secondary adversarial 
fine-tuning stage. Four years later their open-source, user-friendly software “RAVE” remains standard in state-of-the-art 
audio performance and machine learning research [4] [13] [20]. Numerous models and variations are available online. 
Researchers are exploring how artists can control neural audio generators from the human-performance space through 
embodied practice. Vigliensoni and Fiebrink (2023) [19] assigned RAVE’s latent space subjective labels, which could be 
arranged in a 2D interface and manipulated interactively. Zheng et al (2024) [20] embedded real-time sketches into 
RAVE’s latent space to be decoded as audio. Nabi et al (2024) [13] used a wearable motion sensor to map complex 
gestures (i.e. dance) to RAVE’s latent space through three different movement-to-sound mapping methods, including 
training a Hidden Markov Regression model through supervised learning to map movement to RAVE’s latent audio 
space. MM-Diffusion [17] models dance and other visual data jointly with audio, using multimodal diffusion to learn a 
shared audio-visual embedding space. 
But current approaches for mapping embodied practice to a latent audio space for interactive exploration require 
specialized hardware, niche AI expertise, and painstaking labor and time to train [13] [20]. Many artists may find it hard 
to access these, particularly if they are new to the technology and unsure how much time, effort, and money they want to 
invest in it. Computer vision and unsupervised learning may help lower the barriers to entry, democratizing access for 
all. 
Human bodies can be modeled from video using pose estimation, a computer vision task [11] [6] [1] [15]. Pose 
estimators identify relative locations in space of particular human body parts, e.g. joints (these are called “keypoints”). 
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These keypoints locations are continuous <x, y> vectors which can be mapped to synthesizer parameters, including to a 
neural audio generator’s latent space [13]. By constructing a mapping function between pose keypoints and synthesizer 
parameters, synthesizer output can be controlled via human body position. Our project investigates ways to construct 
these mappings. 

3 System Overview 
Human keypoints are extracted from video image data using pre-trained pose estimators (e.g. MoveNet). An autoencoder 
is trained on the user’s custom movements to project the keypoints into a latent movement space. A multimodal encoder-
decoder network may be trained on custom movement and audio data to project movement embeddings into audio space, 
or the multimodal network may be omitted and direct mapping used instead. The audio space mapped to is that of a pre-
trained neural audio generator (e.g. RAVE). The audio generator can finally decode the embeddings to sound. 
Our system relies on two pre-trained ML models – a pose estimator which extracts keypoints coordinates (e.g. 
MoveNet), and an audio generator which generates audio from a latent space (e.g. RAVE).  
We train two additional autoencoders through unsupervised learning: 

1. “Keypoints-Movement Projector” learns to encode keypoints coordinates (extracted from a pose estimator) into 
a “movement embedding” of the same dimensionality as the latent space of a pre-trained neural audio model 
(e.g. RAVE). 

2. “Multimodal Movement-Audio Projector” learns to encode both movement embeddings and audio embeddings 
into a latent movement-audio space. This step can optionally be omitted, with movement embeddings mapped 
directly into latent audio space instead. Omitting this step saves time at training and reduces latency at 
inference, at the potential cost of mapping robustness, complexity, and customization to curated audio files. 

Our system is generalizable and can accommodate any latent projector architecture or training procedure. For proof-of-
concept, we construct each encoder and decoder as two linear layers of 4 to 34 neurons connected via ReLU activation, 
utilizing Adam optimization and mean squared error loss. We train these custom autoencoders, on ~30 seconds of 
custom movement data, for less than two minutes each. Thus our system requires only 30 seconds of the user’s time to 
record movement data, and less than 5 minutes of total time to train. Once autoencoders are trained, users can 
interactively manipulate the learned movement-audio mappings. They can explore the latent audio space, translating their 
embodied practice to sound. 

4 Discussion 
Our novel system enables users to map and interactively sonify their movements without specialized hardware or niche 
AI expertise, centering humans in the generative process and improving accessibility and democratization of AI access 
over previous state-of-the-art movement-to-sound paradigms. Our system provides a direct possibility for users to sonify 
their movement using deep learning models. Our project expands the universe of available artistic expression, offering a 
new flavor of creation. It counters the threat of generative AI replacing people by incorporating the human role 
intimately within this new artistic medium. 
Our system generalizes to mappings between any latent spaces. We are using it to map movement to audio, but the same 
principles can apply just as easily to any other pair of modalities. Thus we contribute not only an accessible system for 
sonification of embodied practice, but a new unsupervised paradigm for mapping between latent spaces. 

5 Future Works 
We are currently exploring semi-supervised interactive machine learning, incorporating a secondary 
supervised/interactive fine-tuning process [8] after the primary unsupervised training to give users more control over the 
latent mappings. We are also investigating extraction of human keypoints through an ensemble of pose estimators, to 
encode more expressive human features in latent movement embeddings; as well as techniques to transform latent space 
to maximize novelty of generated output. Our system is still under active development. It will ultimately be generalized 
to support a broad user base, and open-sourced. 
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In future works we will analyze, refine, and evaluate our system, including through user studies. We will employ 
technology probes to investigate how artists from different backgrounds (including dance, music, and film) interact with 
the system; and we will run user experiments to assess the utility, accessibility, and value of the system to a broad, 
inclusive pool of participants. We will define and apply metrics for evaluation to compare our system to current state-of-
the-art approaches. 

6 Conclusion 
We have presented a new technique and system implementation for sonification of embodied practice. We use 
unsupervised learning to map multimodally between movement and audio spaces. Our method may be more accessible 
and easier to use than previous state-of-the-art approaches. Our system requires minimal labor, time, niche expertise, 
specialized hardware, and money access compared with previous state-of-the-art movement-to-sound paradigms. It 
requires only 30 seconds of a user’s movements, recorded through their laptop camera; and a few minutes of compute 
time on their laptop. Then it is customized to their gestures and curated audio library, ready to use any time. 
We have also outlined our next steps. We specified technical advancements we are investigating including semi-
supervised interactive machine learning and ensemble pose estimation, and we clarified our methodology for evaluation. 
  

   

Figure 1: Overview of proposed system architecture. 
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