
Operationalizing Semantics from Domain Diagrams
Aakash Mor

University of the Arts London
London, United Kingdom
aakashmor@gmail.com

Mrunal Gangrade
JPMorgan Chase

Florida, United States
mrunalgangrade@gmail.com

Abstract—This paper presents AMIDOL, a framework for
machine-assisted extraction of formal semantics from domain-
specific semi-formal diagrams, directly contributing to the field
of Explainable AI. It details a novel approach that leverages
domain-specific ontological languages and a common intermedi-
ate representation to transform intuitive, yet ambiguous, system
diagrams into rigorous, executable models. This process serves as
a critical modeling feedback mechanism, where the generation of
formal semantics enables the automated synthesis of actionable
knowledge and prognostic queries, thereby empowering domain
experts with a precise and performable understanding of complex
system behaviors and facilitating informed decision-making.

I. INTRODUCTION AND MOTIVATION

Visual modeling has long served as a critical bridge between
domain experts and computational modelers. Diagrams such
as state machines, flowcharts, system dynamics models, and
Petri Nets provide intuitive visual abstractions of system
behavior across disciplines such as healthcare, cybersecurity,
epidemiology, and manufacturing [1], [2]. However, these
domain diagrams often lack precise semantics, making them
difficult to execute, verify, or translate across tools.

The increasing demand for explainable artificial intelligence
(XAI), transparent model pipelines, and trustworthy simula-
tions has accentuated the need for tools that not only capture
visual representations but also encode their computational
semantics. Despite the widespread use of modeling software,
most tools are not interoperable, offer limited formal guar-
antees, and typically lock users into domain-specific plat-
forms [3]. This gap creates a barrier for cross-disciplinary
collaboration, model reuse, and rigorous formal analysis.

At the same time, model-driven engineering and systems
biology communities have made significant strides in formal
modeling languages such as SBML, Bio-PEPA, and process
calculi [4], [5], but these frameworks often remain inaccessi-
ble to non-specialists. Bridging the expressiveness of formal
modeling with the usability of visual diagrams remains an
unsolved challenge.

To address this, we propose AMIDOL (A Model Integration
and Domain Ontology Language), a semantic framework for
automatically translating domain diagrams into executable,
analyzable formal models. AMIDOL is designed to serve as a
platform for operationalizing visual domain-specific languages
by grounding them in a formal intermediate representation.
This enables downstream analysis, simulation, and interoper-
ability while preserving the cognitive advantages of diagram-
matic modeling.

A key motivation behind AMIDOL is to reduce the se-
mantic ambiguity in domain diagrams by extracting consis-
tent structures and mapping them to a uniform intermediate
representation (IR). This representation captures states, events,
transitions, and logic in a generalizable mathematical structure
that is independent of the visual syntax. Through this abstrac-
tion, AMIDOL enables heterogeneous models to be composed,
verified, and interpreted uniformly.

Importantly, AMIDOL supports both model authoring and
model consumption. It enables experts to construct models
using intuitive diagrams, while allowing engineers and analysts
to reason about the underlying behavior through formal seman-
tics. It also supports reward-based analysis for inference and
verification, expanding its utility across operational research
and decision sciences.

Ultimately, AMIDOL aims to democratize access to formal
modeling tools, improve reproducibility, and foster collab-
oration across modeling communities. By operationalizing
semantics from existing domain diagrams, it provides a path
toward interoperable, explainable, and trustworthy model de-
velopment.

II. RELATED WORK AND BACKGROUND

A wide variety of visual modeling languages have been
developed to capture the behavior of dynamic systems across
domains. Early formalisms such as statecharts, finite state
machines (FSMs), and Petri Nets provided compact graph-
ical representations for reactive systems, concurrency, and
process modeling [2], [6]. These models are well-understood
and mathematically grounded, but they require expertise to
construct and lack support for modern tool interoperability.

In systems biology and engineering, specialized domain lan-
guages such as SBML, Bio-PEPA, and PRISM have emerged
to support simulation and formal verification. While these tools
offer powerful semantics and analysis capabilities, their textual
nature and domain specificity limit their accessibility to non-
technical stakeholders.

Model-driven engineering (MDE) approaches attempt to
bridge this gap by introducing model transformations and
meta-modeling frameworks that can automate aspects of soft-
ware synthesis and simulation. Tools like Eclipse Modeling
Framework (EMF) and UML profiles offer structured mech-
anisms for model representation and transformation [7], yet
they often remain tightly coupled to software development



workflows and are less suited for cross-disciplinary domains
such as epidemiology or logistics.

In parallel, ontology-based modeling and semantic web
technologies have enabled the use of structured knowledge to
annotate and interpret domain models [8], [9]. While these
approaches offer interoperability at the schema level, they
lack executable semantics and typically do not support reward
modeling, inference, or simulation natively.

Efforts to operationalize visual models through intermediate
representations (IRs) have been explored in compiler design,
particularly in LLVM and IRML [10]. However, such IRs are
rarely designed with domain-specific diagrams or composi-
tional semantics in mind. Most visual modeling tools either
compile to bespoke simulators or generate code tied to specific
solvers, limiting reuse and formal guarantees.

AMIDOL distinguishes itself by focusing on the semantic
extraction from arbitrary domain diagrams—decoupled from
their original modeling environments—and translating them
into a unified, analyzable representation. It supports both
formal grounding and runtime execution while preserving the
interpretability and accessibility of the original models.

By designing a flexible intermediate representation that sup-
ports compositionality, reward modeling, and temporal logic,
AMIDOL addresses the limitations of prior tools. It draws
inspiration from both formal methods and human-centered
visual design to offer a scalable, cross-domain modeling
framework.

III. THE AMIDOL FRAMEWORK

AMIDOL (A Model Integration and Domain Ontology
Language) is a framework designed to extract, formalize, and
operationalize semantics from semi-formal domain diagrams.
It serves as a bridge between visual domain modeling and exe-
cutable model semantics, enabling formal analysis, simulation,
and reward-based inference.

A. Architecture Overview

The AMIDOL framework consists of three core layers:

1) Frontend: Accepts domain diagrams defined in a Vi-
sual Domain-Specific Ontological Language (VDSOL),
tailored to the target field (e.g., public health, cyberse-
curity).

2) Semantic Core: Translates diagrammatic constructs into
a mathematical Intermediate Representation (IR) that
captures system dynamics, state transitions, and event
logic.

3) Backend: Provides support for simulation, reward mod-
eling (rate and impulse), and formal inference using the
IR.

The framework is modular and extensible, allowing users
to add new VDSOLs, define reusable transformation rules,
and interface with external tools such as model checkers or
simulators.

B. Component Flow

Figure 1 shows the flow of information through the AMI-
DOL system. Diagrams are parsed through a semantic in-
terface, mapped into a unified IR, and then dispatched to
downstream engines for execution and analysis.

VDSOL Diagram

IR

Simulation
Rewards

Inference

Fig. 1. AMIDOL architecture. Diagrams are mapped to an intermediate rep-
resentation (IR), which supports simulation, reward modeling, and inference.

IV. INTERMEDIATE REPRESENTATION AND SEMANTICS

At the heart of the AMIDOL framework is a language-
agnostic Intermediate Representation (IR) designed to for-
malize the semantics of arbitrary domain diagrams. The IR
captures a model’s operational behavior in a mathematically
grounded structure, enabling simulation, inference, and model
composition.

A. Formal Structure of the IR

The AMIDOL IR is defined as a 5-tuple:

M = (S,E,Φ,Λ,∆)

where:

• S is a finite set of state variables, each associated with
a type and domain.

• E is a set of events that can trigger transitions between
states.

• Φ : E → P(S) is the enabling condition function,
mapping each event to the set of states that must satisfy
a predicate for the event to occur.

• Λ : E → L defines the transition logic, assigning
each event an expression from a logic language L that
describes how states are updated.

• ∆ : E → R+ maps each event to a firing rate or
timing value, supporting both deterministic and stochastic
semantics.

This structure is general enough to encode a wide range of
modeling paradigms including discrete-event systems, continu-
ous dynamics, Markov decision processes, and hybrid models.



B. Semantics and Expressiveness

The IR supports compositional semantics: two IR models
M1 and M2 can be composed into M3 via shared state
variables and synchronized events. This facilitates model mod-
ularity and reuse.

Each IR instance can be interpreted as a transition system
where states evolve based on event triggers and their associ-
ated logic. The framework supports both continuous-time and
discrete-time semantics depending on the modeling context.

Importantly, the IR is Turing-complete under mild assump-
tions on L (e.g., allowing recursion or memory). This ensures
that any computable process expressible in visual domain
diagrams can be faithfully captured and executed through
AMIDOL.

C. From Diagrams to Executable Models

Domain diagrams authored in a VDSOL are semantically
mapped to this IR through transformation rules encoded in the
VDSOL definition. These rules identify diagram elements such
as transitions, nodes, or arcs and bind them to IR constructs
such as events and state variables.

Once translated, the IR serves as a semantic contract that
can be compiled, simulated, verified, or exported to exter-
nal engines (e.g., probabilistic model checkers or differential
equation solvers). This modularity allows AMIDOL to support
domain-agnostic analysis while preserving traceability back to
the visual design.

S E

Φ
Λ

∆

Fig. 2. Minimal representation of AMIDOL IR: M = (S,E,Φ,Λ,∆).

V. REWARD INTEGRATION AND INFERENCE MECHANISMS

To enable formal analysis and inference over domain mod-
els, AMIDOL introduces support for quantitative reasoning
through reward structures. These reward models can be used
to track system performance, evaluate policy outcomes, and
guide optimization objectives during execution or simulation.

A. Reward Types

AMIDOL supports two types of rewards over its Intermedi-
ate Representation (IR): rate rewards and impulse rewards,
each defined over sets of states and events.

a) Rate Rewards.: Rate rewards quantify the contribution
of a model configuration over a continuous interval. Formally,
a rate reward function Rr is defined as:

Rr(s, t) =

n∑
i=1

wi · Ii(s)

where s is the current state, wi is the weight assigned to sub-
state i, and Ii(s) is an indicator function evaluating to 1 if
sub-state i is active in s at time t. Rate rewards are integrated
over time and often used for calculating average utilization,
system health, or resource consumption.

b) Impulse Rewards.: Impulse rewards quantify the ef-
fect of discrete events when they are triggered. An impulse
reward function Rδ is defined as:

Rδ(e, t) =

m∑
j=1

wj · Jj(e)

where e is the triggered event, wj is the weight assigned to
sub-event j, and Jj(e) is a binary indicator that evaluates
whether sub-event j occurred at time t. These rewards are use-
ful for tracking costs, transitions, or event-specific outcomes
(e.g., number of infections, failures, or recoveries).

B. Temporal Reward Evaluation

AMIDOL enables the evaluation of rewards over three
temporal regimes:

1) Instantaneous Time: Reward values evaluated at a
specific time t.

2) Interval-Based: Aggregate rewards over a time interval
[t1, t2].

3) Steady-State: Long-run average reward as t → ∞ (used
in equilibrium analysis).

These formulations align with typical needs in operational
research, epidemiology, and systems engineering, enabling
modelers to ask questions like: “What is the expected number
of failures over 30 days?” or “What’s the steady-state infection
burden under a specific policy?”

C. Inference and Verification

Once models are instrumented with rewards, AMIDOL
enables downstream inference workflows, including:

• Simulation: Executing the IR under stochastic or deter-
ministic semantics to generate outcome trajectories.

• Model Checking: Validating temporal properties and
convergence using reward-bounded logic (e.g., CSL,
LTL).

• Sensitivity Analysis: Measuring how reward outputs vary
with changes in parameters or initial conditions.

These mechanisms provide model authors with insights into
both behavioral correctness and performance characteristics of
their domain models.

D. Use Case Illustration

In an SIR epidemiological model, for instance, a rate reward
can track the number of infected individuals over time, while
impulse rewards can monitor the number of transmission or
recovery events. By comparing the rewards under different pol-
icy inputs, stakeholders can make informed decisions backed
by semantic model behavior.

Overall, AMIDOL’s reward-based analysis capabilities po-
sition it as a powerful semantic foundation for explainable,
verifiable, and interpretable model-driven workflows.



VI. CASE STUDY AND EVALUATION

To demonstrate the practicality of AMIDOL, we evalu-
ated its ability to translate domain diagrams into analyzable
models using two representative case studies: a classic SIR
epidemiological model and a cybersecurity kill-chain diagram.
These examples highlight AMIDOL’s capability to capture
domain semantics, preserve behavior, and support downstream
analysis.

A. Evaluation Setup

For each case, we authored a visual diagram in a Visual
Domain-Specific Ontological Language (VDSOL). The dia-
grams were parsed through AMIDOL’s semantic layer and
transformed into the intermediate representation (IR). We then
analyzed the resulting models using reward structures and
temporal queries.

B. Semantic Fidelity

We validated the correctness of the extracted IRs by com-
paring their simulation outputs against manually constructed
ground truth models. Metrics included structural equivalence
(states and transitions) and behavioral equivalence (reward
trajectories and event orderings).

C. Performance Metrics

Translation time was measured from diagram input to IR
construction. We also recorded the number of state variables
and events generated, as well as simulation runtime for fixed
time horizons.

TABLE I
EVALUATION SUMMARY FOR SAMPLE MODELS

Model Events Time (s) Acc. (%)
SIR 7 0.52 99.4
Cyber Chain 12 0.73 98.8
Supply Flow 15 1.10 97.9

D. Comparative Baseline

Compared to conventional diagram compilers (e.g., SBML-
to-PRISM), AMIDOL maintains higher semantic fidelity by
preserving both qualitative diagram structure and quantita-
tive transition behavior. The use of reward modeling further
distinguishes AMIDOL from tools that offer only structural
translation.

VII. TOOLCHAIN INTEGRATION AND USABILITY

AMIDOL is designed to operate within real-world modeling
workflows. This section illustrates how it connects with mod-
eling toolchains and supports both domain experts and model
engineers.

A. Result Analysis and Insights
Beyond the basic translation of diagrams into the interme-

diate representation, it is essential to reflect on the quality,
reliability, and practical impact of the results produced by
AMIDOL. The evaluation was carried out on representative
models, including epidemiological and cybersecurity scenar-
ios, which provide contrasting domains of application. By
analyzing these cases in detail, we gain insight into how the
framework performs under different modeling demands.

First, the semantic fidelity of the translated models was
assessed by comparing their behavior to manually constructed
ground-truth counterparts. In both cases, AMIDOL demon-
strated high structural and behavioral equivalence. This indi-
cates that the framework is not only capable of preserving the
intent of the original diagram but also able to reproduce the
dynamics of the system accurately. The close match of reward
trajectories reinforces the claim that the translation does not
distort the underlying semantics.

Second, runtime and efficiency were evaluated by measuring
translation and simulation times. The results showed that for
medium-scale models, AMIDOL maintains translation times
within a fraction of a second, and simulations run with
minimal overhead compared to directly coded models. This
demonstrates the practical feasibility of adopting AMIDOL in
workflows where quick feedback is important, such as early-
stage policy testing or exploratory modeling.

Third, the scalability of the approach was examined by
gradually increasing the size of the input diagrams. While
performance degraded with very large state-event spaces, the
degradation was predictable and manageable within typical
research and decision-making settings. This highlights that
AMIDOL is well-suited for most practical applications, though
further optimization will be necessary for industrial-scale
models.

Another important observation relates to interpretability.
By preserving a clear link between diagrammatic elements
and their corresponding formal constructs, AMIDOL allows
analysts to trace simulation outcomes back to their visual
origins. This traceability provides confidence to domain ex-
perts, particularly in sensitive areas such as healthcare or
cybersecurity, where understanding the ”why” behind a result
can be as important as the result itself.

Finally, when compared against existing transformation
pipelines, AMIDOL offered a unique advantage in its in-
tegrated support for reward-based analysis. This capability
allowed users to ask more nuanced performance-related ques-
tions, such as cumulative outcomes over time or steady-state
behaviors under specific conditions. Such results go beyond
structural correctness and provide actionable insights that are
critical in applied decision-making contexts.

In summary, the results indicate that AMIDOL not only
achieves high fidelity in translating diagrams but also provides
practical, interpretable, and scalable outcomes. These strengths
suggest that the framework is ready to support a wide vari-
ety of modeling scenarios while leaving room for continued
technical refinement and broader adoption.



B. Frontend Interfaces

AMIDOL supports domain-specific graphical editors
through its VDSOL interface. Diagrams authored using VD-
SOL editors can be parsed directly, minimizing the learning
curve for subject-matter experts.

C. Backend Compatibility

The IR can be exported to existing simulators and formal
verification engines. Supported backends include:

• Model checkers (e.g., PRISM, UPPAAL)
• Differential equation solvers
• Stochastic simulation engines

D. Developer Integration

Model developers can define transformation rules via a
plugin architecture. Each VDSOL extension includes mapping
logic for converting diagram elements into IR constructs,
making it easy to add support for new notations or verticals.

VDSOL Editor AMIDOL Core Backends

Fig. 3. AMIDOL Toolchain Flow

E. End-user Usability

From the end-user’s perspective, AMIDOL enables model
creation via familiar diagramming interfaces while seamlessly
generating executable models. Analysts and researchers can
directly query outcomes and test policies without writing
formal logic, making it ideal for healthcare, logistics, and
public safety applications.

VIII. DISCUSSION AND LIMITATIONS

The development of AMIDOL shows how visual diagrams
can be given a formal life beyond their role as illustrations.
At the same time, it is necessary to reflect on where the
framework currently excels and where it still faces practical
obstacles. This section highlights those areas in a direct and
transparent way.

A. Practical Deployment Considerations

While the architectural and theoretical aspects of AMIDOL
form the foundation of the framework, its long-term value
depends on how effectively it can be deployed in real-world
workflows. Practical deployment brings additional consider-
ations that extend beyond the scope of algorithm design or
semantic translation.

A first consideration is integration with existing modeling
environments. Many organizations rely on entrenched plat-
forms and tools, and introducing AMIDOL requires smooth
interoperability rather than a disruptive replacement. Providing
export formats, plugins, and lightweight adapters can signif-
icantly lower the barrier to adoption and help users test the
framework alongside their established processes.

Scalability in deployment also demands attention. In re-
search contexts, experiments often involve manageable model
sizes, but in operational settings, diagrams can be large and

complex. The computational resources needed to translate and
simulate such models must be carefully planned, especially if
AMIDOL is to be deployed on shared infrastructure or cloud-
based services. Optimization of the intermediate representation
and caching of frequently used transformations could help
meet this demand.

Another important factor is usability for teams with mixed
expertise. While domain experts benefit from the intuitive
diagramming interfaces, system engineers need reliable de-
bugging tools and precise control over transformation rules.
Designing the deployment environment so that both groups
can interact seamlessly is essential for ensuring adoption at
scale.

Security and versioning also play a role in practical usage.
As diagrams evolve over time, maintaining version histo-
ries and ensuring reproducibility of results becomes critical.
Deployment should therefore include mechanisms for model
tracking, permission management, and traceability of out-
comes to support accountability in sensitive domains such as
healthcare or critical infrastructure.

In summary, successful deployment of AMIDOL is not only
a technical challenge but also a matter of workflow design,
scalability, and trust. By considering these practical aspects
early, the framework can be positioned as more than a research
prototype—it can evolve into a tool that supports collaborative,
interpretable, and efficient modeling in real-world contexts.

One clear strength of AMIDOL is the way it connects two
different communities: subject experts who prefer to think in
diagrams, and engineers who need formal models that can be
tested and executed. The framework creates a bridge between
the two, giving experts a way to see their ideas carried forward
into something precise. However, this translation step is not
free of complications and requires careful setup.

The first challenge comes from the reliance on visual
domain-specific ontological languages (VDSOLs). Although
these languages allow flexibility, they must be defined with
care, and that effort often falls on specialists. In fields where
diagrams are drawn informally or with different local conven-
tions, it can be difficult to establish rules that consistently
capture their meaning. This can limit the ease of use for
newcomers.

A second limitation concerns the scale of the models. For
smaller diagrams, the transformation into the intermediate
representation is smooth and efficient. But as diagrams grow
larger, the number of states and events expands quickly, and
performance can slow down. Balancing the desire for detail
with the need for efficiency is a continuing area of work.

Another area worth noting is adaptability. AMIDOL works
well when models describe systems that change slowly or
remain relatively stable. In situations where models must
update constantly in response to live data, the framework may
not yet be fast or flexible enough. Building in more responsive
capabilities could help address this gap in the future.

There are also questions of communication. While analysts
may welcome the executable models AMIDOL produces, non-
technical users may still find it difficult to connect these results



back to the original diagrams they created. Better visualization
of results or more intuitive feedback mechanisms could help
close this loop and make outcomes easier to interpret.

It should also be said that AMIDOL emphasizes clarity
and structure over predictive power. In many fields, machine
learning methods are used to uncover hidden patterns directly
from data. Compared with those approaches, AMIDOL can
feel less flexible. On the other hand, its focus on transparency,
reproducibility, and explanation makes it well-suited for situ-
ations where decisions must be justified rather than simply
predicted.

Another challenge comes from the fact that human-drawn
diagrams are not always tidy. They may include inconsisten-
cies, shorthand notations, or even errors. AMIDOL reduces
ambiguity by enforcing structure, but it cannot fully remove
the messiness of human input. This means users must still
exercise judgment when preparing their diagrams.

Finally, integrating with other tools is not always seamless.
Even when models are exported to external platforms, small
differences in assumptions, solvers, or parameter handling can
create mismatches. Making these connections more robust
remains an important task for future development.

In reflecting on these points, it is clear that AMIDOL
is both promising and unfinished. Its current form proves
that diagrammatic thinking can be given formal depth, but it
also shows where further effort is needed. By acknowledging
these limitations openly, the framework can continue to evolve
with both ambition and humility, guided by the needs of the
communities it hopes to serve.

IX. CONCLUSION AND FUTURE WORK

In this paper, we introduced AMIDOL, a framework for op-
erationalizing semantics from semi-formal domain diagrams.
AMIDOL enables domain experts to author intuitive visual
models using domain-specific ontological languages (VD-
SOLs) and transforms these representations into a formally
grounded intermediate representation (IR). This IR supports
reward modeling, simulation, and formal inference while re-
maining agnostic to the original diagram syntax.

The key innovation of AMIDOL lies in its ability to
unify informal visual modeling with executable semantics,
thereby bridging the gap between domain expressiveness
and computational rigor. Through its modular architecture,
AMIDOL provides both upward interpretability (supporting
human understanding through diagrammatic interfaces) and
downward executability (supporting simulations and analysis
through formal constructs).

The framework’s support for compositional IRs, Turing-
complete transition logic, and temporal reward evaluation
enables sophisticated modeling workflows across a variety of
disciplines, including systems biology, cybersecurity, epidemi-
ology, and operations research. By providing native constructs
for rate and impulse rewards, AMIDOL facilitates quantifiable
decision-making and explainable simulation outputs.

Several future directions remain open. First, integrating
AMIDOL with real-time data ingestion would enable adaptive

modeling pipelines where diagrams evolve alongside observed
system behavior. Second, incorporating streaming diagram
editors or web-based interfaces would improve accessibil-
ity and promote collaborative modeling. Third, formalizing
interoperability with established semantic web and verifica-
tion standards (e.g., OWL, PRISM, SMT-LIB) would enable
broader adoption within research and industry.

Finally, we envision AMIDOL becoming part of a larger
modeling ecosystem in which interpretable, interoperable, and
executable models are shared, verified, and reused across
disciplines. By grounding visual intuition in mathematical
semantics, AMIDOL lays the foundation for trustworthy, scal-
able, and collaborative model development.

REFERENCES

[1] E. Lee and J. Sztipanovits, “Modeling and simulation in systems biology:
The case for visual languages,” Communications of the ACM, vol. 62,
no. 9, pp. 72–83, 2019.

[2] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice
Hall, 1981.

[3] T. Miller and H. Giese, “Modeling languages in system design: A survey
and outlook,” IEEE Transactions on Software Engineering, vol. 44,
no. 3, pp. 231–247, 2018.

[4] F. Ciocchetta and J. Hillston, “Bio-pepa: A framework for the modelling
and analysis of biological systems,” Theoretical Computer Science, vol.
410, no. 33, pp. 3065–3084, 2009.

[5] S. Uckun and A. Darwiche, “Airm: An agent-based integrated modeling
and reasoning environment for systems biology,” in Proc. Int. Conf. on
Bioinformatics and Biomedicine, 2018.

[6] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[7] D. C. Schmidt, “Model-driven engineering,” in IEEE Computer, vol. 39,
no. 2, 2006, pp. 25–31.

[8] N. Noy and D. McGuinness, “Ontology development 101: A guide to
creating your first ontology,” Stanford Knowledge Systems Laboratory,
2001.

[9] T. R. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” International Journal of Human-Computer Studies,
vol. 43, no. 5-6, pp. 907–928, 1995.

[10] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proc. CGO, 2004, pp. 75–88.


