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Abstract

As neural audio synthesis becomes more widely
adopted there is a growing risk that its limitations
could impact the content, quality and diversity of mu-
sic. Some musicians, artists, and researchers perceive
an increased risk of cultural homogenisation and quali-
tative degeneration due to poor-quality training data and
parameterisation. This work seeks to explore new meth-
ods for addressing these challenges by contributing to
the developing field of ”network-bending”. Network-
bending employs direct manipulation of internal ML ar-
chitectures to enable active divergence from the training
corpus, increasing the statistical variability and capa-
bility of model outputs. We present “Brave”: an em-
bedded, network-bending hardware instrument, which
can provide a novel blueprint for embedding a network-
bending system on a stand-alone system. Through
a process of iterative musician-led feedback, drawing
on Proof-of-Concept Media and Arts Technology ap-
proaches, this work seeks to stimulate futher interest in
network-bending frameworks applied in the field of AI-
driven sound synthesis.

Introduction
Generative AI has pushed the boundaries of artistic creation
- It can automate laborious aspects of the artistic process,
act as an initial idea generator, and democratise expression.
However, this technology bears a critical potential downside,
in that it could homogenise the cultural landscape, simpli-
fying the process of generating statistically average output.
Therefore, as these tools are further embedded into society
and artistic practice, active divergence from their monolithic
output may become increasingly important.

This work contributes to the “network-bending” frame-
work - the direct manipulation of neural network parame-
ters in deep generative modelling. Current network-bending
technologies require specialist knowledge to operate, de-
manding a steep learning curve for novel users. In addition,
they often require access to high-performance GPUs for
real-time performance. This project aims to address these
research gaps by leveraging a user-centred design approach
and providing a novel blueprint for embedding a network-
bending system on a stand-alone system.

Through the fabrication of a physical, network-bending
instrument, this work aims to benefit musicians wishing to

integrate alternative ML methods into their practice. The
instrument, if successful, could aid in enabling greater par-
ticipation in network-bending technologies and contribute to
inspiring further investigation within music technologist and
sound art communities.

Related Works
This work builds upon prior research in two key areas.
Firstly, we review the technical basis of RAVE-based neu-
ral audio synthesis. Secondly, we situate Brave within the
broader context of the network-bending framework being
used in the creative space, highlighting key influences for
the development of the instrument.

Neural Audio Synthesis
Whilst discriminative modelling (Ng and Jordan 2001) pro-
vided the bulk of early ML research, in the last decade there
have been leaps forward through novel applications of deep
learning to generative modelling tasks. Generative models
are now capable of synthesising realistic sound both in the
frequency domain (Vasquez and Lewis 2019), audio domain
(van den Oord et al. 2016) and images (Karras et al. 2021).

Auto-Encoder (AE) (Hinton and Salakhutdinov 2006) ar-
chitecture is composed of an encoder and decoder. The en-
coder compresses high-dimensional input data into a lower-
dimensional representation vector - known as the latent vec-
tor z. The decoder decompresses this latent representa-
tion back to the original domain. This architecture ex-
ploits the manifold hypothesis (Fefferman, Mitter, and
Narayanan 2013): high-dimensional data exhibits an intrin-
sic low-dimensional structure, despite being embedded in
high-dimensional space. The low-dimensional embedding
is defined as the latent space. Variational Auto-Encoders
(VAEs) (Kingma and Welling 2014) regularise the latent
space with parameters mean (µ) and standard deviation (δ).
Becoming one of the most well-known deep learning gen-
erative architectures, they have become widely used in text
(Wang et al. 2019; Semeniuta, Severyn, and Barth 2017),
image (Vahdat and Kautz 2020; Huang et al. 2018) and
audio synthesis (Haque, Rana, and Schuller 2020).

Realtime Audio Variational autoencoder (RAVE) (Cail-
lon and Esling 2021) leverages VAE architecture for fast and
high-quality audio waveform synthesis. The model is able
to generate 48 kHz audio in real-time on a standard laptop



CPU. The RAVE model employs a two-stage training pro-
cedure. A perceptually motivated reconstruction objective
is introduced as “multiband spectral distance”. Once this
metric converges, adversarial fine-tuning is leveraged with
the aim of improving audio quality/naturalness. When the
learned representation is considered sufficient for use, the
encoder is frozen. Audio signals can then be synthesised
and fed to the discriminator, optimising the adversarial ob-
jective.

Network-bending Framework
Terence Broad et al. were the first to introduce the notion of
“network-bending” (Broad, Leymarie, and Grierson 2021).
The authors introduce a new framework for the direct ma-
nipulation of deep generative models, facilitating active di-
vergence from the original training dataset. Deterministic
transformations are formulated, which can be inserted into
the computational architecture of a trained generative neural
network and applied during inference. This methodology
was applied to both StyleGAN2, for image generation, and
a VAE trained on spectrograms of music samples.

The network-bending framework can be placed upon a
broader cultural timeline, extending a practice of technolog-
ical augmentation, subversion and ownership. The name in-
herits from “circuit bending”, coined by Qubais Reed Ghaz-
ala (2004), denoting the practice of modifying low volt-
age electronic devices through the removal/addition of elec-
tronic components. Ghazala compares the practice to the
creation of an instrument from a “coconut washed up on the
shore” - augmenting society’s electronic refuse to fabricate
a unique sound generator. In its relation to DIY culture and
finding chaos within the mass-produced norm, Brave seeks
to draw connections between “network-bending” and Ghaz-
ala’s practice.

Methodology
Framework
The study was guided by the Proof-of-Concept (PoC) im-
plementation of Media and Arts Technology (MAT) studies
(Bryan-Kinns and Reed 2023). This implementation pro-
vides a blueprint for the design/evaluation of novel interac-
tive systems. A user-study was conducted - adopting an ex-
ploratory approach, prioritising open-ended, playful interac-
tion and qualitative feedback over quantitative hypotheses.
The PoC research question, which was explored in the user-
feedback cycles, was formulated as follows.

What if I surface internal neural network parameters with
a physical interface in the context of audio synthesis? How
do artists/technologists respond to this, and what playful in-
teractions/technical insight can be prompted?

Participants
6 participants participated in the user-study, sampling a de-
mographic of diverse musical/technical backgrounds align-
ing with the target demographic. Demographic data is
shown in Table 1.

Study Procedure
The study was conducted in a home studio, equipped with
Audio-Technica ATH-M50x headphones that provided au-
dio playback during the study. This took place over two
weeks. At the beginning of each session, participants
signed a consent form and completed a demographic ques-
tionnaire. A technical and conceptual overview of the
project was provided, assuming no specialist knowledge
- this included instructions on how to operate the instru-
ment. They were then prompted to begin their interac-
tion, which was video recorded for retrospective analysis.
Then, a series of open-ended questions, gauging both tech-
nical/conceptual experience of the user, were asked in inter-
view form and later transcribed for analysis. The question-
naire prioritised open-ended, playful interaction and qual-
itative feedback over quantitative hypotheses. The ques-
tionnaire participants were given can be found at the fol-
lowing link: https://danielmanz17.github.io/
Brave-Questionnaire.

Embedded Network-Bending
We leverage Kotowski’s network-bending fork 1 of the IR-
CAM ñn repository. The decision was made to compile
this work and embed it within a stand-alone instrument.
The work explores how deep learning architectures can be
embedded on a stand-alone device, integrating network-
bending, and to further understand how this framework can
be used as an ”instrument”. It is hoped that this can be
scaled, motivated by greater efficiency and reduced form
factor as parallel processor architecture continues to ad-
vance. As this is a PoC, a Raspberry Pi 5 was chosen as

1https://github.com/blazejkotowski/nn_
tilde_bending

Table 1: Demographic Data of Participants in Brave User Study

Participant Age Traditional music
Experience

Electronic music
Experience

Technical
Proficiency ML familiarity

P1 36 Advanced Advanced Expert Advanced
P2 24 Beginner Beginner Advanced Advanced
P3 26 Beginner Advanced Advanced Intermediate
P4 32 Beginner Beginner Advanced Intermediate
P5 24 No experience Beginner Advanced Intermediate
P6 27 Advanced Advanced Advanced Advanced



the platform for this work. A full script, which can be used
on other devices, can be found in the Brave repository 2.

Technical Design and Implementation
The Raspberry Pi 5 has a 2.4 GHz quad-core 64-bit Arm
Cortex-A76 CPU, a significant upgrade from the Raspberry
Pi 4, and a potential 8 GB of RAM. A fan was installed as an
active cooling mechanism to prevent thermal throttling - the
patch is highly intensive on the CPU/RAM. The Raspberry
Pi 5 DAC+3 3 was used. This has the Texas Instruments
PCM5122 DAC delivering stereo analogue audio to a dedi-
cated headphone amplifier, supporting 24-bit 192 kHz high-
resolution digital audio. The DAC uses pass-through pins,
meaning the peripheral interface elements were still able to
attach to the GPIO pins.

System Architecture
A networking solution was used to communicate between
peripheral interface elements and Pure Data. OSC receives
signals from five digital encoders which are mapped to
network-bending parameters, and a switch which can reset
the entire model or individual layer weights. The Python
script can be found in the Brave repository.

The Adafruit I2C QT Rotary Encoder 4 breakout was used
with a standard 24-pulse encoder. This uses the I2C Stemma
QT communication protocol, a variant of the I2C protocol
developed by Adafruit. The protocol uses JST SH 6- pin
connectors and cables, allowing easy daisy-chaining of mul-
tiple devices without soldering. This reduces wiring com-
plexity and minimises the use of GPIO pins. A momentary
button switch was connected to pins 13 and 14 (GND/5V).
Finally, a Waveshare 4.3-inch DSI capacitive touchscreen
LCD 5 was attached via the 4-lane MIPI DSI/CSI connector

2https://github.com/danielmanz17/Brave
3https://thepihut.com/products/iqaudio-dac
4https://learn.adafruit.com/

adafruit-i2c-qt-rotary-encoder/overview
5https://www.waveshare.com/4.

3inch-dsi-lcd.htm

- capacitive was chosen over resistive due to sensitivity/UX
considerations.

Design Elements
Physical housing was designed using the Computer-Aided
Design (CAD) software Autodesk Fusion 360 and 3D
printed. The original 3D print used white filament, which
was later painted. A small rectangle was debossed to place
the Brave ”logo”. This used an old Germanic ”Rundgotisch”
font.

A simple ensemble of visual labels for the four primary
encoders was introduced to indicate their respective trans-
formations, employing simple mathematical notation. From
the leftmost to rightmost encoder (see Figure 2):

1. The slash represents location within the neural network.
This encoder can be used to switch between layers

2. Scalar multiplication notation to symbolise applying a
factor to all weights within the respective layer.

3. ∆x to denote shifting all weights in the x-dimension, rep-
resented on the touch screen.

4. ∆y to denote shifting all weights in the y-dimension, also
represented on the touch screen.

Results
Output
Through the user-feedback cycle and self-experimentation,
network-bending transformations which led to ”interest-
ing” sonic results were identified. A tranformation exam-
ple is shown as a spectrogram below, in Figure 1. The
audio files and addtional examples are hosted at the fol-
lowing link: https://danielmanz17.github.io/
Brave-Samples/. A longer instrument demo is pre-
sented in video format: https://www.youtube.com/
watch?v=0HugWkdesgw.

(a) Brave running the darbouka RAVE model without any transfor-
mations applied to the network architecture. Baseline for inspecting
other outputs.

(b) Applying ∆y = 0.47 at bias of first encoder layer. This trans-
formation reduces the sustain of the percussive hits.

Figure 1: Spectrogram representation of audio before and after a network-bending transformation has been applied.



User-feedback
P1 noted that the encoders produced more predictable re-
sults than the touchscreen. For example, shifts in ∆y ap-
plied to layer 17 seemed to consistently create a rhythmic
”half step” transformation. They noted that the scale en-
coder could perhaps act as a ”magnifier” - does increasing
the scale of the tensor values at this layer amplify its corre-
sponding processing fingerprint?

The need for an indication of location within the neu-
ral network was highlighted, as they felt ”lost” within the
model. To save sounds found within the parameter space,
a preset functionality was suggested. High-dimensionality
layers bear visual resemblance to a waveform which created
confusion. Finally, it was noted that the encoder transfor-
mations are applied to the initial rather than the modified
weights of the model.

P2 highlighted the need for continuous weight modifica-
tion, indication of neural network location and visual dif-
ferentation from waveforms. The ∆y encoder steps were
discrete rather than continuous, which didn’t make sense to
the user. In addition, the mapping direction of ∆y transfor-
mation felt ”unintuitive”.

P3 noted that the lower dimensional layers were easier to
control, and that perhaps these could be prioritised in layer
exposure. They adopted a more rigorous approach to pa-
rameter space exploration - exploring specific transforma-
tions at each layer, and probing how this affects the audio
output. For example, they investigated how specific shapes
drawn on the touch screen at different layers would influ-
ence the output. Again, the issues of neural network loca-
tion, preset saving and continuous weight modification were
raised. In addition, an interpolation feature was suggested
between the initial/modified layer, similar to a typical syn-
thesiser dry/wet knob.

P4 enjoyed pushing the sounds as far as possible. They
identified unexpected metallic/string like artefacts with cer-
tain bending approaches. Preset functionality and waveform
confusion were highlighted.

P5 noticed that changing the values within the lower-
dimensional layers seemed to generate more contained re-
sults. They found ∆x produced rhythmic rather than timbral
variation. The participant flagged confusion about the mag-
nitude of the values - does the middle of the screen corre-
spond to a null value of weights? In terms of the fabrication
process, ribs/support pillars were suggested as the body felt
fragile. Finally, higher encoder sensitivity was suggested.

P6 particularly enjoyed exploring the scale/bias encoders.
They mentioned a soft learning curve - they were quickly
able to determine what everything does. They found rhyth-
mic divergence to be the most interesting line of exploration.
Visual indication of location in neural network, input sam-
ple choice and waveform confusion were flagged. They
mentioned some of the encoder transformations felt a bit
”steppy”.

These user feedback sessions led to the finalisation of the
Brave instrument. This process of reflection and iteration
will be discussed in the User-Feedback Reflection section.
The final instrument is shown in Figure 2 below.

Discussion
Design and Development Process
The instrument could benefit from additional user-testing
cycles, integrating quantitative data and more traditional
HCI methodology (usability testing, think-aloud protocol,
task analysis and A/B testing).

In addition, Brave could profit from a more diverse design
methodology - introducing elements of the autobiograph-
ical framework (Ó Néill and Ortiz 2024). Brave could
be integrated into a music production workflow/live per-
formance setup, including experimentation with alternative
RAVE models. Perhaps custom network-bending models
could be trained - curating training corpora with network-
bending as the end goal in mind.

It could be beneficial to consider alternative embedded
systems - Jetson Nano7/STM32 32-bit Arm Cortex MCU8
would both be ideal candidates. These implementations
could engage with pertinent questions regarding the future
of embedded neural systems, enabling modification of the
underlying architecture. Can we move towards a more scal-
able neural instrument? Could this evolve into a viable,
consumer-facing product? Further miniaturisation and ad-
vances in neural processing architecture (compression) draw
these questions ever closer.

User-Feedback Reflection
The absence of preset saving functionality was frequently
flagged. This could be implemented with rectangular pads,
each of which correspond to a saved network-bending pre-
set. For example, holding the pad could save a new preset,
and a singular press can recall the saved preset.

Another consistent pain point was getting ”lost” in the
neural network - the interface provides no indication for the
user to triangulate their position within the network. This
could be exposed via a number or layer name. A more
advanced solution would be a graphical indicator using a
touch-strip, which would provide a visual representation and
control mechanism of layer position.

The discontinuous weight modification was frequently
flagged - the encoder transformations are applied to the ini-
tial rather than the modified weights of the model, interrupt-
ing the user workflow.The authors hope to implement this in
the future.

A few users commented that the sensitivity of the en-
coders could be increased, which would also reduce the per-
ceived ”stepiness” of the knobs. Sensitivity was increased
by a factor of 1.4 for all transformation encoders. Further
user-testing could be conducted to fine tune this. In addi-
tion, the momentary switch button was incorrectly detecting
single/double taps for some users. The decision was made
to use the push button functionality of the first encoder. This
made intuitive sense as encoder one already controls layer
position.

Finally, high-dimensional layers visually resemble a
waveform. This created frequent confusion, especially for
those with a background in electronic music production.
Different UI approaches could be considered to expose the



Figure 2: Final version of Brave.

layer weights - perhaps more traditional neural network rep-
resentations accompanied by an activation heat map, switch-
ing the orientation of the screen, or reducing the dimension-
ality of the layer representations within the UI.

Conclusion
This study documents the design and fabrication of Brave:
an embedded network-bending, stand-alone instrument. As
neural audio synthesis becomes more widely used, there
are growing concerns that its reliance on statistical av-
erages could lead to the homogenisation of the cultural
landscape, reinforcing a cycle of self-referential synthe-
sis. This work seeks to explore new methods for ad-
dressing these challenges by contributing to the develop-
ing field of ”network-bending”. Incorporating musician-led
feedback, user-centred interface development and accessi-
ble hardware integration, this study aims to lower technical
barriers and foster broader participation within the network-
bending framework.
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