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Abstract. The rapid development of Diffusion models and the declarative nature of interfaces de-
veloped for the public require automation methods, where media production can harness natural 
language as a mode of representation but not necessarily of interaction with humans. This article 
describes an image-to-video Diffusion system which removes practitioners from the process of de-
fining prompts when producing images with conditional reference, documenting a set of results 
with a custom dataset of oil paintings. Our research focuses on the appropriation of trained model 
ensembles that are coordinated to produce indefinite sets of frames with occasional human inter-
vention utilising timeline-based architectures. The proposed system automates a CLIP-guided 
DDPM with a supplementary depth estimation model and through a set of compositing techniques 
we found that results with coincidental and diverging descriptions can be useful for moving-image 
element composition. Our experiments focus on the representation of human figure and its morpho-
logical transformation. 

Keywords: Language-guided automation, Oil painting diffusion, Predictive abstraction, Depth-
mask compositing, Timeline-based architectures. 

1 Introduction 

Over the last years there has been a shift in the world of computational image generation. Though practitioners 
have long experimented with generative Deep Learning (DL) models to produce digital media, the development 
of text-guided adversarial nets (GAN) and Diffusion models such as DALL-E and Stable Diffusion shifted the 
boundaries of still and moving image practice [34]. The rise of networks such as Contrastive Language-Image 
Pre-Training (CLIP) [25] drove a shift in the use of multimodal network architectures where natural language 
describes archives, photographs and paintings [8]. Multimodality appears in generative practice as a form of rela-
tionship between data spaces [3], regarding the internal architecture of models capable of capturing patterns and 
maintaining or updating them as a memory system [10].  

Using dual representations in the same Neural Network (NN), generative DL methods allow creators to produce 
work on representation, abstraction and divergence projecting new personal data into models and exploring the 
relationships conceived through scores and embeddings [17]. Despite the initial interest in the use of CLIP to 
condition GANs, the shape shift to Diffusion models was indicative of a movement in the field towards new 
architectures for practitioners. In particular, the use of natural language “prompts” to steer the synthesis process 
has become a staple feature of generative practice over the past five years and has given rise to the methods of 
“prompt engineering”, “prompt-chaining” and even “prompt-based LLM reasoning” [20, 22]. Prompt engineering 
can be best understood as the construction of syntactically and semantically specific strings of text that can be 
supplied to a model to condition its output [12]. Whilst both still and moving image works have been produced 
using prompt-based Diffusion models [33] there remains a growing need to articulate the limits of these practices 
and to experiment with the use of natural language within the generative pipeline outside of the input and declar-
ative stage. 

This article describes a system working as an extension to CLIP-guided DDPM pipelines and we document 
video (outputs) produced using as custom dataset of oil paintings (inputs), developed within the collaboration All 
YIN No YANG. Our approach to multimodal image synthesis focuses on the removal and reimagination of the 
human figure, visually abstracting still image inputs, defining prompts as descriptions, and extending image frame 
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computation with a separate depth estimation model for compositing.1 We document a working timeline-based 
image-to-video Diffusion architecture and dilute human influence on the prompting process. Our research pro-
motes language-guided DDPMs as automatic mechanisms for creative practice and possibly part of the underlying 
structure of co-creative agents, where the representation of language works independent of human specification. 

2 Diffusion and reversing from noise 

Image diffusion models represent a different computing paradigm of generation to GANs but ultimately seek to: 
capture and understand a data distribution such that we can create novel or unseen samples that approximate the 
original distribution. Diffusion probabilistic models were proposed as a parameterised Markov chain trained using 
variational inference; models that systematically destroy and reconstruct structure in a given data distribution 
through a two-part process: (1) An iterative forward process in which Gaussian noise (with variance) is applied 
stepwise to an input sample until is corrupted and (2) A reverse process of learning to a desired distribution, 
denoising samples and restoring structure to the perturbed input [30]. The reverse process is usually modelled 
using NNs for the complexity trying to approximate, [13] showed an equivalence between Denoising Diffusion 
Probabilistic Models (DDPM) and score-based generative models, and generate high quality images; see [9] spe-
cific architecture used throughout this research. In conditional diffusion of images from text, researchers found 
great success in conditioning UNets in the diffusion model framework in both time and text, where the network 
is responsible for mapping the signal to its noise [27]. 

Diffusion processes of approximation have been used extensively in still and moving image also with Cascaded 
Diffusion Models (CDM) which are pipelines of independent diffusion models that generate images of increasing 
resolution [14, 29]. Forward-reverse diffusion can generate material around a reference input or directly from 
noise, absent the use of language, and predict frame sequences with an anchor to some arbitrary space defined at 
a past period of learning [11]. The addition of recursivity and of autonomous behaviour using CLIP at each step, 
can be used to aid the composition of new systems that produce movement across frames by pointing inwards and 
to fragments of themselves; models which crystallised some visual world in numerical space [6, 7]. From noise 
specific shapes can be found, as if pixels were contracting in time with a direction, like a simulation of spray 
particles on paper, being the process of forward-reverse a play between pixels oscillating from low to high con-
centration in 2D or 3D space. Diffusion is commonly used in image processing such as to fill gaps in data distri-
butions, denoising, and out-painting, these are practical implementations of this process within the industry [4]. 
On a practical case, diffusion with classifier guidance allows to generate image frames from text prompts, where 
a trained diffusion model score estimate can be computed with the gradient of a separate image classifier [9], also 
explored with latent models, with visual definitions based on specific labels or clusters of data in each trained 
representations [26]. 

 
Fig. 1. Diffusion forward-reverse (top-down) process illustration. Formal variation on a specific input frame by 
computing a noise scheduler and learning to reverse back. 

 
 

1 Without explicit class or prompt definition, Depth Estimation models proved able to identify human figures within back-
grounds, see 31. Su, P.-C. and M.-T. Yang, Integrating Depth-Based and Deep Learning Techniques for Real-Time Video 
Matting without Green Screens. Electronics, 2024. 13(16): p. 3182. 
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3 Conditional guidance and natural language 

Classifier-free guidance [15] as found in GLIDE, shows guidance can be performed by a pure generative model 
without a separate classifier. The trade-off between diversity and fidelity is up to the practitioners and both DALL-
E 2, Imagen and conditional diffusion system Disco-Diffusion [8], allow to use natural language to guide the 
synthesis process [33]. These models and architectures guide the distribution prediction towards generating an 
image with greatest visual similarity to the prompt [22]. In the case of moving image, text-guided diffusion can 
carry out this process over an additional temporal domain, presenting additional opportunities compared to still 
image generation (e.g., sets of prompts, control on variance and image-to-image correspondence) [18]. We start 
by illustrating the CLIP-guided diffusion process we build upon: 
 

𝑞( 𝑥$ ∣∣ 𝑥$&' ) = 𝒩+𝑥$; -1 − 𝛽$ 𝑥$&', 𝛽$ 𝐈4 
 

In order to produce DDPM, the system uses a UNet to map noisy frames to clean frames, conditioned on textual 
input. In the previous equation we illustrate the forward (diffusion) process where 𝛽$ is noise schedule. The re-
verse process aims to recover clean frames by approximating 𝑝6(𝑥$&'|𝑥$) using a NN parameterised by 𝜃. The 
UNet predicts the target noise 𝜖6(𝑥$, 𝑡) estimating a clean frame: 

 

𝑥; =
1
-α$

=𝑥$ − -1 − α$ ϵ@(𝑥$, 𝑡)A 

 
The CLIP model guides the diffusion process by computing a similarity loss between the generated frames and 

text embeddings, ensuring semantic alignment. To extend this process over 𝑁 frames with variance and create a 
chain of forward-reverse where each image influences the next, we modify the reserve step for every frame 𝑓 by 
incorporating a blending of the previous clean frame 𝑥;

D&' into the estimation of the current clean frame 𝑥;
D (time 

correspondence, high or low variability across frames). We illustrate this process achieved using a weighting 
factor 𝛾 controlling the influence of previous frame: 

 

           𝑥;
D = (1 − γ)G '

HIJ
K
L𝑥$

D − H1 − α$
D ϵ@+𝑥$

D, 𝑡4MN + γ 𝑥;
D&'  

3.1 Description of model architecture 

Following the previously stated objectives of research, we enumerate some design guidelines: 1) To produce a 
system which runs independently after image input delivering finalised video sequences, and 2) explore quantifi-
able metrics for divergence given the set of trained models with time-based geometrical and semantical conflicts. 
Having a dataset of images with scanned oil paintings we describe both a DDPM and a feedback loop adding a 
Depth estimation MiDaS model, allowing to produce sets of frames [24]. By producing renders with frame:prompt 
correspondence over arbitrary lengths we also resort to timeline objects, see a timeline-based coordination system 
for trained AI models and feedback equilibrium in short-film length (present-future frame correspondence) in [1]. 
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Fig. 2. Illustration of the diffusion processing flow with added modules. 

If we consider the previous DDPM and Figure 2, the feedback loop produces collages that work on the initial 
painting background over arbitrary periods of length. To illustrate, we compute a depth map 𝐷D&' of the image 
𝑥;
D&' , and extract alpha masks 𝑀D from 𝐷D&'; 𝐷D&' = DepthEstimator+𝑥;

D&'4,𝑀D = MaskExtractor(𝐷D&'). 
We then apply conditional diffusion on the noisy frame 𝑥$

D conditioned on masks 𝑀D and prompt 𝑝: 
 

𝑥c;
D =

1

Hα$
D
L𝑥$

D − H1 − α$
D ϵ@+𝑥$

D, 𝑡,𝑀D, 𝑝4M 

 
Where: 1) 𝑥c;

D is the intermediate clean frame estimate at frame 𝑓; 2) 𝑥$
D the noisy frame at frame 𝑓 and time 

step 𝑡; 3)	𝛼$
D = ∏ 𝛼g

D$
gh'  is the cumulative product of	𝛼$

D = 1 − 𝛽$
D. Next we combine the intermediate frame with 

the original frame (oil painting) using the mask, resulting in the compositing step: 
 

𝑥;
D = 𝑀D ⊙ 𝑥c;

D + (1 −𝑀D) ⊙ 𝑥;
D&' 

 
The previous equation illustrates: 1) 𝑀D defines the regions where the new content 𝑥c;

D should be applied; 2) 
(1 −𝑀D) specifies the complementary regions to retain from the original frame 𝑥;

D&';	⊙ denotes element-wise 
multiplication. This compositing process integrates the newly generated content 𝑥c;

D into the regions specified by 
mask 𝑀D, retaining the background from the previous frame 𝑥;

D&'. In the feedback loop, we intentionally diffuse 
the foreground mask before extracting masks, keeping the original oil painting as the background. The workflow 
adds several steps to the forward-reverse CLIP-guided DDPM: 1) Computing depth at every diffused image; 2) 
Use the resulting mask 𝑀D to isolate the foreground; 3) Apply conditional diffusion inside the masked region; 4) 
Compute depth on the final diffusion and use this as the foreground in subsequent steps. This process enables the 
system to decide where to draw based on the depth masks of each painting, allowing features such as faces or 
torsos to guide the placement of new images, with automation on the process of natural language description. 
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4 All YIN No YANG 

All YIN No YANG is a research collaboration approaching the question of Human-AI interaction through a prac-
tice-led inquiry into the varieties of formal and aesthetic divergence within images. This practice-based collabo-
ration focuses on exploring contemporary methods for image generation from noise as a method of reverse by 
self-reference, using trained models that learn and are understood from the standpoint of translation (image-to-
video and sequence-to-sequence), divergence or even abstraction [2, 5]. Diffusion models and DDPMs promote 
a space for experimentation, where still images can be manipulated through AI representations to create moving 
images, while searching for new computing methods that reveal the process in which we base our practice. Within 
this research we focus specifically on the step-based Diffusion pass of using both a custom CLIP-guided DDPM 
and a custom dataset of oil paintings.  
 Forward-reverse processes of Diffusion for image generation can be dissected into parts, namely steps which 
can be skipped or interpolated with scores from adjacent models, making video outputs a combination of comple-
mentary predictions, where each trained model contributes to a bigger architecture that abstracts more tractable 
editing and sequencing mechanics. The techniques we build upon have been applied to multiple fields of experi-
mental video art and film previous to this research, and we place our results within the conception of the human 
body from simple materials. Our work is resistant to the idea of beauty being necessarily tied to failure and success 
within Creative and Generative AI outputs and as further explained in the following sections, is precisely where 
we can find new artefacts or methods for video composition (e.g. coincidental and diverging prompts with the 
same image condition).  
 

 
 
Fig. 3. Initial render: (Left) Input painting; (Right) Snapshot of video output. Illustrates image-to-video CLIP-
guided DDPM without depth model addition and feedback loop with constant variance. 
 
kik 
 
 
 
 
 
 
Fig. 4. Illustration of image-to-video CLIP-guided DDPM without depth model addition and feedback loop with 
random variance and text prompt, input paintings into different materials. 
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4.1 Materials and results 

We started defining two variation targets (two paintings, Fig. 5), each with white backgrounds and preview frames, 
implementing the defined image-to-video CLIP-guided DDPM system with the additional depth model;  see [23] 
for an opposite implementation using YOLO network. We document the results with coincidental and diverging 
prompts (derived from Target 1 – Left, or Target 2 – Right), see next Figure for visual reference: Description 1) 
“Two black and white paintings of a woman’s face.”, and Description 2) “A black and white photo of a bird and 
woman.”, automatically derived [32]. We produce two videos both with the same background Target 1, with 
natural language description of Target 1 and Target 2, Figure 6 illustrates several video snapshots.  
 

 
Fig. 5. Arrangement of target oil painting scans, keeps static with zero movement for the duration of each output 
video. (Left): Background for output video sequences (Description 1), (Right): Divergent source of natural lan-
guage (Description 2). 
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Fig. 6. Output videos: set of 4 strips demonstrating mask diffusion across frames with constant background il-
lustrating: coincidental and diverging guidance, random variance and application of compositing (described in 
3.1). Further 2 snapshots of the 2 resulting videos with text guidance as explained in section 4.1. 

4.2 Analysis and proposal 

The proposed depth-based extension to the described image-to-video DDPM system proved to be useful when 
compositing diffused images over an arbitrary background input, demonstrating morphological variations of the 
oil paintings. The experiments conducted show that diffusing inside depth masks with non-constant variance can 
produce experimental (as related to image-frame structure) but valuable results, that by the nature of compositing 
are a (video) collage of a variation into the original reference. Without class pre-definition on the analysis of the 
oil paintings we resort to the AI depth estimation model consistency, which proves useful in our dataset, e.g., 
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object positioning. We design the system on top of known CLIP-guided DDPM processes and show results with 
semantic consistency over the inputs. The proposed design can be set to real-time and benefit from adjacent con-
trols regarding, e.g., object detection and 3D representation [19, 21, 28].2  

5 Conclusion 

DDPM-based systems design can benefit from automation, where model ensembles can be coordinated to pro-
duce videos from arbitrary still image inputs. Semantic specificity can easily render models as tools rather than 
co-creative agents, this research extends current methods for video Diffusion developing an automated system to 
visually represent the human across frames; as a variation of the input space. We propose a CLIP-guided DDPM 
image-to-video pipeline where a complementary depth estimation model extends a timeline-based architecture for 
compositing. Our experiments focus on rendering abstractive videos (outputs) from oil painting scans (inputs) 
with reduced human intervention identifying potential real-world use-cases. As a broader contribution, the col-
laboration All YIN No YANG represents an attempt to explore Diffusion-based image-making and its impact upon 
the development of the artist and their practice, where DL tools are used beyond a purely instrumental view and 
situated as co-constitutive agents in creative practice. 
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