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1 Introduction

In recent years, advances in system architecture and training methodologies of generative systems in machine
learning have led to increasingly powerful systems that have been applied to a variety of tasks and use cases.
Particularly prominent are systems in natural language processing (e.g., [33]) and image models (e.g., [148, 215]).
Generative systems for music, while not featured as prominently in the media, have also seen considerable
progress. Although the concept of computer-generated music dates back to the mid-20th century [125, 246] and
has been actively researched since then [59, 87], there has been a rapid increase in interest and publications in
the past ive years [57], mostly driven by advances in neural approaches. Inspired by Herremans et al. [123], we
categorize generative music systems based on (i) architecture, (ii) output, and (iii) input or control.1 Ameta-review
by Civit et al. [57] lists the prevalent architectures with decreasing number of occurrences as Recurrent Neural

∗The irst author conceptualized the paper and led the paper writing. The remaining co-authors contributed equally to the paper writing and
are listed alphabetically.
1References will be limited to a select number of representative systems.

Authors’ Contact Information: Alexander Lerch, Music, Georgia Institute of Technology, Atlanta, Georgia, United States; e-mail: alexander.
lerch@gatech.edu; Claire Arthur, Music, Georgia Institute of Technology, Atlanta, Georgia, United States; e-mail: claire.arthur@gatech.edu;
Nick Bryan-Kinns, Creative Computing Institute, University of the Arts, London, London, United Kingdom of Great Britain and Northern
Ireland; e-mail: n.bryankinns@arts.ac.uk; Corey Ford, Creative Computing Institute, University of the Arts, London, England, United Kingdom
of Great Britain and Northern Ireland; e-mail: c.j.ford@qmul.ac.uk; Qianyi Sun, Music, Georgia Institute of Technology, Atlanta, Georgia,
United States; e-mail: qsun75@gatech.edu; Ashvala Vinay, NoneType Computing, Atlanta, Georgia, United States; e-mail: ashvala@gatech.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 1557-7341/2025/9-ART
https://doi.org/10.1145/3769106

ACM Comput. Surv.

https://orcid.org/0000-0001-6319-578X
https://orcid.org/0000-0002-5454-8384
https://orcid.org/0000-0002-1382-2914
https://orcid.org/0000-0002-6895-2441
https://orcid.org/0009-0002-9889-5617
https://orcid.org/0000-0002-2487-2052
https://orcid.org/0000-0001-6319-578X
https://orcid.org/0000-0002-5454-8384
https://orcid.org/0000-0002-1382-2914
https://orcid.org/0000-0002-6895-2441
https://orcid.org/0009-0002-9889-5617
https://orcid.org/0000-0002-2487-2052
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3769106
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3769106&domain=pdf&date_stamp=2025-09-23


2 • A. Lerch et al.

Networks (RNNs) [114, 182], Feed-Forward Networks (FF) [73, 266], Variational Audio Encoders (VAEs) [70, 223],
evolutionary algorithms [67, 235], and Transformer-based approaches [61, 72, 128], sometimes combined with
Generative Adversarial Networks (GANs) [73, 266], with Difusion networks [50, 85, 86, 168, 191, 227], or with
Rectiied Flows [164]. Details of many typical neural architectures for music generation can be found in Briot
et al. [32].
A key distinction of output types of generative systems in music is whether the output is audio [2, 61, 71] or

symbolic (e.g., MIDI, MusicXML, etc.) [128, 223]. The length of the output can also vary: it might range from as
short as a single note or event in the case of audio synthesizers [81, 82, 153] over phrases [131, 189] to complete
musical pieces [70, 157]. Furthermore, systems might generate a single-voiced melody [115, 266] or a polyphonic
output with multiple voices [114, 122, 131, 196].
The input of a system depends very much on the design goals. A system might require no input at all [203],

a few parameters for conditioning [51, 78], a text prompt [2, 61], a melody to be harmonized [114, 268], or a
musical phrase to be continued [128, 131] or inpainted [8, 183, 205]. While this variety of approaches and the
multitude of available studies imply rapid progress, this progress is hard to quantify, and there is evidence that
the quality improvements might not be as dramatic as the number of publications suggests [270].

All generative systems pose challenges in terms of evaluation since a ground truth target, or unique łcorrectž
reference result, does not usually exist. Systems targeting the generation of artistic output are particularly diicult
to assess due to the subjectivity of aesthetic assessment. The assessment of music poses a unique set of challenges
due to (i) its sequential yet highly structured form, (ii) the abstract musical language and the resulting unclear
deinition of content in music, (iii) the limited musical meaning of commonly-used music descriptors and the
corresponding inadequacy to fully represent the multi-dimensionality of music and musical expression, (iv) the
context-dependent interaction between expectation and surprise, and (v) the constant reinterpretation of musical
ideas through music performance.

These challenges have led to a large variety in approaches to system evaluation with a multitude of diferent
evaluation targets, methodologies, and metrics. Inter-study inconsistencies in evaluation make the comparison
of research results essentially impossible. If results cannot be compared, do not suiciently relect the actual
quality of a system, or have been acquired in very diferent settings, the notion of progress in this ield becomes
questionable, as we cannot measure progress without relevant, commonly used metrics. Despite these problems
being recognized as important challenges [32, 165, 267], no general solutions have been proposed, and evaluation
still seems to be largely neglected or treated as an afterthought. For instance, Civit et al. [57] provide a meta-review
of generative music systems but only mention evaluation in passing. Zhao et al. [273] review prompt-based
generative music systems but refer only to the evaluation of creativity as an unsolved challenge. While Bandi et al.
[11] present a dedicated evaluation section in their extensive review of generative systems, music is unfortunately
not discussed. The only two exceptions are Ji et al. [139] and Wang et al. [258], summarizing some objective and
subjective approaches to evaluation.
Therefore, the goal of this article is to provide an accessible, interdisciplinary overview on current empirical

and quantitative approaches to the evaluation of generative systems in music. Figure 1 gives a summary and
accessible low chart of the approaches presented. The article provides an in-depth discussion of evaluation
targets and methodologies for the assessment of the output of generative systems as well as the user interaction
with such methods (rather than other assessment targets such as sociological implications, etc.). In order to do so,
we irst introduce a comprehensive overview of the dimensions or targets to be evaluated in Sect. 2, followed by
a description of methodologies and metrics to evaluation of system output and user interaction in Sects. 3 and 4,
respectively. We conclude with a discussion on challenges and future directions in Sect. 5 and inal remarks in
Sect. 6.
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What to evaluate

Generated Output

Usability & User Experience

Musical Qualities
§2.1.1

Audio Fidelity
§2.1.2

Originality
§2.1.3

Conditioning
§2.1.4

Ease of Use
§2.2

Creative Experience
§2.2

User Impression
§2.2

Musical Practice
§2.2

Subjective

Objective

Quantitative

Qualitative

Usability Questionnaires
§4.2

Creative Experience
Questionnaires

 §4.2

Interviews
§4.3.1

Think Aloud
§4.3.2

First Person Perspectives
§4.3.3

Preference Tests
§3.1.2

Turing Tests
§3.1.1

Reference & Test Distribution
§3.2.2 - §3.2.4

Reference-free
§3.2.3

Paired Reference & Test
§3.2.3

Fig. 1. Structure of the presented evaluation approaches and methodologies.

2 Evaluation targets

The main goals of evaluating a machine learning system are (i) determining whether the system works as intended
and to what degree and (ii) comparing it (quantitatively) with other systems. These goals, however, can have many
facets as an evaluation can focus on diferent targets. Wang et al. [259] group evaluation targets into łdata-quality
evaluationž and łproperty-controllability evaluation,ž the latter focusing on speciic output properties that are
implicitly or explicitly controlled. Pasquier et al. [204] lists the following aspects of a generative system to be
assessed: quality, creativity, believability, complexity, robustness, and reliability. In this work, we propose to
group the main evaluation targets into system output and model use while acknowledging that there are aspects
of the model itself and the process of creation that could be subject of evaluation as well.
One of the most common assessment targets is the system output. Although the quality of the output is the

arguably most intuitive criterion to evaluate, there are several aspects of quality ranging from artistic quality
to perceptual audio quality, as well as confounding inluences that make the evaluation of output quality a
potentially challenging endeavor. To give an example of such confounding inluences, we can easily imagine an
inexperienced listener confusing the artistic quality of a piece of music with the audio quality of its rendition or
the immersiveness of the recording if asked for quality. Other dimensions of the output to be evaluated beyond
quality include the diversity and originality of the output or how well certain properties of the generated output
(e.g., style, rhythmic complexity, or instrumentation) match expectations.

Given that music is a fundamental form of human creativity [154], it is also critical to evaluatemodel use Ð how
easy to use, enjoyable, and engaging models are for people when they make music, whether they be hobbyists,
music students, or professional musicians. A model may produce high quality output, but if it is unusable then it
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has little value for making music. Evaluating the use of models draws on research in Human-Computer Interaction
(HCI) [212] to assess whether a model is, e.g., usable by people [190], or provokes surprise [43] or relection [92].

2.1 System output evaluation

As mentioned above, the most common target for evaluating a generative system is its generated output; the
main point of most generative systems is, after all, to produce high quality output or at least output that matches
expectations. In this case, the system can be treated as a black box for evaluation as knowledge of internal
processes of the system is unnecessary [58].
Diferent generative music systems may produce a variety of output formats, which in turn might require

diferent evaluation methodologies and metrics. The output can vary from a single note or sound as generated by
synthesizers, a single-voice melody, a polyphonic or multi-voiced musical snippet, to a complete piece of music
conforming to structural and other musical expectations. Furthermore, the output may Ðin addition to the basic
score-based information such as rhythm, harmony, melodyÐ contain performance information such as tempo
and micro-timing, expressive intonation, and dynamics.
The output can either be in an audio format such as PCM [195], or in a symbolic format such as MIDI [249]

or MusicXML [105]. Note that while any symbolic output might or might not contain (partial) performance
information, an audio signal as a łphysical rendition of musical ideasž [160] automatically contains performance
information.

The evaluation of the quality of these output signals can be as multi-faceted as diferent system design goals.
This section aims at introducing the main directions of inquiry for the evaluation of aesthetic quality, the audio
idelity, the originality of the output, and its semantic relevance.

2.1.1 Aesthetic and musical qualities. Despite the fact that the assessment of aesthetic quality is possibly the most
commonly stated evaluation target in the literature, it arguably is the most challenging to operationally deine.
While aesthetic quality (as applied to a musical artifact) is a catch-all phrase encompassing many attributes
such as balance, complexity, novelty, etc. [29], it is most commonly evaluated only in the singular dimension
of subjective preference, i.e., how much a listener łlikesž a piece of music, and/or how łinterestingž it is [68].
However, individual diferences, particularly those that arise from the acquisition of musical expertise, are known
to impact such aesthetic judgments [208].
In order to compare across studies, it is important that researchers explicitly operationally deine the traits

they aim to measure, not only for themselves, but to potential participants as well. For instance, Brattico and
Jacobsen [29] mention the important distinction between afective responses (those that induce or modulate
emotions or mood), hedonic responses (those that modulate reward; likes and dislikes), and aesthetic responses,
which typically refer to inherent style-relevant attributes which lend the artifact beauty, elegance, or coherence.
To complicate matters, in addition to style-relevant traits, the medium of creation (e.g., score versus audio), the
cultural context (e.g., what is valued inside versus outside the culture), and the caliber or quality of the object or
its execution are all important criteria that factor into the equation of evaluating aesthetic goals [97]. For instance,
music generation that outputs a score or transcription may be evaluated on its adherence to various compositional
norms, such as adherence to an appropriate vocabulary and grammar, the arrangement and organization of
musical ideas, and the use of variation and repetition, to name a few [239]. On the other hand, the output rendered
as an audio recording may be evaluated based on the execution of the performance in relation to parameters such
as the authenticity or łhumannessž of the performance, the expressivity or dynamicism, potentially in addition to
factors related to the underlying composition itself. These criteria are highly multifaceted and context-dependent.
For instance, the analysis and assessment of music performance is a research ield in itself [149, 162, 163].
While the assessment of aesthetics typically involves human evaluation, there have been attempts at com-

putational aesthetic evaluation. Galanter [97] gives an overview of such methods through 2012, noting that
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łcomputational aesthetic evaluation is an extremely diicult problem,ž and that it frequently łleads to deep
philosophical waters regarding phenomenology and consciousness.ž Models that have been proposed and used
in a musical context, have typically relied on evaluation by adherence to some set of statistical measures or
proportions. Some AI models that generate an artistic work may be designed so as to implicitly include the goals
of such itness metrics, leading to increased diversity, for example. As pointed out by Galanter [97], however,
ł[c]reating evolutionary diversity and dynamics via artiicial aesthetics foreign to our human sensibility is one
thing. Appealing to human aesthetics is quite another.ž Other computational avenues for evaluation have included
models based complexity Ð frequently drawing on Berlyne’s theory of aesthetics, or Shannon information theory
[97].

2.1.2 Audio quality. The assessment of audio quality, sometimes also referred to as idelity, is important for a
variety of applications, including measuring the quality of audio codecs, the transmission quality of a channel,
or the quality of recording or reproduction of audio equipment. Typical factors impacting the audio quality are
non-linear processing such as distortion, changes in the spectral content such as bandwidth reduction, additive
sources such as noise, and time-varying processes such as gain manipulation or spectro-temporal processing.
When assessing quality in this context, the expectation is that the generated audio signal is free of artifacts and
impairments that might negatively impact the human listening experience. The amount (e.g., very little noise vs.
a lot of noise) of the impairment directly afects the perceived quality of a signal. The estimation of the quality of
a signal is easiest in comparison to an identical but unimpaired reference signal.

A common way to estimate audio quality is through listening studies, with methodologies such as MUSHRA
[136], which allows to compare the quality of multiple audio signals with respect to a reference signal. Simple
objective measures for audio quality such as the Signal-to-Noise-Ratio only have limited perceptual meaning, but
there exist objective methods which model perceptual qualities, e.g., PEAQ [134] and ViSQOL [126].

In addition, attempts have been made to develop reference-agnostic measures of audio quality. This reference-
free approach is popular in speech quality assessment. For speech, a clear expectation on quality and intelligibility
can be established making the availability of reference signals unnecessary or, at least, less important. In the case
of music, however, the artistic and creative use of efects and heavily processed audio question any pre-conceived
framework of quality criteria. Thus, the existence of a reference signal is usually deemed necessary for music, as
an undesired quality impairment is not always obviously distinguishable from an impairment stemming from
artistic intent. The generation of a distorted synthesized sound, for instance, can be perfectly desirable.

2.1.3 Originality. The originality of the output is a common concern when evaluating a generative system.
We interpret originality in three ways. First, originality is a concern with respect to plagiarism. Commonly, a
generative system is expected to create novel output that does not replicate the training data. Second, the diversity
of the model output should match the diversity of the training data in all relevant dimensions. This validates the
efectiveness of the training. Last but not least, we may want to measure the creativity of the system output.

Plagiarism. Modern machine learning systems require a potentially massive amount of training data. In most
music scenarios, the (partial) reproduction of memorized training data might be regulated by laws. Although
systems are generally trained with the intent to generate novel artifacts, they might memorize individual training
samples and reproduce them during inference [104, 253]. When that happens, claims of plagiarism can arise
similar to when a human composer copies musical ideas from existing works. Examples for memorized output
from generative systems in other ields include reproduced names and email addresses for language models
[45, 129], and reproduced images for image generation models [44]. The analysis of plagiarism in music is more
complicated, so cases are not often directly or easily identiiable. Therefore, most of the current discussion in
music focuses on copyright [159] and the use of copyrighted data for training and whether this establishes an
infringement of copyright [69, 245]. Currently, we see the irst lawsuits around this topic reaching the courts
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[151]. As such potential infringements and associated questions on liability are not necessarily easily addressed
and answered, assessing the probability of a generative system reproducing memorized content can be part of an
overall evaluation strategy.

Diversity. The generated output of a generative system is expected to show some variety, regardless of use of
input prompts or conditioning. Generating only variations of the same piece, for example, is generally not desirable.
Banar and Colton [9] point out the importance of measuring diversity of the output in various dimensions as
the multitude of musical properties cannot be captured in a single dimension. For common machine learning
approaches, the diversity of the generated output should match the diversity of the training set. The exact
dimensions to measure diversity on, however, are not necessarily easy to deine; they might, for instance, include
genre diversity, metric and rhythmic diversity, melodic and harmonic diversity, or diversity of instrumentation
and timbre. To complicate matters, Liu and Jin [169] show that modern audio synthesis systems often display a
trade-of between output diversity and quality of the output.

Creativity. Creativity is a notoriously diicult to deine concept. As pointed out by Jordanous [142], there
are not even standard deinitions of creativity within US or UK law, łdespite the need to detect the presence of
creativity for legal reasons.ž Even more stubborn are the issues that arise in attempting to assess creativity, as
pointed out by Rohrmeier [224]: łIt is hard to assess something that one cannot deine, and this relects down to
the diiculties in evaluating the success of models of general creativity without resorting to the ‘oracle’ of human
evaluators.ž While Rohrmeier is referring to the assessment of models of general creativity, the same issues arise
in the assessment of creative artifacts or model outputs, regardless of the methods of creation [46]. Despite the
fact that creativity is recognized as an ill-deined phenomenon, studies continue to attempt to evaluate it, as it
remains a crucial component of artistic creation [156]. However, in many (if not most) modes of musical creation,
one is bound by a set of rules or constraints [54]. Again, Rohrmeier [224] raises the question of creativity in the
context of style imitation where such rules and constraints can, in some cases, be extreme: łWhat do we mean
by ‘creativity’, and how do we relate novelty, innovation or transformation with the concept? For instance, are
models ’creative’ that generate jazz lead sheets, chorales in Bach’s style, Indian tabla, or Balinese Gamelan? Is
style replication ‘creative’?ž As pointed out by Agres et al. [3], creativity can be evaluated in a limited sense in a
highly constrained context Ðsuch as the harmonization of a melody in a strict chorale styleÐ as the comparison
between human and computational ability to solve a set of problems. This general logic can be extended to
theoretically any aspect of creativity. However, even in only evaluating the artifact of a style-imitation task, this
procedural or problem-solving deinition becomes a slippery slope towards pure determinism, which has been
argued to be the opposite of (or, at least, hindering to) creativity [224, 275]. In addition, many attempts to deine
creativity (e.g., [25, 60, 142, 222]) commonly include the notions of value (either aesthetic or utilitarian), the
combination or connection of ideas or phenomena, and exploration and transformation within some conceptual
space, all of which are missed in the constrained problem-solving deinition of style imitation described above.

Nevertheless, numerous scholars in computational creativity and generative AI agree that, despite the inherent
diiculties, assessing creativity Ðand having standard, scientiic methods for doing soÐ is crucial for the ield to
grow and improve [142, 222].

2.1.4 Conditioning. A common approach to the evaluation of generative systems is to compare speciic properties
and characteristics of the generated output with the expectation. A system targeting, for instance, the generation
of chorales should not output symphonic music, even if the generated music were aesthetically pleasing and
original.
Some of the conditioning characteristics are implicitly deined through curating the training data prior to

training the system. These could include, e.g., musical genre or style [261], pitch, sonic quality [80, 82], instru-
mentation, length, complexity, and mood [102]. Other characteristics can be controlled explicitly either through
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input conditioning [247] or regularization [207]. Examples for such characteristics are rhythmic complexity [206]
and arousal [247].

Evaluating input conditioning is, in many cases, methodically relatively straight-forward, as the input speciies
a target value that the output has to match. If the property can be quantiied and measured from the generated
output, it can be directly compared with the target value. Evaluating the characteristics implicitly speciied
through the input data can be more challenging as the number and relevancy of properties might not be known,
drawing parallels to the evaluation of musical qualities introduced above. Any assessment poses the challenge of
identifying a meaningful and complete set of descriptors indicative of the data characteristics to assess.
Thus, this direction of evaluation Ðfocusing on individual output properties and whether they match the

user input or training dataset propertiesÐ is mostly useful for the veriication that the training process was
successful. The evaluation of individual properties allows a very targeted quantitative validation of the semantic
relevance of the output with respect to certain, usually narrowly deined characteristics. However, measuring
and interpreting speciic characteristics of the output as proxies for an overall assessment of the output is, at
best, questionable. Any set of characteristics represents only a small subset of a possibly ininite number of
musical characteristics, and thus can only give a snapshot of one facet of the generated output. It is particularly
problematic if the measured property was explicitly used as a training target or loss function, cf. Goodhart’s law:
łWhen a measure becomes a target, it ceases to be a good measurež [106, 236].

A special, but recently very popular form of conditioning is the text prompt. Unlike the evaluation of other
conditionings, measuring the (perceptual) alignment of the text prompt with the musical output is challenging
due to the undeined structure and terminology or the prompt and the multitude of potentially impacted musical
properties. Given these challenges, most evaluation strategies focus on global measures of it [108, 130, 167].

2.2 Usability & user experience

Outputs from generative music systems are used and appreciated by people from musicians to audiences. In this
section, we focus on evaluation of people’s direct interaction with generative systems. Viewing this through a
HCI [212] lens we refer to the people as users who interact with the generative system through a real-time user
interface. Unlike evaluation of system outputs using listening tests described above, evaluation here is concerned
with understanding the interaction between the user and the generative model Ð the human-in-the-loop. This
aligns with recent Human-Centered AI discourse [198, 231] advocating for the use of HCI methods to evaluate
and inform the design of AI systems which balance automation with human control. There are two main aspects
of interacting with computers, and AI models speciically, that are usually evaluated: the usability and the user
experience.
The assessment of usability asks how easily the generative system is to use [190]. Unlike evaluating the

output of the generative system, usability is concerned with how easy the generative system is to control and to
understand [6]. Usability evaluation is often best situated within the wider socio-technical system of use [76].
Within creative practice, the usability of the system will impact its use and uptake and whether the system is
even accepted in a music making context. For example, a generative system may produce aesthetically pleasing
outputs, but if it is not usable or controllable it will be less likely to be used in music making practice [171].
The assessment of user experience includes collecting subjective and experiential responses to using the

generative system [194], focusing on evaluating the experience of interacting with the system. This may be, for
example, an evaluation of people’s afective responses to interaction with the system or an aesthetic evaluation
of how the use of the AI relates to music making practice. A person’s experience might include hyper-awareness,
anxiety, or feelings of control over a situation [62]. It might also include feelings of confusion or creative failure
when making music [118], or feelings of surprise when inding unexpected discoveries in AI-generated content
[43]. In essence, the evaluation of user experience is about assessing people’s subjective feelings of using a system.
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It is important to note that usability and user experience are interrelated in complex ways Ð a system does not
necessarily need to be usable to be enjoyable and rewarding to use (e.g., computer games purposefully introduce
challenge and frustration to the user experience yet ofer a rewarding user experience [24]). We see this, for
instance, with traditional musical instruments which require years of time and efort to learn, yet this challenge
becomes intrinsically rewarding [48].

3 Evaluation of system output

The previous Sect. 2 established what should be evaluated: the evaluation targets; Sections 3 and 4 review how

these targets can be assessed, discussing methodology and metrics. For evaluating the generated output of
a system, we irst discuss subjective evaluation through listening experiments. Then, we describe objective
approaches to assess the quality of the output.

3.1 Subjective evaluation

A large problem in the evaluation of system output is that, while one could argue that style imitation could
be measured fairly objectively without the intervention of human opinion, nevertheless, the evaluation of the
utility, aesthetics, creativity, or łhumannessž is most aptly carried out by a human observer as these are all,
essentially, value judgments [46, 228]. However, given that the deinitions of these traits (utility, aesthetics, etc.)
are subjective, largely personal, and subject to contextual information, it remains a signiicant challenge to design
unbiased subjective metrics that would function in an łall purposež manner.
The most typical method for evaluating music generation to date has been by asking listeners [267]. Unfor-

tunately, there are no standardized approaches to the subjective evaluation for almost any Music Information
Retrieval (MIR) task or product, including AI-generated music. The most common methods for assessing gen-
erative music include Turing-style tests Ðdesigned to evaluate whether the AI-generated music can pass as
human-generatedÐ or łpreference tests,ž surveys or experiments assessing aesthetic quality, musicality, and
originality. In the ensuing subsections we review these common approaches to subjective evaluation, including
both the methodologies themselves as well as the implicit and explicit criteria being evaluated.

3.1.1 Turing tests. Turing-type tests Ðwhere a listener must identify whether a musical selection was made by
a human or AIÐ remain one of the most common forms of subjective evaluation [120]. In its most basic form,
the Turing test is a useful metric in the sense that the method is simple (i.e., typically binary forced selection),
and that it ofers a theoretically unbiased subjective evaluation by, in principle, implicitly evaluating a model’s
output according to a scale of łhumanness.ž If a listener cannot tell apart machine from human-generated musical
output, then the implication is that the machine is łat least as goodž as a human. However, this logic only follows
under the right conditions, which may not be met in small-scale, ad-hoc experiments. For example, what makes a
Bach chorale diferent from another piece of music from the classical genre may be non-evident to a lay listener;
similar arguments can be made for a jazz solo. In other words, recognition of the norms of a particular musical
style typically takes at least a small degree of expertise [208]. Another consideration is the material used in the
test itself. Since not all of the output material can be evaluated, only a small subset of the model output is used in
the test. However, depending on how this material is selected, this selection may not adequately represent the
model output overall. In addition, inferential statistical tests designed to test an alternative hypothesis against a
null hypothesis, such as t-tests, are commonly used to evaluate the outcome of a Turing test. Yet typically the
desired outcome is that the null hypothesis (i.e., no diference) is actually supported. This inappropriate use of
such a test will łbiasž towards supporting a null hypothesis is compounded by studies that rely on small sample
sizes or exhibit high variance. The use of Turing tests in evaluating AI output has been criticized for a variety of
reasons, most notably for its lack of sophistication, and for the tool being repurposed for something other than
what it was intended for [121], which was as an evaluation of intelligence and not of aesthetics. It is important
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to note is that the Turing test conlates indistinguishability (between human and computer) with aesthetic or
creative success. It is easily conceivable that a model trained on student input, for instance, would ask a listener
to disambiguate between two samples both representing ‘amateur.’ In this case, a lack of ability to discriminate
between the samples does not conclude that the output is of high aesthetic or creative value. Finally, an inherent
problem with using a Turing test as a subjective evaluation metric is that it inherently over-rewards imitation over
creativity [209]. Nevertheless, if used appropriately, the Turing test can be used to assess model output, provided
that these considerations are taken into account and that the test is primarily used to support a conformity to a
baseline standard of a speciic musical style, rather than an indication of musically or aesthetically valued output.

3.1.2 Preference tests. Other forms of subjective evaluation involving human ratings inevitably fall under the
broad category of łperceptual preference tests,ž where listeners rate their perception of various artifacts according
to several criteria, such as aesthetic quality, creativity, musicality, idelity, etc. As mentioned, however, since
there are no standardized testing practices for subjective perceptual tests, the questions, the scales used, and the
experimental designs all difer widely from study to study (e.g., Chu et al. [54], p.306). The most common criteria
evaluated in preference tests include the overall quality, preference or enjoyment, stylistic appropriateness,
complexity, coherence, aesthetic response or łinterestingness,ž and musicality; most commonly evaluated on a
Likert-type scale [166]. Despite the wide variety of criteria and survey designs, several scholars have nevertheless
made commendable eforts towards breaking down these complex properties in a way that could help impose
some common criteria or benchmarks in the design of subjective evaluation practices. For example, Chu et al.
[54] reviewed 40 music generation studies that included a subjective evaluation component and reduced the
various criteria into the eight categoriesOverall,Melodiousness,Naturalness,Correctness, Structureness, Rhythmicity,
Richness,Creativity. Interestingly, the authors imply thatCreativity was not included as a subjective criterion in any
of the studies reviewed, but the authors added this eighth criterion as they felt that łprior research emphasize[d]
the role of AI to boost human creativity in music composition.ž Unfortunately, however, as presented, these
criteria appear diicult to isolate as, for example, the criterion łmelodiousnessž Ðdeined by the question łare the
music notes’ relationships natural and harmonious?žÐ appears to overlap with the criterion of łnaturalness,ž
which asks, łhow realistic is the sequence?ž

The measurement of audio quality of a signal can be treated as a special case of preference tests with established
procedures and methodologies. Audio coding is one of the main ields where the measurement of (perceptual)
audio quality plays a crucial role and has driven the standardization of procedures to improve replicability of
results. Thus, standards have been introduced that regulate not only the general methodology of listening tests
but also number, selection and training of the listeners, selection of audio stimuli, properties of the reproduction
equipment, as well as other factors such as room acoustics [135]. Two standards are most commonly followed for
determining musical audio quality: ITU-R BS.1116 for high quality signals and ITU-R BS.1534 for medium quality
signals. Both require a reference signal to be present, and rate the quality on a ive point scale, although the
scales are deined diferently to accommodate for the diferent targets. In both cases, a high rating is indicative
of higher audio quality. BS.1116 [135] is a so-called double blind, triple stimulus test with hidden reference,
where two signals are presented alongside the reference signal and one of the two presented signals is a hidden
reference signal. The listener then rates the two signals on the ive point scale. BS.1534 [136], also referred to as
MUlti Stimulus test with Hidden Reference and Anchor (MUSHRA), follows a similar methodology, but adds an
łanchorž signal that established a comparison point at an easily understandable and reproducible quality level.
The methodology allows for multiple quality-impaired stimuli at the same time, and thus generally needs fewer
participants to obtain statistically signiicant results than the more speech-focused Mean Opinion Score (MOS)
methodology [137]. MOS methods are popular in speech methodology [137] and have been adopted for the ield
of generative audio in general [2]. Generally, MOS survey methodology is considered lexible, given that it is not
always necessary to provide a reference signal. For instance, the Absolute Category Rating speciication of the
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Fig. 2. Overview of the evaluation methodologies for generative music systems, including both reference-dependent and

reference-independent approaches.

ITU-T P.800 standard [137] does not require a reference signal (as opposed to the Comparison Category Rating
speciication). The scale for rating can also vary between a ive point scale and a seven point scale.

3.2 Objective evaluation

Aesthetics and the impression of artistic quality are inherently subjective, and thus hard Ðor even impossibleÐ to
approximate objectively. On the other hand, it has been argued that subjective results might not be trustworthy
and that we must look beyond łhuman opinion for evaluation of computational creativityž [200]. Whichever side
is taken, an evaluation based on computed objective metrics is not meaningless. For instance, Yang and Lerch
[267] show that contemporary generative models can fail to properly model the distribution of even low-level
musical properties such as pitch range and count, a result that has been substantiated for an extended set of
properties by Banar and Colton [10]. Thus, metrics for such musical qualities can be helpful in analyzing how
well the statistics of the generated output match the statistics of the training data. Furthermore, methodologically
sound and properly executed listening studies cannot easily take place after each development iteration to
measure progress. Taking into account the other advantages of objective metrics such as perfect reproducibility,
objectivity, and scalability to large amounts of data, there is a need for objective measures to assess the output of
generative systems. There is, however, a risk involved in applying objective metrics to music; Goguen [103] point
out that ła common approach is to ’bracket’ or exile the qualitative aspects, and concentrate attention on aspects
that are reducible to scientiic analysis.ž

ACM Comput. Surv.



Survey on the Evaluation of Generative Models in Music • 11

3.2.1 Methodology. The approaches to the objective evaluation of music generation systems are diverse, as
depicted in Fig. 2. Objective evaluation methodology for generative systems typically involves either estimating a
score that relects a speciic quality characteristic or using algorithms to compute diferences between generated
outputs and target benchmarks. In both symbolic and audio generation, the methodologies can be broadly
categorized into several distinct types, each serving a diferent purpose in the evaluation framework. These
categories include: (i) the reconstruction error or match to reference signal, (ii) a comparison of distributions,
(iii) reference-agnostic tests, and (iv) classiier-driven evaluation.

File pairing & reconstruction. This method compares the generated output directly to a matching reference.
Typical use cases are masked music generation (also referred to as music in-painting) [205] or measuring the
reconstruction error of auto-encoder setups. Thus, this approach allows for direct comparison between the
generated output and a known reference but only under the limiting assumption that there is exactly one correct
output. While this assumption allows for a mostly straight-forward assessment approach given a metric (e.g., the
Mean Squared Error (MSE) or an edit distances, the Signal-to-Noise Ratio (SNR), or psycho-acoustically motivated
metrics such as PEAQ [134]), it is not suited to many typical evaluation scenarios for generative systems where a
unique correct output does not exist.

Comparison of distributions. An alternative to comparing iles by pairs is to compute distributions of certain
characteristics or descriptors across many iles to compare a testing (generated) and target (training) set. It is
known that generative models are primarily trained to learn characteristics over a training set and generate
output replicating those characteristics. Thus, the expectation is for the test distribution to be similar to the target
distribution of various descriptors. The target distribution is typically human-composed music.

In statistics, a popular distribution distance used to compute diferences between distributions is the Kullback-
Leibler Divergence (KL-Divergence), which computes the diference between two distributions over the same
sample space. The distance measurement is non-symmetric, i.e., the distance from A to B does not generally equal
the distance from B to A. In symbolic music evaluation, statistical measures had already been proposed by Collins
[58]. The KL-divergence is, e.g., used by Yang and Lerch [267] to evaluate the diference between two distributions
in various descriptor dimensions. In addition to KL-divergence, they propose the usage of łOverlapping Areaž as
an indicator of distribution similarity that is Ðunlike the KL-DivergenceÐ both symmetric and bounded. Another
commonly used distribution distance is the Wasserstein distance between two multi-variate Gaussians. Recent
work by Guo et al. [111] proposes calculating a measure of statistical signiicance between the training and
generated distribution. All these distance metrics can be calculated from a variety of descriptors, ranging from
basic synbolic score features such as pitch histograms to learned embeddings.

While a high similarity of distributions for various descriptors is desirable, it does not necessarily allow for a
conclusive assessment. On the one hand, it depends on how musically meaningful the descriptor itself is. On the
other hand, a system could achieve perfect scores by simply replicating the training set, thus leading to favoring
conformity over novelty [32, 123].

Measures without reference. This method involves evaluating the quality of generated music without comparing
it to a reference or ground truth. Instead, various metrics are employed to assess aspects such as diversity,
novelty, coherence, or aesthetic appeal within the generated set itself, thus providing intrinsic (i.e., non-intrusive)
evaluations of the generated music, independent of any external reference. In many cases, these approaches either
measure relative attributes changes of the output without clear anchor point (e.g., increasing novelty beyond a
certain point will decrease output quality) or by establishing a framework of clearly deined quality standards
that are generally true (e.g., intelligibility for speech signals). For example, Chu et al. [55] evaluated repetitiveness
within the same corpus of 100 generated songs by segmenting each generated melody into two-bar units and
then comparing these segments without the use of an external reference set. Complementing these intrinsic
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evaluations, Yuan et al. [271] developed MusicTheoryBench, a set of college-level music theory and composition
questions designed to test LLM-based symbolic generation systems’ music knowledge and music reasoning.
When evaluating speech quality, no-reference methods are usually preferred. For instance, Manocha et al.

[181] ind that methods assessing audio similarity are not optimal surrogates for assessing speech quality and
recommend no-reference methods instead. These methods attempt to estimate audio quality for a signal directly
by predicting how humans might rate a signal.

Classiication-driven evaluation. A number of evaluation strategies have been proposed to evaluate the quality
of generated output through a classiier, i.e., a machine learning system categorizing input into pre-deined classes.
On the one hand, a classiication model can be trained to distinguish between human-composed and generated
music. The performance of the classiier in accurately distinguishing between real and generated music serves as
an (inverse) measure of the quality of the generated compositions. On the other hand, classiier performance
can be used as a proxy quality measure in speciic domains. A genre classiier, for instance, can be used to
assess whether the generated music adheres to the desired style [34, 140] or is similar to the target style [83].
In generative audio tasks, classiiers are directly used to measure whether the generated signals are capable of
matching the labels assigned to signals in the training set. In the case of NSynth [82], they use a timbral classiier
to evaluate whether the generated signals could be trivially classiied as being one of the timbre labels in the
dataset. To augment these approaches, Godwin et al. [102] introduced an innovative variation by incorporating
generated samples into the training dataset for the classiier and investigated how such augmentation afects the
classiier’s performance, shifting the focus from merely comparing the classiication of generated outputs with
those of the training data to a more dynamic assessment with adaptability.
Classiiers can also be used as the basis for the Inception Score metric [192, 225], which is used to measure

łsample diversity,ž i.e., if the model is capable of generating signals that match the label distribution of the testing
dataset. Banar and Colton [9] review classiication-based methods and argue that while these methods might
be useful for post-hoc quality evaluation, the embedding spaces utilized by the classiiers are not optimized in
terms of the distances between diferent classes. This lack of optimization can result in suboptimal performance
of these models in distinguishing various types of musical content and is of particular concern if the embedding
space is used for a distance-based metric.

3.2.2 Aesthetic and musical qualities. As pointed out above, objectively assessing aesthetic quality presents many
challenges due to its subjective nature, especially the challenge of how any objective measure could directly
relect aesthetic quality. Juslin et al. [144] deine aesthetic judgment as the assessment process through which the
value of a piece of music as łartž is determined based on subjective criteria such as novelty, expressivity, and
beauty, which relate to both the form and content of the artwork. They state that aesthetic judgments result
from psycho-physical interactions between the music’s objective properties and the subjective impressions of
the evaluator. Therefore, there are no absolute or universal criteria for aesthetic value, as aesthetic norms are
subject to change over time within society. Kalonaris and Jordanous [145] substantiated this perspective by
noting that many experiments and theories on musical aesthetics Ðsuch as concepts of beauty, pleasantness, and
well-formednessÐ are heavily reliant on context-speciic and often arbitrary assumptions about the nature of
music, and are thus hard to generalize. Despite this known variability, attempts towards developing objective
evaluation metrics of aesthetic quality have been made, drawing on both traditional music theory and empirical
aesthetics principles.

Kalonaris and Jordanous [145] categorize the measures of computational aesthetics in music into several distinct
types, each grounded in diferent theoretical frameworks. These include (i) information and complexity-based
aesthetic measures, such as entropy, which quantify the order and predictability within musical compositions,
(ii) geometric measures, which assess aesthetic value by analyzing the statistical distribution of musical elements,
(iii) psychological measures, such as Gestalt principles of grouping, to understand how listeners perceive and
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interpret musical structures as a whole rather than merely sums of parts, and (iv) biologically inspired measures,
which explore the social, genetic, and evolutionary algorithms.

Notably, evidence has been presented that many musical parameters (e.g., pitch, dynamics) follow a Zipian
(power law) distribution and that adherence in musical composition to such distributions is more aesthetically
pleasing [97]. Zipf’s law [276] suggests that the frequency of a symbol within a piece of music should be inversely
related to its rank in terms of frequency of use. Computational aesthetic measures relying on predictions from
Zipian distributions have been successfully used to predict human aesthetic ratings such as łpleasantnessž for
both music and visual art [97, 178, 179]. It should be noted that the concepts of musical łpleasantnessž and overall
aesthetics or łappreciationž [208] might not be necessarily synonymous, as the latter implies a broader range of
emotional and intellectual responses. Another automated computational approach reviewed by Galanter [97]
include using various simulation models based on chromosome behavior that compute a single weighted metric,
an łevolutionary itness score,ž that rewards some desired behavior or trait.

Berlyne’s theory of łNew Empirical Aestheticsž [19] provides another theoretical framework for understanding
aesthetic quality. According to this theory, the appreciation of an artwork correlates with its complexity and its
ability to stimulate arousal, with the audience’s liking having an inverted-U relationship with łarousal potential.ž
In a practical setting, the measurement of subjective aesthetic quality often includes beauty, groove, originality,
complexity, expression, emotion, sound quality, prototypicality, message, and skill [143].
Metrics targeting musical qualities are commonly distribution-based, meaning that the similarity between a

generated and a target distribution is measured for a speciic musical descriptor or property. Typically, these
descriptors are low-level representations of music [139] and some of these features and distributions might be
more musically relevant than others. For example, pitch distributions are commonly applied to MIDI numbers or
pitch values (e.g., A4) as opposed to much more meaningful pitch or chord distributions that take key information
into account, such as scale degree (the position of a pitch class in a tonal context) or Roman numeral (the
function of a chord given its context). Still, basic features such as pitch diference and the ratio of in-key pitches
or entropy of pitch and chords [260] continue to be employed in recent works and are sometimes referred to
as łmusic theory evaluationž [111]. Over time, many descriptors for musical qualities have been introduced
[185]; Yang and Lerch [267] proposed a set of simple metrics separately targeting tonal and rhythmic content.
Similarly, Garcia-Valencia et al. [98] utilized the concepts proposed by Tymoczko [252] to assess qualities like
the smoothness of melody transitions, pitch diversity, and the occurrence of local notes to provide an analysis
of melodic structure with rhythmic features. Dervakos et al. [68] introduced a framework based on the basic
consonance aspects of melodies that allows the construction of a variety of metrics. They used this framework to
construct four heuristic properties, polyphonicity, used-pitch-classes per bar, total number of pitches, and the
total number of pitch classes, to address fundamental musical properties that are reliable and interpretable. These
examples show the variety of descriptors that have been used to model musical properties. Table 1 provides an
overview of common descriptors proposed in the literature.
While there have been many calls for more musically meaningful and relevant objective metrics, many of

these descriptors and resulting metrics are highly specialized to certain styles, genres, or musical content. For
example, Wu and Yang [263] employed speciic metrics such as grooving and chord progression to evaluate
generated jazz performances. They observed that erratic usage of pitch classes, inconsistent grooving pattern and
chord progression, and the absence of repetitive structures contribute to the quality gap between the generated
and human-composed jazz samples. Although these metrics appear to be pertinent to jazz, they might not fully
capture or evaluate the qualities of music produced in other genres. This specialization of metrics may restrict
their broader application across diferent musical styles and genres and implies that other musical styles might
require the design of style-speciic descriptors as well.

Furthermore, scholars have pointed out the importance of higher level features such as form and repetition in
contributing to the improvement of generative music systems (e.g., [63]). However, speciic metrics to measure
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Table 1. Previously used low-level descriptors used to describe musical qualities.

Type Unit Name Description

Pitch
[73, 139,
186, 267]

Note

Total Used Pitches, Pitch Class His-
tograms

number of distinct pitches or pitch classes (often accompanied by en-
tropy)

In-Key Note Frequency, Scale con-
sistency

fraction of notes adhering to a scale

Pitch Range, Tone Span span between the highest and lowest pitches (usually in semitones)
Consecutive Pitch Repetition frequency of repetitions of a pitch
Pitch Interval Average, N-gram interval between consecutive notes (usually in semitones)
Pitch Class Transition frequency and type of transition between pitch classes

Sequence

Empty Bars number or ratio of bars w/o musical onsets
Sequence Repetition number of repetitions of short sequences
Rote Memorization Frequency frequency of which the generated sample reproduces exact sequences

from the training corpus
Frequency of Pitch Change how often pitches change
Pitch Variations number of distinct pitches
Voice Motion how voices or melodic lines move relative to each other

Rhythm
[139, 186,
263, 267]

Note

Total Used Notes total number of notes
Note Length Histogram distribution of note lengths
Qualiied Note Length Frequency frequency of note durations
Average Inter-onset Interval average time between the onset of consecutive notes
Note Length Transition frequency and type of transition between consecutive note lengths

Sequence
Rhythmic Similarity between Mea-
sures

rhythmic similarity between diferent measures

Rhythm Variations number of distinct note durations
Of-beat Recovery Frequency how frequently the model can recover back onto the beat after being

forced to be of beat

Harmony
[83, 139,
263]

Chord

Chord Duration length of time a chord is held
Chord Content pitch composition of a chord
Chord Vocabulary e.g., number of used chords, chord coverage, number of repeated chords
Tonal Distance Average, Histogram average tonal distance between pairs of adjacent chords
Chord Tone to Non-Chord Tone Ra-
tio

in-chord vs. non-chord tones

Overall

Melody-Chord Tonal Distance average tonal distance between eachmelody note and its corresponding
chord

Progression Irregularity degree of diference in chord progressions between a sample and tem-
plates

Polyphonicity frequency of simultaneously played pitches
Dissonance dissonance level of onsets based on their periodicity

these higher-level features have not yet been proposed. Instead, metrics such as the Fréchet Distance (see
Sect. 3.2.3) utilizing trained embeddings with opaque or unknown musical meaning (VGGish [124], CLAP [264],
etc.) have been increasingly applied to music evaluation [56, 109, 130, 218].

3.2.3 Audio quality. For any generative audio system, assessing the audio quality of the outputs is integral to
understand whether the generated signals can be considered high-quality by human listeners. Simple error
measurements such as the MSE, the Mean Absolute Error (MAE), or the SNR have been long shown to be
inefective as łqualityž measurements [147], so that listening studies are often considered to be the ultimate way
to assess audio quality. Regardless, objective metrics for measuring audio quality have been proposed.

In many cases, where generative systems are trained to synthesize and match the inputs as closely as possible,
diferences in the presence of artifacts, distortion, noise and bandwidth are measured. This usually assumes that
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the cleanest reproduction of the signal is free of artifacts, distortion and noise while maintaining an identical
frequency bandwidth to the original signal. If the reference signal is available, it is feasible to use metrics that rely
on ile pairing. Popular reference-based objective methods are (1) Perceptual Evaluation of Audio Quality (PEAQ)
[134], a method that uses a psycho-acoustic model to compute features representing the diference between a
reference and a test signal, (2) Signal-to-Noise Ratio (SNR), Signal-to-Distortion Ratio (SDR) and Signal-to-Artifact

Ratio (SAR), which compute the diference in noise levels, distortion levels, and artifact levels between paired
signals, respectively, and, (3) Deep Perceptual Audio Metric (DPAM) [180], a metric that is trained to estimate
perceptual quality similarity between paired signals.

Many of the contemporary approaches to the problem use the aforementioned distribution comparison metrics.
By and large, these methods extract neural representations or embeddings for both the target and testing sets. The
primary argument for the usage of distribution comparison methods hinges on the notion that minimal divergence
between the two distributions is indicative of the two sets being roughly identical in terms of quality. The most
popular distribution divergence metric used in evaluating generative quality is the Fréchet Audio Distance (FAD)
[150], which computes the diference between the two embedding distributions using a Wasserstein distance on
VGGish embeddings [124], and more recently on a variety of other embeddings, such as PANNs [152], CLAP
[264], and Encodec [77] (cf. [108, 109]). The perceptual relevance of FAD has, however, been questioned for
both audio quality evaluation [255] and for music evaluation [130]. Gui et al. [109] propose a variation of the
FAD for audio-based music quality measurement called FAD∞. FAD∞ is an extension of FAD that mitigates the
sample-size bias by estimating the behavior of the metric as if it had an ininite number of samples by using
Quasi Monte-Carlo integrals. Gui et al. [109] report that Ðgiven the right embeddings and mitigating sample
size biasÐ FAD∞ can be a useful indicator of quality, a result that is intended to assuage concerns raised by
previous results [255]. An alternative to FAD is to use Maximum-Mean Discrepancy (MMD) [21, 192], which is
a two-sample test computed over the kernel embedding of the training and test data. For more details on the
mechanics of MMD, we refer the reader to Gretton et al. [107]. Recent work in the image domain has shown that
MMD with CLIP embeddings is a better approximator of generative image quality than Fréchet distances [138].
Chung et al. [56] propose to adapt the MMD to the Kernel Audio Distance (KAD) to replace FAD.

Distribution comparison methods measure if the generator is capable of modeling the underlying distribution
that it was trained to generate. However, the perceptual relevance of the result largely depends on the selected
feature / embedding space [7, 255]. Unbounded, distance-based metrics also lack interpretability in the sense
that even a statistically signiicant diference in a metric does not necessarily imply a perceptually signiicant
diference.
Other notable approaches to estimating audio quality include DNSMOS [217] NDB/� [221] and ViSQOL

[126], which are predominantly speech quality focused approaches. ViSQOL and DNSMOS are speech quality
estimation methods trained using results from large-scale MOS listening studies. ViSQOL is a paired metric that
uses spectrogram patches and DNSMOS is a no-reference metric that uses a model trained to predict what a
human might rate a signal. NDB/� is a metric originally proposed for images that has been used to evaluate some
generative systems such as Difwave [153]. It clusters the features of the training set using k-means clustering and
Voronoi cell partitioning. To compute the metric, the number of statistically diferent bins or cells are computed.
Recent work has shown that in speech, similarity is not a reliable proxy for quality and no-reference metrics,
such as the ones mentioned above, might be better at estimating quality [180].

Table 2 shows an overview of commonly used objective metrics for audio quality assessment.

3.2.4 Originality. Originality is often considered a key characteristic of a generative system, however, only few
quantitative measures have been proposed despite calls for work on, e.g., quantiication of output diversity [84].
As mentioned above, we understand originality to be comprised of diversity, novelty / plagiarism, and creativity.
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Table 2. Commonly used metrics and distances for evaluation of audio quality. In the range column, ↓ indicates that lower is

beter and vice versa.

Type Metric Domain Range

Paired reference & test

PEAQ
psycho-acoustic

model
-4 to 0 ↑

Mean Squared Error waveform or spectral 0 to ∞ ↓

Mean Absolute Error waveform or spectral 0 to ∞ ↓

DPAM trained from listening study 0 to ∞ ↓

SI-SDR waveform 0 to ∞ ↓

SNR waveform 0 to ∞ ↓

ViSQOL trained from listening study 1 to 5 ↓

Ref. & test distribution

NDB/�
Deep Learning

Images
0 to ∞ ↓

Fréchet Audio Distance VGGish, CLAP, etc. 0 to ∞ ↓

Kernel Distance trained from labels 0 to ∞ ↓

Inception Scores trained from labels 0 to ∞ ↑

No reference DNSMOS trained from listening study 0 to 5 ↑

While diversity is implicitly evaluated by commonly used metrics for image generation such as the Inception
Score and the Fréchet Inception Distance, they do not diferentiate the diversity aspect from the quality/idelity
aspect. Other quantiiable metrics on diversity have been pre-dominantly proposed for GAN-based generative
systems [26]. However, as Gulrajani et al. [110] point out, many of the existing metrics can be tricked by the
model simply memorizing the training data. Thus, they propose so-called neural network divergences (NNDs),
measured through the loss of a neural network trained to distinguish between generated and training data, and
show that NNDs can serve as meaningful measures of diversity. Alaa et al. [4] propose to measure diversity using
a metric they refer to as �-recall, measuring the fraction of real samples covered by the most typical generated
samples. In the context of music, Yin et al. [269] propose the łOriginality Scorež to quantify how original a set of
musical pieces is and compare the originality scores between training and generated data to understand if the
originality of the generated data matches expectations.
Sturm et al. [242] note that for music Ðunlike for textÐ automated plagiarism detection does not reliably

work, and worse, no clear standards exist about what type and amount of alterations make a piece of music
novel as opposed to plagiarized. Thus, approaches such as the Authenticity metric proposed by Alaa et al. [4],
estimating the probability of a generated sample being copied from the training data, are only of limited use. Still,
approaches to objectively measure plagiarism have been proposed, usually framed as a music similarity task. Most
of the seminal work can be grouped into (i) melodic similarity measures based on symbolic input and (ii) general
audio-based similarity measures. To measure symbolic melodic similarity, a variety of metrics have been proposed.
Most of them are based on some form of sequence similarity [47, 65, 66, 188, 201, 262] or vector-based similarity
measures hand-designed [177] or trained as end-to-end systems [173, 202]. Some of these algorithms have been
tested against real-world court decisions, however, the test set sizes are necessarily small and external validity is
hard to verify. Audio-based similarity [161] is a multi-dimensional problem at the risk of confounding dimensions
of score similarity (melody, harmony, rhythm, etc.) with performance similarity (tempo, playing techniques, etc.,
but particularly timbre). Systems for audio-based plagiarism detection have been proposed to use Non-Negative
Matrix Factorization to decompose the audio [64], MFCC vector-based representations of audio [244], similarity
measures inspired by audio ingerprinting approaches [27, 175], or utilizing pre-trained embeddings for similarity
measurement [15]. Commonly, however, plagiarism is understood in terms of score similarity (with the very
prominent exception of sampling, where audio is copied and mixed into a new musical artifact [113]). A study
into the contributing factors of court cases on plagiarism has been presented by Yuan et al. [272].
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The evaluation of creativity poses an unsolved problem. Jordanous [142] notes the longstanding lack of attention
to evaluation and lack of evaluation standards in the computational creativity community due to łdiiculties in
deining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity,
let alone its computational equivalent.ž Indeed, in a survey of 75 papers on computational creativity, the author
found that in one third of the papers, ‘creativity’ was not mentioned, and that only one third of the papers actually
attempted to evaluate the creativity of their systems. Moreover, ł[o]ccurrences of creativity evaluation by people
outside the system implementation team were rare.ž Judging from the scarcity of proposed evaluation standards
since the publication of this paper Ðdespite the fact that it has been over a decade since its publication and that
creative AI is presently in its heydayÐ it seems that this issue continues to persist. As mentioned above, one
can distinguish between the evaluation of a computational system itself, and such a system’s output (i.e., łthe
product/process debatež [142]). However, since the output is restricted or constrained by the system, it can be
helpful to conceptualize a combined methodology for the evaluation of both the system (in terms of its creative
potential) and its output. Jordanous [142] presents such a framework, referred to as łSPECSž (Standardised
Procedure for Evaluating Creative Systems). The SPECS method Ðwhich is not only well recommended [200],
but unlike other proposed models has actually been used in practice [197, 211]Ð asks the creator/evaluator to
adhere to a speciic working deinition of creativity that includes two or more łcomponentsž that are evaluated
independently according to some standard, such as skill, novelty, value, etc., and compared against an appropriate
system/output. These evaluations may be quantitative or qualitative, however, in this case, both still involve
signiicant investment of time and resources into evaluation with human subjects. While other models and
frameworks have been proposed for attempting to theoretically quantitatively assess creative output, such at the
FACE and IDEA models [209], to our knowledge, no adopted standardized practices or procedures currently
exist for assessing creativity without human intervention.

4 Evaluation of usability & user experience

In this section we describe Human-Computer Interaction (HCI) methods and techniques that have been used
to evaluate user interaction with generative music models. These methods and techniques share aims with
Human-Centered AI [198, 231] to research, design, and evaluate AI systems from a human-centered or user-irst
perspective. Below, we irst introduce HCI methodologies for evaluating AI music systems. We then describe data
collection methods for understanding the user experience of generative AI including quantitative and qualitative
approaches. Table 3 closes this section by summarizing key HCI evaluation approaches discussed. It is important
to note that there are no de-facto standards deining which data collection methods are used for which evaluation
methodologies. Instead, selection of data collection and methodology is based on best practice in the ield and
individual HCI practitioner’s skills and experience.

4.1 Methodology

HCI research has traditionally focused on functional aspects of user interaction such as the usability of a system
[190], whilst later waves of HCI placed more focus on subjective qualities of users’ experience when interacting
with computers [40]. Approaches to HCI evaluation of generative music systems draw on both functional
(usability) and experiential (user experience) forms of HCI evaluation. Broadly, evaluation methods and can be
split into controlled experiments which are more objective and typically suited to exploring the usability of a
system, and more subjective and ecologically valid (meaning applicable to real-world practice) approaches which
are more suited to studying experiential aspects of generative music systems [38].

4.1.1 Controlled experiments. Controlled experiments place participants in distraction free environments such
as a research lab, where they are set a number of musical tasks to complete with an AI system in a constrained
amount of time. In this setting, typically two or more versions of an AI system are used to allow comparison
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between versions, often referred to as A-B testing. The tasks undertaken might be open-ended (e.g., write a piece
of music) or more speciic (e.g., harmonize a given melody) depending on the model and the evaluation goals.
For example, Suh et al. [243] and Louie et al. [171] asked participants to compose music for a ictional character
from a game, while Frid et al. [96] asked participants to create music for a video based on an example song. In
Louie et al. [171], two versions of a music making interface for harmonizing melodies were tested Ðone with and
one without AI-steering toolsÐ to allow for comparison of the efect of the AI. In this case the tool without AI
features can be referred to as a baseline. Alternatively, diferent forms of interaction and participation might be
tested with the same system, e.g., Addessi et al. [1] compared their AI music improvisation system when used by
individual children vs. groups of children.

4.1.2 Online evaluation. Online evaluation settings can be helpful for evaluating generative AI systems across
a large sample size. For example, Ben-Tal et al. [17] evaluated a version of the FolkRNN generative AI model
hosted online, where they were able to examine how people generated content with FolkRNN serendipitously
and how they tweaked values to modify and curate outputs. Typically, generative AI systems are either hosted
online for user interaction or available as a download to users. Audiences across the globe can then be reached
using survey platforms such as Proliic,2 and iltered for characteristics such as nationality or technical skills.
Whilst online settings allow for large numbers of participants, they lack the rigor of controlled experiments.

4.1.3 Exploratory studies. Exploratory studies emphasize evaluating user experience and collecting subjective
feedback. They typically involve more open-ended tasks than controlled experiments or online evaluations.
Exploratory studies can, for example, take place in a controlled lab setting which is more typical of comparative
studies, yet use open-ended tasks that allow music making to occur in a more natural way. For example,
Bougueng Tchemeube et al. [28] tasked people with exploring their generative AI interface and collected structured
questionnaire measures to capture aspects of people’s user experience, but do not make strict comparisons between
interface designs. Thus, balance can be struck between controlled and exploratory evaluations, such as giving
open-ended tasks in controlled study settings to test generative AI in a way that is closer to real-world music
making (e.g., [171]), or to give structure to data collection in real-world settings (e.g., [93]).

4.1.4 ‘In-the-wild’ studies. Research-in-the-wild [18, 49] approaches contrast controlled experiments to evaluate
generative AI models in their real-world places of use, possibly over extended periods of time. For example, in
ethnographic approaches [18, 49] the researcher takes observations or ield notes, or collects data on patterns
of behavior that people have naturally exhibited while making music. For AI music, this type of approach has
been used in, e.g., the international AI music song contest [127]. The researchers identiied how developers
and musicians collaborated to create music , for example by preferring to curate AI generated content instead
of (re-)developing their AI tools. Across the HCI studies on generative music, there are several examples of
ethnographic-inspired observations being collected. Fiebrink et al. [90], for instance, łrecorded text minutes
of [composer’s] activities, discussion topics, and speciic questions, problem reports, and feature requestsž for
seminars on their Wekinator [88] system. Bryan-Kinns et al. [37] used irst-person accounts of music making
with a generative AI system over several months to understand how it was appropriated into music making
practice.

4.2 User data collection: uantitative

The primary quantitative method for evaluating generative AI systems is the use of questionnaires. These are used
to quantify both subjective feelings of a system’s usability as well as more experiential aspects. Typically, these
questionnaires use a Likert-type scale [166] to measure user agreement with statements on a scale (e.g., 1ś5).

2https://www.proliic.com/, last accessed: Jun 25, 2024
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Several standard questionnaire measures exist to evaluate the usability of technology. Common examples are
the NASA Task Load Index [117] and the Standard System Usability Scale [12]. For AI music interfaces, we found
several evaluations (e.g., [132]) using the Cognitive Dimensions of Notations questionnaire [23], which assess
several cognitive qualities of the interface such as whether the system has many hidden elements of represents
information in a difuse way.
User experience-oriented scales include the User Experience Questionnaire [158] and the User Engagement

Scale [199]. The most inluential questionnaire with respect to creative technology within the last 10 years
is arguably the Creativity Support Index (CSI) [52]: a questionnaire designed to test the capacity of a tool to
support creativity, ofering factors for several important aspects of the creative user experience including: focused
attention, enjoyment and collaboration. For AI music, however, we found surprisingly few examples of AI music
user studies that have adopted the CSI Ð Bougueng Tchemeube et al. [28] a notable exception. We instead
observe many examples where researchers have chosen to deine their own questionnaires to explore constructs
for the AI systems that are not captured in current standardized scales. For instance, Louie et al. [171] invented
their own questions to capture a person’s feelings of agency. Ford and Bryan-Kinns [92] identiied relection as an
aspect missing from the CSI whilst being an important factor in AI music making [91, 93]. Alongside established
measures of creativity support and usability, Bougueng Tchemeube et al. [28] also added questions central to
human-AI interaction on trust, perceived authorship, and lexibility. This use of researcher deined questionnaires
relects the dominance of measures of engagement and usability in assessing AI interaction in creativity-related
HCI research [219, 220].
Questionnaires are more often used in usability-focused evaluation methodologies such as controlled ex-

periments and less frequently used as part of more experiential evaluations such as in-the-wild studies. HCI
researchers also use questionnaires to establish characteristics of their sample under study. For example, the
Goldsmith’s Musical Sophistication Index [187] ofers a standardized metric for musical expertise, helping to
identify whether the users of a generative AI system under study have above or below average musical skills.

4.3 User data collection: ualitative

In addition to quantitative data collection researchers use qualitative data collection to gain greater insight
into users’ feelings, motivations, and relections when using a generative AI system. It is important to note
that triangulation across diferent data collection approaches (also referred to as mixed methods) is crucial Ð
using both qualitative and quantitative data can help to demonstrate which features of the user experience are
improved by AI or not, as well as ofering insights into why this might be so [38].

4.3.1 Interviews. Interviews are a common technique used in HCI, often to give insights into users’ thoughts and
feelings on their interaction. They can be structured, semi-structured or fully open-ended [30]. For generative
music user studies, we found that semi-structured and unstructured approaches were common, with workshops
or group interviews used for need-inding studies [89, 93, 96, 171, 243]. There is no standard set of questions used
in interviews for evaluating interaction with generative AI models, nor standard analysis approaches. Results
tended to be reported thematically following a process such as Thematic Analysis [31] or using more experimental
approaches as in Fiebrink and Sonami [89], who transcribed their interviews verbatim when relecting on their
extensive experience on AI music. Generative AI studies in music are yet to explore qualitative analysis methods
emerging in more modern HCI paradigms [95], e.g., [213, 229], which might capture qualities from interviews
that Thematic Analysis does not.

4.3.2 Think-aloud. Several studies [96, 132, 171, 172, 243] have applied the HCI łthink-aloudž method to gain
insight into how users interact when making music with a generative AI model. In the think-aloud method
participants are asked to describe their thought process while performing their task, e.g., while making music
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Table 3. Overview of Human-Computer Interaction evaluation approaches.

Quantitative Methods: Questionnaires

Acronym Captures Reference

Goldsmith’s Musical Sophistication Index GMSI Musical expertise [187]
NASA Task Load Index NASA TLX How complex a task is perceived to be [117]
Standard System Usability Scale SUS The usability of a user interface [12]
Cognitive Dimensions of Notations questionnaire CD The usability of a user interface [23]
User Experience Questionnaire UEQ The usability and experiential aspects of a user

interface
[158]

User Engagement Scale UES The experiential aspects of a user interface [199]
Creativity Support Index CSI How well a user interface supports creative work [52]
Relection in Creative Experience RiCE Types of relection in creative contexts [92]

Qualitative Methods

Examples Captures Reference

Interviews: Structured, semi-structured, or open-
ended

[89, 93, 96,
171, 243]

Insights into users’ thoughts, motivations, and
feelings on their interaction

[30]

Think-aloud [96, 132, 171,
172, 243]

Users’ thought processes whilst using a user in-
terface

[212]

Video-cued recall [41] Users’ post-hoc thoughts about using a user inter-
face

[5]

Autoethnographies [193, 238] A researcher’s subjective and personal relections
on their musical practice and use of technology

[216]

First-person accounts [93, 240] Rich descriptions of users’ personal relections on
using AI models

[174]

with an AI tool [212]. Whilst this method can give detailed insight into participant’s cognitive process, it can
distract users, meaning that certain aspects of the creative user experience such as low states cannot then be
investigated [62]. It is also impractical for certain music practices such as live improvisation. An alternative
approach is to perform the think-aloud retrospectively [5] with participants describing a recording of their
composition practice (sometimes referred to as video-cued recall [41]) Ð this approach is under-utilized in the
literature for generative music.

4.3.3 First-person perspectives. The use of methods such as questionnaires and interviews described above is
borne from a psychology-driven epistemological stance: to identify generalizable models of how people interact
with technology. Approaches inspired by Arts and Humanities ofer insights into the individuality and subjectivity
of how artists have interpreted their use of technology [42]. We identiied an increasing trend to report on the use
of AI from a irst-person perspective [17, 37, 93, 193, 238, 240], publishing perspectives on how individuals have
been able to use and incorporate models into their music-making. In some cases, these are autoethnographies
[193, 238] where a researcher relects on their own practice by means of capturing data over a long time period.
Other examples show collections of irst-person accounts [93, 240]. Sturm et al. [241]’s proposal for a ield of AI
music studies engages with these methods to explore ways to more meaningfully and critically engage with the
broader communities in social sciences and humanities. In contrast to questionnaires, irst-person perspectives
are more frequently used in user experience-focused evaluations such as in-the-wild studies and less frequently,
if at all, in controlled experiments.
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4.4 Other HCI evaluation approaches

There is a wide variety of other evaluation methods used in HCI beyond those we found are most often used
when evaluating AI music systems, as described in this section. Usability metrics such as task completion rates,
task time or the number of errors, have been explored to evaluate the usability of a computer music system [257].
However, these are not prominent in generative AI music user studies where music making tends to have no
clearly deined goal. łWizard of Ozž was an early popular approach to user studies of human-AI interaction more
broadly, where users interact with a user interface whilst a researcher provides feedback through the interface in
lieu of an AI. For example, Thelle and Fiebrink [251] tested participant’s reactions to researchers who performed
piano phrases live, acting as an AI system. Similar examples have been tested with more complex generative
music programming languages [16]. We also did not ind many examples of using physiological measures such as
heart rate or eye-tracking to explore people’s interaction with music AI tools. In other arts-based HCI studies,
physiological measures have been used as proxies of aspects of the user experience such as anxiety or boredom,
indicated by participants’ heart rate or skin conductance [176]. This could be an open area for further research.

5 Challenges and future work

Despite a large number of previously proposed approaches, a multitude of challenges remain unsolved in the
evaluation of generative systems in music. Given the nature of the task, it is unclear if generalizable satisfactory
solutions can ever be found for some of these challenges.

5.1 Validity

Although subjective evaluation is often considered the most meaningful way of evaluating the output of generative
systems, the results cannot be automatically assumed to be robust or reliable. Subjective evaluation of system
output (Sect. 3.1) usually relies on survey approaches [120], much as quantitative user data collection relies on
questionnaires (Sect. 4.2). However, designing surveys and questionnaires is non-trivial Ð the creation of batteries
and psychometrics form an entire subield of psychology [101, 226]. Moreover, existing questionnaires often fail
to capture experiential aspects of human-AI interaction, such as users’ sense of agency. A considerable number
of researchers working on generative music systems lack the background, skill and/or resources to successfully
carry out such surveys with valid, reliable, and replicable results [267].
In addition, there is a known bias in people’s perception against AI-generated music [230]. As such, tests

highlighting human vs. machine authorship may introduce bias in the results. With respect to Turing tests,
Hernández-Orallo [121] point out that a known validity issue with Turing tests is that the outcomes cannot
disambiguate whether the model was a good imitator, or the human was a poor judge.

Given these potential validity issues with subjective evaluation of system output, objective evaluation remains
a viable choice to complement listening studies. With objective evaluation, however, there are other validity
concerns. These concerns often start with the data and its characteristics: Is the sample size suicient? Do the
data relect the targeted homogeneity or heterogeneity? Are there confounding characteristics in the data that
complicate drawing conclusions? Another concern is the validity of the chosen metrics Ð do they meaningfully
represent the evaluation target, and are observed diferences in evaluation results perceptually signiicant? Even
if some metrics prove to be relevant, individual metrics or criteria provide suicient breadth for comprehensive
evaluation; Theis et al. [250] rightly note that łGood performance with respect to one criterion (...) need not
imply good performance with respect to the other criteria.ž Note that even when targeting very speciic criteria
(e.g., complexity), subjective impressions might be better predictors of responses than objective measures [116].
For that reason, it might make more sense to use subjective impressions of criteria (rated by the listener) as
predictors of the overall judgments of aesthetic value [144].
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For evaluating user interaction with generative systems using HCI approaches, the main challenge is to balance
the ecological validity of the evaluation (how realistic is the study setting) and the generalizability of the results
of the study. For example, łin-the-wildž studies give in-depth insights into how generative music is used in
real-world places of music making such as performances on stage or music making at home, but the indings
are tied to the study’s cultural context and individual musicians making it hard to generalize from the results.
Certain protocols such as łthink-aloudž also afect ecological validity because subjects tend not to speak aloud
about their thought processes when making music. Likewise, the łWizard of Ozž protocol has poor ecological
validity as understanding how people interact with pretend AI tools can be diferent to how these systems work
once actually deployed.

Thus, both internal and external validity remain core challenges of evaluating generative music systems. This
is true for both subjective and objective approaches.

5.2 Perceptual and musical relevance of objective metrics

Revisiting the objective metrics introduced in Sect. 3, it can be observed that the most common metrics compare
training data characteristics with characteristics of the generated data in one way or the other. A major diferentia-
tion between such metrics is the space and the dimensions in which diferent metrics approach such a comparison.
On the one hand, learned embeddings such as VGGish [124] and a variety of other embeddings have been utilized
for the FAD or related metrics, on the other hand there are custom-designed low-level statistical descriptors
such as pitch range, pitch class histograms, etc. [267]. This has considerable impact on the interpretability of
the descriptors; while a learned descriptor such as VGGish cannot be interpreted directly, custom-designed
descriptors tend to be more interpretable. However, high interpretability does neither mean that the descriptor is
relevant for assessment nor that it is perceptually or musically meaningful.
Perceptual studies of speciic descriptors are necessary to understand their relevance and meaning. Simply

inding a diference between two set of data with respect to one descriptor does not automatically mean that
these data are diferent from a perceptual point of view. Recent studies on the suitability of learned embed-
dings for evaluation seem to focus on overall relevance for summary aesthetic judgments without considering
interpretability or musical meaning [108, 130].

Furthermore, even descriptors known for their perceptual validity can be more or less meaningful depending on
context and scenario. For instance, it has been demonstrated that people are incredibly sensitive to the statistical
distribution of pitches in a piece of music, and can even learn new musical systems and grammars based on such
statistical inference (e.g., [133, 155, 170, 248]). However, in general, not all musical representations are equal, and
this can have a sizeable impact in the perceptual relevance of any given feature or metric. For instance, most
music is tonal meaning that it is (at least temporarily) in a given key or mode and has a stable tonic. For such tonal
music, listeners are very sensitive to notes that are outside of the key (i.e., ’wrong notes’) [75, 155, 214]. As such,
measuring the statistical distribution of pitches in relation to that tonic (as scale degrees or musical intervals
from a tonic) carries a diferent musical and perceptual relevance compared to the distribution of all pitch classes
measured in a tonic-agnostic way. Thus, it is not only necessary to validate whether certain descriptors have
perceptual relevance per se, but also in what (e.g., tonal or stylistic) context they are extracted. But even given a
set of relevant descriptors we can only guess how exhaustive this set is. At the very least, the number and type of
relevant descriptors is genre-dependent, and is quite possibly indeinite.

5.3 Reproducibility

Reproducibility has long been identiied as a problem in the machine learning community [233]. For software-
based technologies and approaches, the pure description of research in a paper is increasingly considered
insuicient and the publication of well-documented open-source code has been identiied as one important part
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of a solution [184, 254]. In addition, as most machine learning is data-driven, understanding the training data
and the test data is crucial. Unlike other systems for other machine learning tasks, generative systems often use
massive amounts of unlabeled (and potentially unpublished) data of potentially unclear origin and with unclear
data curation approaches, meaning that the training of such systems cannot be reproduced by unailiated parties.
For generative systems, we introduce the following levels of reproducibility with increasing level of trans-

parency: (i) publication of an academic text, describing the method and approaches, (ii) publication of all raw

results, including the generated music in order to reproduce the result-based conclusions, (iii) publication of the

generative system itself (e.g., through an API) to allow reproducing the results with a clear documentation of
the system prompts and parameter settings from the study, (iv) publication of documented source code of the
pre-trained system in order to allow in-depth understanding of architectural details and parameters not published
otherwise, (v) publication of training source code for the generative system to share details on data processing and
training methodologies, (vi) publication of training data statistics to improve transparency around data distribution
and characteristics, possible bias, and other details, (vii) publication of training data and source code for data
pre-processing and curation, and (viii) publication of data acquisition and curation strategies to be transparent
about potential bias, data licenses, and fair data use. While we acknowledge that constraints exist that do not
always allow for publication of every single detail, we call for full transparency as the goal of any scientiic work
in this area to the extent possible.

In addition, HCI studies of generative systems require the publication of user data collected such as questionnaire
results, interview transcripts, music generated, and recordings of human interaction with generative system if
the studies are themselves to be reproducible by other researchers. There are substantial privacy and practical
challenges to making such data available and shareable, not least the lack of any standards for sharing user study
data in HCI to date.

5.4 Need for de-facto evaluation standards

As described above, there is currently a multitude of evaluation methodologies and metrics across studies in the
ield that prevents results from being comparable to each other. This means that the capabilities and shortcomings
of systems are not consistently assessed, and no meaningful conclusions regarding the progress of the ield
can be drawn. Clearly, there is a need for de-facto evaluation standards (compare also Xiong et al. [265], Zhou
[274]). More speciically, standards are needed with respect to (i) assessment targets, (ii) evaluation methodology,
(iii) commonly used, publicly available reference (test) data sets, and (iv) agreement on a base set of evaluation
metrics that allows for future extension with additional metrics to avoid metric overitting. Even an imperfect
set of metrics can help a ield moving forward, as the continued use of BSSEval metrics SDR, SAR, and SIR [256]
for source separation systems shows Ð despite widely known shortcomings [79, 94, 112]. These metrics might
complement HCI approaches where there are no de-facto standards for evaluation in general. Whilst łmixed-
methodsž is a current methodological trend, HCI studies are designed to respond to the goals of the evaluation,
drawing from both quantitative and qualitative approaches. As such, de-facto standards and benchmarks might
not be as meaningful in HCI evaluations where it is more important to understand the features of the evaluation
technique used and the user data collected.

6 Conclusion

We presented an overview of the state-of-the-art in evaluating generative systems in music from the perspective
of both the system output and the usability of the system. We categorized diferent evaluation goals and targets,
as well as corresponding methodologies and metrics, and concluded that the current state of system assessment
makes it diicult to generalize results, compare state of the art systems objectively, and measure progress in the
ield. The main challenges identiied include (i) the perceptual and musical meaningfulness of current evaluation
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metrics, (ii) the internal and external validity of common experimental setups, and (iii) the lack of reproducibility,
emphasizing the need for de-facto evaluation standards adopted by the research community. While the direct
assessment of aesthetics might łremain out of reach in our lifetime and perhaps foreverž [97], there is a need for
methodologies and metrics that give us at least a glimpse into some aspects of quality.
In addition to the evaluation targets presented above, there exist other evaluation targets of interest. Of

note could be targets that can be summarized under the umbrella of Responsible AI [210]. These include, e.g.,
(i) explainability: the increasing complexity of machine learning systems puts forth questions with respect to usage
and deployment of these systems [146], including in the arts [35], however, standardized evaluation strategies do
not exist [14]; (ii) bias: bias of machine learning systems is a known problem [13, 39] and can Ðin the case of
generative music systemsÐ lead to marginalization of non-mainstream musical styles [36]; (iii) ethical use of data:
ethical data acquisition, guiding principles, and transparency on data content and curation are crucial for the
holistic evaluation of a machine learning system [141], as the call for łdataset audit cardsž [22] and formalized
datasheets for datasets [100, 234] emphasize; (iv) resource use [20, 53, 237]: the high energy consumption of today’s
models can be linked to environmental impacts; the reporting of carbon emissions [119] or the relation of energy
consumption to the subjective output quality of generative music systems [74] could promote energy-responsible
research.

Given the complexity and open-endedness of the task, one should not forget about other ways of assessing or
engaging in a dialogue with generative systems. Musicology has a long history of engaging critically with new
pieces and forms of music, and traditional modes of assessment should not be discarded as invalid approaches to
analyzing and evaluating music, although Ðas Sturm et al. [241] point outÐ the large scale generation of music
creates new challenges for these approaches. Artistic inquiry is another form of assessing system output that can
create societal awareness. For instance, artists have a history of exposing bias and discrimination in generative
AI systems [99, 232]. These artistic discourses ofer a lens through which to explore future values and metrics of
evaluation beyond the state of the art surveyed in this paper.

Furthermore, it became clear in writing this paper that for addressing these challenges interdisciplinarity is a
necessity, as an exhaustive system evaluation requires expertise not only in the ield of machine learning, but
also in music theory and musicology, psychology, human computer interaction, and possibly others. In our view,
this is especially true for generative systems for music as music is a fundamental form of human creativity, social
interaction, and intangible cultural heritage which itself has deied evaluation for millennia.
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