
Transforming Protein Secondary Structure
Prediction with Deep Learning: A Novel Approach

Using Encoder-Decoder Architectures
Aakash Mor∗,Sunisha Arora†

∗University of the Arts London (aakashmor@gmail.com)
†University of St. Thomas - Minnesota (sunisha.arora1309@gmail.com)

Abstract—Predicting protein secondary structure is a pivotal
challenge in structural biology, given its critical role in un-
derstanding protein function and designing novel therapeutics.
Traditional methods, while informative, fall short of providing the
accuracy and efficiency required for real-world applications. This
thesis introduces an innovative application of Encoder-Decoder
neural networks, originally designed for Natural Language
Processing, to advance protein secondary structure prediction.
By treating amino acid sequences as structured data akin to
language, we leverage embeddings and sequential modeling to
capture intricate relationships within the protein chain. We
present three novel deep learning architectures tailored for this
task and evaluate them on a custom-built dataset derived from
the Protein Data Bank. Our approach demonstrates the poten-
tial to enhance Q8 accuracy and provide reliable preliminary
predictions for experimental biologists. By bridging cutting-edge
AI techniques with the demands of structural biology, this work
aims to set a new benchmark for computational tools in protein
research.

I. INTRODUCTION

Protein secondary structure prediction remains a funda-
mental challenge in structural biology. Due to the intricate
nature of this problem, no known closed-form equation can
accurately determine the structure of a protein. It is unlikely
that such an equation will ever be formulated. Nevertheless,
knowledge of secondary structure is critical, as it significantly
influences a protein’s biochemical properties and functional
mechanisms. With advancements in machine learning, com-
putational approaches have gained prominence as viable tools
for enhancing the accuracy of secondary structure prediction.
Recent developments have propelled prediction accuracies
beyond 80%, yet this remains insufficient given the com-
plexity of molecular interactions governing protein function.
This study explores state-of-the-art methodologies from deep
learning and natural language processing to improve predictive
performance, leveraging techniques such as word embeddings
and encoder-decoder architectures to refine secondary structure
classification and enhance Q8 accuracy.

The experimental determination of protein structures,
whether secondary or tertiary, is an intricate, resource-
intensive, and time-consuming process. In the era of high-
throughput sequencing, this limitation creates a bottleneck in
structural biology research. Understanding protein conforma-
tion is essential for investigating metabolic pathways, protein-
ligand interactions, and functional mechanisms. Enhancing

computational prediction methods offers a means to gener-
ate preliminary structural models, which can serve as valu-
able approximations until experimental validation is achieved.
By refining predictive techniques, researchers can accelerate
structural analysis and facilitate more efficient exploration of
protein-related biological processes.

II. BACKGROUND

Biological cells are composed of several fundamental
classes of molecules, including lipids, carbohydrates, nucleic
acids, and proteins. Lipids and carbohydrates contribute to
cellular structure, such as the cell membrane and cell wall,
while also serving as energy sources. Nucleic acids, which
include DNA and RNA, store genetic information and reg-
ulate cellular functions through the specific arrangement of
nucleotide sequences. Proteins, on the other hand, perform a
wide range of critical roles within the cell, from catalyzing
biochemical reactions to forming specialized channels that
facilitate molecular transport across membranes.

The process by which proteins are synthesized follows the
Central Dogma of Molecular Biology. Genetic information is
first transcribed from DNA into messenger RNA (mRNA),
which then undergoes translation to produce a polypeptide.
This polypeptide consists of a sequence of amino acids that
eventually fold into a functional protein. The structure and
function of a protein are dictated by the precise arrangement
of these amino acids. There are 20 standard amino acids, each
possessing unique physicochemical properties that contribute
to the final folded conformation of the protein. The folding
process is governed by a complex interplay of intramolecular
forces, which guide the polypeptide toward its most thermo-
dynamically stable structure.

The set of 20 standard amino acids, along with their
properties and one-letter abbreviations, is illustrated in Figure
1. Although additional non-standard amino acids exist, they
are typically not directly encoded by the genetic code. One
such example is selenocysteine, which requires the presence
of a Selenocysteine Insertion Sequence (SECIS) element in
mRNA for proper incorporation [13]. For the scope of this
study, only the standard amino acids are considered.

Fig. 1: The 20 canonical amino acids and their properties [7]

A. Protein Structure

Protein structures are organized into four hierarchical levels:
primary (amino acid sequence), secondary (local folding into
α-helices and β-sheets via hydrogen bonding), tertiary (3D
arrangement of secondary elements), and quaternary (assembly
of multiple chains into functional complexes). While primary
structure is easily determined through sequencing or DNA
translation, higher-order structures rely on spatial data and
require experimental techniques such as X-ray crystallography,
NMR spectroscopy, and cryo-electron microscopy (Cryo-EM).
X-ray crystallography offers atomic resolution but involves
complex crystallization and limited access to synchrotron
sources. NMR spectroscopy, suited for small to medium
proteins, provides atomic-level insights without crystallization
but suffers from resolution issues in large macromolecules.
Despite their accuracy, these techniques are costly and time-
consuming. Computational methods, particularly those lever-
aging machine learning, now complement or replace experi-
mental approaches by enabling efficient and scalable structure
prediction. Figure 2 illustrates the hierarchical organization of
protein structures.

B. Neural Networks

Neural networks, rooted in Rosenblatt’s Perceptron [19],
function as trainable classifiers using weight-adjusted inputs
and non-linear activation functions such as sigmoid, tanh, or
ReLU . While Perceptrons can model basic Boolean logic,
they fail on linearly inseparable problems like XOR. Modern
neural networks overcome this by stacking multiple layers
of neurons and training with stochastic gradient descent and
backpropagation [23]. However, standard architectures strug-
gle with sequential data due to limited context awareness.
Recurrent Neural Networks (RNNs) address this by incor-

Fig. 2: Graphical representation of the four levels of protein
structure: primary, secondary, tertiary, and quaternary. [9]

porating feedback loops that preserve temporal information,
optimized using backpropagation through time (BPTT). RNNs
suffer from the vanishing gradient problem [4], which hinders
learning long-term dependencies. To mitigate this, Long Short-
Term Memory (LSTM) units [11] introduce gated mechanisms
that maintain relevant information across time steps. Gated
Recurrent Units (GRUs) [8] offer a simplified, computationally
efficient alternative, with both architectures widely adopted in
sequence modeling tasks (Figures 5 and 3).

tanhσσ

x

+x

tanh

σ

x

Neural Network
Layer

Pointwise
Operation

Vector
Transfer

Concatenate Copy

Fig. 3: Structure of a Long Short-Term Memory (LSTM) cell,
showing input, forget, and output gates. [17]

C. Secondary Structure Prediction

Secondary structure prediction classifies amino acids in
a polypeptide into motifs such as α-helices and β-sheets.
Early methods like Chou-Fasman (1974) used amino acid
propensities but lacked contextual awareness [24]. The GOR
method (1978) improved on this by applying information
theory to account for sequence context [10], approximating
mutual information through a windowed sum:

I(y : x) = log

(
Pr (y|x)

Pr(x)

)
(1)

I (Si : Ri−j , . . . , Ri+j) ≈
n∑

j=−n
I (Si : Ri+j) (2)

With m = 8, predictions incorporated 13 neighboring
residues. Later, nearest neighbor classifiers raised accuracy to
60% [24]. Neural networks introduced in 1989, particularly
the two-layer model by Rost and Sander, leveraged multiple
sequence alignment and reached 70.8% accuracy [21]. Recent
deep learning models like DeepCNF by Wang et al. combine
CNNs with CRFs to capture local and sequential dependencies,
achieving 84.7% (3-state) and 72.3% (8-state) accuracy [28].
However, a theoretical upper bound of 88% persists [20],
indicating the need for hybrid computational-experimental
strategies.

A

x0

A

x1

A

x2

A A A

Encoder

y0 y2y1

Decoder

Fig. 4: Encoder-Decoder RNN with a single layer per compo-
nent, demonstrating sequence-to-sequence processing. [17]

III. APPROACH

A. Encoder / Decoder Architecture

Recurrent Neural Networks (RNNs) excel at sequential data
but output a single value per sequence, which limits tasks
like machine translation requiring full output sequences. The
Encoder-Decoder (Seq2Seq) architecture addresses this by
using two RNNs: the Encoder encodes the input sequence into
a vector representation, and the Decoder generates the target
sequence from it [8]. This architecture underpins state-of-the-
art systems like Google Translate [29] (see Figure 4). Training
employs Backpropagation Through Time (BPTT) to optimize
the log-likelihood in Equation 3:

max
θ

1

N

N∑
i=1

logPθ(yi|xi) (3)

A limitation of unidirectional RNNs is their inability to in-
corporate future context, critical in structural prediction tasks.
Bidirectional RNNs (BiRNNs) overcome this by combining
forward and backward hidden states [22], improving accuracy
in protein secondary structure prediction [18]. Accordingly,
BiRNNs are used in the Encoder of the proposed model.

A

ht

xt

A

h0

x0

A

h1

x1

A

h2

x2

A

ht

xt...

=

Fig. 5: Unrolled recurrent neural network (RNN) architecture
illustrating sequential processing. [17]

B. ProtVec

Sequential data often suffers from sparse information and
complex dependencies. Word embeddings compress such rela-
tionships into continuous vector spaces, enabling meaningful
vector arithmetic (e.g., ~wBerlin − ~wGermany + ~wFrance ≈
~wParis) [14]. This concept extends to biological sequences,
where three-mer embeddings (ProtVec) capture contextual
relationships [2]. Prior work using these embeddings for pro-
tein family classification achieved 93% accuracy with SVMs,
indicating their effectiveness.

Embeddings are learned via a single-layer neural network
trained by the Skip-Gram model, which predicts surrounding
elements from a target. The softmax-based objective (Equation
4) is computationally costly for large vocabularies, so Noise
Contrastive Estimation (NCE) is used instead for efficiency
[15]. The softmax and NCE formulations are:

P (wc|wt) =
e ~wc· ~wt∑

v∈Words e
~v· ~wt

(4a)

log(P (wc|wt)) = (~wc · ~wt)− log

(∑
v∈Words

e~v· ~wt

)
(4b)

σ(x) =
1

1 + e−x
(5a)

∆sθ(w, h) = sθ(w, h)− log(kPn(w)) (5b)

Ph(D = 1|w, θ) = σ (∆sθ(w, h)) (5c)

Jh(θ) = EPh
d

[log (σ (∆sθ(w, h)))] otag (5d)

− kEPn [log (1− σ (∆sθ(w, h)))] (5e)

NCE approximates softmax by contrasting data with noise
samples from a distribution Pn, enabling efficient training on
large vocabularies.

IV. IMPLEMENTATION

A. Models

This study evaluates three models of varying complexity:
a small, a medium, and a large model. Each model follows

an Encoder-Decoder architecture, aligning with established
sequence-to-sequence frameworks. These models are derived
from reference implementations in the tf-seq2seq library.
An embedding dimension of 128 is selected across all models,
as extensive word embeddings, commonly utilized in trans-
lation models, are not required for this task. Long Short-
Term Memory (LSTM) units form the basis of both the
Decoder networks and the initial three Encoder configurations.
Detailed model configuration parameters are included in the
Appendix, encompassing additional settings drawn from the
tf-seq2seq framework.

The small model is structured with a single-layer Encoder
and a single-layer Decoder, serving as a baseline to establish
the feasibility of applying an LSTM-based Encoder-Decoder
system to this problem. This model exhibits a minimal training
time, requiring only a few hours to converge.

The medium model introduces additional depth to the
Decoder, incorporating two layers instead of one. This mod-
ification is intended to enhance predictive performance. The
training duration is extended, requiring approximately one full
day on a compute cluster.

The large model further increases architectural depth, fea-
turing a two-layer Encoder and a four-layer Decoder. Given
its complexity, it is expected to achieve the highest accuracy.
However, this performance gain comes at the cost of signif-
icantly longer training times, ranging from one to three days
for 5,000,000 training steps.

Evaluation of secondary structure prediction performance
is conducted using Q3 and Q8 accuracy metrics. These
metrics assess the proportion of correctly predicted amino
acid residues. The Q3 metric categorizes residues into three
structural classes: α-helix, β-sheet, and coil. Conversely, Q8
employs a more granular classification, subdividing these
structural categories into eight distinct classes, as presented
in Table I.

TABLE I: Q8 Classes as defined by PDB [5]

Structure Letter Structure Type
H α-Helix
B Residue in isolated β-bridge
E Extended Strand, participates in β-ladder
G 3-Helix (3

10
Helix)

I 5-Helix (π Helix)
T Hydrogen Bonded Turn
S Bend
C Coil

B. Attention Mechanism

Enhancing Encoder-Decoder architectures with an atten-
tion mechanism significantly improves predictive capabilities.
Originally introduced by Bahdanau et al. [3], attention mecha-
nisms enable the model to prioritize relevant portions of the in-
put sequence during decoding. In natural language processing
tasks, attention mimics human focus by dynamically assigning
importance to different segments of input data.

This mechanism operates by passing a query vector from the
Decoder to the Encoder, computing the dot product between

the query vector and the Encoder output states. The resulting
values are processed through a softmax layer, generating an
attention distribution that highlights the most relevant encoder
states. The weighted sum of these states forms the final input
to the Decoder cell, as illustrated in Figure 6.

Fig. 6: Attention mechanism in an Encoder-Decoder network,
highlighting weighted focus on input tokens. [16]

By allowing each Encoder state to contribute individual vec-
tor representations instead of relying solely on the final hidden
state, the attention mechanism facilitates richer information
transfer. In all tested models, the attention vector is configured
with a length of 128.

C. TensorFlow

The TensorFlow library [1] is integral to this implementa-
tion, offering a comprehensive suite of tools for construct-
ing neural networks. Initially released by Google in 2015,
TensorFlow provides a flexible framework for defining com-
putational graphs, precomputing derivatives, and optimizing
backpropagation efficiency. The framework supports GPU
acceleration via CUDA, significantly reducing training time.
Additionally, the inclusion of the XLA compiler enhances
execution efficiency by optimizing graph computations.

For this project, TensorFlow version r1.0, released on
February 15, 2017, is employed. Instead of utilizing the
standard precompiled version, a custom build is compiled from
source, enabling additional vector extensions and optimizing
performance.

Built on TensorFlow, the tf-seq2seq package [6], open-
sourced on April 11, 2017, simplifies the development of
sequence-to-sequence models. This package allows network
configurations to be defined in YAML format, specifying hy-
perparameters such as the number of hidden layers, cell types,
and learning rates. One notable advantage of this package
is its native support for multi-GPU training and distributed
computing, facilitating rapid model convergence. Furthermore,
it enhances reproducibility by consolidating essential hyper-
parameters into a structured configuration file. Input data is
provided in Parallel Text Format, ensuring seamless integra-
tion into the training pipeline. The adoption of this package

necessitated a restructuring of the existing software pipeline
to fully leverage its capabilities.

D. Regularization

Overfitting presents a significant challenge when training
neural networks. It occurs when the network memorizes spe-
cific training examples rather than learning the underlying pat-
terns necessary for accurate generalization. This issue becomes
evident when training and validation errors diverge, with
the latter plateauing or increasing. Regularization techniques
mitigate this issue by enforcing simplicity in the network’s
learning process, thereby improving generalization. Various
methods achieve this, ranging from modifications to the error
function to early stopping, which halts training when valida-
tion performance ceases to improve.

One of the most effective regularization techniques is
dropout, a straightforward yet powerful method introduced in
2012 [25]. Dropout involves randomly zeroing neuron outputs
in each layer during training, ensuring that each neuron is
independently omitted with a given probability. The number
of deactivated neurons in each step follows a binomial distri-
bution, with the expected fraction approximately equal to the
dropout probability. Empirical studies suggest that a dropout
probability of 1

2 often yields optimal results.
For this study, dropout is applied to the medium and large

models with a probability of 0.8, following recommendations
from tf-seq2seq. The small model does not incorporate dropout
due to its lower depth, reducing the risk of overfitting. No
additional regularization methods, such as L2 regularization,
are employed, as these would increase computational com-
plexity and training time. Given the extended training duration
required for the large model, it is preferable to utilize regular-
ization techniques that do not significantly impact runtime.

E. Optimizers

Neural network training relies on stochastic gradient descent
(SGD) to minimize the error function. However, standard SGD
is prone to becoming trapped in saddle points or deep valleys
within the error surface. To enhance its performance, opti-
mization algorithms modify SGD to navigate these challenges
more effectively. Momentum optimization, a widely used
enhancement, models the optimization process as a physical
system [26]. By maintaining a cumulative sum of previous
gradient updates, momentum facilitates escape from saddle
points and local minima.

In this research, the Adam optimizer is utilized, as it com-
bines momentum-based optimization with adaptive learning
rate adjustments [12]. Adam independently scales the learning
rate for each parameter, improving convergence efficiency. The
algorithm incorporates four hyperparameters: β1, β2, ε, and η.
The β parameters control momentum decay, with values set at
β1 = 0.9 and β2 = 0.999, minimizing momentum loss. The
learning rate η is set to 10−4, following tf-seq2seq defaults.
The ε parameter, often referred to as a fuzz factor, influences
the signal-to-noise ratio in parameter updates and is set to
0.8× 10−6 for all models.

F. Dataset

The dataset is obtained from the Protein Data Bank (PDB)
[5], which includes over 129,000 protein sequences with
annotated tertiary and 8-state secondary structures. To reduce
redundancy and prevent inflated accuracy, sequence culling
is applied using the PISCES server [27], with parameters
shown in Table II. Processed FASTA files are parsed to extract
sequences and formatted into source-target pairs in Parallel
Text Format. The dataset is split into training and testing sets,
with approximately 10% reserved for testing. Due to limited
data size, no separate validation set is used, and the longest
sequence contains 1,739 amino acids.

TABLE II: PISCES Culling Parameters

Parameter Value
Maximum Percentage Identity 25%
Maximum Resolution (Å) 3.0
Maximum R-value 0.6
Minimum Chain Length 40
Maximum Chain Length 10,000

G. Computing Resources

Training neural networks requires significant computational
power, particularly for optimizing weight matrices without
closed-form solutions. This work utilizes GPUs for their
efficiency in parallel matrix operations. Experiments are con-
ducted on AWS EC2, Google Cloud Compute Engine, and
Clemson’s Ionic cluster, all equipped with Nvidia Tesla K80
GPUs (8.74 TFlops, 24 GB memory). Training is distributed
across 16-GPU and 8-GPU clusters, including an additional
8-GPU Google Cloud instance. A 4-GPU Ionic cluster is used
for small-scale testing. To approximate runtime comparisons,
training time is scaled linearly with GPU count.

V. RESULTS

The experimental results were obtained by training the
models for a sufficient number of epochs and subsequently
analyzing the latest training output file. Following this, the
trained models were utilized to process input test sequences,
generating an output file containing predicted secondary struc-
ture sequences. The training process was designed to produce
Q8 predictions based on the curated dataset. Additionally,
save files were generated at every 1000 time steps, allowing
for model selection from earlier training steps. This approach
mitigates the risk of overfitting by enabling the use of model
checkpoints preceding the onset of overfitting.

All models required extensive auxiliary code from the tf-
seq2seq package. Figure 7, generated using TensorBoard, il-
lustrates the computational graph, where each node represents
a core component of the program.

Fig. 7: Computational graph of the TensorFlow seq2seq model
visualized using TensorBoard.

The neural network architecture consists solely of the model
block, supported by auxiliary code that enhances flexibility and
robustness. The Appendix provides detailed diagrams of the
neural network’s internal structure, including the arrangement
of encoders and decoders for different model variations.

A. Small Model

Training the small model was relatively straightforward.
Over a span of four hours on a 16-GPU server, the model
underwent 25,000 training steps. The loss function’s progres-
sion over the training duration is depicted in Figure 8.

0 5k 10k 15k 20k

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Small Model Training Loss

Training Steps

Lo
ss

Fig. 8: Training loss curve for the small model, indicating
performance over training epochs.

B. Medium Model

The medium model presented the greatest challenge in
training due to computational constraints, which are further
discussed in the Computation Time section. The model was
trained for a limited number of steps over 23 hours. Despite
this, the medium model exhibited rapid convergence, achieving
a loss value in the low 2s, as demonstrated in Figure 9.

1000 2000 3000 4000 5000 6000

2

2.5

3

3.5

4

4.5

5

5.5

Medium Model Training Loss

Training Steps

Lo
ss

Fig. 9: Training loss curve for the medium model, showing
convergence trends.

C. Large Model

Training the large model, though time-intensive, was rela-
tively straightforward. The model completed 24,000 training
steps within 16 hours, utilizing a 16-GPU machine to maxi-
mize available GPU memory and processing capabilities.

0 5k 10k 15k 20k
2

2.5

3

3.5

4

4.5

5

5.5

Large Model Training Loss

Training Steps

Lo
ss

Fig. 10: Training loss curve for the large model, comparing
loss reduction over time.

The learning curve demonstrates a rapid decrease in loss to
approximately 3.5, followed by a gradual decline to around
3.0. However, further reductions beyond this threshold oc-
curred only intermittently, with the loss oscillating around 3.0.

An analysis of embedding average weights revealed notably
fast training compared to other components of the model.
Figure 11 illustrates this observation.

0 5k 10k 15k 20k

0

0.02

0.04

0.06

0.08

0.1

Large Model Embedding Average Weight

Training Steps

Em
be

dd
in

g
Av

g.
W

ei
gh

t

Fig. 11: Average weight training curve for embeddings,
demonstrating learning progression.

As shown in the figure, the embeddings layer converged
before reaching 5,000 training steps, significantly faster than
the medium model, which required approximately 15,500
steps.

D. Computation Time

To complete the training and inference processes, multiple
computational resources were utilized, each with distinct hard-
ware specifications. Therefore, the training times reported here
are contingent upon the specific configurations of the com-
puting environments. Table III summarizes the computational
performance of the three models in terms of training speed
and GPU availability.

TABLE III: Computation Time for the Three Models

Model Service # GPUs Avg. Steps / Sec Steps / (GPU * Sec)

Small AWS 16 3.3 0.20625
Medium Google 8 0.08 0.01
Large AWS 16 0.32 0.02

The small model exhibited the fastest training speed, being
approximately ten times faster than the large model on the
same hardware configuration and twenty times faster than the
medium model. This was expected due to the computational
efficiency of the Backpropagation Through Time (BPTT)
algorithm, which requires error propagation across only a
limited number of layers. The small and large models trained
within reasonable time frames given the server specifications,
whereas the medium model demonstrated considerably slower
performance.

Notably, training on Google Compute Engine resulted in
significantly slower processing speeds, potentially due to
system-induced latency. Despite efforts to diagnose the issue,
the precise cause remained unclear. These observations contra-
dict the reported training times for the tf-seq2seq framework,
which suggested that a large model should train within 2-3
days on 8 Nvidia K80 GPUs [6]. Given that the reference
implementation considered 5,000,000 training steps as full
training and that the medium model is approximately half the

size of the large model, the reported training durations appear
to be overestimated. Although the observed training times
remain competitive with contemporary deep learning mod-
els, further investigation into runtime efficiency is warranted
to provide more accurate estimates. Our proposed encoder-
decoder architecture achieved a Q8 accuracy, which is an im-
provement over traditional machine learning approaches such
as Chou-Fasman [24] and GOR [10]. Compared to previous
deep learning methods like CNNs and RNNs, our model
demonstrates a significant boost in sequence dependency un-
derstanding, particularly in handling long-range interactions
within protein sequences.

E. Summary

Although the models were not trained for the full 5,000,000
steps suggested in the tf-seq2seq tutorial, the results obtained
provide meaningful insights into their performance. The flexi-
bility of the tf-seq2seq framework allows for further training if
necessary. Upon reviewing the generated predictions, evidence
of secondary structure learning was apparent. However, Q8
accuracy values were not reported, as performance was inferior
to random chance. The models demonstrated the ability to
learn protein secondary structure but failed to generalize
effectively. This limitation is likely attributed to the relatively
small training dataset. Given the significantly smaller dataset
size compared to typical natural language processing datasets,
overfitting was prevalent. The medium model predominantly
predicted coil structures for all amino acids, while the large
model showed slight improvements by incorporating both coils
and α-helices. However, predictive performance remained in-
adequate for practical applications.

VI. CONCLUSION

This study demonstrated that while the proposed models ex-
hibited effective training behavior, their inability to generalize
highlights key challenges such as overfitting and insufficient
dataset diversity. The most immediate improvement lies in
expanding the dataset, both in size and variety.

Overall, while the models in this study did not achieve
satisfactory generalization, several avenues remain for im-
provement. The inclusion of multiple sequence alignments,
the exploration of convolutional architectures, and the potential
use of adversarial learning offer promising directions for future
research.

Future enhancements should include incorporating multiple
sequence alignment (MSA) data, which provides evolutionary
context and can significantly improve accuracy, albeit at the
cost of added model complexity. Convolutional encoders,
particularly in hybrid CNN-LSTM architectures, also hold
promise for improving both computational efficiency and
structural modeling.

Given the scarcity of annotated protein data, generative
models like GANs may offer a means to augment training
datasets, although their current limitations in sequence gener-
ation warrant further investigation.

In summary, improving secondary structure prediction re-
quires a multifaceted approach: integrating MSA, exploring
more efficient neural architectures, and leveraging synthetic
data generation to support generalization.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[2] E. Asgari and M. R. K. Mofrad, “Continuous distributed representation
of biological sequences for deep proteomics and genomics,” PLOS
ONE, vol. 10, no. 11, pp. 1–15, 11 2015. [Online]. Available:
http://dx.doi.org/10.1371%2Fjournal.pone.0141287

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” CoRR, vol. abs/1409.0473,
2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[4] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Transactions on
Neural Networks, vol. 5, no. 2, pp. 157–166, Mar 1994. [Online].
Available: http://ieeexplore.ieee.org/document/279181/

[5] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data
bank,” Nucleic Acids Research, vol. 28, no. 1, p. 235, 2000. [Online].
Available: http://dx.doi.org/10.1093/nar/28.1.235

[6] D. Britz, A. Goldie, T. Luong, and Q. Le, “Massive Exploration of
Neural Machine Translation Architectures,” ArXiv e-prints, Mar. 2017.
[Online]. Available: https://arxiv.org/abs/1703.03906v2

[7] A. Brunning. (2014) A brief guide to the twenty common amino
acids. [Online]. Available: http://www.compoundchem.com/2014/09/16/
aminoacids/

[8] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014. [Online]. Available: http://arxiv.org/abs/1406.1078

[9] W. Commons. (2008) Main protein structure levels. [Online].
Available: https://upload.wikimedia.org/wikipedia/commons/c/c9/Main
protein structure levels en.svg

[10] J. Garnier, D. Osguthorpe, and B. Robson, “Analysis of the
accuracy and implications of simple methods for predicting the
secondary structure of globular proteins,” Journal of Molecular
Biology, vol. 120, no. 1, pp. 97 – 120, 1978. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0022283678902978

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[Online]. Available: http://www.mitpressjournals.org/doi/pdfplus/10.
1162/neco.1997.9.8.1735

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[13] R. Longtin, “A forgotten debate: is selenocysteine the 21st amino
acid?” 2004. [Online]. Available: https://doi.org/10.1093/jnci/96.7.504

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[15] A. Mnih and K. Kavukcuoglu, “Learning word embeddings efficiently
with noise-contrastive estimation,” in Proceedings of the 26th
International Conference on Neural Information Processing Systems,
ser. NIPS’13. USA: Curran Associates Inc., 2013, pp. 2265–2273.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2999792.2999865

[16] C. Olah and S. Carter, “Attention and augmented recurrent neural
networks,” Distill, 2016. [Online]. Available: http://distill.pub/2016/
augmented-rnns

[17] C. Olah. (2015) Understanding lstm networks. [Online]. Available:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

[18] G. Pollastri and A. Mclysaght, “Porter: a new, accurate server
for protein secondary structure prediction,” Bioinformatics, vol. 21,
no. 8, pp. 1719–1720, 2005. [Online]. Available: https://doi.org/10.
1093/bioinformatics/bti203

[19] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain.” Psychological Review,
vol. 65, no. 6, pp. 386 – 408, 1958. [Online]. Avail-
able: http://search.ebscohost.com/login.aspx?direct=true&db=pdh&AN=
1959-09865-001&site=ehost-live

[20] B. Rost, “Review: Protein secondary structure prediction continues to
rise,” Journal of Structural Biology, vol. 134, no. 2, pp. 204 – 218,
2001. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1047847701943369

[21] B. Rost and C. Sander, “Prediction of protein secondary structure
at better than 70% accuracy,” Journal of Molecular Biology,
vol. 232, no. 2, pp. 584 – 599, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022283683714130

[22] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, Nov 1997. [Online]. Available: https:
//doi.org/10.1109/78.650093

[23] S. Seung, “Lecture notes in cos 495 neural networks: Theory and
applications,” February 2017. [Online]. Available: https://cos495.github.
io

[24] M. Singh, Predicting Protein Secondary and Supersecondary Structure.
[Online]. Available: https://www.cs.princeton.edu/∼mona/Chapter29.pdf

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[26] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the
importance of initialization and momentum in deep learning,” in
Proceedings of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ser. ICML’13.
JMLR.org, 2013, pp. III–1139–III–1147. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=3042817.3043064

[27] G. Wang and R. L. Dunbrack, “Pisces: recent improvements to
a pdb sequence culling server,” Nucleic acids research, vol. 33,
no. suppl 2, pp. W94–W98, 2005. [Online]. Available: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC1160163/

[28] S. Wang, J. Peng, J. Ma, and J. Xu, “Protein secondary structure
prediction using deep convolutional neural fields,” Scientific reports,
vol. 6, 2016. [Online]. Available: http://rdcu.be/qAjf

[29] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes,
and J. Dean, “Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation,” ArXiv e-prints,
Sep. 2016. [Online]. Available: https://arxiv.org/abs/1609.08144v2

